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Anharmonic Terms of the Potential Energy Surface: A Group Theoretical Approach

Davide Mitoli,1 Jefferson Maul,1 and Alessandro Erba1, ∗

1Dipartimento di Chimica, Università di Torino, via Giuria 5, 10125 Torino, Italy
(Dated: March 21, 2023)

In the framework of density functional theory (DFT) simulations of molecules and materials,
anharmonic terms of the potential energy surface are commonly computed numerically, with an
associated cost that rapidly increases with the size of the system. Recently, an efficient approach to
calculate cubic and quartic interatomic force constants in the basis of normal modes [Theor. Chem.
Acc., 120, 23 (2008)] was implemented in the Crystal program [J. Chem. Theory Comput.,
15, 3755-3765 (2019)]. By applying group theory, we are able to further reduce the associated
computational cost, as the exploitation of point symmetry can significantly reduce the number of
distinct atomically displaced nuclear configurations to be explicitly explored for energy and forces
calculations. Our strategy stems from Wigner’s theorem and the fact that normal modes are bases of
the irreducible representations (irreps) of the point group. The proposed group theoretical approach
is implemented in the Crystal program and its efficiency assessed on six test case systems: four
molecules (methane, CH4; tetrahedrane, C4H4; cyclo-exasulfur, S6; cubane, C8H8), and two three-
dimensional crystals (Magnesium oxide, MgO; and a prototypical Zinc-imidazolate framework, ZIF-
8). The speedup imparted by this approach is consistently very large in all high-symmetry molecular
and periodic systems, peaking at 76% for MgO.

Keywords:

I. INTRODUCTION

Atomic vibrational dynamics is an underlying fac-
tor to a variety of physical and chemical phenomena
in molecules and materials.1,2 In quantum chemistry
and physics, the simplest vibrational model is repre-
sented by the harmonic approximation (HA) to the Born-
Oppenheimer potential energy surface (PES), where
higher-than-quadratic terms are neglected and the vi-
bration dynamics is described by a set of independent
quantum harmonic oscillators.3 The HA has represented
and still largely represents the standard approach to vi-
bration dynamical investigations in molecules and ma-
terials because of its relatively low computational cost
(as only second-order energy derivatives with respect to
atomic displacements are required) and availability of ro-
bust implementations in most quantum chemistry and
density functional theory (DFT) programs.4–7 We note
that most solid state DFT programs implement analytic
forces while the Hessian matrix is either computed ana-
lytically8 or from numerical finite differences of the forces
computed at displaced atomic configurations.9,10

In order to go beyond the HA and account for couplings
among the normal modes of vibration, high-order terms
of the PES need to be explicitly computed. In quantum
chemistry software packages, implementations to com-
pute higher-than-quadratic terms of the PES are scarce;
moreover, explicit analytic expressions have been derived
only for molecular Hartree-Fock (HF) and DFT (see Ref.
[11] and references therein for a detailed review on the
evolution of analytic total energy derivatives at different
orders for molecules). Common strategies for the calcu-
lation of cubic and quartic terms of the PES (i.e. third-
and fourth-order total energy derivatives with respect to
nuclear displacements) involve numerical differentiation

making use of either just the energy or the energy and
lower order analytic derivatives at a set of atomically
displaced nuclear configurations. Many different numer-
ical schemes have been proposed, each requiring a spe-
cific number of nuclear configurations to be explicitly ex-
plored.12–15 We refer to Ref. [16] and references therein
for a comprehensive review of different numerical differ-
entiation schemes for cubic and quartic interatomic force-
constants for molecular systems. The computational cost
associated to each scheme is determined by two factors:
the number of configurations Nconf needed and the type
of calculation required at each configuration (energy only,
energy and analytic forces, etc.). The former factor ac-
counts for most of the computational cost as computing
the energy through the self-consistent field (SCF) pro-
cedure at a new nuclear configuration proves much more
expensive than analytically evaluating the forces after the
SCF is completed at an already explored geometry.
In a solid state context, much effort has gone into the

implementation of schemes for the description of cubic
terms of the PES (i.e. those relevant to the computation
of the lattice thermal conductivity),17–22 with fewer at-
tempts to include up to quartic terms.23–27 Let us note
that, for solids, the HA limits the description of the lat-
tice dynamics even more than it does for molecular sys-
tems because of the corresponding missing dependence
of thermodynamic properties on volume. However, this
class of limitations can be largely overcome by comput-
ing harmonic phonons at different lattice volumes within
the so-called quasi-harmonic approximation (QHA).28,29

Some of the authors of this paper have recently devel-
oped a module of the Crystal program for the calcu-
lation of quasi-harmonic thermal properties of materials
(from thermal expansion to thermo-elasticity).30–40

A numerically robust and computationally efficient fi-
nite difference scheme (namely, EGH), based on a Tay-
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lor’s expansion of the PES in the basis of the normal
modes, has been proposed in 2008 for molecular systems
by Lin et al., which requires a minimal set of nuclear con-
figurations to be explored in the definition of a 2M4T or
3M4T representation of the PES.16 Such scheme (based
on the analysis of the relative importance of different
types of cubic and quartic terms) has recently been ex-
tended to solids by some of the present authors41 and im-
plemented in the Crystal program,42,43 along with the
vibrational self-consistent field (VSCF) and vibrational
configuration interaction (VCI) methods for computation
of anharmonic vibrational states.44–46

In this paper, we illustrate how group theoretical ar-
guments can be used to drastically reduce the number of
configurationsNconf needed to achieve a quartic represen-
tation of the PES on both molecules and materials be-
longing to high point symmetry groups. An algorithm is
presented, as implemented in a developmental version of
the Crystal23 program, whose efficiency is documented
by numerical tests performed on selected molecules and
crystalline materials.

II. FORMAL ASPECTS

A. The Truncation of the PES

By computing, mass-weighting and diagonalizing the
Hessian matrix of either a molecular system with N
atoms or a crystal with N atoms per cell, normal modes
Qi and associated harmonic vibration frequencies ωi are
obtained, with i = 1, . . . ,M , where M = 3N − 6(5)
for molecules and M = 3N − 3 for solids at the Γ
point. Within the Born-Oppenheimer approximation, vi-
brational states are determined by solving the nuclear
Schrödinger equation, which, in terms of normal coordi-
nates, reads:

ĤΨs(Q) = EsΨs(Q) , (1)

where Ψs(Q) is the vibrational wavefunction of the s-th
vibrational state and Es the corresponding energy. By
setting the rotational angular momentum to zero and by
neglecting rotational coupling effects, the Hamiltonian
operator in Eq. (1) can be written as:

Ĥ =

M∑
i=1

−1

2

∂2

∂Q2
i

+ V̂ (Q1, . . . , QM ) . (2)

The Born-Oppenheimer PES can be expanded in a Tay-
lor’s series centered at the equilibrium nuclear configu-
ration in the basis of such mass-weighted normal coordi-

nates:

V̂ (Q1, . . . , QM ) =
1

2

M∑
i=1

ω2
iQ

2
i

+
1

3!

M∑
i,j,k=1

ηijkQiQjQk +

+
1

4!

M∑
i,j,k,l=1

ηijklQiQjQkQl + · · · ,(3)

where ηijk and ηijkl are cubic and quartic force constants,
respectively:

ηijk =

(
∂3E

∂Qi∂Qj∂Qk

)
eq

(4)

ηijkl =

(
∂4E

∂Qi∂Qj∂Qk∂Ql

)
eq

. (5)

These are high-order total energy derivatives with respect
to collective normal coordinates, evaluated at the equilib-
rium nuclear configuration. The PES expansion in Eq.
(3) needs to be truncated so as to include only those
terms contributing significantly to the description of the
vibrational states of the system.

In molecular anharmonic calculations, it is a common
practice to truncate it after the fourth-order as in most
cases neglected higher-than-quartic terms would produce
little corrections to the vibrational states (note that for
strongly anharmonic systems such as water this may not
be the case).16 Here, we follow the same strategy and
thus we consider terms up to fourth-order in the PES
(namely, we use a quartic, 4T, representation of the po-
tential). Within a 4T representation, the PES can be fur-
ther truncated by considering only those force constants
involving a maximum of n distinct modes (namely, a nM
representation of the potential). By combining the two
truncation strategies introduced above, a 1M4T repre-
sentation of the PES would require the evaluation of the
force constants below:

ηiii, ηiiii ∀ i = 1, . . . ,M . (6)

This representation of the PES neglects two-mode cou-
plings and almost always results in a wrong description
of the vibrational states. A popular representation of the
potential is the 2M4T one, which includes all two-mode
coupling force constants while neglecting three- and four-
mode terms:16

ηiii, ηiiii ∀ i = 1, . . . ,M

ηijj , ηiij , ηiiij , ηijjj , ηiijj ∀ i < j = 1, . . . ,M .(7)

This is the representation of the PES we work with here.
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FIG. 1: (Left) Schematic representation of the displaced nu-
clear configurations required by the EGH scheme for a 2M4T
description of the PES; (Right) Dependence of the number of
nuclear configurations Nconf needed for the EGH scheme as a
function of the number of normal modes M .

B. The EGH Scheme for Cubic and Quartic Terms
of the PES

We start by briefly recalling the fundamentals of the
EGH finite-difference scheme, as originally proposed by
Lin et al.16 We refer to Figure 1 for a schematic repre-
sentation. The zeroth step consists in the evaluation of
the Hessian at the equilibrium configuration to obtain
the harmonic normal modes and frequencies. Then, as
a first step, for each normal coordinate Qi, two nuclear
configurations are explored towards positive and negative
atomic displacements relative to the equilibrium config-
uration (blue circles in Figure 1). Both the total energy
E and the analytical gradients G are computed at these
configurations. The corresponding 1M terms of the PES
of each mode Qi can be obtained from:

ηiii =
1

s2i

(
Gi

−1 +Gi
+1

)
(8)

ηiiii =
3

s3i

(
Gi

+1 − 2siωi −Gi
−1

)
, (9)

where si = h/
√
ωi is an adaptive step (see Ref. [41] for

more details on the definition of the step size h) and Gi
a

is the gradient with respect to Qi computed at a nuclear
configuration displaced by a · si ·Qi from the equilibrium
one.

As a second step, for each pair of normal modes
(Qi, Qj) so that i < j, two nuclear configurations are ex-
plored with positive and negative atomic displacements
from the equilibrium configuration along both modes at
the same time (green circles in Figure 1). For a 2M4T
representation of the PES, just the total energy E is re-
quired at these configurations. The corresponding 2M
terms of the PES for each pair of modes are obtained

from:

ηiij =
1

s2i
(Gj

−1,0 +Gj
1,0) (10)

ηiiij =
3

s3i
(Gj

1,0 −Gj
−1,0) (11)

ηiijj = − 1

2s2i s
2
j

(8E0,0 − 4E−1,−1 − 4E1,1 +

−sjG
j
0,−1 + sjG

j
0,1 − siG

i
−1,0 + siG

i
1,0 +

−4sjG
j
−1,0 + 4sjG

j
1,0 − 4siG

i
0,−1 + 4siG

i
0,1 +

+2s2iωi + 2s2jωj) , (12)

where Ea,b and where Gi
a,b are the total energy and the

gradient with respect to Qi computed at a nuclear con-
figuration displaced by a · si · Qi + b · sj · Qj from the

equilibrium one, respectively. Analogously, Gj
a,b is the

gradient with respect to Qj computed at the same nu-
clear configuration. For a system with M normal modes,
the total number of nuclear configurations to be explored
in the definition of the 2M4T PES with this scheme is
therefore given by:

Nconf = 1 + 2M + 2

(
M

2

)
. (13)

Figure 1 shows the dependence of Nconf on M .

C. From Wigner’s Theorem to Symmetry
Relations among Terms of the Anharmonic PES

The point symmetry group P of a system (molecular
or crystalline) is the set of those point symmetry oper-

ators R̂r (with r = 1, . . . , |P|, where |P| is the so-called
order of the group) with respect to which the system is
invariant. This is expressed by Wigner’s theorem that
states that each point symmetry operator of the group
must commute with the Hamiltonian operator:47–51[

Ĥ, R̂r

]
= 0 ∀r = 1, . . . , |P| . (14)

We note that if the Hamiltonian operator consists of a
sum of terms, the condition above must be satisfied by
each term individually. In group theory, a finite num-
ber Nirrep of irreducible representations (irreps) can be
associated to a point group. Each irrep Γα (with α =
1, . . . , Nirrep) has a given dimensionality nα (for stan-
dard molecular or crystalline point groups nα = 1, 2, 3)
and is fully characterized by the corresponding nα × nα

representation matrices Dα(R̂r) associated to each point

symmetry operator. The characters χα(R̂r) of a repre-
sentation are simply defined as the trace of these matri-
ces: χα(R̂r) = Tr[Dα(R̂r)]. Each irrep Γα is defined by
nα basis functions, corresponding to each row of the rep-
resentation matrices. Let us introduce so-called projector
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operators associated to each irrep of the group:

P̂α =
1

|P|

|P|∑
r=1

χα(R̂r)
∗R̂r . (15)

This operator is such to act on any function and “extract”
its components of α type.
Normal modes are bases of the irreps of the point sym-

metry group of the system. Different modes can belong
to the same irrep so that overall the manifold of all the
harmonic modes of a system can be expressed as a direct
sum of irreps as:

ΓHA = m1Γ1 ⊕ · · · ⊕mαΓα ⊕ · · · ⊕mNirrep
ΓNirrep

, (16)

where mα is the multiplicity of irrep α in the manifold.
The group theoretical approach that we illustrate re-
quires normal modes to be explicitly labeled according
to their symmetry properties. Therefore, we introduce
the following extended notation for each normal mode:

Qi → Qαul ≡ |αul⟩ , (17)

where each normal mode is labeled by the irrep α it be-
longs to, an index u = 1, . . . , nα identifying the row of
the irrep it is associated to, and an index l = 1, . . . ,mα

marking the occurrence of the irrep Γα the mode refers
to. From now on, we refer to the nα basis functions of
each occurrence of each irrep as a set. Moreover, with the
notation introduced in Eq. (17) we adopt a ket notation
with the aim of highlighting these labels more promi-
nently, to be extensively used in what follows.

To make the notation introduced with Eq. (17) more
clear, we shall analyse how it works for the simple
molecule of methane in Table I. Methane, CH4, is a
non-linear molecule with N = 5 atoms and M = 9 nor-
mal modes (excluding pure translations and rotations)
belonging to the Td point symmetry group. Modes 1, 2
and 3 belong to the first occurrence of the 3D irrep F2,
form the first set, and are degenerate (i.e. they have the
same harmonic vibration frequency). Modes 4 and 5 be-
long to the first occurrence of the 2D irrep E, form the
second set, and are degenerate. Mode 6 belongs to the
1D total-symmetric irrep A1 and forms the third set on
its own. Finally, modes 7, 8 and 9 belong to the second
occurrence of the 3D irrep F2, form the fourth set, and
are degenerate.

Let us recall how, from group theory, basis functions
of irreps transform upon application of a point symmetry
operator:

R̂r |αul⟩ =
nα∑

u′=1

Dα
u′u(R̂r) |αu′l⟩ , (18)

that is, when acted upon by a symmetry operator, each
normal mode |αul⟩ is transformed into a linear combi-
nation of the basis functions of the set it belongs to,

TABLE I: Symmetry features of the normal modes of methane
(the six pure translations and rotations are excluded).

Mode Irrep α Row u Occurrence l Set

1 F2 1 1 1

2 F2 2 1 1

3 F2 3 1 1

4 E 1 1 2

5 E 2 1 2

6 A1 1 1 3

7 F2 1 2 4

8 F2 2 2 4

9 F2 3 2 4

with coefficients given by the elements of the correspond-
ing representation matrix. Given that cubic and quartic
terms of the PES involve products of three or four normal
modes, it will prove useful to what follows to show how
a symmetry operator acts on a direct product of such
functions, through its linearity property:

R̂r

(
|αul⟩ ⊗ · · · ⊗ |ωzs⟩

)
= R̂r |αul⟩ ⊗ · · · ⊗ R̂r |ωzs⟩ .

(19)
Wigner’s theorem, as introduced in Eq. (14), proves key
to an effective exploitation of point-symmetry to reduce
the cost of the evaluation of an anharmonic PES such as
the 2M4T one, that is to reduce the number of nuclear
configurations Nconf to be explored to compute all of the
interatomic force constants in Eq. (7). Each additive
term of the Hamiltonian (2) and thus of the potential (3)
must be invariant to any symmetry operator of the group.
Taking into account that cubic and quartic terms of the
PES are nothing but products of three or four normal
modes, this can be formally expressed as:

|αul⟩ ⊗ · · · ⊗ |ωzs⟩ ≡ R̂r(|αul⟩ ⊗ · · · ⊗ |ωzs⟩) .

Because the invariance of each term of the PES has to
be satisfied for every symmetry operator, the expression
above can also be written as:

|αul⟩ ⊗ · · · ⊗ |ωzs⟩ ≡ 1

|P|

|P|∑
r=1

R̂r(|αul⟩ ⊗ · · · ⊗ |ωzs⟩) .

(20)

We note that by comparison with Eq. (15) and by re-
calling that all characters of the total-symmetric irrep A1

are 1 (i.e. χA1(R̂r) = 1 ∀r = 1, . . . , |P|), Eq. (20) can
be written as:

|αul⟩ ⊗ · · · ⊗ |ωzs⟩ ≡ P̂A1(|αul⟩ ⊗ · · · ⊗ |ωzs⟩) . (21)

Now, by casting Eq. (19) into Eq. (20) and by use of
property (18), the invariance condition for any general
term of the PES becomes:
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|αul⟩ ⊗ · · · ⊗ |ωzs⟩ ≡ 1

|P|

|P|∑
r=1

R̂r(|αul⟩ ⊗ · · · ⊗ |ωzs⟩

=
1

|P|

|P|∑
r=1

R̂r |αul⟩ ⊗ · · · ⊗ R̂r |ωzs⟩

=
1

|P|

|P|∑
r=1

nα∑
u′=1

· · ·
nω∑
z′=1

Dα
u′u(R̂r) · · ·Dω

z′z(R̂r) |αu′l⟩ ⊗ · · · ⊗ |ωz′s⟩

=

nα∑
u′=1

· · ·
nω∑
z′=1

Cu···z,u′···z′ |αu′l⟩ ⊗ · · · ⊗ |ωz′s⟩ , (22)

where we have introduced coefficients Cu···z,u′···z′ defined
as:

Cu···z,u′···z′ =
1

|P|

|P|∑
r=1

Dα
u′u(R̂r) · · ·Dω

z′z(R̂r) . (23)

The invariance condition as explicitly worked out in Eq.
(22) constitutes our working expression for an effective
symmetry analysis of the anharmonic PES. Two main
scenarios can be met:

1. If all coefficients are null on the right-hand side
(rhs) then the term of the PES on the left-hand
side (lhs) must be null;

2. If some coefficients are not null on the rhs then
a symmetry relation is determined among the PES
term on the lhs and those appearing on the rhs that
must hold true. Let us note that those terms of the
PES on the rhs involve normal modes belonging to
the same sets of the modes of the PES term on the
lhs. We shall call these connected terms relative
terms below. We stress that a term of the PES can
be related by symmetry only to those that consti-
tute its relative terms as identified by Eq. (22).

To summarize, use of Eq. (22) allows performing a pre-
liminary symmetry analysis of the anharmonic terms of
the PES and determining whether specific terms must
be null by symmetry (and thus do not need to be explic-
itly computed) or whether specific symmetry relations
must be satisfied among subsets of terms of the PES (i.e.
among relative terms). Let us note that these symmetry
relations are such that not all relative terms are inde-
pendent. We will discuss below how a minimal number
of terms of the PES to be explicitly computed can be
identified, which then allows all others to be obtained by
exploitation of such symmetry relations.

D. On the Use of the Symmetry Relations among
Terms of the Anharmonic PES

In this Section, we discuss how Eq. (22) can be used
to effectively reduce the number of nuclear configurations
Nconf needed for the evaluation of all the anharmonic
interatomic force constants in Eq. (7). To do this, we
need to inspect Eq. (22) more closely. The term on the
lhs can be either cubic or quartic; its relative terms on
the rhs will be cubic or quartic, respectively. The number
of relative terms nrt depends on the dimensionality of
the irreps involved in the term on the lhs, and is simply
given by nrt = nα × · · · × nω. Thus, to each term of the
PES a group of relative terms can be associated that we
label simply |t⟩ (with t = 1, . . . , nrt) with a shorthand
notation. To make this more evident, we introduce the
following exemplification where we consider as term on
the lhs the two-mode cubic term |α1l⟩ ⊗ |α1l⟩ ⊗ |β1m⟩
with nα = 2 and nβ = 1. The corresponding relative
terms would be:

|α1l⟩ ⊗ |α1l⟩ ⊗ |β1m⟩ → |1⟩
|α1l⟩ ⊗ |α2l⟩ ⊗ |β1m⟩ → |2⟩
|α2l⟩ ⊗ |α1l⟩ ⊗ |β1m⟩ → |3⟩
|α2l⟩ ⊗ |α2l⟩ ⊗ |β1m⟩ → |4⟩ .

By use of this simplified notation, the invariance condi-
tion of Eq. (22) for the first term of a group of relative
terms can be written in a more compact fashion as:

|1⟩ = C1,1 |1⟩+ C1,2 |2⟩+ · · ·+ C1,nrt |nrt⟩ , (24)

where the coefficients Ct,t′ are those introduced in Eq.
(23), as expressed in the new shorthand notation. The
action of the invariance condition of Eq. (22) on the
second term of the group of relative terms would lead to
a symmetry relation of the form:

|2⟩ = C2,1 |1⟩+ C2,2 |2⟩+ · · ·+ C2,nrt
|nrt⟩ , (25)

with different coefficients with respect to those of Eq.
(24) but associated to the same terms of the PES (i.e.
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those belonging to the selected group of relative terms).
These symmetry relations can be derived for each term
of the PES among relative terms to form a linear system
of nrt equations of nrt variables:



|1⟩ = C1,1 |1⟩+ C1,2 |2⟩+ · · ·+ C1,nrt
|nrt⟩

|2⟩ = C2,1 |1⟩+ C2,2 |2⟩+ · · ·+ C2,nrt
|nrt⟩

...

|nrt⟩ = Cnrt,1 |1⟩+ Cnrt,2 |2⟩+ · · ·+ Cnrt,nrt
|nrt⟩ .

(26)
The system above can be made homogeneous as:



C ′
1,1 |1⟩+ C ′

1,2 |2⟩+ · · ·+ C ′
1,nrt

|nrt⟩ = 0

C ′
2,1 |1⟩+ C ′

2,2 |2⟩+ · · ·+ C ′
2,nrt

|nrt⟩ = 0

...

C ′
nrt,1 |1⟩+ C ′

nrt,2 |2⟩+ · · ·+ C ′
nrt,nrt

|nrt⟩ = 0 (27)

where the primed coefficients C ′
t,t′ are related to the un-

primed ones as:

C ′
t,t′ =

 1 if t = t′

Ct,t′

Ct,t−1 if t ̸= t′
(28)

In matrix notation, the linear system of Eq. (27) can be
written as:

C′t = 0 , (29)

where C′ is the nrt × nrt matrix of the C ′
t,t′ coefficients

and t is the vector of the nrt unknown relative terms.
The key point to the whole symmetry analysis of the an-
harmonic PES we introduce is to look for non-trivial so-
lutions of these linear systems. For each group of relative
terms, we aim at identifying the minimal set of nec terms
of the PES to be explicitly computed via the EGH finite
difference numerical approach described in Section II B
that allows for the system of Eq. (29) to be solved and
thus for the other ns = nrt−nec terms to be obtained by
symmetry. By explicitly computing nec terms, the num-
ber of unknown variables reduces to ns and thus we are

left with a system of nrt equations and ns variables:

ns∑
ts

C ′
1,ts |ts⟩ = −

nec∑
tec

C ′
1,tec |tec⟩

ns∑
ts

C ′
2,ts |ts⟩ = −

nec∑
tec

C ′
2,tec |tec⟩

...
ns∑
ts

C ′
nrt,ts |ts⟩ = −

nec∑
tec

C ′
nrt,tec |tec⟩

(30)

It is important to mention that a system like this is
overdetermined. A smaller system can be obtained by
removing nec equations from the previous one so as to
get a reduced square matrix of coefficients on the lhs:

C′
rts = tec , (31)

where C′
r is a ns×ns square matrix, ts is a vector whose

elements are the force constants to be determined by
symmetry (i.e. by solving the system of equations), and
tec is a vector obtained from the explicitly computed
terms, with elements being the rhs of the equations in
(30). Now, the linear system of equations (31) can be
solved if the following condition is satisfied:

detC′
r ̸= 0 . (32)

Once this condition is met, it is trivial to obtain by sym-
metry the ns terms of the PES just by inverting the C′

r

matrix as:

ts =
[
C′

r

]−1
tec . (33)

Condition (32) is the one we use to devise an algorithm
that performs a preliminary symmetry analysis to iden-
tify the minimal set of terms of the PES to be explicitly
computed via the EGH numerical scheme that allows for
the whole set of terms of a 2M4T PES to be computed.

1. The Algorithm

This is how the algorithm we have devised works. For
each set of relative terms of the PES, the invariance con-
dition (22) is applied to each term of the set and the
linear system of equations (29) is built. In order to iden-
tify the minimal set of terms among them that need to be
explicitly computed via the EGH scheme to make the lin-
ear system solvable and thus obtain the remaining terms
by symmetry, we exploit condition (32) and proceed as
discussed below:

1. From the invariance condition (22) we determine
what terms must be null by symmetry. Let us label
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the number of such terms n0. This leaves us with
ñrt = nrt−n0 non vanishing relative terms. The n0

null terms, along with the corresponding equations,
can be safely eliminated from (29), so that we are
left with a linear system of ñrt variables and ñrt

equations.

2. By analysing the relative terms, 3M or 4M ones
are identified (i.e. those terms involving three or
four distinct modes). Let the number of such terms
be n34. It is important to correctly identify these
terms because the EGH scheme, as discussed in
Section II B and implemented in the Crystal pro-
gram, does not allow for their explicit calculation.

3. The process starts by checking whether the system
can be solved by explicitly computing only one term
(i.e. by setting nec = 1). This involves an itera-
tive procedure where at each iteration one of the
ñrt−n34 variables is selected and moved to the rhs
of (30). In order to reduce the overdetermined sys-
tem to the form (31), one of the ñrt equations must
be removed. This is done in turn with an iterative
procedure. For each combination in the iterative
process, condition (32) is checked. If the condition
is satisfied the process stops otherwise it keeps go-
ing.

4. If condition (32) was never satisfied at the previ-
ous step, then the process checks whether the sys-
tem can be solved by explicitly computing only two
terms (i.e. by setting nec = 2). This involves an it-
erative procedure where at each iteration two of the
ñrt − n34 variables are selected and moved to the
rhs of (30). In order to reduce the overdetermined
system to the form (31), two of the ñrt equations
must be removed. This is done in turn with an
iterative procedure by exploring all possible pairs
of equations. For each combination in the iterative
process, condition (32) is checked. If the condition
is satisfied the process stops otherwise it keeps go-
ing.

5. If condition (32) was not satisfied at steps 3 and 4
above, the process goes on by setting nec = 3, 4, . . .
until the condition is met.

When the algorithm above identifies a combination that
satisfies condition (32), the symmetry analysis for the se-
lected set of relative terms of the PES is completed having
determined: i) the n0 terms that are null by symmetry,
ii) the minimal set of nec terms to be explicitly computed
via the EGH scheme that allow all other ns terms to be
obtained from Eq. (33). The algorithm then moves to
the next set of relative terms until all terms of the PES
in Eq. (3) have been analysed.

Upon completion of this symmetry analysis for all
terms of the PES in Eq. (3), we are ready to determine
what nuclear configurations can be skipped in the EGH
procedure sketched in Figure 1. At Step 1 of the EGH

procedure, for each selected normal mode i = 1, . . . ,M ,
the algorithm checks if both the corresponding 1M terms
ηiii and ηiiii can be obtained as solutions of the linear sys-
tems of equations discussed above. If and only if that is
the case, then the calculations at the two nuclear config-
urations obtained by displacing the atoms along the i-th
normal mode (blue circles in Figure 1) can be skipped as
ηiii and ηiiii do not need to be explicitly computed via
the EGH scheme through Eqs. (8-9). At Step 2 of the
EGH procedure, for each selected pair of normal modes
i < j = 1, . . . ,M , the algorithm checks if all the corre-
sponding 2M terms ηijj , ηiij , ηiiij , ηijjj and ηiijj can be
obtained as solutions of the linear systems of equations
discussed above. If and only if that is the case, then the
calculations at the two nuclear configurations obtained
by simultaneously displacing the atoms along the i-th
and j-th normal modes (green circles in Figure 1) can
be skipped as the 2M terms do not need to be explicitly
computed via the EGH scheme through Eqs. (10-12).

III. RESULTS AND DISCUSSION

In this section, we present examples on the applica-
tion to molecules and solids of the symmetry analysis
described in Section II to reduce the number of anhar-
monic terms of the PES to be explicitly computed via
the numerical EGH finite-difference scheme. We start
by providing examples on the use of the symmetry rela-
tions introduced in Section IIC and then we present the
computational gains obtained from their exploitation in
actual calculations.

A. Examples on the Use of the Symmetry
Relations

We discuss a couple of explicit examples on how the
symmetry relations obtained with Eq. (22) can be ex-
ploited so as to make the algorithm described in Section
IID clearer by exemplification.

We start from the methane molecule, whose normal
modes have already been characterized by symmetry in
Table I. Let us consider quartic terms QiQjQkQl where
the first two modes (Qi and Qj) belong to the first set
(i.e. the first occurrence of the 3D irrep F2) and the last
two modes (Qk and Ql) belong to the second set (i.e. the
first occurrence of the 2D irrep E). There is a total of
nrt = 18 potentially distinct terms of this kind that form
a group of relative terms: six 2M terms, nine 3M terms,
and three 4M terms. Application of the invariance con-
dition (22) to each of the 18 terms leads to the linear
system of equations (29). The corresponding 18×18 C′

matrix is reported in Figure 2 A1. Here a compact nota-
tion is used to label each relative term by use of the index
of the row for each mode, where the indices of the modes
belonging to the second set are primed. For instance, the
term Q1Q1Q4Q4 (a 2M term) is simply labeled 111′1′ be-
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cause mode 1 corresponds to the first row of the irrep F2

and mode 4 corresponds to the first row of the irrep E;
accordingly, the term Q1Q3Q4Q5 (a 4M term) is labeled
131′2′, and so on. Inspection of Figure 2 A1 reveals that
10 out of 18 terms are null by symmetry (i.e. n0 = 10)
and therefore must not be explicitly computed. By re-
moving the n0 terms from the linear system we are left
with an 8×8 matrix shown in Figure 2 A2. We now look
for the minimal set of terms to be explicitly computed,
which makes this system solvable via the algorithm de-
scribed in Section IID. In this case, it turns out that by

explicitly computing just two terms, namely 111′1′ and
112′2′ (first and third columns in Figure 2 A2), and by
removing the first two rows in Figure 2 A2, the result-
ing reduced matrix C′

r has a non null determinant, as
shown in Figure 2 A3, and therefore allows the system to
be solved. To summarize, the symmetry analysis of these
relative terms tells us that out of the total of 18 terms, 10
are null by symmetry and that six of the remaining eight
non-null ones can be derived by exploitation of symme-
try relations by explicitly computing only two of them
via the EGH scheme.

FIG. 2: Examples of linear systems of equations of the form (29), obtained from the invariance condition (22), for selected
molecules and selected anharmonic terms of the PES. A1) Linear system for quartic terms of the anharmonic PES of methane
involving two modes of the first set (3D) and two modes of the second set (2D), see Table I. A2) Same as in A1) but with null
terms being removed. A3) Corresponding C′

r matrix, which satisfies condition (32). B) Linear system for quartic terms of the
anharmonic PES of methane involving only modes of the first set (3D). C) Linear system for quartic terms of the anharmonic
PES of tetrahedrane involving only modes of the third set (3D). The following color scheme is used: blue for 1M, green for 2M,
yellow for 3M and red for 4M terms, respectively. Empty boxes correspond to null elements in the matrices.
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For a second example, let us still work with methane.
Let us now consider quartic terms QiQjQkQl where all
four modes belong to the first set (i.e. the first occur-
rence of the 3D irrep F2). In this case, there is a total
of nrt = 15 potentially distinct terms of this kind that
form a group of relative terms: three 1M terms, nine 2M
terms, and three 3M terms. Application of the invariance
condition (22) to each of the 15 terms leads to the lin-
ear system of equations (29). The corresponding 15×15
C′ matrix is reported in Figure 2 B. The same compact
notation introduced above is used to label each relative
term. Inspection of Figure 2 B reveals the peculiar block-
diagonal form of the matrix where 1M terms are symme-
try related only to other 1M terms, 2M terms only to 2M
terms, while all 3M terms are null by symmetry in this
case. Each block can thus be analysed independently.
For the three 1M terms, it turns out that it is enough
to explicitly compute the first one (namely 1111, that
is Q1Q1Q1Q1) to make the system solvable and thus to
obtain the other two (2222 and 3333, that is Q2Q2Q2Q2

and Q3Q3Q3Q3). For the nine 2M terms, six of them are
null by symmetry, and also in this case it turns out that
it is enough to explicitly compute the first non-null one
(namely 1122, that is Q1Q1Q2Q2) to make the system
solvable and obtain the other two non-null ones (1133
and 2233, that is Q1Q1Q3Q3 and Q2Q2Q3Q3). To sum-
marize, the symmetry analysis of these relative terms tells
us that out of the total of 15 terms, 9 are null by symme-
try and that four of the remaining six non-null ones can
be derived by exploitation of symmetry relations by ex-
plicitly computing only two of them via the EGH scheme.

As a last example, we consider the tetrahedrane
molecule, C4H4, also belonging to the Td point symmetry
group. Let us consider quartic terms QiQjQkQl where
all four modes belong to the third set (i.e. the first occur-
rence of the 3D irrep F1). As in the previous case, there is
a total of nrt = 15 potentially distinct terms of this kind
that form a group of relative terms: three 1M terms, nine
2M terms, and three 3M terms. Application of the in-
variance condition (22) to each of the 15 terms leads to
the linear system of equations (29). The corresponding
15×15 C′ matrix is reported in Figure 2 C. Inspection of
Figure 2 C reveals another interesting structure, where
no terms are found to be null by symmetry and where all
symmetry relations link 1M, 2M and 3M terms together.
As complex the symmetry relations may look in this case,
this system can be solved by explicitly computing a sur-
prisingly low number of terms. Indeed, by computing via
the EGH scheme just the first two terms (namely 1111
and 2222, that is two 1M terms), the system becomes
solvable and all other 13 terms can be derived.

The few selected examples discussed above show the
effectiveness of an a priori symmetry analysis in reducing
the number of anharmonic terms of the PES that need
to be explicitly computed, with associated computational
gains to be documented in the following section.

B. Computational Gain

We have implemented in a developmental version of
the Crystal23 program the group theoretical approach
described in Section II to simplify the numerical cal-
culation of cubic and quartic anharmonic terms of the
PES. In this Section, we illustrate its effectiveness in re-
ducing the number of atomically displaced nuclear con-
figurations Nconf at which the energy and forces must
be computed. Four molecular systems are considered:
methane, CH4 (belonging to the Td point symmetry
group, with 9 normal modes), tetrahedrane, C4H4 (be-
longing to the Td point symmetry group, with 18 normal
modes), cyclo-exasulfur, S6 (belonging to the D3d point
symmetry group, with 12 normal modes), and cubane,
C8H8 (belonging to the Oh point symmetry group, with
42 normal modes). Two 3D crystalline solids are also con-
sidered: Magnesium oxide, MgO, as described by a con-
ventional cubic cell (belonging to the Fm3m cubic space
group, with 21 normal modes), and a Zinc-imidazolate
framework, namely ZIF-8 (belonging to the I43m cubic
space group). In the latter case, given that ZIF-8 has 138
atoms per primitive cell and thus a total of 411 normal
modes, a sub-set of just 12 modes has been selected for
the anharmonic analysis, corresponding to the highest
frequency ones. Figure 3 shows the atomic structure of
the six selected systems. For each system, the figure also
shows bar plots reporting the total number of nuclear
configurations Nconf that need to be explicitly explored
within the EGH finite-difference scheme when symmetry
is not exploited and when symmetry is exploited accord-
ing to the group theoretical approach presented here.

In the case of methane, CH4, there are M = 9 nor-
mal modes. Within a 2M4T representation of the PES,
there are a total of 198 cubic and quartic anharmonic
force constants to be computed. Without the exploita-
tion of symmetry, 90 atomically displaced nuclear config-
urations should be explored, which are reduced to 30 by
symmetry exploitation as described in Section II, with a
computational gain that amounts to a factor of 3. For
tetrahedrane, C4H4, there are M = 18 normal modes.
Within a 2M4T representation of the PES, there are a
total of 801 cubic and quartic anharmonic force constants
to be computed. Without the exploitation of symmetry,
342 distinct atomically displaced nuclear configurations
should be explored, which are reduced to 110 by symme-
try exploitation, with a computational gain that amounts
to a factor of 3.1. The cyclo-exasulfur, S6, molecule has
M = 12 normal modes. Within a 2M4T representation
of the PES, there are a total of 354 cubic and quartic
anharmonic force constants to be computed. Without
the exploitation of symmetry, 156 distinct atomically dis-
placed nuclear configurations should be explored, which
are reduced to 96 by symmetry exploitation, with a com-
putational gain that amounts to a factor of 1.6. In the
case of cubane, C8H8, there are M = 42 normal modes.
Within a 2M4T representation of the PES, there are a to-
tal of 4389 cubic and quartic anharmonic force constants
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to be computed. Without the exploitation of symmetry,
1806 distinct atomically displaced nuclear configurations
should be explored, which are reduced to 566 by symme-
try exploitation, with a computational gain that amounts
to a factor of 3.2. For the MgO crystal, described by its
cubic conventional cell with 8 atoms, there are M = 21
normal modes. Within a 2M4T representation of the
PES, there are a total of 1092 cubic and quartic anhar-
monic force constants to be computed. Without the ex-
ploitation of symmetry, 462 distinct atomically displaced
nuclear configurations should be explored, which are re-
duced to 112 by symmetry exploitation, with a compu-
tational gain that amounts to a factor of 4.1. Finally, for
the ZIF-8 crystal, by considering only a subset of 12 nor-

mal modes, there are a total of 354 cubic and quartic an-
harmonic force constants to be computed within a 2M4T
representation of the PES. Without the exploitation of
symmetry, 156 distinct atomically displaced nuclear con-
figurations should be explored, which are reduced to 48
by symmetry exploitation, with a computational gain
that amounts to a factor of 3.2.
In conclusion, the effectiveness of the approach to re-

duce the number of atomically displaced nuclear configu-
rations to be explicitly explored depends on two factors:
i) the order of the point group of the system: clearly, the
richer the point symmetry, the higher the speedup; ii)
the occurrence of high-dimensional (2D or 3D) irreps in
the manifold of normal modes.

FIG. 3: A) For each of the six test systems, the atomic structure is shown and a bar plot is presented, which reports the total
number of nuclear configurations Nconf that need to be explicitly explored in building the 2M4T anharmonic PES with the EGH
finite-difference scheme when symmetry is not exploited and when symmetry is exploited according to the group theoretical
approach presented here. B) Overall computational gain factor due to the symmetry exploitation approach discussed in Section
II.

IV. CONCLUSIONS

A group theoretical approach based on Wigner’s the-
orem has been formally illustrated to determine sym-
metry relations among anharmonic terms of the poten-

tial energy surface (PES) of a quantum-mechanical sys-
tem. An algorithm has been devised to take full advan-
tage of such symmetry relations to reduce the number
of atomically displaced nuclear configurations at which
energy and forces must be computed to build a 2M4T
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representation of the anharmonic PES, with the EGH
finite-difference scheme. The algorithm has been imple-
mented in a developmental version of the Crystal23
software program, and tested on six high symmetry sys-
tems (four molecules and two 3D crystals). The results
clearly demonstrate the consistent computational gain
provided by such approach for highly symmetric systems.
The highest speedup (factor of 4.1) has been obtained for
a cubic crystal of magnesium oxide.

Supporting Information

Comparison between the 1092 anharmonic force con-
stants of MgO (conventional cubic supercell) com-

puted with and without the point-symmetry exploitation
scheme illustrated in the manuscript.
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