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a b s t r a c t

Cloud computing has radically changed the way organizations operate their Software by allowing them
to achieve high availability of services at affordable cost. Containerized microservices is an enabling
technology for this change, and advanced container orchestration platforms such as Kubernetes
are used for service management. Despite the flourishing ecosystem of monitoring tools for such
orchestration platforms, service management is still mainly a manual effort.

The modeling of cloud computing systems is an essential step towards automatic management, but
the modeling of cloud systems of such complexity remains challenging and, as yet, unaddressed. In
fact modeling resource consumption will be a key to comparing the outcome of possible deployment
scenarios. This paper considers how to derive resource models for cloud systems empirically. We do
so based on models of deployed services in a formal modeling language with explicit CPU and memory
resources; once the adherence to the real system is good enough, formal properties can be verified in
the model.

Targeting a likely microservices application, we present a model of Kubernetes developed in Real-
Time ABS. We report on leveraging data collected empirically from small deployments to simulate
the execution of higher intensity scenarios on larger deployments. We discuss the challenges and
limitations that arise from this approach, and identify constraints under which we obtain satisfactory
accuracy.

© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Cloud-native applications are collections of microservices
Newman, 2015; Balalaie et al., 2016), i.e., small, independent,
nd loosely coupled services. Deploying these applications is chal-
enging and error-prone. Container technologies such as Docker
Merkel, 2014) facilitate this deployment process by addressing
he complexity rising from modules dependencies and by isolat-
ng small services in a protected environment. Container orches-
rator systems such as Kubernetes (Burns et al., 2016) are used
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to organize and deploy containerized services in cloud-native
applications. The Cloud Native Computing Foundation (CNCF)
reports an increased adoption of containers by 300% from 2016
to 2021 (Cloud Native Computing Foundation, 2020). Their most
recent user survey (Cloud Native Computing Foundation, 2021)
shows the adoption of Kubernetes has grown along: 96% of orga-
nizations are either using or evaluating Kubernetes in production.
In general we can expect the adoption of Cloud computing to con-
tinue to increase, and support for these spreading technologies
will be of paramount importance (Buyya et al., 2018).

Kubernetes is Google’s third generation of container orches-
trator systems (Burns et al., 2016) and was open-sourced in
2014. The system provides a layer between the cluster operator
and the applications running on the cluster. Applications are
implemented as collections of services, each developed, deployed
and scaled individually. It leverages containerization to handle
scaling and failover for the application, and provides deployment
patterns, service definitions, service discovery and basic load
balancing (Gilly et al., 2011). Containers are deployed in pods,
which are abstractions for groups of containerized components.
Services and automatic scalers let the application scale, adapt the
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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pplication to variable demand, restart or gradually update failing
omponents, accommodating continuous deployment.
Deploying and running a microservice application in Kuber-

etes in a proficient way remains a highly technical challenge
Shah and Dubaria, 2019), despite a flourishing ecosystem of open
ource plugins and documentation. Performance is affected by
everal steps of the DevOps toolchain, such as defining requested
esources, (anti)affinity and load balancing. The performance out-
ome of a Kubernetes deployment is strictly affected by the oper-
tor decisions, and thus deployment cannot be easily automated.
o track performance over costs, the operator needs to decide on
service allocation for the initial deployment and achieve proper

oad balancing across the cluster nodes while keeping a clear
icture of the current cluster settings and demand. It is difficult
o achieve resource-efficient solutions.

Containers are often perceived as lightweight virtual ma-
hines, since in some cases they replace virtual machines. How-
ver, this association can be misleading: on the surface containers
re independent units of deployment, as they have their own
rocess space, network space and file system, they can orches-
rate network ports, and they can safely rely on different kinds
f volumes. Underneath, resources are shared between differ-
nt containers. This indirectly affects their resource usage and
hereby their availability. Understanding what goes on under the
ood in container orchestration systems is essential in order to
each a proficient deployment.

In this paper, we introduce a modeling framework for cloud-
ative applications orchestrated using Kubernetes, to predict how
PU and memory resources will be used by multiple contain-
rs and how resource consumption will be affected in differ-
nt cluster settings. The proposed modeling framework can help
he system administrator in finding a cluster configuration for
microservice-based system which meets the system’s perfor-
ance requirements. We aim to facilitate the comparison of
ifferent deployment scenarios by means of a highly configurable,
xecutable model. The main contributions of this paper are:

1. a framework for modeling the resource-sensitive behavior
of cluster configurations for a microservice-based system;

2. a methodology to create formal models of resource con-
sumption for containerized microservices deployed and
managed by Kubernetes in this framework; and

3. an evaluation of the proposed methodology on an actual
microservice application in Kubernetes, the open-source
Online Boutique cloud-native application.2

lthough the proposed modeling framework abstracts from many
spects of Kubernetes (e.g., rollouts, rollbacks, orchestration of
olumes, user roles and authorizations, scalability), once cali-
rated following our proposed methodology, the derived models
lready allow system deployment under several configurations to
e explored and compared at the modeling level, before the system
s actually deployed in these configurations.

aper overview. Section 2 introduces Kubernetes and Real-Time
BS. The developed modeling framework for cloud-native ap-
lications using Kubernetes is presented in Section 3, and the
ethodology for instantiating the framework for a specific ap-
lication, in Section 4. Section 5 evaluates the methodology on
ifferent deployments of the Online Boutique application. Sec-
ion 6 elaborates on the applicability and extensibility of the
resented work. Section 7 discusses related work, and Section 8
oncludes the paper.

2 https://github.com/GoogleCloudPlatform/microservices-demo
 i
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2. Background

2.1. Kubernetes

Kubernetes (Burns et al., 2016) is an open-source system (Ku-
ernetes, 2022) for managing containerized applications across
ultiple hosts. It provides basic mechanisms for deployment,
aintenance, and scaling of applications. The core of Kuber-
etes includes services running on pods with various compo-
ents for their management. We here briefly introduce the main
ubernetes components related to resource management: ser-
ice allocation and load balancing of service requests, containers,
ods, nodes and their capabilities (Kubernetes Concepts, 2020;
ightower et al., 2017).
Services represent components that act as basic internal load

alancers and ambassadors for pods. A service comprises a logical
ollection of pods (explained below) that perform the same func-
ion and presents them as a single entity via a service endpoint.
his allows the Kubernetes framework to deploy a service that
an keep track of and route requests to the different back-end
ontainers of a particular type. Internal service clients only need
o know about the service endpoint. Meanwhile, the service ab-
traction enables the scaling or replacing of back-end containers
s necessary. The address of a service endpoint remains stable
egardless of changes to the pods to which it routes requests.
y deploying a service, the associated pods gain discoverability,
hich simplifies container design. Whenever access to one or
ore pods needs to be provided to another application or to
xternal service clients, a service can be configured. Although
ervices, by default, are only available using an internally routable
ddress, they can be made available to the outside of the cluster.
Containers (Pahl et al., 2019) facilitate the deployment

rocess by addressing the complexity rising from module
ependencies and by isolating small services in protected envi-
onments. Container technology enables self-contained, ready-to-
eploy parts of applications, including middleware and business
ogic, to be packaged into binaries and libraries that can be used
o run the applications. The processes inside a container share
etwork space, process space, and file system. This means that
hey can talk to each other through different ports, a process
an signal another process, and all files inside the container are
vailable to these processes. Tools like Docker (Merkel, 2014)
rovide engines to package applications into containers. The core
f a container engine is leveraged by Kubernetes to run the
ods. When a container is built, its image — the executable
inary package that is produced from the container definition
is usually pushed to an online container registry and tagged.

he URL and tag are then set inside Kubernetes deployments to
etrieve the containers and activate the corresponding service.

Pods are the basic scheduling unit in Kubernetes. They are
igh-level abstractions for groups of containerized components.
pod consists of one or more containers that are guaranteed to
e co-located on a host machine and can share resources. A pod
s deployed on a node (explained below) according to its resource
equirements and has its own specified resource limits. For two or
ore pods to be deployed in the same node, the sum of the pods’
inimum amounts of required resources needs to be available

n the node. All pods have unique (IP) addresses, which allows
evelopers to use ports without the risk of conflict. Within the
od, containers can reference each other directly, but a container
n one pod cannot address a container in another pod without
assing through a reference to a service; the service then holds
reference to the target pod at the specific pod address. The
ddresses of pods are ephemeral; i.e., they are reassigned on pod
reation and system boot.
In Kubernetes, pods can consist of multiple containers, includ-
ng additional init containers, sidecars, and helper containers that

https://github.com/GoogleCloudPlatform/microservices-demo
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arry out side tasks such as checking health and replying to health
robes. Init containers and sidecars are not considered for an
pplication’s resource consumption, since the init container only
artakes in the creation of the pod and sidecars generally handle
etworking tasks that can be separated from the consumption of
he pod. In contrast, helper containers can be counted as part of a
od’s resource consumption and of the application logic. Putting
ultiple service containers in the same pod would be an anti-
attern for a cloud-native application, restricting the flexibility of
he microservice architecture. Kubernetes offers several options
or communication between endpoints (discussed below), which
hould be preferred over pods with multiple service containers.
The nodes in a cluster are given different roles in the Kuber-

etes framework: one node functions as the master node and the
thers as worker nodes. The master node acts as the primary
oint of contact with the cluster and is responsible for most of
he centralized logic that Kubernetes provides. The master node
mplements a server that acts as a gateway and controller for the
luster by exposing an API for developers and external traffic.
t allocates pods and orchestrates communication between the
omponents of the framework. In contrast, worker nodes host
ods and form the larger part of a Kubernetes cluster. Worker
odes have explicit resource capabilities, CPU and memory, which
re known by the system. The memory capability is specified as
he ratio between occupied space and free space, and the CPU
apability in terms of cores or millicores, where a single core CPU
rovides 1000 millicores (i.e., milliseconds of processor activity).
hen a pod is deployed on a node, the pod detains an amount
f millicores which represents the segment of time within which
hey are allowed to use the CPU.

The scheduler is in charge of service allocation, and assigns
pods to specific nodes in the cluster. The scheduler matches the
operating requirements of a pod’s workload to the resources that
are currently available on the nodes in the Kubernetes frame-
work, and places pods on appropriate nodes. The scheduler is
responsible for monitoring the available capacity on each node
to make sure that service containers are not scheduled in excess
of the available resources. The scheduler needs to keep track of
the total capacity of each node as well as the resources already
allocated to existing service pods on the nodes.

The load balancing of service requests across multiple pods
is handled by the Kubernetes framework. This load balancing
is content agnostic; i.e., this load balancing, which is also called
layer-4, has limited capabilities because it operates at the Trans-
port layer (TCP/IP) of the ISO/OSI stack. Modern applications can
suffer load balancing issues in Kubernetes due to newer protocols
that bypass layer-4 load balancers (Load balancing on Kubernetes
without tears, 2018). For example, gRPC (Remote Procedure Call)
breaks the standard layer-4 load balancing of Kubernetes because
it is built on HTTP/2, which multiplexes requests using a single
long-lived TCP connection. Thus, multiple requests can be active
on the same connection at any point in time. This reduces the
overhead of connection management, but it reduces the use-
fulness of connection-level load balancing: once the connection
is established, there is no load balancing and all requests are
routed to a single destination pod. For this reason, clusters are
often equipped with additional load balancers, such as the service
meshes Linkerd (2022) and Istio (2022). These provide content
aware layer-7 load balancing, which operates at the Application
layer, rerouting requests at the highest level of the network
protocol stack by means of a High Availability proxy (HA proxy)
for each pod. This type of load balancing is much more expensive
than just layer-4, in terms of consumed computational resources
and latency. In fact, redistributing requests consume resources
on distributed proxies. When layer-4 load balancing fails, a few

proxies receive the major part of the requests, and redirecting all

3

that traffic consumes a significant amount of resource only on few
nodes.

2.2. Real-time ABS

ABS (ABS, 2022; Johnsen et al., 2011) is an executable mod-
eling language which targets the design and verification of con-
current and distributed systems. ABS is an actor-based, object-
oriented, executable modeling language with a Java-like syntax
and a real-time operational semantics (Bjørk et al., 2013). Its
concurrency model is based on active objects (de Boer et al.,
2017), which decouple communication and synchronization to
support very flexible orchestration of parallel activities within
and between active objects. ABS has previously been used to
model and analyze cloud deployments of resource-aware vir-
tualized systems (Johnsen et al., 2016; Schlatte et al., 2021),
including workflow processing (Johnsen et al., 2017), AWS de-
ployment decisions (Johnsen et al., 2016a), Hadoop (Lin et al.,
2016), Spark Streaming (Lin et al., 2020) and industrial cloud
applications (Albert et al., 2014). Therefore, ABS is an adequate
match for exploring resource usage analysis in Kubernetes. We
can understand ABS in terms of layers.

The functional layer of ABS is used to model computations
on the internal data of objects. It allows designers to abstract
from the implementation details of imperative data structures
at an early stage in the software design. The functional layer
combines parametric algebraic data types (ADTs) and a simple
functional language with case distinction and pattern matching.
ABS includes a library with predefined datatypes such as Bool,
nt, String, Rat, Float, Unit, etc. It also has parametric datatypes
uch as lists, sets and maps. All other types and functions are
ser-defined.
The imperative layer of ABS allows designers to express com-

unication and synchronization between active objects, which
ncapsulate threads (Schäfer and Poetzsch-Heffter, 2010; Johnsen
t al., 2011). Threads are created automatically at the recep-
ion of a method call and terminated after the execution of the
ethod call is finished. ABS combines active (with a run method
hich is automatically activated) and reactive behavior of objects
y means of cooperative scheduling: Inside the active objects,
hreads may suspend at explicitly defined release points, after
hich control may be transferred to another thread. Suspen-
ion allows other pending threads to be activated. However, the
uspending thread does not signal any other particular thread,
nstead the selection of the next thread to be executed is left
o the thread scheduler. In between these explicit release points,
nly one thread is active inside an active object, which means
hat race conditions are avoided.

The temporal layer of ABS, called Real-Time ABS (Bjørk et al.,
013; Schlatte et al., 2021), develops a real-time operational
emantics for active objects which allows the logical execution
ime to be captured during the execution of methods inside active
bjects. To express dense time in the models, Real-Time ABS con-
iders two types Time and Duration. Time values represent points
n time as reflected on a global, logical clock during execution.
n contrast, finite duration values represent the passage of time
s local timers over time intervals. Thus, the local passage of
ime is expressed in terms of duration statements which capture
ow long the local execution is delayed (similar to, e.g., UPPAAL
Larsen et al., 1997)).

ABS is an open-source research project (ABS Source Reposi-
ory, 2022; Schlatte et al., 2022) supported by a range of analysis
ools (see, e.g., the ABS tool survey (Albert et al., 2014)); for
he analysis results in this paper, we are using the ABS sim-
lation tool (Schlatte et al., 2021), which is implemented in
rlang (Armstrong, 2007).
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Fig. 1. The architecture of the modeled Kubernetes cluster.
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. A modeling framework for resource consumption in kuber-
etes

In this section, we present a general resource modeling frame-
ork for systems orchestrated using Kubernetes, and discuss how
he framework can be instantiated for a specific cloud-native
pplication. The focus of the modeling framework is on resource
anagement and load distribution. We distinguish two main
ategories of resources: resources that are temporarily available
nd periodically recharged (e.g., CPU or energy), and resources
hat are acquired and released (e.g., memory or storage). In this
ramework we explore both categories concretely, via CPU and
emory resources. Further generalization of the resource analysis

ramework is discussed in Section 6. The framework is executable
nd developed in ABS; i.e., it provides a simulation environment
hat can be used to make model-based load predictions. In par-
icular, the framework can be used to predict costs for different
cenarios under stress and to compare CPU and memory usage
etween different system configurations of Kubernetes nodes, at
he modeling level. The precision of the model will determine the
redictive capabilities of these simulations for real world clus-
er production scenarios. Fig. 1 shows the structure of modeled
lusters in the framework.
Clients invoke a service by sending requests to the service

ndpoint, requests are distributed among the worker nodes using
he load balancer. The amount of requests a node receives is
etermined by the type and number of the pods it hosts and
easured in Request Per Second (RPS). A pod is deployed on a
ode and consumes its resources while processing requests. The
utoscaler manages the number of pods for the service, and calls
he scheduler to deploy new pods.

odel input/output. To instantiate the outlined framework on a
oncrete cluster of services, we need to specify:

1. application settings, which include pod configurations
(placement, required resources), service configurations
(specifically, the load balancing policy) and workflows that
are supported by the services of the cluster; and
4

2. cost tables, which specify the resource consumption of
services for different workflows, at different intensities and
for different node configurations.

Observe that the isolation properties may vary between container
systems. This is reflected in our modeling framework by the
specified cost tables; for perfectly isolated containers a simpler
specification of cost would suffice (Albert et al., 2014; Johnsen
et al., 2015).

In the remainder of this section, we discuss aspects of the
modeling framework of particular relevance for resource man-
agement and load balancing. The complete modeling framework
is open source and available online.3

3.1. Modeling of requests and workflows

In our modeling framework, the workload of services is ab-
stracted into batches of requests. A batch of requests has a size
hat specifies the actual number of requests, while its processing
ost is determined by the hosting node according to its cost table
nd the total amount of requests that the node is handling. To
ecover a finer granularity for load balancing, batch requests from
lients are partitioned into smaller batches by the load balancer,
s explained in Section 3.2. These smaller batches are received by
node and transformed into resource consumption by the pods
osted on that node.
Fig. 2 shows how workflows, client requests, and clients are

odeled. Workflows are compositions of activated services; the
orkflow datatype in ABS defines a workflow to have a name
nd include a collection of services. The ClientRequest datatype
n ABS defines a batch of requests of a given size to a named
orkflow. We assume that the different services of a workflow
an be executed in parallel and abstract from the activation order
f the services, because of the pipeline effect for the multiple
equests contained in each batch when we consider batches of
equests. Clients are implemented by the ClientObject class in
BS, which fires batches of requests of a given size of a given
orkflow to a service endpoint.

3 https://github.com/giaku/abs-k8s-model/tree/ld-fixed-nodes

https://github.com/giaku/abs-k8s-model/tree/ld-fixed-nodes
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Fig. 2. Request declaration and client hatching.
Fig. 3. The datatypes PodConfig and ServiceConfig.
3.2. Modeling of services and pods

A service in our modeling framework is configurable, and car-
ried out by a number of pods. Services are configured by passing
parameters to the service when it is instantiated, including the
parameters PodConfig and ServiceConfig, as shown in Fig. 3:

• The datatype PodConfig specifies the requested CPU re-
sources and the CPU limit for processing tasks on the pods,
the memory cool-down time for insufficient memory and
the cost granularity. The requested CPU resources specify the
minimum amount of CPU resources required for the pod to
execute and the CPU limit specifies the maximum amount of
CPU resources that the pod will consume. The memory cool-
down is the time delay before rescheduling a pod in case the
node lacks sufficient memory for the pod to execute. The
cost granularity captures the number of resource consump-
tion steps the pod will use to process a request. The amount
of CPU consumed per step is then obtained by dividing the
cost of the request by the cost granularity.

• The datatype ServiceConfig specifies the initial number of
pods, the minimum and maximum number of pods for the
service and the configuration of the autoscaler.

For simplicity in the modeling framework, pods are assumed
to consist of a single container. (A pod with many containers can
be modeled by a pod running one container which consumes the
sum of their total resources.) The pods are deployed onto nodes
and consume resources when they process requests, as shown in
Fig. 4: memory is allocated at the beginning and released at the
end of the processRequest method, while CPU resources are con-
sumed gradually according to the costGranularity parameter of
the model. The nature and number of pods on a node determine
the type and number of requests that the node receives from the
service endpoint.

3.3. Modeling of nodes

The Kubernetes master node is not explicitly modeled, its
functionalities are implemented in the model logic. The Node
class in ABS models the Kubernetes worker node, which has
a given amount of resources available for consumption by its
running pods. In addition to its capacities, the modeled nodes
include information about resource consumption in their cost
table, both the capacities and cost table are specified upon node

creation:

5

• CPU capacity. CPU resources are time dependent. They are
replenished at every time interval, the total amount of com-
puted costs on a node in the time interval cannot exceed the
node’s CPU capacity.

• Memory capacity.Memory is time independent. Memory can
be acquired and released. The node decreases its available
memory when a pod starts the processing of a request and
allocates memory cost on the node memory. The memory
stays decreased for the whole computation time and the
allocated amount is restored on request completion. In case
the free memory is insufficient, the request remains pending
until enough memory is available.

• Cost table. The cost table is used to capture the resource
consumption on a node for specific configurations. The cost
table stores information about resource consumption for
each workflow and service for different RPS entries. The
table maps triplets (workflow, serviceName, RPS) to their
known resource consumption.

The modeling framework considers cluster of nodes from fixed
images; i.e., nodes are fixed to be of given configurations during
model instantiation. However, this is not a major limitation as
many different images can be modeled in the framework and
nodes can change between images during a simulation.

Cost tables are introduced to address the problem of depen-
dencies between pod consumption in container systems without
perfect isolation between pods. When a pod processes batch
requests, it needs to acquire resources from its node. As the CPU
costs associated to RPS are stored in the node’s cost table, the
node calculates the actual resource consumption that each pod
will require. If the exact amount of RPS for a service is not found
in the cost table, the model interpolates between the values of the
two closest table entries. The number of pods and load balancing
between pods affect the number of requests that a pod receives.

Fig. 5 shows how the node parses its share of requests and
calculates the total amount of RPS from the queue, for each
service and for each workflow (Lines 6–16). In the final loop (Line
19), the amounts of RPS are converted into millicores by means of
the serviceConsumptionMap. Finally, the node notifies each pod
about its total consumption that will start consuming (the while-
loop at Line 30). The pods will start to execute once they know

the allocated amount of millicores for this time unit.
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Fig. 4. The processRequest method of the pods.
Fig. 5. The Node convertRps method of the class Node.
.4. Modeling of load balancers

In the modeling framework, we have implemented a round-
obin load balancing policy for batches of requests. Other load
alancing policies can be implemented in a similar way, such
6

as random, ring, or hash. The modeling framework can also ac-
commodate different policies for different services. Since the
modeling framework focuses on resource consumption, policies
that are based on non-functional properties are difficult to cap-
ture within our framework. These policies, which direct more
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equests to the best-performing endpoints, can be based on,
.g., the latency and error rates of the endpoints. Implementing
hese policies would require encoding a statistical distribution of
oads in the Master LoadBalancer, which goes beyond our current
modeling framework.

The Master LoadBalancer (MLB) converts batches of work-
low requests sent by the clients into smaller batches of service
equests directed towards the pods. Fig. 6 shows the method
alanceClientRequest of the MLB class, invoked by the clients.
he ClientRequest method refers to a specific workflow, including
he size of the workflow and the list of services that will be
ctivated (see Section 3.1). Based on this information, the MLB
enerates proper batches of requests for each service and for each
od of that service. In the method, the first cycle (Line 6) goes
hrough the services of the workflow and divides the RPS with
round-robin policy among the pods. The second for-loop (Line
1) generates and forwards the requests to the nodes.

.5. Modeling of scheduler

The Scheduler class finds places for pods on nodes. The de-
fault deployment strategy is to compare the pod’s requested CPU
resources to the available CPU resources in the least busy node.
If there are enough CPU resources available on a given node, the
pod is scheduled on that node. If no node has enough resources
available the pod remains pending, to be scheduled in another
time interval. This strategy is implemented in the deployPod
ethod of the Scheduler class, which is shown in Fig. 7.
To support the definition of fixed scheduling of pods onto

odes, the scheduling can also be guided by a map specifying
n ordered list of nodes for each service. If the list is exhausted,
he scheduler will start again from the beginning of the list. For
xample, Fig. 8 shows a rule defined for the service frontend. If

eight pods are to be deployed, they will end up two per node; if
ten pods are to be deployed, three pods will be in node 1 and 2
and two pods in node 3 and 4.

4. A methodology for modeling specific kubernetes deploy-
ments

In this section, we propose a methodology to instantiate the
modeling framework in order to make model-based predictions
of resource consumption for a concrete cloud-native application.
To this aim, the cluster administrator needs to know the rele-
vant node configurations (that specify how pods are deployed
on different nodes), the workflows that the application exposes

o the endusers (i.e., which services are involved in a high-level a

7

action such as ‘‘load the homepage’’), and the different service and
pod configurations chosen for Kubernetes (i.e., the load balancing
choices for services and the required and maximum amount of
resources of each pod). Since the modeling framework considers
deployments of nodes from fixed images (cf. Section 3.3), we need
to derive execution costs for the images that we consider.

The methodology is used to calibrate the modeling frame-
work to the targeted cloud-native application by deriving cost
tables for the node images of the model from experiments on
the corresponding node configurations of the application. In the
experiments, each node configuration of the application is mon-
itored while the node is subjected to an increasing demand for
each workflow. Thus, instantiating the modeling framework for
the Kubernetes deployment of a specific cloud-native application
with multiple node images, requires a few steps:

1. instrument the cluster,
2. identify suitable workflows,
3. identify node configurations,
4. define a sampling strategy for service loads to derive cost

tables, and
5. perform model-based predictions by means of simulation.

We now detail the process for each step.

Step 1: Instrument the cluster. We need to instrument the cluster
for monitoring the targeted cloud-native application.4 We deploy
he application and isolate the resource consumption of Kuber-
etes system pods and monitoring plugins that perform periodic
obs that would otherwise interfere. For example, we used a
edicated worker node to host these system pods; such node, just
ike the master node, has not been modeled since it constitutes a
ery low amount of resource usage (about 1% of the total cluster
onsumption in our experiments).
Note that many stress test tools send requests synchronously;

.e., the thread sending requests will always wait for the previous
esponse to return. Consequently, when approaching the maxi-
um load capability of the cluster, the response time grows and
ields an RPS rate drop. This drop cannot be avoided and should
ot be reproduced in the model. To run meaningful stress tests,
e need a tool capable of maintaining a fixed number of requests
er second, independent of the response time.5

4 In Kubernetes the most widely adopted open-source tools for this purpose
re Prometheus (https://prometheus.io/) and Grafana (https://grafana.com/), but
heir integration currently requires additional work that the package manager
elm (https://helm.sh/) can significantly relieve. The full Prometheus stack chart
or Helm is available from the Prometheus community.
5 In our experiments, we have used the open-source tool Vegeta, which is
vailable on GitHub, https://github.com/tsenart/vegeta

https://prometheus.io/
https://grafana.com/
https://helm.sh/
https://github.com/tsenart/vegeta
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Fig. 7. The deployPod method of the class Scheduler.
Fig. 8. A deploy rule for the service Frontend in the class Scheduler.
tep 2: Identify suitable workflows. We now identify the work-
lows that are relevant for the resource consumption of the cloud-
ative application. We are primarily interested in workflows that
ignificantly impact the resource needs of the target application.
hese workflows can be identified by the application owner, from
he specifications, or by their resource consumption. A workflow
ith low impact in terms of the number of services involved
nd the load on those services, would be of limited interest
hen we instantiate the modeling framework. A suitable work-

low is static; i.e., the workflow never changes the set of acti-
ated services despite randomized parameters (e.g. ‘set a different
urrency’).

tep 3: Identify node configurations. We now identify the node
onfigurations that we want to capture as node images in the
odel. We consider nodes configured with a set of pods that will
ot change while profiling the resource consumption of the node.
hese nodes would typically correspond to the nodes used by the
dministrator when scaling the cloud-native application.

tep 4: Define a sampling strategy for service loads to derive cost
ables. In order to construct cost tables for each modeled worker
ode image that reflect the resource usage on the cluster, we
eed to define a sampling strategy. We run experiments on the
luster to measure the resource consumption of every service of
ny workflow for different RPS entries; i.e., we run experiments
n the cluster to derive the resource consumption Y for each node
onfiguration A, workflow wf1 with its set of activated services,
nd level of service requests r (e.g., 25, 50, . . . , 150 RPS). The
xperiments result in entries such as CostA (wf1, 25, service1) ↦→

, where Y is specified in millicores, in the derived cost table for
ode A. A cost table containing all workflows, their services and
orresponding resource consumption for each node image. The
erived cost tables will be used to calculate the resource con-
umption for the pods. Different sampling strategies will provide
ore or less entries; the more entries a cost table contains, the
ore accurate will be the resulting model.
8

When our target node reaches its capabilities, the success
rate for the requests drops, the latency of the pods increases
and resource consumption becomes less predictable. Therefore
we will let the maximum RPS in the cost table be such that
latencies never exceed a reasonable amount (e.g., ten times a low
demand latency), and success rate never drops below 90% during
the sampling process.

Step 5: Perform model-based predictions by means of simulation.
Using an instance of the modeling framework with the derived
cost tables for node images, we can compare the outcomes of
running simulations of different configurations of the modeled
cloud-native application. Having sampled service loads for mul-
tiple node images allows us to simulate different scheduling
choices in the cluster.

Note that Kubernetes systems often scale up and down at the
level of individual pods, thereby changing node compositions by
adding or removing single pods. This may introduce a higher
variability for possible node configurations than what we have
considered in the proposed methodology, where we considered
scaling at the abstraction level of node images to keep the number
of node configurations for the sampling process fairly low. The
methodology can be extended to cover the scaling of individual
pods by increasing the number of node configurations in the
sampling process.

5. Evaluating the methodology

With the proposed methodology, we aim to configure the
modeling framework to predict resource consumption for real
cloud-native applications. Therefore, we evaluate the predictions
of resource consumption that we obtain for models derived by
following the methodology introduced in Section 4. The proposed
methodology aims to derive cost tables for node images for cloud-
native applications with different workflows. In order to evaluate
the accuracy of the resulting model for predicting the resource
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Fig. 9. Online shop service mesh.
onsumption on the nodes, we apply the methodology to a cloud-
ative application with mixed workflows, focus on CPU resources
nd consider different node images and load distributions. In
etail, we investigate the following research questions:

RQ1 How accurate is the prediction of CPU consumption under
a mixed workflow scenario on a cluster with homogeneous
nodes?

RQ2 How accurate is the prediction of CPU consumption for a
mixed workflow scenario, on different cluster setups with
heterogeneous nodes?

RQ3 Is there a correlation between fair load distribution and
response time for microservices application deployed in Ku-
bernetes?

By a cluster with homogeneous nodes, we mean that all nodes
n the cluster contain the same set of pods. In contrast, by a clus-
er with heterogeneous nodes, we mean that the cluster consists
f different nodes that contain different sets of pods.

.1. Experimental design and subject

To answer these research questions, we performed experi-
ents with a cloud-native application managed by Kubernetes,

unning on a cluster. There are no standard benchmarks for
loud-native applications. Therefore, we constructed a set of
xperiments based on a microservices demo application6 from
oogle: an online shop where customers can browse and buy
roducts. This application has previously been used to demon-
trate the functionalities and scaling capabilities of several Kuber-
etes plugins. In our experiments, the load generator component
f the demo application was not used since the stress tests have
een implemented differently.

he architecture of the microservice application. The microservice
rchitecture of the online boutique, their interactions and the
elevant language technologies are shown in Fig. 9. The commu-
ication between the services of the online boutique are mostly
ased on gRPC calls, an HTTP/2 based protocol which keeps
onnections alive by bypassing the de facto Kubernetes layer-4
oad balancing.

The application was deployed using the load balancer Istio,7
service mesh platform working on top of Kubernetes. Istio was

6 https://github.com/GoogleCloudPlatform/microservices-demo
7 https://istio.io/
9

chosen for its high availability (HA) proxies based on the open
source project Envoy, which provides every service pod with a
sidecar container and redirects all requests, achieving layer-7
load balancing also on HTTP/2 based communication protocols. To
change the load balancing strategy, we defined Istio Destination
Rules for every service with the random policy.

The main workflows that are relevant for users of the online
boutique were identified by browsing the web application. A
workflow can be get the index page, change currency and view
a random product. Despite their simplicity, tasks like these are
already perceived as workflows and do in fact activate a vari-
ety of services. For example, viewing the index page activates
the services frontend, currencyservice, cartservice, adservice, pro-
ductcatalogservice and redis-cart. It is common in this type of
applications that a frontend service builds the frontend page
upon information retrieval from other services. These relations
can be seen as service dependencies, though with our notion of
workflows, we separate external services that can be activated
by the users from internal services that implement the backend
of the application.

A service can generally implement multiple functions: In sim-
ple cases (like the online boutique), static workflows activate
internal services in a deterministic way; i.e. no parameter values
can be used to influence the set of services that are activated
by a given workflow (by activation we mean calls of the form
ServiceA.MethodA). Indeed, randomizing parameter values for the
online boutique made no difference from the point of view of
resource consumption. In more complex cases, variable work-
flows can be modeled as different workflows by fixing different
parameters for the same workflow.

The configuration of the cluster. The online boutique application
was deployed on a cluster of nodes provided by Norwegian Re-
search and Education Cloud.8 We used five large nodes, with 4
cores and 16 GB of memory, divided into one master and four
worker nodes. In addition, two small nodes, with a single core
and 4 GB of memory, were used to host system services, such
as the Kubernetes cluster DNS, the Kubernetes metrics monitor,
the monitoring services (Grafana and Prometheus stack), and the
HA proxy services (Istio components and Kiali for Istio commu-
nications monitoring). Finally, a separate node, with 2 cores and
8 GB of memory, was created as an attacker using Vegeta. Such
an additional node is necessary to prevent that the CPU load

8 https://www.nrec.no/

https://github.com/GoogleCloudPlatform/microservices-demo
https://istio.io/
https://www.nrec.no/
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Table 1
An overview of the considered workflows, with a brief description, the corresponding HTTP requests
and a listing of the involved services. Services in bold denote the most stressed, hence important,
services for the corresponding workflow.
Name Description HTTP request Services

WF1 View homepage GET http://ip:port/ frontend, currency, ad,
cart, productcatalog,
redis-cart

WF2 Change
currency

POST
http://ip:port/
setCurrency

frontend, currency, ad,
cart, productcatalog,
redis-cart

WF3 View
product details

GET http://ip:
port/product/
product-code

frontend, currency, ad, cart,
productcatalog, redis-cart,
recommendation
Table 2
An overview of the node images, with a brief description and the associated pods.
Node name Purpose Pods

Node
type A

Nodes which implement the workflows
and handle a reasonable amount of
request throughput

2 × frontend, 2 × currency, 1 × ad,
1 × cart, 2 × productcatalog,
1 × redis-cart, 2 × recommendation

Node
type B

Nodes which favor WF1 and WF2 4 × frontend, 3 × currency,
1 × productcatalog,
1 × recommendation

Node
type C

Nodes which favor WF3 3 × frontend, 2 × currency,
2 × productcatalog,
3 × recommendation
generated by the stress tests affects the tailoring of the target
application’s performance.

The services needed for the sampling process could easily
it on a single node. Two services were particularly resource
onsuming in the first two workflows: frontend and currencyser-
ice; these two services were deployed in two pods. The third
orkflow was mostly hitting frontend, which has already two
ods, and productcatalogservice and recommendationservice, which
e deployed in two pods as well. To instantiate the modeling

ramework, we focus on the workflows of the online boutique
isted in Table 1.

We configured a node image (Node type A) to implement the
onsidered workflows and handle a reasonable amount of request
hroughput, another (Node type B) which favors WF1 and WF2
nd a third (Node type C) which favors WF3. The pods on the
ode images are listed in Table 2. An excerpt of the resulting
ampling process outcome for Node type A can be seen in Fig. 10,
he created maps will then form a higher level map containing the
ull calibration data. Next, we identified two other types of nodes,
oth meant to extend this deployment. The two last node types
re not sufficient to implement the workflows of the application
y themselves, so they have been deployed with a helper node
osting the missing pods for the sampling process.

he configuration of the experiments. To investigate research ques-
ion RQ1, we need to compare model predictions to the measured
PU consumption under mixed workflow scenarios on homoge-
eous nodes. For this purpose, we performed a series of mixed
orkflow stress tests on the cluster with Node type A. The mixed
orkflows varied between two and three workflows, chosen to
over different scenarios where the workflows are balanced as
ell as scenarios where one workflow dominates the service
equests. The stress tests spanned from 200 to over 500 RPS in
otal. Table 3 shows the composition of workflows for each stress
est; stress tests P1–P4 consider two workflows and stress tests
1–T4 consider three workflows with different RPS. Each stress
est lasted 15 minutes and was executed five times to detect
ossible fluctuations in resource consumption.
To investigate research question RQ2, we need to compare
odel predictions to the measured CPU consumption under mixed

10
Table 3
Mixed workflow RPS profiles for RQ1 (workflow pairs are denoted
by P and triplets by T).
Workflowmix WF1 WF2 WF3

P1 100 100
P2 300 100
P3 150 350
P4 150 350
T1 425 75 75
T2 175 200 175
T3 125 375 100
T4 75 50 400

workflow scenarios on heterogeneous nodes. For this purpose,
we performed experiments on the cluster with Node types B
and C. Because the load distribution between nodes is slightly
unbalanced between different runs of the same deployment on
the cluster (see Section 2.1), we need to be more careful in
designing the experiments with heterogeneous nodes than with
homogeneous nodes (used for RQ1). We address this issue by
implementing a turnover of the nodes and run three iterations of
each stress test on each cluster configuration, resulting in a total
of twelve iterations for each stress test for RQ2. For the first three
iterations the node types were instantiated on the four worker
nodes, for the next three iterations all node types where shifted
such that the first worker node hosted the pods of the second
worker in the previous round of stress tests, the second worker
node hosted the pods of the third worker node in the previous
round, etc. The mixed workflows used in the experiments for RQ2
are shown in Table 4 and the cluster configurations are shown
in Table 5. They have been reduced in the amount of service
requests considered, because some cluster configurations could
not handle the same service demand as in RQ1.

To investigate research question RQ3, we need to compare
fair load distribution and response time. For this purpose, we
developed a resource model to calculate the estimated consump-
tion in different scenarios. To demonstrate the usefulness of the
model, we need to show that fairly balanced nodes lead to better
performance. Several metrics have been used for measuring the

http://ip:port/
http://ip:port/
http://ip:port/product/
http://ip:port/product/
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Fig. 10. Data from the sampling process integrated in the model for node type A.
Table 4
Mixed workflow RPS profiles for RQ2 (workflow pairs are denoted
by P and triplets by T).
Workflowmix WF1 WF2 WF3

P1 100 100
P2 175 100
P3 100 200
P4 150 150
T1 175 75 25
T2 50 125 125
T3 50 50 200
T4 25 250 25

Table 5
Cluster configurations combining heterogeneous nodes.
Cluster Node Node
configuration type B type C

1B3C 1 3
2B2C 2 2
3B1C 3 1

performance of cloud systems (Duan, 2017). We focused our
evaluation exclusively on service response time (i.e., the latency
etween service request and response) and the corresponding
ystem utilization (i.e., the percentage of system resources that
re used for service provisioning). In the experiments, we re-
ort on the response time of the median request and compare
heir latencies and resource consumption. The median request
s more meaningful than the average response time since re-
ponse time distribution is asymmetric w.r.t. its average. We
an compare their latencies and resource consumption since the
omputation capabilities of the cluster were never exceeded in
ur experiments, all tests obtained a success rate greater than
5%.

.2. Results and discussion

This section is organized according to research questions RQ1–
Q3. The scripts developed to perform the experiments have been
ade available on GitHub.9

Q1. Figs. 11–14 compare measurements for the five iterations
f the stress tests to the corresponding model predictions for
he workflows specified in Table 3. In the figures, consumption
s grouped by service in the first row of plots, and by node in

9 https://github.com/giaku/abs-k8s-experiments
11
the second row. Fig. 11 considers the mixed workflows P1 and
P2, Fig. 12 considers P3 and P4, Fig. 13 considers T1 and T2, and
Fig. 14 considers T3 and T4.

When we look at the consumption by service, the model’s
prediction is well aligned with the consumption observed on the
cluster. Service consumption is always very close to the measured
outcome. The model’s largest divergence can be observed for
service consumption in workflow T3 (see Fig. 14, top left). For
the service frontend, the model predicts a consumption of 6000
millicores and the system consumes on average 5500, accounting
for an overestimation of 10%. This can be explained by the fact
that when the total load on the cluster brings the nodes close
to saturation, the behavior of the system becomes unpredictable.
Resources cannot be consumed in excess of their availability, and
resources are also needed for the Kubernetes internals. Further-
more, the real system degrades performance and some requests
fail in order to keep the pace, while the model can consume every
single millicore of CPU.

When we consider the consumption by node, we observe a
slightly unbalanced distribution among the worker nodes in the
real system. Since all nodes are a priori equal, the model predicts
the same load for every node, but the real Kubernetes cluster
does not. The reasons for this difference lie in the load balancing
problem discussed in Section 2.1: When the kube-proxies dis-
tribute gRPC requests, they fail to achieve a fair load distribution.
This problem is addressed by equipping every pod with a sidecar
pod that works as an additional High Availability proxy; these
sidecars are provided by Istio and called Istio-proxies. After the
initial distribution of requests by the Kubernetes system, the
Istio-proxies carry out a final rerouting of the requests. However,
the consumption of these proxies is not considered part of the
system consumption; instead it is part of the pod consumption.
Consequently, the consumption of a frontend service is measured
together with its sidecar Istio-proxy in the sampling phase and
then replicated in the simulations. However, the work of the Istio-
proxies at different places in the cluster is not fairly balanced.
Some Istio-proxies are redirecting more requests than others,
because the kube-proxies target them more heavily. This lack
of balance does not affect the experiments for RQ1 because the
consumption per service is quite accurate and the consumption
per node is accurate when considering average values.

RQ2. Figs. 15–17 compare measurements for the twelve itera-
tions of the stress tests to the corresponding model predictions
for the mixed workflows specified in Table 4, using node turnover
in the cluster experiments. The consumption recorded during the
experiments is presented as box plots for all cluster configura-

tions. In particular, Fig. 15 shows the results of the four pair

https://github.com/giaku/abs-k8s-experiments
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Fig. 11. Measurements for the mixed workflows P1 and P2, comparing the resource consumption recorded in the cluster stress tests (orange dots) with the expected
values given by the resource model (blue plus). The plots are reported by service (top), and by node (bottom).
workflows P1, P2, P3 and P4 (first row) and four triplet workflows
T1, T2, T3 and T4 (second row) for the cluster configuration
2B2C (see Table 5), and Figs. 16 and 17 show the correspond-
ing results for the cluster configurations 3B1C and configuration
1B3C, respectively. The green area of the box plots cover 50%
of the observations, and the two brackets span to the minimum
and maximum value observed. The red dot depicts the expected
consumption from the calibrated model.

In these experiments, we observe that the expected resource
onsumption from the model corresponds well to the observed
onsumption measured on the cluster during the turnover stress
ests. In our experiments, the best balanced cluster load is ob-
ained with cluster configuration 3B1C (shown in Fig. 16) and
e see that this can be detected from the model predictions.
hen the system is overloaded, the model can predict that some

ailures may occur in a given scenario, but it cannot predict how
uch failures will impact resource consumption. This is because
ffects such as requests lost due to oversaturated queues are not
eflected in the model. For example, in Fig. 17 (second row) the
orkflows tend to systematically overload Worker 1 (which is
learly not a desirable scheduling) and the predicted consumption
rom the model is less accurate than for the non-overloaded
cenarios.

Q3. Fig. 18 shows the time of the median request in the stress
ests for each workflow and cluster configuration. In the plots,
he Y -axis depicts a time scale in milliseconds and the X-axis
depicts the different cluster configurations. The three different
cluster settings are identified by the three colors — the top-down
order in the legend reflects the left-to-right order of boxes in the
plots.
12
In these experiments, we can observe that cluster configura-
tion 3B1C (the rightmost, red column of each plot in Fig. 18) was
the most resilient and performant under the different workloads.
We can further observe that in the experiments in which the load
is fairly distributed among the nodes, cluster configuration 2B2C
is likewise performant. Nevertheless, there are cases (P2 and T4)
where the unbalance seems impairing for performance.

5.3. Threats to validity

Our experiments reduce the configuration space in terms of
the number of node configurations and workflows, and by only
considering static workflows. First, in principle there could be
a combinatory explosion of node configurations on a cluster.
However, in practice, we believe that configurations do not vary
too much due to deployment constraints that prevent many
configurations from being used. In the proposed methodology,
we consider a set of calibrated nodes with fixed workloads since
containers and pods are not independent. Containers and pods
affect each other’s consumption and performance when running
on the same machine (Zhao et al., 2017). Thus, the single pod
consumption, stressed by the same demand, can differ from one
node configuration to another. Second, cloud-native applications
with a huge number of workflows have not been considered in
the experiments. This potential limitation of the methodology
could be addressed by a fully automated sampling process as
an extension to the current work (see Section 6). Third, our
experiments have not considered dynamic workflows. We do not
believe that this is a major limitation of the proposed methodol-
ogy because a dynamic workflow can be treated as a set of static
workflows, one for each workflow variation in accordance to a

parameter change.
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Fig. 12. Measurements for the mixed workflows P3 and P4, comparing the resource consumption recorded in the cluster stress tests (orange dots) with the expected
values given by the resource model (blue plus). The plots are reported by service (top), and by node (bottom).
6. Discussion

We complement the presentation of the modeling framework
y discussing two perspectives on its applicability: the inte-
ration of the modeling framework in a Continuous Integra-
ion/Continuous Delivery (CI/CD) pipeline and its generalization
eyond Kubernetes and CPU resources.

.1. From a modeling framework to a full-fledged tool

Nowadays, cloud-native applications are built, packaged, tested
nd deployed automatically by mean of CI/CD pipelines. These
ipelines can be seen as sequences of stages where each stage
uns a set of scripts. Companies tend to split staging and devel-
pment environments from production to prevent that problems
pread from the applications under development and testing to
he production environment. Having a sandbox in which applica-
ions can be properly tested and possibly calibrated before they
ove to the production environment, can be considered as part
f today’s best practices in software engineering.
The modeling framework presented in this paper enables the

urther development of an automated calibration stage in such
sandbox, which would be an additional stage in the pipeline

or building an application, before it moves into production. The
odeling framework generates resource consumption plots for
ervices and nodes as the outcome of simulations. The compar-
son of different plots for different simulations, helps in finding
uitable configurations. A next step towards fully integrating
he modeling framework in a CI/CD calibration stage could be
o, e.g., configure multiple simulation scenarios ahead of time,
13
run the simulations for the resulting models and automatically
generate comparison plots for the considered deployments.

To configure a simulation scenario, the model must specify
a set of clients calling each workflow with a certain demand
(i.e., RPS, intensity) and the services involved for each workflow.
We believe this could be significantly simplified by developing
a proper GUI and automating the corresponding model genera-
tion alongside the calibration process. In the evaluation of our
proposed methodology for instantiating the modeling framework
(Section 5.1), we considered an application exposing an API of
about 10 different workflows. Among these, we identified the
three most common and resource demanding workflows that
were responsible for the most of the application’s CPU con-
sumption. We believe this scenario, with a few workflows that
dominate the resource consumption of an application, is fairly
common and covers a wide range of applications deployed in
Kubernetes. An interesting line of future work would be to test
a larger number of workflows together, especially from several
applications. Although specifying a large number or workflows
in the model can be demanding, the additional manual work in
a CI/CD setting would in fact be fairly limited; the configuration
of URLs to access the different endpoints exposed via the API in
order to build the cost tables for calibration, would also be needed
for integration testing.

The modeling framework is well-suited to quickly discover
bottlenecks in a configuration: When resource consumption re-
mains within the thresholds, the outcome of the simulations can
be used to explore configurations. Although our models can be
used to detect hazardous scenarios in which consumption goes
beyond the thresholds, they cannot be used to fully explain the

consequences of these scenarios. For example, if a service pod
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Fig. 13. Measurements for the mixed workflows T1 and T2, comparing the resource consumption recorded in the cluster stress tests (orange dots) with the expected
alues given by the resource model (blue plus). The plots are reported by service (top), and by node (bottom).
s overloaded because it reaches its CPU limit or its host node
s saturated, the pod will trigger a cascade of request failures
s messages are dropped from the queues (see Section 5.2).
t would significantly increase the complexity of the modeling
ramework to capture how such chaotic failures may impact
he cluster. In this paper, we have opted to abstract away the
ependencies between tasks in a workflow and model them as
set of tasks that execute in parallel, we believe this abstrac-

ion from service dependencies does not induce a significant
oss of precision for the analysis of resource consumption, be-
ause the pods processing requests form a pipeline, microservices
rocess requests asynchronously and consumption falls within
he thresholds. However, workflows with dependencies can be
odeled in ABS when needed (see, e.g., Johnsen et al. (2017), Lin
t al. (2016)).

.2. Generalizing the modeling framework beyond kubernetes and
PU consumption

The presented methodology is currently tailored to container-
zed applications, thus, we believe it can be applied to other cloud
eployment architectures. Some parts of the implemented frame-
ork can be easily reused; for example, the chosen monitoring
ools were used to monitor custom cloud deployments before the
ubernetes platform was introduced. Other parts of the frame-
ork will require further investigation and careful changes; for
xample, the prediction model would need to be adjusted for
ifferent deployment platforms. The current model calculates

PU consumption based on the load balancing strategy used

14
on the cluster. Other platforms may offer different load bal-
ancing strategies and may interact with containers in different
ways; e.g., evicting or killing containers that exceed their memory
limits.

Resources generally fall into two categories, counting
semaphores (like memory) and temporal (like CPU). Both cat-
egories are already covered in our modeling framework. For
the evaluation framework, we have focused on how to derive
resource models empirically for CPU resources. For memory-
intensive applications, memory usage will also be of interest,
and the cost tables should include memory usage. The memory
usage of a node can easily be obtained in the calibration process
from the memory usage of the hosted containers. In contrast
to CPU resources, memory is acquired and released rather than
consumed over time. The simulations check that no pod or node
exceeds its memory limit and output memory consumption by
services and nodes (see Section 3.3). Other resources such as disk
I/O, network bandwidth, and energy consumption can also in
principle be monitored and targeted by our methodology. Proper
instrumentation would then be required to monitor the chosen
metric and build the appropriate cost tables. In this case, the
resource model should be extended to include the provisioning
of the new resource and the simulation model to capture how
the resource is acquired and released.

7. Related work

We position our contribution with respect to related work
concerning the modeling of cloud systems, the optimization of
microservice management and tools for improving Kubernetes

deployment.
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Fig. 14. Measurements for the mixed workflows T3 and T4, comparing the resource consumption recorded in the cluster stress tests (orange dots) with the expected
alues given by the resource model (blue plus). The plots are reported by service (top), and by node (bottom).
Fig. 15. Mixed workflow measurements for cluster configuration 2B2C. The first line of plots reports consumption by service, the second line by node.
Resource models for cloud-based applications. Whereas there are
any cloud modeling languages (see, e.g., Bergmayr et al. (2018)),

he majority of them deals with the description of cloud deploy-
ent configurations. In contrast, this paper is part of a line of
ork on formal modeling of virtualized systems in ABS (Johnsen
t al., 2011), a concurrent, executable modeling language. The
erspective on virtualized systems taken in this line of work, is
o focus on resource provisioning and quality-of-service, which
ypically affects the timing behavior of systems on the cloud. The
nderlying technical idea is to introduce a separation of concerns
15
between the resource needs of different computational tasks,
and resource provisioning in the infrastructure (Johnsen et al.,
2010b, 2012, 2015). This approach has been successfully applied
to different kinds of virtualization infrastructure, including Ama-
zon AWS (Johnsen et al., 2016a), Hadoop YARN (Lin et al., 2016)
and Hadoop Spark Streaming (Lin et al., 2020). The concurrency
model of ABS, based on actors, has also been used for the verifi-
cation of industrial case studies in a DevOps setting (Albert et al.,
2014), for the analysis of worst-case memory bounds (Albert
et al., 2011) and for parallel cost analysis (Albert et al., 2018), a
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Fig. 16. Mixed workflow measurements for cluster configuration 3B1C. The first line of plots reports consumption by service, the second line by node. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 17. Mixed workflow measurements for cluster configuration 1B3C. The first line of plots reports consumption by service, the second line by node. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 18. Comparison of median response time between multiple cluster settings for pairs (top) and triplets (bottom). (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

16
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ovel static analysis method related to parallelism and maximal
pan. The formal model of Kubernetes presented in this paper
iffers from previous work in its nested virtualization; i.e., the

containerization of microservices leads to two levels of book-
keeping in the resource-sensitive architecture, corresponding to
the pods and nodes of the Kubernetes framework. Furthermore,
the lack of isolation that we observed for the containers led to
a generalization of the cost models used in the discussed work,
from cost expressions to cost tables. An early case study of the
nested model (Turin et al., 2020) did not account for this lack
of isolation and the associated cost tables. To the best of our
knowledge, our paper introduces the first concrete methodology
for instantiating cost models for Kubernetes deployments; we
outline a methodology for instantiating cost models for Kuber-
netes deployments and provide a concrete example of how the
methodology can be applied.

Optimization of microservice management. General techniques for
resource provisioning on the cloud are surveyed by Zhang et al.
(2016). These techniques are not specific to Kubernetes, and
include algorithms aiming to improve autoscaling (Jindal et al.,
2017), performance (Boza et al., 2019; Rodriguez and Buyya,
2018) and energy efficiency (Zhu et al., 2017). Methods for op-
timizing microservices include model-driven optimization tech-
niques such as Dilip Kumar et al. (2014), Samimi et al. (2016);
these are also not specific to Kubernetes systems.

It has been shown that deployment management can be for-
malized as finite state machines, such as the Aeolus (Di Cosmo
et al., 2014) and TOSCA-compliant deployment models (Brogi
et al., 2015), which have been adapted to formally reason about
the static deployment of microservices in Kubernetes (Chareon-
suk and Vatanawood, 2021). For example, the static deployment
of microservices can be encoded as a constraint problem (Bravetti
et al., 2019). This work, which is based on Aeolus, takes an ABS
model as its starting point. In contrast to our work, their focus is
on how to solve the logical grouping of microservices on nodes
and the resource consumption of the deployed microservices has
not been considered.

Tools for improving Kubernetes deployments. Several approaches
have been proposed to improve resource allocation for Kuber-
netes systems. For example, Ramos et al. (2021) propose a
machine learning model for detection of Docker-based app over-
booking on Kubernetes and RLSK (Huang et al., 2020) is a deep
Reinforcement Learning Scheduler for Kubernetes that uses rein-
forcement learning to refine deployment heuristics. To improve
resource distribution, Zhang et al. (2018) proposed to combine
ant colony and particle swarm optimization algorithms. Li et al.
(2020) introduced a dynamic Input/Output sensing scheduler for
Kubernetes. The scheduler considers the disk pressure in the
scheduling process and tries to balance the node disk I/O usage
across the cluster dynamically. Similarly, Gaia (Song et al., 2018)
is a scheduler specifically designed to improve load distribution
on GPUs, treating GPU resources in the same way as Kubernetes
treats CPUs. Townend et al. (2019) and Wang et al. (2020) studied
schedulers to reduce energy consumption and heat waste. These
schedulers need to generalize over the kind of services that are
being instantiated, so even an optimal deployment (Lebesbye
et al., 2021) that has been statically decided, may turn out to be
poor and benefit from being refined after collecting some data.
For a recent survey on scheduling approaches for Kubernetes,
see Carrión (2023).

Closer to our work, Medel et al. (2016) propose a model-based
approach to predict performance and resource management for
Kubernetes systems. Their work focuses on simulating the life-
cycle behavior of containers in a Kubernetes deployment, using
timed Petri nets (Popova-Zeugmann, 2013). While their work
17
targets pod and container lifecycle management, our work has
focused on resource consumption and load balancing, and we
model nodes in order to address bigger clusters with multiple
nodes and services. In contrast to our work, they do not pro-
pose a specific methodology to leverage the model to estimate
performance and resource consumption of specific cloud-native
applications.

Interestingly, Mendel et al. point out that according to their
experiments two containers that are in the same pod perform
better than if they are deployed on different pods. This seems to
be the case also for identical pods deployed on the same node
rather than deployed on two nodes. In our experiments, we have
also observed that pods are rarely independent and that modeling
pods in isolation leaves open the problem of how to calculate
resource consumption. By focusing on resource consumption, our
model complements the work of Mendel et al.; in fact, they point
to resource contention for containers as a direction for future
work (Medel et al., 2018), in order to investigate the behavior of
different resource management policies, which is what our model
achieves.

In contrast to the above mentioned work on model-based
analyses of Kubernetes deployment, our work proposes a method-
ology for applying the proposed modeling framework to concrete
cloud-native applications, and validates the methodology on a
concrete use case.

8. Conclusion and future work

The problem of predicting resource-efficient cluster configu-
rations in a complex industrial scenario quickly becomes chal-
lenging for the human administrator. In this paper, we propose
and evaluate a modeling framework and an associated model-
based methodology which can be integrated in a Continuous
Integration/Continuous Delivery (CI/CD) pipeline to address this
problem. The proposed methodology aims to reduce a continuous
space of possible cluster configurations to a finite number of
experiments, in order to instantiate the modeling framework for
cloud-native applications deployed on a Kubernetes cluster. The
resulting model-based analysis can be used to predict the re-
source load of different nodes in the cluster for different scenarios
of stress.

A particular challenge that we encountered in developing the
modeling framework for Kubernetes clusters, was a lack of iso-
lation between pods (due to reuse in the underlying system).
To address this challenge, we propose the use of node images
and cost tables in the resource model, rather than uniform cost
expressions as used in previous work. The derivation of these
cost tables was handled in the associated methodology by a cost
sampling strategy. The granularity of the sampling strategy deter-
mines how precisely the model reflects the resource consumption
of the real system on the cluster. Since resource consumption
need not be linear, only sampling resource consumption for a
finite number of points in the domain of RPS levels that can
be processed, will always lead to an approximation of the con-
tinuum. In future work, we plan to investigate the cost benefit
trade-off of sampling strategies with different granularities fol-
lowing the proposed methodology. Obviously, the more time is
invested in the sampling process, the more accurate the resulting
model.

The proposed methodology is not meant to investigate critical
service loads. With very high service demands, the stressed pods
and nodes are no longer able to guarantee a high success rate. In
this case, errors cause exceptions that detour the execution such
that the resource consumption reflects the handling of exceptions
rather than the handling of requests. We did not aim to capture
such erroneous behavior in the cost tables of our model.
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To evaluate the proposed methodology, we instantiated, cal-
brated and explored a model of the cloud-native application
nline Boutique with stress tests under different mixed workflow
cenarios. The resulting model reflects the different workflows
nd how they stress their associated services, the load balancing
f the services, and the composition of pods and nodes. By sim-
lating mixed workflow scenarios, we were able to understand
hich nodes will be overloaded on the cluster. In fact, the best
onfiguration in terms of performance turned out to be the best
alanced configuration with respect to resource consumption in
he majority of the cases. The results show that the expected load
alculated by the model is close to the average load observed on
he real Kubernetes cluster.

In the experimental part of this paper, we used stress tests
hat generated requests with uniformly distributed delays, both
or the sampling to derive the model and for the evaluation of de-
ived model with mixed stress tests. An interesting line of future
ork is to compare the results obtained using these uniformly
istributed delays to non-uniformly distributed delays such as
ursts of requests according to a non-uniform distribution, both
ith respect to the accuracy of predictions and the granularity
f the required sampling strategy. It would also be interesting to
nvestigate whether other metrics than the node loads could be
redicted with equally satisfying accuracy.
Our experiments demonstrate that the proposed modeling

ramework and methodology can already be used to derive mod-
ls that can facilitate deployment decision making. Another line
f future work is to enhance the usability of the approach by
utomating the sampling process and the derivation of resource
odels for Kubernetes deployed cloud-native applications, re-
ulting in a tool capable of discovering the cluster settings and
enerating the simulation module automatically after the sam-
ling is completed. Many Kubernetes plugins already implement
uch automatic configuration retrieval.
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