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ABSTRACT 
Aggregating pharmaceutical data in the drug-target interaction 
(DTI) domain can potentially deliver life-saving breakthroughs. It 
is, however, notoriously difcult due to regulatory constraints and 
commercial interests [5, 18]. This work proposes the application 
of federated learning, which is reconcilable with the industry’s 
constraints. It does not require sharing any information that would 
reveal the entities’ data or any other high-level summary. When 
used on a representative GraphDTA model and the KIBA dataset, 
it achieves up to 15% improved performance relative to the best 
available non-privacy preserving alternative. Our extensive battery 
of experiments shows that, unlike in other domains, the non-IID 
data distribution in the DTI datasets does not deteriorate FL perfor-
mance. Additionally, we identify a material trade-of between the 
benefts of adding new data and the cost of adding more clients. 
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1 INTRODUCTION 
Federated learning (FL) is a privacy-preserving distributed learn-
ing that has gathered ground in healthcare applications over the 
past few years. Since it fts very well with the requirement of pre-
serving patient data confdentiality, it saw considerable uptake in 
the analysis of Electronic Health Records and healthcare IoT, such 
as mobile health [7, 12, 15]. The closest application of Federated 
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Learning to Drug-Target Interaction (DTI) was the solitary example 
of FL-QSAR, which presented the frst federated model trained for 
a related drug discovery task, but stopped short of analyzing its 
performance beyond demonstrating its feasibility for up to 4 clients 
[3]. Instead, providing privacy and security to drug discovery in 
general, and DTI in particular, has been approached as a cryptogra-
phy problem by obscuring the underlying data such that data itself 
and high-level statistics were rendered useless. However, a model 
was still trainable on it [10]. 

This paper delivers the frst-ever Federated Learning benchmark 
for the DTI task, achieving up to a 15.53% reduction in MSE com-
pared to a possible ensemble learning-based alternative. Further-
more, we develop a novel comprehensive analysis framework for 
FL applications letting us identify and explain a signifcant and 
material diference between the sensitivity of FL to non-IID data 
in the DTI task and sensitivity to it in any other task FL has been 
previously applied to, and discover and explore the importance of 
data ownership structure in FL for DTI as a major performance 
determinant and a key consideration when engaging real-world ac-
tors in the process of cooperatively training models. Ours is a novel 
and comprehensive analysis of FL in a critical and under-explored 
data domain. 

This paper’s scope is limited to the drug-target interaction DTI 
task of the drug discovery domain due to computational and other 
practical considerations. This task regresses the tuple protein-drug 
input onto a vector describing their interaction. In this domain, 
we chose to work with a single representative model. We chose 
the GraphDTA [13] model as it is the backbone of many current 
state-of-the-art models [4, 6, 14]. Our experiments aim to represent 
the complexities a federation of pharmaceutical labs would entail as 
realistically as possible. In particular, we deliberately explored the 
whole spectra of IID-ness and data ownership distribution. Finally, 
we only perform our experiments using the core algorithms in FL 
and distributed learning. This choice does not imply loss of gener-
ality, as any specifc feature that might improve the performance 
of either one of them can be straightforwardly re-implemented for 
use by the other. 

In summary, our contributions are the following: 

• we deliver the frst-ever Federated Learning benchmark for 
the DTI task; 

• we achieve up to a 15.53% reduction in MSE when compared 
to a bagging-based alternative; 
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• we develop a novel comprehensive analysis framework for 
FL applications, allowing us to identify data ownership as a 
major performance determinant; 

• we report almost 200 FL training results through many 
heatmaps characterising the performance of the fnal model 
when trained under a wide spectrum of non-IID-ness levels 
in data distribution and diferent federation sizes. 

Each reported experiment needs approximately one GPU hour on 
a NVIDIA A40 or 7-8 on GTX-1080. We ran 197 experiments for 
1,576 GPU hours spent on this research work. 

2 METHODOLOGY OF THE PROPOSED 
APPROACH 

This work proposes to use Federated Learning based on the FedAv-
erage [11] algorithm to ft the GraphDTA model [13] on the KIBA 
[17] dataset split among multiple clients. 

Federated learning is a distributed learning paradigm that 
shares model parameters at a much lower frequency than standard 
distributed learning. The exchanged model weights conceal each 
client’s data sufciently to preclude reconstruction. Straightforward 
extensions permit further increases in data protection, and defences 
against other potential interference [8, 9]. 

The KiBA dataset reports 246,088 Kinase Inhibitor BioActivity 
(KIBA) scores for 52,498 chemical compounds and 467 kinase targets, 
originating from three separate large-scale biochemical assays of 
kinase inhibitors. The score is a superior aggregate metric derived 
from a previously utilised battery of measurements such as IC50, 
K� , and K� [17]. 

The GraphDTA model regresses the drug-target pair onto a 
continuous measurement of binding afnity for that pair, the KIBA 
score. It encodes the target as a 1D sequence and the drug as a 
molecular graph, making it possible for the model to capture the 
bonds among atoms directly [13]. To stay true to the simple the 
better ethos of this paper, we refrained from implementing fancy 
aggregation strategies or specialising too much the chosen model 
to ft the federated task. We limited ourselves to replacing stateful 
objects (outside the weights, clearly) with stateless ones: batch nor-
malisation with layer normalisation and ADAM with SGD. These 
choices let us obtain more stable learning curves and cleaner con-
vergence of the federated model without harming its performance. 
Both FL and non-FL ran with the same adjusted architecture. 

Our implementation uses the open-source FLOWER[1] frame-
work to implement the model federation and to simulate its running 
on multiple clients. We use the FedAverage aggregation algorithm, 
which combines local stochastic gradient descent (SGD) on each 
client with a server that performs model averaging [11]. 

The experimental setup builds on the experiments usually 
associated with Federated Learning benchmarks while substantially 
expanding them. First, the model is compared against a suitable 
alternative. Given the lack of prior work, there was no ready candi-
date for this comparison. A centralised model is unsuitable since 
its use is unrealistic due to the aforementioned regulatory and 
commercial considerations. The cryptographic approaches to data 
anonymisation would be usable in real life; however, they are not a 
direct competitor to Federated Learning. They can augment each 

other and provide joint solutions similar to what Federated learn-
ing with diferential privacy does [19]. Ultimately, as a possible fair 
comparison, we chose a simple Bergman’s ensemble [2] of models, 
each being trained separately on a diferent data split of the entire 
dataset. The data splits are maintained constants in comparing FL 
and Ensemble Learning. The choice of baseline algorithms for both 
FL and the ensemble is deliberate, as any extension applicable to 
one can be straightforwardly re-engineered for use with the other 
[16]. Therefore, working with simple implementations provides us 
with a fair, uncoloured comparison of the two approaches rather 
than of their two randomly chosen extensions. The metric used 
to evaluate each experiment is the Mean Squared Error (MSE); in 
the case of FL, the MSE of the global model is computed, while in 
the case of bagging, the MSE of the ensemble is taken into account. 
The test set is the same for all experiments, allowing for a fair 
comparison of diferent runs. 

The code is made available on GitHub 1. It can be used out 
of the box without the knowledge of distributed or Federated learn-
ing. It works with PyTorch deep models, but it will eventually be 
compatible with TensorFlow. It is being shared for the beneft of 
the Biologists working on DTI and those interested in proving and 
capitalising on Federated Learning’s usefulness as a secure, privacy-
preserving, and performance-conserving platform for sharing phar-
maceutical data under regulatory and commercial constraints. 

3 RESULTS 
Superior and privacy-preserving performance of our network is 
displayed in table 1. It reports the performance diference between 
the federation of deep model architectures and an ensemble of the 
same architecture. Based on our experimental setup (Section 2), all 
experiments in this section exploit the same GraphDTA [13] archi-
tecture, and we consider our model’s performance to be successful 
if it can match that of the non-private distributed alternative. 

The results in table 1 show that our approach can retain up 
to 15% better performance relative to the distributed alternative 
while ensuring that no data or any other high-level summary of 
it is revealed [1]. The general trend in the IID results points to a 
relative advantage for the ensembles at very low client counts that 
quickly dissipates, turns into parity, and from 16 clients up fully 
reverses as the client count increases. Second, the non-IID data 
display efective parity practically at all client counts, indicating 
that FL can deal with unequal data distributions much better than 
the distributed alternative. This matched performance, alongside 
FL’s solid privacy and security guarantees [1] entirely lacking in 
the distributed alternative, makes it a clear favourite for future 
distributed learning research in the DTI domain. Furthermore, the 
results invite us to explore deeper. In particular, seeing that the IID 
and non-IID performances are efectively matched, we ask how the 
FL performance develops under varying non-IID conditions in the 
following subsection. 

DTI is a data distribution-agnostic domain. Data non-IID-
ness in DTI is two-dimensional as there are two model inputs. 
The protein and the chemical are jointly taken in to predict their 
interaction. Consequently, we can investigate the distribution one 
dimension at a time, either non-IID to the protein or chemical 

1https://github.com/Giemp95/FedDTI 
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Table 1: Performance of our DTI-FL relative to ensemble alternative [2]. The % diference columns refer to the federated values 
compared to the ensemble ones; note that a positive diference in the MSE highlights worse learning performance, while 
negative diferences indicate better MSE and, consequently, better learning performance. 

Client count Ensemble MSE 
IID distribution 
Federated MSE % diference 

non-IID distribution 
Ensemble MSE Federated MSE % diference 

2 clients 
4 clients 
8 clients 
16 clients 
32 clients 

0.509 
0.563 
0.567 
0.576 
0.709 

0.530 
0.577 
0.574 
0.578 
0.599 

+4.08% 
+2.58% 
+1.30% 
+0.42% 
-15.53% 

0.550 
0.556 
0.568 
0.573 
0.579 

0.556 
0.556 
0.574 
0.578 
0.578 

+1.19% 
-0.05% 
+1.20% 
+0.690% 
-0.024% 

inputs, or explore it in both dimensions simultaneously. Neither of 
these three approaches can be ruled out as a priory as the input 
classes are statistically independent of each other. Consequently, 
the domain does not lend itself easily to the established notions 
of non-IID-ness in FL, and we have to test non-IID-ness under all 
three conditions. 

Our experiments investigate the entire continuum of IID-ness 
rather than just its two extrema. IID data distribution is a random 
draw; each data point has an equal chance of being owned by each 
client. A non-IID distribution, on the other hand, assigns either 
proteins or drugs to specifc clients, and these clients then own all 
experiments that contain said protein or drug. In the real world, 
these would be the laboratories looking for drugs targeting a specifc 
protein or investigating the efects of a specifc drug. 

We obtained each row of each map in Figure 1 by frst assigning to 
each client all experiments corresponding to an exclusive collection 
of either proteins or drugs. Then, at each step along the continuum, 
we let the clients exchange some of their data with their neighbours. 
This exchange follows a Gaussian curve, so we introduce an uneven 
representation of each data class outside its assigned client. This 
choice makes the distribution more realistic since it is unlikely 
that all clients but one would hold the same amount of data in any 
given class. We achieve the desired mix of protein- and drug-centric 
clients for the protein and drug experiments by splitting the data 
into two sub-datasets and then treating each as a separate one-class 
non-IID experiment. This scenario is closest to what we can expect 
in the real world. Each square in the fgure reports the average 
over ten training iterations of the given model’s loss performance 
relative to the centralized case. The client counts presented in these 
fgures refect the cross-silo setup of this domain. 

Figures 1a, 1b, and 1c show the heat maps exploring the IID-ness 
space along the protein, drug, and both dimensions, respectively. 
As expected, having a higher client count hurts the performance at 
all non-IID-ness levels. That is, the more fragmented the dataset is, 
the more challenging the task of aggregating it, as the larger client 
count implies fewer data per client in this setup, which hurts the 
individual client models. The diferent levels of IID-ness, however, 
do not appear to have a link to the model’s performance. In other 
words, while we see a general trend towards worse performance 
in each column, we do not see any such trend in the rows. This 
property is exciting, as it implies that it does not matter whether all 
client labs test the same combination of proteins or if each client 
has their own or substantially similar portfolio. It also means that 

what is a signifcant drain on FL’s robustness in other domains is 
not a factor in the DTI domain. 

In summary, unlike in other domains in which Federated Learn-
ing has been investigated, in the Drug-Target interaction, due to its 
unique data structure, the input IID-ness does not play a signifcant 
role, making the domain singularly unique among FL domains. This 
observation is crucial as resilience to non-IID data distribution is 
usually the chief robustness metric for comparing diferent aggre-
gation strategies in FL. With the data distribution eliminated as a 
major limitation to our implementation’s robustness, we turn to 
data quantity distribution, i.e. uneven data ownership, as the next 
candidate for a signifcant performance driver. 

Data distribution imbalance plays a major role in Federated 
Learning’s performance at DTI. Data distribution imbalance and 
unevenness in the data quantity among clients are of particular con-
cern in the DTI domain, as the participant landscape is composed of 
a hodgepodge of big and small entities. The often-made assumption 
that clients have access to about the same amount of data, while 
plausible in some domains, is contrary to the structure of the phar-
maceutical industry. Moreover, when this assumption is relaxed, 
it is argued that exploiting client size will speed up the training 
process, while data quantity distribution among the clients will ulti-
mately not impact the model performance [20]. Figure 2 challenges 
this assumption and examines data quantity distribution’s impact 
on the model performance under varying client counts. 

Figure 2a investigates the interplay between client count and 
data quantity distribution profle. The dataset is distributed among 
multiple clients. The same single client is designated as the domi-
nant client and receives a variable percentage of the data. The rest 
of the data is distributed unevenly among the rest of the clients 
following the Gaussian curve. This is done to achieve a reason-
able uneven distribution in line with our approach exposed in the 
previous subsection. 

As before, increasing the client count makes the problem harder, 
increasing the error. This time, however, the rate of performance 
deterioration depends on the unevenness of data allocation among 
the clients. At each client count, irrespective of the ownership in-
equality level, it holds that moving to a more concentrated data 
ownership favours the model’s performance. This efect is signif-
cant throughout the tested conditions but grows stronger the closer 
the tested setup is to the highly centralized data ownership. 

Crucially, the co-dependent efect is not only present in the 
overwhelmingly dominant client case (far left), where it could be 
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(a) Protein-based IID-ness variation. 

(b) Chemical-based IID-ness variation. 

(c) Combined IID-ness variation. 

Figure 1: A % change in MSE relative to the smallest client 
count and highest concentration in each setup is reported 
for a broad spectrum of client counts against (a) protein-
based, (b) chemical-based, (c) protein- and chemical-based 
IID-ness variation. The horizontal axis represents the two 
extrema and seven equidistant points between them, vertical 
represents client count. 

discounted as a case of mode collapse into a pseudo-centralized 
setup, but it holds throughout the tested conditions. This persis-
tence makes our observation particularly salient. There is a cost to 
having a diluted client data ownership structure. Our next step is 

to investigate the interplay of this cost with the beneft of adding 
new data. 

(a) Data quantity IID-ness variation. 

(b) Data quantity IID-ness variation over diferent numbers 
of clients. 

Figure 2: a): A % change in MSE relative to the smallest client 
count and the highest concentration is reported for a selec-
tion of client counts and a range of data quantity distribu-
tions sampled equidistantly. b): A % change in MSE relative 
to training solely based on the dominant client’s (60% of the) 
data is reported for the combinations of adding up to 40% 
of extra data in increments of 10% and divided among 1 to 4 
additional clients. 

Figure 2b investigates the trade-of between the beneft of adding 
more data to an existing federation and the cost resulting from in-
creasing the client count and thus diluting the client data ownership 
structure. We start with a single client allocated a 60% share of the 
data. Without the loss of generality, this can represent a preex-
isting federation of clients. The remaining 40% of the dataset is 
available for addition. The heat map reports the error implications 
from adding this data in increments of 10% distributed among 1 to 
4 clients. 

Predictably, increasing the amount of additional data and spread-
ing this data among fewer clients improve model performance in 
Figure 2b. What is less predictable is that the rate of improvement is 
about the same in both of these dimensions, which is indeed remark-
able. In the tested situation, increasing the concentration of data 

1180



A Federated Learning Benchmark for Drug-Target Interaction 

ownership can, in some cases, have as strong a positive efect on 
the model’s performance as adding 10% of the data. Consequently, 
we see that the beneft of additional data can be substantially ofset 
by the cost due to the changed data ownership distribution. The 
symptom of this is that the top left to bottom right diagonal, where 
the forces work against each other, varies much less than the bot-
tom left to top right diagonal, where they reinforce each other. The 
strength of this efect, and in particular its potential to overturn the 
benefts of substantial dataset increases, suggests questions beyond 
this paper’s scope. Nevertheless, they are signifcant as they call 
for a re-think of our view of data imbalance as a mere convergence 
speed issue. The leveraging of this observation and its use in the 
design of superior aggregation strategies is left as future work. 

4 CONCLUSION 
This study delivered a privacy-preserving distributed learning im-
plementation that both meets the limiting constraints of the in-
dustry’s regulatory and commercial constraints and outperforms 
previously available alternatives by up to 15%. Furthermore, due to 
its unique data structure, our investigation demonstrated FL in DTI 
as the frst identifed data distribution-agnostic domain. Finally, we 
identifed a material trade-of between the benefts of adding new 
data and the cost of introducing more clients. This observation is of 
particular relevance as it breaks the generally accepted maxim that 
more data is always better and thus motivates the need for further 
exploration to design superior federated learning algorithms. 
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