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ABSTRACT 
In this paper, we describe our intuitions about how language tech-
nologies can contribute to create new ways to enhance the accessi-
bility of exhibits in cultural contexts by exploiting the knowledge 
about the history of our senses and the link between perception 
and language. 

We evaluate the performance of fve multi-class classifcation 
models for the task of sensory recognition and introduce the DEEP 
Sensorium (Deep Engaging Experiences and Practices - Sensorium), 
a multidimensional dataset that combines cognitive and afective 
features to inform systematic methodologies for augmenting ex-
hibits with multi-sensory stimuli. 

For each model, using diferent feature sets, we show that the 
features expressing the afective dimension of words combined with 
sub-lexical features perform better than uni-dimensional training 
sets. 

CCS CONCEPTS 
• Human-centered computing → Accessibility technologies; 
Accessibility technologies; • Computing methodologies → 
Natural Language Processing. 
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1 INTRODUCTION 
In the treatise De Anima (On the Soul) written in the c. 350 BC., 
Aristotle drew a hierarchy of the senses introducing vision as dom-
inant compared to hearing, smell, touch and taste according to the 
strength of each sense in enabling people to experience the world 
and survive [28]. 

According to the Greek philosopher, humans are masters at 
perceiving through vision and hearing since culture and biology 
have afected how people act, communicate and think. 

Today, the old distinction between vision and hearing and the 
remaining senses still supports a duality between two main groups: 
the powerful and noble senses [20, 21] – vision and hearing – de-
scribed as the distal senses as opposed to the proximal ones (touch, 
taste, smell) [22]. 

The position of smell in the hierarchy has changed in the last 
decades: since many studies have reveled that vision has evolved 
to the detriment of the olfactory system, it has been demoted to a 
lower position after touch and taste [14, 28, 50] 

Visual media dominate Western society since images are easy 
to access, create and understand [42]. The images surrounding 
us have a great visual appeal, and, as humans, we communicate 
our visually-dominant experiences with means that mirror the 
supremacy of gaze [29]. We use language and visual artefacts to 
materialise our intricate abstract thoughts in undoubtedly one of the 
most fascinating means people have used since the earlier grafti 
painted at Altamira around 40,000 years ago [33]. 

Notwithstanding the supremacy of gaze and visual media, more 
than 1 billion people live with a type of disability for which a pre-
dominant part is afected by sensory diseases, and (17% afected by 
blindness or visual impairment, 6% afected by deafness or hearing 
loss) [23]. 

In museums, distal senses are the ones that are best emphasised 
since visitors are usually forbidden to touch artworks, putting a 
large portion of people with diferent sensory abilities at risk of 
being marginalised. 

Evidence from the beginning of the XX century shows that grant-
ing multi-sensory access has been a challenge for curators for over 
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a century. In 1913, the curator of the Museum of Sunderland, Eng-
land, transformed its collections into a museum of touch [15]. Many 
photographs of the time show blind children with the taxidermy 
Wallance the lion, some specimens of crocodiles, fshes and other 
wonders. 

Nowadays, thanks to the deeper knowledge of the brain and the 
sensory system of humans, the spread of innovative technologies 
provides ways to promote the use of senses in museums, preserving 
at the same time the artworks’ integrity and promoting art enjoy-
ment by giving people a chance to experience art like never before. 
Diferent approaches to encourage visitors to use their senses have 
been proposed during the last decades: many museums now pro-
vide some kind of tactile support to the blind by leveraging tactile 
replicas [9] or even 3D models of the artworks (e.g., statues) that 
can be touched with VR gloves [34]. 

Notwithstanding these progresses, designing a permanent multi-
sensory exhibition for all is still very challenging. 

The sensory augmentation of artworks, in fact, implies the ex-
traction of sensory features from artworks and their mapping to 
technological devices [43]. 

However, the specifcity of the stimulus-artwork association 
hinders the reuse of mapping knowledge across diferent artworks 
and contexts. 

To overcome this limitation, we sustain that collecting knowl-
edge from corpora of art-related texts could create a vast knowledge 
base less biased by subjective associations or specifc contexts. The 
large availability of textual materials related to artworks in muse-
ums provides a way to explore sensory-based information stored 
in language in the art-related domain. Catalogue records, for ex-
ample, are rich in sensory based information conveyed by single 
words, such as "soft" (tactile) or "vividness" (visual), and sometimes 
combined in highly evocative associations, such as "noisy stars" or 
"fresh tone" [10]. 

In this paper, we describe our intuitions about how language 
technologies can contribute to create new ways to enhance accessi-
bility in museums by exploiting the link between perception and 
language. 

In particular, we introduce a multi-dimensional lexical resource, 
the DEEP Sensorium (Deep Engaging Experiences and Practices 
- Sensorium), based on the alignment of existing resources that 
account for specifc linguistic dimensions, such as perception and 
afect, and we test its use in the context of supervised learning. In 
particular, we address the task of assigning a sensory domain to 
single words, which lies at the basis of more complex linguistic tasks, 
such as the detection and interpretation of synaesthetic metaphors, 
and is crucial itself for grounding sensory design into linguistic 
evidence. 

To do so, we evaluate the performance of fve distinct multi-
class classifcation models on verbal textual input using the DEEP 
Sensorium dataset to train them. 

This paper is structured as follows. After surveying the related 
work on models of sensory information in language in Section 2, 
in Section 3 we introduce the DEEP Sensorium by describing its 
creation from existing sensory datasets and linguistic resources. 
Section 2 describes the experiments in sensory domain labeling con-
ducted by training machine learning models on DEEP Sensorium. 

Results and limitations of the experiments are discussed in Section 
4.3. Future work and Conclusion end the paper. 

2 RELATED WORK 
Perceptual information is crucial to understand how people process 
concrete and abstract concepts. In general, unlike the referents of 
an abstract concept (e.g. truth), concrete referents can be experi-
enced through the senses (e.g. dog) [1, 6]. The two types of concepts 
difer since the concrete concepts are easier to learn, remember and 
process than the abstract ones [38, 46, 47]. To investigate how the 
brain processes conceptual knowledge, Binder et al. (2005) mea-
sured brain activation using the magnetic resonance imaging (MRI) 
on participants engaged in identifying concrete and abstract words 
and demonstrated that these cause diferent forms of activation in 
areas of the brain [3]. Compared to the concrete words, abstract 
words activate the areas connected to phonological and verbal 
working memory processes. An almost exclusive activation of the 
left hemisphere is observed for abstract words and areas related 
to executive functions of behaviour, such as problem-solving plan-
ning for concrete concepts [3]. Moreover, abstract concepts do not 
possess a single object as referent compared to concrete concepts 
[55]. They are more distant from perceptual modalities, varying 
more between contexts and demonstrating high values of semantic 
diversity [19]. In contrast, concrete concepts appear in a restricted 
and interrelated set of contexts with low values of semantic diver-
sity [19]. And precisely because they are more heterogeneous than 
concrete concepts, abstract concepts are considered more complex, 
require more time for processing and can activate the emotional 
dimension [41]. 

Indeed, emotion and perception are two strongly connected di-
mensions. Emotions defne how we perceive the world, organise 
our memory and make essential decisions facilitating both speed 
and probability for an information to be processed [44]. In some 
studies, the efects of abstractness may be determined by the higher 
emotional valence of abstract words [2]. [54] describe a preponder-
ance of emotional features in the representation of abstract words. 
The efect could also be explained by considering the high level of 
semantic richness [54]. Considering a theoretical approach inspired 
by grounded cognition theory, representation and internal process-
ing rely on the exact neural mechanisms as action and perception 
[40]. Abstract concepts cannot be embodied through sensory or 
motor information, and for this reason, internal afective experience 
can be sought as an alternative [40]. Zadra et al. (2011) argue that 
emotions exert a strong motivational infuence on the environment 
because they provide immediate embodied information about the 
benefts and costs of an anticipated action [60]. 

Over the past decade, while interest in emotions has grown signif-
icantly, the relationships between sensory properties and emotions 
have served several purposes. Yuan and Barlow (2021) have studied 
how individuals respond to sensory information and how this is 
critical in facilitating online ofers for humanised products [59]. 
Yand and Lee (2019) investigated the emotions aroused by food 
and drink or more straightforward taste and olfactory stimuli [58]. 
Globalisation is leading consumers to be exposed to new foods from 
very diferent countries around the world, pressing food industry 
to study a huge variety of products and identify factors infuencing 
product acceptability from an afective perspective. 
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In Digital Humanities, the role of sensory information in non-
literal, fgurative language has recently attracted the attention 
of scholars. Su et al. [49] proposed a method for interpreting 
synaeshetic metaphors which relies on cross-modal similarity be-
tween diferent sensory modalities and afective features. 

Similarly, Tekiroglu et al. [52] examined how sensory features 
afect the recognition of metaphors. They proposed a method to 
identify these correlations from a dependency-parsed corpus using 
a vocabulary that links English terms to sensory modalities. Their 
fndings reveal that sensory features are essential for detecting 
metaphors. 

As highlighted in [30], in spite of the fact that being able to 
automatically identify how the diferent sensory experiences are 
described would be very relevant to address diferent tasks, from 
emotion detection to metaphor identifcation, multi-sensory studies 
are still a niche area in natural language processing, with some 
very recent notable exceptions, such as the multilingual taxonomy 
about smell semi-automatically developed in [30], where olfactory 
terms in English, French, German and Italian have been extracted 
from diferent sources. 

While the link between perception in language and emotions un-
derpins many studies in the feld of sensory marketing, rather than 
in cultural domain, this research ultimately aims to investigate how 
the knowledge about the linguistic correlates of sensory perception 
we have today can be applicable to langauge-based multi-sensory 
design in museums. 

Given the support provided by the literature in favour of the 
combination of linguistic, perceptual and emotional information to 
learn and understand the meaning of words, our working assump-
tion is that models that combine these diferent levels of cognition 
better refect the acquisition of concepts and that this approach can 
be extended to the sensory meaning of words [5]. 

3 CREATING A MULTIDIMENSIONAL 
LINGUISTIC RESOURSE 

Sensory lexicons for the English language are rare, often of modest 
size and created with highly variable sampling techniques. To over-
come this limitation, in this paper we propose the DEEP Sensorium, 
a multidimensional dataset which combines cognitive and afective 
features. We decided to exploit diferent dimensions based on the 
evidence described in the literature surveyed above. 

We created the DEEP Sensorium by mapping the knowledge 
stored in diferent lexicons. The features we employed relate to the 
knowledge of words and sensory domains, the link to emotions, and 
a data base on the values of age of acquisition, frequency, familiarity, 
imaginability, concreteness, and other variables. 

3.1 Sensory dataset 
Sensory resources rely on manual or automated annotation (the lat-
ter usually based on semantic similarity measures), with limitations 
documented in both cases [51, 56]. Nevertheless, expert human an-
notators could be the best alternative to achieve the data accuracy 
and quality required for training datasets. Manual labelling can 
successfully identify borderline cases that automated techniques 
cannot deal with. For these reasons, we decided to merge manually 

annotated datasets to create a larger collection of labeled data with 
the goal of attaining a sufcient data quality. 

Lynott and Connell presented a dataset of 400 nouns and 423 ad-
jective randomly sampled and annotated with perceptual strength 
ratings for the fve traditional sensory modalities [24, 26]. Their 
study served to document the tendency of nouns to be associated 
with more modalities than adjectives. They showed that not all 
perceptual modalities are equally distinct and that correlations of 
varying degrees (non-existent, weak, moderate or strong) exist for 
pairs of modalities with a very strong positive relationship for the 
pairs smell and taste, sight and touch [26]. Both datasets also con-
tains estimates of modality exclusivity, a value to describe whether 
or not a word belongs exclusively to a certain sensory modality. 

Winter (2016) provided a dataset of 300 verbs consisting of per-
ception verbs from the literature and random samples of words 
with a frequency above the median in the English Lexicon Project 
[57]. 

3.2 Afective lexicons 
The use of emotional resources relies on to the widely acknowl-
edged but intricate connection between senses and emotions. Senses 
have the capacity to elicit emotions, with a direct impact on the mo-
tivation and the behavior of human beings [17, 18, 27]. Conversely, 
in the fgurative language, sensory-related words are widely em-
ployed to convey concepts or emotions that may be difcult to 
express literally [36, 61]. 

Emotional stimuli can be characterised by three dimensions: va-
lence, dominance and arousal. Valence describes whether a stimulus 
is pleasurable (from pleasant to unpleasant), arousal describes the 
level of activation (from calm to aroused), dominance indicates the 
control exerted by the stimulus and can be used to discriminate 
emotions [53]. Among the three dimensions, dominance has been 
the least examined in the emotion literature, but it is estimated to 
be the one that varies the most between people [4, 37]. The three 
afective dimensions have been used to understand how people 
process emotional images or words, showing, for example, that 
valence has stronger efects for emotional images than for words 
[2]. 

Among the most widespread resources in sentiment analysis and 
emotion extraction, the National Research Council Valence Arousal 
Dominance Lexicon (NRC-vad) [31] and the National Research 
Council Emotion Intensity Lexicon (NRC-eil) [32] provide comple-
mentary information about the afective and emotional information 
conveyed by words. NRC-vad includes 20, 000 English words and 
their scores for the three dimensions of meaning: valence, arousal 
and dominance. The values for the three dimensions were assigned 
manually using the best-worst scale. NRC-eil includes 5, 814 English 
words with corresponding intensity scores for the eight emotions 
provided by the ‘Plutchik Wheel’ (anger, anticipation, disgust, fear, 
joy, sadness, surprise and trust) [12]. The intensity value for each 
word was annotated manually using the best-worst scale. For both, 
the scores range from 0 to 1. 

3.3 MRC psycholinguistic database 
The Medical Research Council Psycholinguistic Database (MRC 
Psycholinguistic Database) is one of the longest-running and most 

663



WWW ’23 Companion, April 30–May 04, 2023, Austin, TX, USA Corciulo et al. 

extensive dictionaries for selecting material for psycholinguistic 
tests and research in the feld of artifcial intelligence. In particular, 
it is recognised as an essential source from which to draw data that 
can be used in the design of models for natural language processing 
[8]. The psycholinguistic database contains many concepts closely 
related to the sensory domain, such as imaginability, concreteness 
and abstractness: it has been shown that such words are related to 
perception, are very concrete and, therefore, easy to imagine [46]. 

The MRC Database consists of 150, 837 words annotated with 
26 linguistic attributes; it difers from other dictionaries for the 
absence of semantic information. We decided to include several of 
these attributes to our dataset, but future studies may investigate 
more in detail the relevance of such attributes over the other ones, 
in order to purge the attributes that show low impact for the feld 
of artifcial intelligence. 

3.4 The DEEP Sensorium 
The DEEP Sensorium was created by aligning sensory data about 
single words from the lexicons described above, with the goal of 
creating a multidimensional resource, in line with the evidence from 
cognitive studies on word learning and understanding surveyed 
in Section 2. Starting from the existing collections of sensory data, 
namely those provided by [25, 26] and [57], we frst merged these 
resources by obtaining a sensory dataset of 823 items, then we 
aligned this dataset with the psycholinguistic information contained 
in MRC psycholinguistic database and the afective information 
contained in NRC-vad [53] and NRC-eil [32]. 

Emotion No. Domain No. W. Type No. 

Joy 147 Vision 551 Noun 305 
Trust 138 Auditory 118 Verb 242 
Sadness 122 Haptic 57 Adjective 160 
Fear 89 Taste 47 Adverb 41 
Anger 85 Smell 13 0ther 26 
Disgust 84 Past participle 10 
Anticipation 74 Interjection 1 
Surprise 47 Rare 1 

Table 1: Number of entries for each emotion, sensory domain 
and type of word in the DEEP Sensorium dataset 

The DEEP Sensorium contains 25 features, inherited from the 
resources from which it has been created; it is stored as a comma-
separated values (CSV) fle1. 

A group of features is mostly related to measures of word fre-
quency (e.g. Krucera Francis written frequency [48], Thorndike-
Lorge written frequency [16], Brown verbal frequency [7]) and 
grammar (e.g number of syllables, common part of speech, pronun-
ciation variability, irregular plural) extracted from the MRC psy-
cholinguistic database; a second group of features encompasses the 
experimentally collected response to the single words (e.g., concrete-
ness, abstractness, familiarity [8], imaginability [8], meaningfulness 
[8, 39]) and their afective value (valence, arousal, dominance, in-
tensity, emotion) extracted from both MRC and NRC (vad and eil). 

1Available on request 

Domain joy tru fea sur sad dis ang ant TOT 

Vision 52 50 31 18 36 22 23 33 265 
Auditory 
Haptic 
Taste 

12 
3 
5 

7 
3 
3 

11 
3 
1 

2 
-
2 

7 
7 
2 

6 
5 
4 

12 
3 
1 

5 
-
2 

62 
24 
20 

Smell - 1 1 - - 5 - - 7 

TOTAL 72 64 47 22 52 42 39 40 378 

Table 2: Number of emotions for each domain in the DEEP 
Sensorium dataset, where we consider only the 229 unique 
entries: the total number of emotions is bigger because an 
entry may convey several emotions 

Finally, a third group of features is related to the sensory domain 
of words. 

We decided to exclude from the DEEP Sensorium some features 
contained in the MRC psycholinguistic database (such as phonetic 
transcription and stress pattern) since only a very limited subset of 
entries reported a value for these features. 

The lexicons used difer signifcantly in size: 
• NRC-eil contains 9829 entries, 
• NRC-vad contains 19971 entries, 
• MRC psycholinguistic contains 150,837 instances. 

Clearly, the diferent design of these resources and their difer-
ences in size pose problems for the alignment. 

Concerning the overlap with the afective lexicons, the merged 
sensory dataset shared 378 entries with the NRC-eil and 709 with 
the NRC-vad. 

As as result, many of the words in the merged sensory dataset 
had to be excluded (455 entries) from the DEEP Sensorium dataset in 
order to create a training set as complete as possible for all features. 

However, the fnal size of the dataset is larger because in the 
MRC psycholinguistic database some entries appear more than 
once, since the same word can appear several times with diferent 
confgurations of values (e.g., diferent acquisition ages, diferent 
abstractedness values, and even diferent parts of speech), difer-
ently from standard lexicons, where entries are not repeated (unless 
in case of ambiguity, as in the case of ‘bad’ noun and ‘bad’ adjec-
tive). We decided to keep the status of each word separate for all 
parts of speech to have more control over the annotation regarding 
psycholinguistic variables. So, at the end of the alignment process, 
the DEEP Sensorium contained 786 entries and 229 unique entries. 

It is worth stressing that the distribution of values over the single 
features is the DEEP Sensorium is not balanced, in particular for 
what concerns sensory and afective features, as represented in 
Table 1. This is not entirely unexpected for sensory domains, since 
the unbalanced distribution of domains mirrors the infuence of 
perception on language and vice versa. Unlike the proximal senses, 
in fact, the distal senses are the senses humans use the most. Con-
sequently, in communicating our experiences of the world through 
language, the vocabulary associated with sight and hearing is cer-
tainly dominant. The distribution shows that the proximal senses 
are poorly represented, with insufcient instances for the olfactory 
domain (Table 1, Domain). Similarly, the distribution of emotions 
is not balanced: we can highlight a very high representation of Joy 
and Trust (Table 1, Emotion). 
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The hierarchy of senses describes the evolutionary advantage 
of some senses in gathering much information from the environ-
ment. The distal senses beneft humans: by vision and hearing, 
distant stimuli in space are gathered, activating emotions benefcial 
to avoid health risks. Several empirical studies have detected that 
many emotions positively correlated with risk aversion, including 
fear, happiness, anger and surprise [35]. Examining the data (Table 
??), we identifed some emotions elicited by risk aversion for the 
distal senses, except for surprise related to the hearing domain. In 
this view, we are led to speculate that some words might be un-
derused in a language not only because they relate to experiences 
challenging to capture or process by people (e.g. smells) but be-
cause they need to be functional for processing a specifc emotion. 
Thus, insufcient samples could mean no links between sensory 
words and the possibility of activating an emotional response such 
as that provoked by risk aversion. The distribution of emotions in 
the sensory domains can be partly explained by recourse to the 
literature. Concerning the haptic-sadness-disgust correlation, it has 
been shown that haptic efectively communicates the arousal and 
emotions of happiness, sadness, anger and fear [13]. In contrast, 
less attention has been given to communicating disgust and sur-
prise. More recently, through the study of haptic communication 
of emotions, it has been found that people can identify anger, dis-
gust, fear, gratitude, happiness, love, sadness and sympathy from 
the experience of being touched on the arm or body by a stranger, 
without seeing the touch [17, 18]. These results could support the 
relatively more even distribution of samples among the vision and 
hearing domains: the two senses are those that manly alert people 
for reasons related to the risk aversion. 

Regarding the link between taste and joy, for theoretical and 
empirical reasons, it seems likely that diferent emotions infuence 
eating in specifc ways. Basic emotions such as anger, fear and 
sadness have distinct motivational functions: when we experience 
joy, the motivation to eat to enjoy food increases, whereas negative 
emotions increase the tendency to eat to cope with the negative 
emotional state [27]. Regarding the connection between odour and 
fear, many studies suggest that humans can become fearful after 
exposure to olfactory fear signals [11]. Independent of visual and 
auditory information, olfactory fear signals produced by senders 
induce fear in receivers outside of conscious access. These results 
contrast the traditional view that emotions are communicated ex-
clusively through visual and linguistic channels. 

In order to study the contribution of the single sources of in-
formation (psycholinguistic and afective) to the sensory labelling 
task, in the experimental setting we availed ourselves of diferent 
aggregations of features obtained by aligning the merged sensory 
dataset with the single lexical resources. 
The NRC-eil subset has been obtained by aligning the sensory 
lexicon with the NRC-eil; it contains 229 entries annotated for 
emotion and intensity. 
The NRC-vad subset has been obtained by aligning the sensory 
lexicon with the NRC-vad; it contains 708 entries annotated for 
valence, dominance, arousal, and dominance. 
The psycholinguistic subset has been obtained by aligning the 
sensory lexicon with the features extracted from the MRC psycholin-
guistic database. This subset contains 1828 instances annotated for 

27 features including frequency, grammar and processing informa-
tion, as mentioned above. 

4 EXPERIMENTAL EVALUATION 
In the experimental phase, we tested multi-class classifcation mod-
els to study how they perform in the sensory labeling task, namely 
the task of predicting the sensory domain for a single verbal input 
from the other features. The models were trained using the DEEP 
Sensorium multidimensional dataset described in the previous sec-
tion. In order to evaluate the capabilities of our resource compared 
to the ones employed for its creation (see Section 3), diferent fea-
ture sets (each corresponding to one of the original resources) were 
used to evaluate how they impact the performance of the models. 

4.1 Models 
We employed fve diferent multi-class classifcation models to ex-
plore the automation of the sensory modeling task. Many of these 
models generally support binary classifcation, but specifc exten-
sions allow them to be used as multi-binary classifers for multi-
class classifcation problems [45]. 

The choice of opting for multi-class classifcation over multi-label 
classifcation depends on the expected applications of the models. 
In our case, opting for classifcation in which the input is associated 
with a single class (a single sensory domain), could serve tasks such 
as synesthetic metaphor detection [10, 49] and interpretation, in 
which assigning multiple classes to each input might be not crucial 
to the success of the task. In contrast, multi-label classifcation could 
contribute to the investigation of perceptual experience through 
written and spoken language in all its complexity. 

The following models were employed: 
• Logistic Regression (LR), 
• Decision Trees (DT), 
• Random Forest (RF), 
• Support Vector Machine (SVM), 
• K-Nearest Neighbors (KNN). 

4.2 Experimental setting 
The preprocessing stage works as follows. Each categorical feature 
is encoded using one-hot encoding: since the number of categories 
is quite low, such process does not dramatically increase the di-
mensional space. Words are converted into vectors of values using 
a word embedding approach: we employ pre-trained GloVe vec-
tors, trained on the English-language Wikipedia 2014 + Gigaword 
5 corpus 2. In order to keep the dimensional space reasonable, we 
decided to use vectors with 50 dimensions. The number of features 
of each sample after the preprocessing stage is 103. 

The hyperparameter optimization step is performed with a Grid 
Search approach, which simply executes a complete search over 
a given subset of the hyperparameters space of the training algo-
rithm. The set of hyperparameters we decided to explore varies 
according to the ML algorithm: for Logistic Regression, we explored 
the norm of the penalty and the inverse of regularization strength; 
for Decision Tree and Random Forest, we inspected the minimum 
number of samples required to be at a leaf node and to split an 

2Available at nlp.stanford.edu/projects/glove/. 
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Figure 1: Value of F1 on each model trained on the DEEP 
Sensorium dataset and its subsets described in Section 3.4 

internal node, the maximum depth of the tree and the function to 
measure the quality of a split; for KNN, the number of neighbors, 
the weight function and the metric used for distance computation; 
for SVM, the regularization parameter and the kernel type. 

A 10-fold cross-validation was employed with a 80% for training 
and 20% for testing. 

4.3 Results and discussion 
Figure 1 depicts the value of F1 score calculated for each model 
and trained with each resource, namely, the multi-dimensional 
DEEP Sensorium and the uni-dimensional subsets (NRC-eil sub-
set, NRC-vad subset, psycholinguistic subset) described in Sec-
tion 3. The fgure shows that the models trained with our multi-
dimensional resource always outperform the models trained with 
the uni-dimensional subsets of features, with an F1 score close to 
or greater than 0.9. 

The superiority of the multi-dimensional model is in line with the 
expectations set by the psycholinguistic literature that has inspired 
the creation of the DEEP Sensorium dataset (see Section 3). 

As described in the literature, sensory information is crucial for 
understanding concrete and abstract concepts, so the knowledge 
about specifc features, such as abstractness and concreteness, can 
facilitate sensory classifcation. So, even if the psycholinguistic 
features alone (the psycholinguistic subset) have a slightly worse 
performance than the multi-dimensional dataset (F1 weighted score 
≥ 0.73 with values between 0.73 and 0.92 depending on the models 
versus F1 weighted scores ≥ 0.72 with a range of values between 
0.87 and 0.94), their contribution is probably more relevant than 
that of the afective subsets. 

Although the link between emotions and perception is funda-
mental, as shown by research in perception and afect, the results 
obtained by the afective subsets suggest that the contribution of 
dimensional models, represented here by the NRC-vad subset, is 
smaller than the one provided by categorical models, namely the 
NRC-eil subset. Both subsets, in fact, perform worse than the DEEP 
Sensorium dataset, with a larger gap for the NRC-vad subset (F1 
weighted score ≥ 0.54 with values between 0.54 and 0.80) than the 
NRC-eil subset (≥ 0.76, with values ranging from 0.76 to 0.86). This 
confrms the fndings reported in the literature, where the role of 

Model Precision Recall F1-score 

LT 0.90 0.89 0.89 
DT 0.89 0.86 0.87 
RF 0.95 0.94 0.94 
KNN 0.94 0.94 0.94 
SVM 0.94 0.94 0.94 

Table 3: Precision, Recall and F1 score for each model trained 
on DEEP Sensorium dataset. 

valence, insufciently studied, seems more relevant for images than 
words. 

Once stated that our dataset guarantees in general better per-
formances in the sensory domain labeling task with respect to 
the other resources, we evaluate the performances of each model 
trained on DEEP Sensorium. Table 3 reports the value of Preci-
sion, Recall and F1 (calculated with the weighted approach) of each 
model: such results show that Random Forest, Support Vector Ma-
chine and K-Nearest Neighbors are the best models, with more or 
less the same performances. The F1 weighted score is 0.94 for all 
these three models; recall is 0.94 for all, and precision ranges from 
0.94 (Support Vector Machine and K-Nearest Neighbors) to 0.95 
(Random Forest). 

For understanding more in detail the performance of the three 
best models, we analyse the metrics on each class: Table 4 contains 
the values of Precision, Recall and F1 for each sensory domain 
calculated on the best models trained with DEEP Sensorium dataset. 
We notice that in general the Vision domain (the distal domain par 
excellence) exhibits the best scores across all the models (with 
KNN, precision 0, 97, recall 1.0, F1 0.98), probably due to the larger 
number of samples in our dataset, while all the models perform a 
bit poorly on Haptic domain (one of the proximal domains), with 
the worst performance for the SVM model (precision 0.86, recall 
0.55, F1 0.67). Even if the relevance of the Haptic domain may seem 
limited, this domain is of great importance for multi-sensory design, 
as witnessed by the experiments where visual features, inaccessible 
to some users, have been mapped onto relatively inexpensive haptic 
devices, as described in Section 1. 

Finally, Random Forest is the model with the most balanced 
performances on all the sensory domains, while on the opposite 
side Support Vector Machine shows the most unbalanced scores, 
with F1 ranging from 0.67 for the Haptic domain to a perfect score 
for the Smell domain. 

4.4 Limitations 
Sensory information in language mirrors the position of the senses 
in Aristotle’s hierarchy and is refected in the severe imbalance of 
the linguistic resources along the sensory dimension. Our dataset 
is not exempt from this imbalance, privileging distal senses (Vision 
and Hearing) over proximal senses (Smell, Taste and Haptic). As 
a consequence, the already low availability of sensory data about 
words is even more dramatic for the lower domains in the hierarchy, 
as reported in Section 1. 

In this work, we tested fve diferent models for multi-class clas-
sifcation and used weighted classes to avoid oversampling, which 
dramatically increases the dimension of the dataset, and undersam-
pling, which is unsuitable for small datasets. 
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Precision Recall F1-score 
Domain No. samples RF KNN SVM RF KNN SVM RF KNN SVM 

Vision 70.25% 0.93 0.97 0.93 1.00 1.00 1.00 0.97 0.98 0.97 
Auditory 15.19% 1.00 0.88 1.00 0.88 0.88 0.92 0.93 0.88 0.96 
Haptic 6.96% 1.00 0.88 0.86 0.64 0.64 0.55 0.78 0.74 0.67 
Taste 5.70% 1.00 1.00 1.00 0.78 0.78 0.78 0.88 0.88 0.88 
Smell 1.90% 0.75 0.75 1.00 1.00 1.00 1.00 0.86 0.86 1.00 

weighted average 0.95 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 
Table 4: Precision, Recall and F1 score for each sensory domain in the models Random Forest (RF), K-Nearest Neighbors (KNN) 
and Support Vector Machine (SVM) trained on DEEP Sensorium dataset 

The imbalanced distribution of the data over the sensory domains 
is even exacerbated when it comes to assessing the role of the single 
dimensions (afective and psycholinguistic) for sensory labeling 
task. The subsets employed to measure the impact of the single 
dimensions (afective and psycholinguistic) have diferent sizes 
and features. For these reasons, we have concluded that we do not 
control the risk of overftting and that the issue of how to deal with 
the intrinsic imbalance of linguistic data is still open. 

Last, but not least, the merged sensory datasets which constitute 
the core of the DEEP Sensorium have been created with specifc 
applications in mind in the feld of product design and food industry, 
so they may refect the characteristics of these domains. The artistic 
domain, which is the ultimate target of our work, may refect a 
diferent role and distribution of sensory information, a risk that 
can be assessed only by extending the approach to data extracted 
from art-related texts such as the initial dataset presented by [10]. 

5 CONCLUSION AND FUTURE WORKS 
In this paper, we introduced a new resource for the assignment of 
sensory domain in language which combines sensory data with 
afective and pyscholinguistic information from existing resources 
into a novel merged resource, the DEEP Sensorium dataset. 

To evaluate the assumption, suggested by the literature, that 
learning the meaning of words requires the integration of linguistic, 
perceptual and emotional information, we tested our resource with 
a set of multi-dimensional classifcation models. The results confrm 
that a multidimensional approach yields better results than the 
single dimensions taken separately from each other. 

Among the classifcation model we employed in our research, 
Random Forest (RF), K-Nearest Nighbors (KNN) and Support Vector 
Machine (SVM) showed the best performances, with the same value 
for the F1 score: analyzing the detailed metrics of each single class 
(the sensory domains) we noticed that Random Forest exhibits the 
most balanced performances on all the classes, while the other two 
models are slightly biased on some sensory domain. 

For future work, our aim is to measure the efect of narrower 
feature subsets by scaling the dataset and integrating data from 
objective measurements of engagement, such as brain activation, 
and data from the artistic domain. These two steps, in fact, are 
crucial to achieve the objective of supporting multi-sensory design 
in the cultural sector. In addition, the current coverage of the re-
source should be extended, and part of future research will focus 
on integrating new annotated words. 

Furthermore, in the future, we plan to test the performance for 
more complex classifcation tasks, such as multi-label classifcation. 

REFERENCES 
[1] Lawrence W. Barsalou and Katja Wiemer-Hastings. 2005. Situating Abstract 

Concepts. In Grounding Cognition: The Role of Perception and Action in Mem-
ory, Language, and Thinking, Diane Pecher and Rolf A.Editors Zwaan (Eds.). 
Cambridge University Press, Cambridge, 129–163. https://doi.org/10.1017/ 
CBO9780511499968.007 

[2] Mareike Bayer and Annekathrin Schacht. 2014. Event-related brain responses to 
emotional words, pictures, and faces–a cross-domain comparison. Frontiers in 
psychology 5 (2014), 1106. 

[3] Jefrey R Binder, Chris F Westbury, Kristen A McKiernan, Edward T Possing, 
and David A Medler. 2005. Distinct brain systems for processing concrete and 
abstract concepts. Journal of cognitive neuroscience 17, 6 (2005), 905–917. 

[4] Margaret M Bradley and Peter J Lang. 1994. Measuring emotion: the self-
assessment manikin and the semantic diferential. Journal of behavior therapy 
and experimental psychiatry 25, 1 (1994), 49–59. 

[5] Elia Bruni, Nam-Khanh Tran, and Marco Baroni. 2014. Multimodal distributional 
semantics. Journal of artifcial intelligence research 49 (2014), 1–47. 

[6] Marc Brysbaert, Amy Beth Warriner, and Victor Kuperman. 2014. Concreteness 
ratings for 40 thousand generally known English word lemmas. Behavior research 
methods 46 (2014), 904–911. 

[7] Curt Burgess and Kay Livesay. 1998. The efect of corpus size in predicting 
reaction time in a basic word recognition task: Moving on from Kučera and 
Francis. Behavior Research Methods, Instruments, & Computers 30, 2 (1998), 272– 
277. 

[8] Max Coltheart. 1981. The MRC psycholinguistic database. The Quarterly Journal 
of Experimental Psychology Section A 33, 4 (1981), 497–505. 

[9] Radu Comes. 2016. Haptic devices and tactile experiences in museum exhibitions. 
Journal of Ancient History and Archaeology 3, 4 (2016), 60–64. 

[10] Simona Corciulo and Viviana Patti ad Damiano Rossana. 2022. Towards the 
Construction of a Dataset of Art-Related Synaesthetic Metaphors: Methods and 
Results. In Proceedings of the 1st Workshop on Artifcial Intelligence for Cultural 
Heritage, AI4CH 2022, co-located with the 21st International Conference of the Italian 
Association for Artifcial Intelligence (AIxIA 2022), Udine, Italy, November 28, 2022. 
CEUR Workshop Proceedings, Udine, Italy, 113–125. http://ceur-ws.org/Vol-
3286/12_paper.pdf 

[11] Jasper HB De Groot, Gün R Semin, and Monique AM Smeets. 2014. I can see, 
hear, and smell your fear: comparing olfactory and audiovisual media in fear 
communication. Journal of Experimental Psychology: General 143, 2 (2014), 825. 

[12] Melissa Donaldson. 2017. Plutchik’s wheel of emotions—2017. Update. 
[13] Mohamad A Eid and Hussein Al Osman. 2015. Afective haptics: Current research 

and future directions. IEEE Access 4 (2015), 26–40. 
[14] Yoav Gilad, Victor Wiebe, Molly Przeworski, Doron Lancet, and Svante Pääbo. 

2004. Loss of olfactory receptor genes coincides with the acquisition of full 
trichromatic vision in primates. PLoS biology 2, 1 (2004), e5. 

[15] Ian Grosvenor and Natasha Macnab. 2013. Seeing through touch: the material 
world of visually impaired children. Educar em Revista 49 (2013), 39–57. 

[16] John F Hall. 1954. Learning as a function of word-frequency. The American 
journal of psychology 67, 1 (1954), 138–140. 

[17] Matthew J Hertenstein, Rachel Holmes, Margaret McCullough, and Dacher Kelt-
ner. 2009. The communication of emotion via touch. Emotion 9, 4 (2009), 566. 

[18] Matthew J Hertenstein, Dacher Keltner, Betsy App, Brittany A Bulleit, and Ari-
ane R Jaskolka. 2006. Touch communicates distinct emotions. Emotion 6, 3 (2006), 
528. 

[19] Paul Hofman, Matthew A Lambon Ralph, and Timothy T Rogers. 2013. Semantic 
diversity: A measure of semantic ambiguity based on variability in the contextual 
usage of words. Behavior research methods 45 (2013), 718–730. 

667

https://doi.org/10.1017/CBO9780511499968.007
https://doi.org/10.1017/CBO9780511499968.007
http://ceur-ws.org/Vol-3286/12_paper.pdf
http://ceur-ws.org/Vol-3286/12_paper.pdf


WWW ’23 Companion, April 30–May 04, 2023, Austin, TX, USA 

[20] Martin Jay. 1993. 1. The Noblest of the Senses: Vision from Plato to Descartes. In 
Downcast Eyes. University of California Press, Berkeley, 21–82. https://doi.org/ 
10.1525/9780520915381-003 

[21] Danijela Kambaskovic-Sawers and Charles T Wolfe. 2014. The senses in philoso-
phy and science: from the nobility of sight to the materialism of touch. 

[22] Carolyn Korsmeyer. 2019. A Tour of the Senses. The British Journal of Aesthetics 
59, 4 (2019), 357–371. 

[23] Gloria L Krahn. 2011. WHO World Report on Disability: a review. Disability and 
health journal 4, 3 (2011), 141–142. 

[24] George Lakof. 2008. The neural theory of metaphor. In The Cambridge Handbook 
of Metaphor and Thought, Raymond W.Editor Gibbs, Jr. (Ed.). Cambridge Univer-
sity Press, Cambridge, 17–38. https://doi.org/10.1017/CBO9780511816802.003 

[25] Dermot Lynott and Louise Connell. 2009. Modality exclusivity norms for 423 
object properties. Behavior Research Methods 41, 2 (2009), 558–564. 

[26] Dermot Lynott and Louise Connell. 2013. Modality exclusivity norms for 400 
nouns: The relationship between perceptual experience and surface word form. 
Behavior research methods 45, 2 (2013), 516–526. 

[27] Michael Macht, S Roth, and Heiner Ellgring. 2002. Chocolate eating in healthy 
men during experimentally induced sadness and joy. Appetite 39, 2 (2002), 147– 
158. 

[28] Asifa Majid, Seán G Roberts, Ludy Cilissen, Karen Emmorey, Brenda Nicodemus, 
Lucinda O’grady, Bencie Woll, Barbara LeLan, Hilário De Sousa, Brian L Cansler, 
et al. 2018. Diferential coding of perception in the world’s languages. Proceedings 
of the National Academy of Sciences 115, 45 (2018), 11369–11376. 

[29] M. McLuhan. 1962. The Gutenberg Galaxy: The Making of Typographic 
Man. University of Toronto Press, Toronto. https://books.google.it/books? 
id=y4C644zHCWgC 

[30] Stefano Menini, Teresa Paccosi, Serra Sinem Tekiroğlu, and Sara Tonelli. 2022. 
Building a Multilingual Taxonomy of Olfactory Terms with Timestamps. In 
Proceedings of the Thirteenth Language Resources and Evaluation Conference. Eu-
ropean Language Resources Association, Marseille, France, 4030–4039. https: 
//aclanthology.org/2022.lrec-1.429 

[31] Saif Mohammad. 2018. Obtaining Reliable Human Ratings of Valence, Arousal, 
and Dominance for 20,000 English Words. In Proceedings of the 56th Annual 
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). 
Association for Computational Linguistics, Melbourne, Australia, 174–184. https: 
//doi.org/10.18653/v1/P18-1017 

[32] Saif Mohammad. 2018. Word Afect Intensities. In Proceedings of the Eleventh 
International Conference on Language Resources and Evaluation (LREC 2018). 
European Language Resources Association (ELRA), Miyazaki, Japan, 174–183. 
https://aclanthology.org/L18-1027 

[33] Pilar Fatás Monforte. 2021. The Cave of Altamira and Modern Artistic Creation. 
In Visual Culture, Heritage and Identity: Using Rock Art to Reconnect Past and 
Present. Archaeopress Publishing Ltd, Oxford, UK, 24. 

[34] Konstantinos Moustakas, Michael G Strintzis, Dimitrios Tzovaras, Sébastien 
Carbini, Olivier Bernier, Jean-Emmanuel Viallet, Stephan Raidt, Matei Mancas, 
Mariella Dimiccoli, Enver Yagci, et al. 2006. Masterpiece: physical interaction 
and 3D content-based search in VR applications. IEEE MultiMedia 13, 3 (2006), 
92–100. 

[35] Yen Nguyen and Charles N Noussair. 2014. Risk aversion and emotions. Pacifc 
economic review 19, 3 (2014), 296–312. 

[36] Andrew Ortony and Lynn Fainsilber. 1987. The role of metaphors in descriptions 
of emotions. In Theoretical Issues in Natural Language Processing 3. 

[37] Charles Egerton Osgood, George J Suci, and Percy H Tannenbaum. 1957. The 
measurement of meaning. University of Illinois press, Champaign, Illinois, US. 

[38] Allan Paivio. 1991. Dual coding theory: Retrospect and current status. Canadian 
Journal of Psychology/Revue canadienne de psychologie 45, 3 (1991), 255. 

[39] Allan Paivio, John C Yuille, and Stephen A Madigan. 1968. Concreteness, imagery, 
and meaningfulness values for 925 nouns. Journal of experimental psychology 76, 
1p2 (1968), 1. 

Corciulo et al. 

[40] Marina Palazova, Werner Sommer, and Annekathrin Schacht. 2013. Interplay 
of emotional valence and concreteness in word processing: An event-related 
potential study with verbs. Brain and language 125, 3 (2013), 264–271. 

[41] Sophie Pauligk, Sonja A Kotz, and Philipp Kanske. 2019. Diferential impact of 
emotion on semantic processing of abstract and concrete words: ERP and fMRI 
evidence. Scientifc Reports 9, 1 (2019), 14439. 

[42] Sarah Pink. 2006. The future of visual anthropology: Engaging the senses. Routledge, 
London, UK. 

[43] Tom Pursey and David Lomas. 2018. Tate Sensorium: An experiment in multi-
sensory immersive design. The Senses and Society 13, 3 (2018), 354–366. 

[44] Stanley Rachman. 1980. Emotional processing. Behaviour research and therapy 
18, 1 (1980), 51–60. 

[45] Mahendra Sahare and Hitesh Gupta. 2012. A review of multi-class classifcation 
for imbalanced data. International Journal of Advanced Computer Research 2, 3 
(2012), 160. 

[46] Paula J Schwanenfugel. 2013. Why are abstract concepts hard to understand? In 
The psychology of word meanings. Psychology Press, London, UK, 235–262. 

[47] Paula J Schwanenfugel and Edward J Shoben. 1983. Diferential context efects 
in the comprehension of abstract and concrete verbal materials. Journal of 
Experimental Psychology: Learning, Memory, and Cognition 9, 1 (1983), 82. 

[48] Bernard J Shapiro. 1969. The subjective estimation of relative word frequency. 
Journal of verbal learning and verbal behavior 8, 2 (1969), 248–251. 

[49] Chang Su, Xiaomei Wang, Zita Wang, and Yijiang Chen. 2019. A model of 
synesthetic metaphor interpretation based on cross-modality similarity. Computer 
Speech & Language 58 (2019), 1–16. 

[50] Robert W Sussman, D Tab Rasmussen, and Peter H Raven. 2013. Rethinking 
primate origins again. American Journal of Primatology 75, 2 (2013), 95–106. 

[51] Serra Sinem Tekiroğlu, Gözde Özbal, and Carlo Strapparava. 2014. Sensicon: An 
automatically constructed sensorial lexicon. In Proceedings of the 2014 conference 
on empirical methods in natural language processing (EMNLP). 1511–1521. 

[52] Serra Sinem Tekiroğlu, Gözde Özbal, and Carlo Strapparava. 2015. Exploring 
sensorial features for metaphor identifcation. In Proceedings of the Third Work-
shop on Metaphor in NLP. Association for Computational Linguistics, Denver, 
Colorado, 31–39. https://aclanthology.org/W15-1404 

[53] Gyanendra K Verma and Uma Shanker Tiwary. 2014. Multimodal fusion frame-
work: A multiresolution approach for emotion classifcation and recognition 
from physiological signals. NeuroImage 102 (2014), 162–172. 

[54] Gabriella Vigliocco, Lotte Meteyard, Mark Andrews, and Stavroula Kousta. 2009. 
Toward a theory of semantic representation. Language and Cognition 1, 2 (2009), 
219–247. 

[55] Caterina Villani, Luisa Lugli, Marco Tullio Liuzza, Roberto Nicoletti, and Anna M 
Borghi. 2021. Sensorimotor and interoceptive dimensions in concrete and abstract 
concepts. Journal of memory and language 116 (2021), 104173. 

[56] Bodo Winter. 2016. The sensory structure of the English lexicon. University of 
California, Merced. 

[57] Bodo Winter. 2016. The sensory structure of the English lexicon. University of 
California, Merced, Merced, US. 

[58] Jiyun Yang and Jeehyun Lee. 2019. Application of sensory descriptive analysis 
and consumer studies to investigate traditional and authentic foods: A review. 
Foods 8, 2 (2019), 54. 

[59] Lingyao Yuan and Jordan Barlow. 2021. Sensitive to the Digital Touch? Exploring 
Sensory Processing Sensitivity and Its Impact on Anthropomorphized Products in 
E-Commerce. In 54th Hawaii International Conference on System Sciences, HICSS 
2021, Kauai, Hawaii, USA, January 5, 2021. ScholarSpace, Kauai, Hawaii, US, 1–10. 

[60] Jonathan R Zadra and Gerald L Clore. 2011. Emotion and perception: The role of 
afective information. Wiley interdisciplinary reviews: cognitive science 2, 6 (2011), 
676–685. 

[61] Jie Zhou, Qi Su, and Pengyuan Liu. 2020. A metaphorical analysis of fve senses 
and emotions in mandarin Chinese. In Chinese Lexical Semantics: 20th Workshop, 
CLSW 2019, Beijing, China, June 28–30, 2019, Revised Selected Papers 20. Springer, 
607–617. 

668

https://doi.org/10.1525/9780520915381-003
https://doi.org/10.1525/9780520915381-003
https://doi.org/10.1017/CBO9780511816802.003
https://books.google.it/books?id=y4C644zHCWgC
https://books.google.it/books?id=y4C644zHCWgC
https://aclanthology.org/2022.lrec-1.429
https://aclanthology.org/2022.lrec-1.429
https://doi.org/10.18653/v1/P18-1017
https://doi.org/10.18653/v1/P18-1017
https://aclanthology.org/L18-1027
https://aclanthology.org/W15-1404

	Abstract
	1 Introduction
	2 Related work
	3 Creating a multidimensional linguistic resourse
	3.1 Sensory dataset
	3.2 Affective lexicons
	3.3 MRC psycholinguistic database
	3.4 The DEEP Sensorium

	4 Experimental evaluation
	4.1 Models
	4.2 Experimental setting
	4.3 Results and discussion
	4.4 Limitations

	5 Conclusion and future works
	References



