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Abstract: We here study random evolutions on Banach spaces, driven by a class of
semi-Markov processes. The expectation (in the sense of Bochner) of such evolutions is
shown to solve some abstract Cauchy problems. Further, the abstract telegraph (damped
wave) equation is generalized to the case of semi-Markov perturbations. A special atten-
tion is devoted to semi-Markov models of scattering transport processes which can be
represented through these evolutions. In particular, we consider random flights with infi-
nite mean flight times which turn out to be governed by a semi-Markov generalization of
a linear Boltzmann equation; their scaling limit is proved to converge to superdiffusive
transport processes.
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1. Introduction

Kac [23] observed that if one considers a particle moving on a straight line at velocity
v and reversing direction at Poisson paced times, then this motion is governed by a pair
of partial differential equations (PDEs). Most notably, he also realized that these two
PDEs can be merged in the so-called telegraph (or damped waves) equation

∂2t q + 2θ∂t q = v2∂2x q. (1.1)

The process above is called the telegraph process and, to the best of our knowledge, the
first remarks in the modern mathematical literature appears in Goldstein [18].

The n-dimensional version of such a process is the isotropic (Markovian) transport
process (e.g., [40,46,61]). This is the uniform motion of a particle that chooses a new
direction with uniformly distributed angles, at any jump times of a Poisson process.
The position-velocity density function solves a linear Boltzmann equation, (e.g., [61]);
moreover, by central limit arguments, a Brownian motion arises in the limit of large
times and rapid jumps.

The above mentioned transport process can be seen in an abstract way: there is a
running evolution (e.g., translation at velocity v) that changes mode of evolving (e.g.,
translation at velocity v′) after exponentially distributed waiting times. This abstract
idea led Griego and Hersh [19] to formulate the notion of Random Evolutions (see also
[49] and references therein). Indeed one can imagine that there is a phenomenon whose
instantaneous state is represented by an element u of a Banach space B. The modes of
time evolution are given by semigroups (Tv(t))t≥0, v ∈ S, onB, and there is a random
mechanism (e.g., a Markov chain V (t) on S) which changes the mode of evolution from
Tv(t) to Tv′(t) after an exponentially distributed waiting time. The authors realized the
connection of these random evolutions with (systems of) abstract equations, for v ∈ S,
(S finite)

∂t qv = Gvqv + θv

∑

v′∈S
(qv′ − qv) hvv′,

where Gv generates Tv(t) and hvv′ is the probability that a random jump of V (t) starts
from v and arrives to v′. The general formulation, for uncountable S, is

∂t qv = Gvqv + θv

∫

S
(qv′ − qv) hv(dv′), (1.2)

which reduces to a Boltzmann-type equation when Gv = v · ∇x on a suitable Banach
space (see [29, Corollary 3.1] for the general statement). Moreover, when S = {v,−v},
they established that the PDEs above can be combined in the abstract telegraph equation

∂2t q + 2θ∂t q = v2G2
vq, (1.3)

where q = 1/2(qv + q−v).
Exponential waiting times are typical in several physical systems, but this pattern can

be distorted in many situations. From the probabilistic point of view this means that it
is useful to relax the Markov assumption (with exponential time intervals) in order to
allow arbitrarily distributed waiting times between different modes of evolution. Thus
Korolyuk and Swishchuk had the idea of having V (t) a semi-Markov process and they
developed the theory of the so-called semi-Markov Random Evolutions (see [29] and
references therein). However, since in this case the Markov property is lost, the classical
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connection to abstract Cauchy problems is no longer true and a new theory in this sense
has not yet been developed.

This paper makes a remarkable progress in this direction. Indeed, in Theorem 3.10
we find an abstract equation representing the semi-Markov counterpart of Eq. (1.2) and
therefore, it consists in a generalization of the abstract (linear) Boltzmann-type equation.
We will also find the semi-Markov analogue of Eq. (1.3) for the two-state model. It turns
out that these equations are non-local in the time variable, as a consequence of the
memory effect induced by the semi-Markov perturbation.

An application of the above theory gives us the possibility to develop a semi-Markov
model of scattering transport: we consider a semi-Markov version of the isotropic trans-
port process, i.e., whose flight times are not exponentially distributed. If such flight times
have finite mean and variance, then this process is again an approximation of a Brow-
nian motion, just like in the Markov case. Instead, the asymptotic behaviour in case of
infinite mean and variance is more complicated and is not included in the limit theorems
developed so far.

Therefore we consider a random flight process whose flight times have infinite ex-
pectation and belong to the domain of attraction of a stable law. First we show that this
model of scattering transport is described by an integro-differential equation exhibiting
a pseudo-differential operator in both space and time variables; such equation represents
the semi-Markov counterpart of the linear Boltzmann equation holding for the Markov
flights. We show that a suitable scaling of our transport process converges (in distri-
bution) to a transport process with superdiffusive behaviour. At time t this process is
supported on the d-dimensional ball centered in the starting point and with radius t .
Superdiffusive means that the mean square displacement of the limit process spreads,
when t → ∞, as Ktγ , with γ > 1 and K > 0. In our case we will find that γ = 2.
This last result is obtained by adapting the limit theorems for coupled continuous time
random walks developed in [8,37]. It is noteworthy that the limit process is still a scat-
tering transport process, performing, on any finite interval of time, a countable infinity
of displacements shorter than ε > 0 and a finite number longer than ε, for some ε > 0.
We stress that superdiffusion is empirically observed in many physical systems, like
turbulent diffusion, quantum optics, bacterial motions and many others (see [39] and
references therein for an overview on this subject).

2. Assumptions and Preliminaries

We briefly introduce here the foundation of the theory which will be used throughout
the paper and we outline the basic assumptions under which our theory takes shape. We
also here establish the notations used in the whole manuscript.

2.1. Markov and semi-Markov random evolutions. We refer to [19,29,49] for the basic
theory. LetV (t) be a regular stepped semi-Markov process in the sense of [29,Chapter 1].
Hence let (S,S) be a metric space and let vn , n ∈ N, be a discrete-time Markov chain
on it which is embedded in (V (t), t ≥ 0). The transition probabilities will be denoted as

S � E 	→ hv(E) := Pv (v1 ∈ E) = P (vn ∈ E | vn−1 = v) . (2.1)

Let Jn , n ∈ N, be a sequence of non-negative r.v.’s with the distribution, for any n ∈ N,

Fv(w) := Pv (J1 ≤ w) := P (J1 ≤ w | v1 = v) = P (Jn ≤ w | vn = v) . (2.2)
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We will assume that (2.2) are absolutely continuous, for any v ∈ S, and we will denote
gv(w) a density. Further we will use the notation Fv(w) := 1− Fv(w). Let τ0 := 0 and
τn :=∑n

i=1 Ji for n ∈ N. Hence denote

V (t) = vn τn−1 ≤ t < τn, n ∈ N. (2.3)

The assumption of V being regular means that it doesn’t accumulate an infinity of jumps,
i.e., if we define N (t) := max {n ∈ N : τn ≤ t} we have N (t) < ∞, Pv-a.s. for any
v ∈ S and any t > 0.

Now let T (t) be a semi-Markov random evolution in the sense of [29]. Hence, for
each v ∈ S let (Tv(t), t ≥ 0), be a family of operators and assume that it forms a strongly
continuous semigroup on a Banach space (B, ‖·‖). Now define the random operator on
B

T (t) := TV (t)(t − τN (t)) · · · Tv2(J2)Tv1(J1). (2.4)

In the framework introduced in [29] the operator T (t) is called a ‘continuous’ semi-
Markov random evolution (see [29, Def. 3.2]). Denote (Gv,B0) the generators of Tv(t)
and suppose thatB0 ⊂ B is the common domain of definition of the operators Gv . We
remark that (2.4) has the (stochastic) representation (see [29, Lemma 3.1])

T (t) − I =
∫ t

0
GV (s) T (s) ds (2.5)

which must be meant on B0, I denoting the identity operator.
One of the most important objects in this paper is the mean value of a semi-Markov

random evolution, i.e., for a function u : S 	→ B, the mapping

t 	→ qv(t) := EvT (t)u(V (t)) ∈ B, t ≥ 0, (2.6)

where integration Ev is meant in the Bochner sense.
If the (Jn, n ∈ N) are such that (2.2) is the cdf of an exponential distribution with

parameters θv then the process V is a continuous time Markov chain and the operator
T (t) in (2.4) defines a Markov evolution in the sense of [19,49]. In this case we will
denote the process with W (t) in place of V (t); one can prove (e.g., [19, Theorem 2] for
finite S or [29, Corollary 3.1] for general S) that qv(t) satisfies

∂t qv(t) = Gvqv(t) + θv

∫

S
(qv′(t) − qv(t)) hv(dv′), qv(0) = u(v). (2.7)

Equation (2.7) has the same form of a linear Boltzmann equation; indeed it reduces to
a linear Boltzmann equation in case the evolution is given by translation semigroups on
R
d at velocity v (Gv = v · ∇x ), for an appropriate choice of hv . We remark that Gv and

the integral operator on the right hand side of (2.7) act upon different variables and that
the equation is meant on B0.
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2.2. Assumptions. From now on we consider a special class of semi-Markov random
evolutions, which is defined by the following assumptions.

(A1) For any v ∈ S, the family (Tv(t), t ∈ R) forms a strongly continuous group of
operators on (B, ‖·‖), such that ‖Tv(t)u‖ ≤ ‖u‖ for all t ∈ R and u ∈ B.

(A2) The semi-Markov process V (t) is constructed as a continuous time Markov chain
time-changed by the inverse of an independent driftless subordinator with infinite
activity (i.e., a strictly increasing pure jump Lévy process).

In Sects. 3 and 4 the assumptions (A1) and (A2) will be always considered fulfilled,
without needing to specify it further.

2.2.1. Discussion We now discuss assumptions (A1) and (A2). Moreover, we intro-
duce and discuss some further minor technical assumptions which will be sometimes
requested (saying it expicitly).

First note that (A1) includes the remarkable case where Tv represents a translation in
R
d at velocity v (on suitable function spaces like L1

(
R
d
)
or C0
(
R
d
)
) and many others.

Since we work under the assumptions that the family (Tv(t))t∈R forms a group for any
fixed v we have that −Gv generates (Tv(−t))t≥0 as well as (Gv) generates (Tv(t))t≥0
in the sense of semigroups (see, for example, [14, Section 3.11]).

We now explain in detail the time-change construction for V (t) to which we refer
in (A2). Let σ(t) be a subordinator, i.e., a one-dimensional Lévy process with non-
decreasing sample paths. Its distribution is defined, for λ > 0, by

Ee−λσ(t) = e−t f (λ), (2.8)

where f (λ) is a Bernstein function (see more on subordinators in [9,54]). Hence f (λ)

has the form

f (λ) = a + bλ +
∫ ∞

0
(1 − e−λs)ν(ds) (2.9)

where a, b are non-negative constants and ν a sigma-finite measure fulfilling the inte-
grability condition

∫ ∞

0
(s ∧ 1)ν(ds) < ∞.

The measure ν is said to be the Lévy measure of σ(t). We here assume that a = 0,
which implies that P(σ (t) < ∞) = 1 for all t > 0 and that b = 0, which implies that
σ(t) is a pure jump process with no drift. Since there is not drift, in order to require that
the process σ is strictly increasing we assume that ν(0,+∞) = ∞, i.e., the process has
infinite activity. Now, let

L(t) = inf{x > 0 : σ(x) > t} (2.10)

be the inverse process of σ(t). Moreover, let (W (t), t ≥ 0) be a continuous timeMarkov
chain on S, independent on (2.10), which is completely defined by the embedded chain
(vn, n ∈ N) and by waiting times having exponential distribution with parameter θv such
that

sup
v

θv < ∞. (2.11)
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Condition (2.11) implies thatW (t) is non-explosive. In other words the processW (t) is
the Markov chain

W (t) = vn, τ̄n−1 ≤ t < τ̄n, n ∈ N. (2.12)

Hence, assumption (A2)means that our semi-Markov process is defined by the following
time-change

(V (t))t≥0 = (W (L(t)))t≥0 , (2.13)

which means

V (t) = W (s), σ (s−) ≤ t < σ(s). (2.14)

It is easy to see from (2.14) that the epochs (jump times) (τn, n ∈ N) of V (t) are a
transformation of (τ̄n, n ∈ N)), i.e., τn = σ(τ̄n−) a.s. However, by a simple conditioning
argument, using independence and the fact that σ(t) has no fixed discontinuity, i.e.,
σ(t) − σ(t−) = 0, a.s., one has

Ee−λσ(τ̄n−) = EE
[
e−λσ(τ̄n−) | τ̄n

]
= Ee−λσ(τ̄n). (2.15)

It follows that (2.3) can be rewritten as

V (t) = vn σ(τ̄n−1) ≤ t < σ(τ̄n), n ∈ N. (2.16)

Hence (2.13) is characterized by the same embedded Markov chain {vn}n∈N ofW (t) but
it exhibits new waiting times Jn such that

Jn = τn − τn−1 = σ(τ̄n) − σ(τ̄n−1), n ∈ N. (2.17)

By stationarity of increments of subordinators and since τ̄n − τ̄n−1 are exponentially
distributed it is clear that

Fv(w) = P (σ (τ̄n − τ̄n−1) ≤ w | vn = v)

= 1 − P (σ (τ̄n − τ̄n−1) > w | vn = v)

= 1 − P (τ̄n − τ̄n−1 > L(w) | vn = v)

= 1 − Ee−θvL(w). (2.18)

Since we assume that Fv(w) has a Lebesgue density we will consider only subordinators
whose one-dimensional marginal has a Lebesgue density. We will denote the density of
σ(t) with the symbol μt (w), i.e.,

P (σ (t) ∈ dw) = μt (w)dw. (2.19)

A further quantity which is typical of semi-Markov processes is the density defined
by

hv(t) dt := Pv (∪n {τn ∈ dt}) , (2.20)

which gives the probability that there is at least one jump during dt . In what follows we
will assume that

t 	→ hv(t) is in L1
loc

(
R
+) , (2.21)
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for any v and (since we are working with non-explosive processes) also hv(t)
= ∑n h

n
v (t) := ∑n P

v (τn ∈ dt) /dt . It is immediate to compute (2.20) whenever
the process N (t) is a renewal counting process, i.e., θv = θ , for some θ > 0. In this
case the function hv(w) is the renewal density of N (t) in the classical sense of renewal
theory (e.g., [11, p. 26]) and we have that

hv(t) = lim

t→0

Ev (N (t + 
t) − N (t))


t
. (2.22)

Since the process N (t) is non-explosive the probability to have more than one jump in
the interval 
t is o(
t), and therefore the numerator of (2.22) can be interpreted as the
probability of having one, or more, jump in the interval 
t . In our case the computation
can be conducted by exploiting the time-change construction, as follows. By (2.19) we
have that the renewal measure for our subordinators

u f (dw) := E

∫ ∞

0
1[σ(t)∈dw]dt (2.23)

always has a density

u f (w) :=
∫ ∞

0
μs(w)ds. (2.24)

This density is proportional to the renewal density hv(w) of the renewal counting process
N (t). Indeed,

hv(w) = ∂wEN (w) = ∂wEN (L(w)) = ∂wθEL(w) (2.25)

where N is a Poisson process independent on L(w). Since

EL(w) = E

∫ ∞

0
1{σ(t)≤w}dt (2.26)

it follows that hv(w) = θu f (w) for any v. Further the density u f (w) is clearly in
L1
loc

(
R
+
)
.

2.3. PDEs connection. There is a wide literature considering processes of assumption
(A2) and their generalizations, in particular on the governing equations [3,4,6,13,21,
25,30,33,38,42,43,45,47,59,60], their interplay with telegraph-type equations [10,44],
their interpretation as scale limit of CTRWs [8,27,32,34,35,37,50,57], their distribu-
tional and path properties [2,48,53] and applications in different fields [17,20,39,51].
In our scenario we can outline, heuristically, the PDEs connection as follows. Consider
the fractional derivative MDα

t defined in the sense of Marchaud (also called generator
definition [36, eq. (2.15) p. 30])

MDα
t u(t) = α

�(1 − α)

∫ ∞

0
(u(t) − u(t − s)) s−α−1ds (2.27)

where u(t − s) is meant to be zero as t − s < 0. Note that in order to get from (2.27)
the canonical fractional derivative Dα

t one has to regularize (2.27) as

Dα
t u(t) = α

�(1 − α)

∫ ∞

0
(u(t) − u(t − s)) s−α−1ds − s−α

�(1 − α)
u(0). (2.28)

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



C. Ricciuti, B. Toaldo

As the measure ν(ds) = αs−α−1ds/�(1 − α) is the Lévy measure associated with the
Bernstein function f (λ) = λα and s−α/�(1 − α) = ν(s,∞) =: ν̄(s), the operator
(2.28) can be easily generalized to an arbitrary Bernstein function f with Lévy measure
ν(·) as

D f
t u(t) =M D f

t u(t) − ν̄(t)u(0)

=
∫ ∞

0
(u(t) − u(t − s)) ν(ds) − ν̄(t)u(0). (2.29)

The mean value

π(v, t) = Evu(V (t)), u ∈ C0(R),

is known to solve (see, in particular, [27, Section 4] or, for a slightly different approach,
[25, Section 5]) the following equation

D f
t π(v, t) = θv

∫

S
(π(v′, t) − π(v, t))hv(dv′), π(v, 0) = u(v). (2.30)

Clearly (2.30) is a generalization of the Kolmogorov backward equation holding in the
Markov case

∂tπ(v, t) = θv

∫

S
(π(v′, t) − π(v, t))hv(dv′), π(v, 0) = u(v),

whose unique solution is π(v, t) = Evu(W (t)).

3. Boltzmann-Type Equations

In this section we derive rigorously the governing equation for the expectation function
qv(t) defined in (2.6). Hence we should make rigorous the following assertion: the
function qv(t) satisfies, on B,

f (∂t − Gv) (qv(t) − Tv(t)qv(0)) = θv

∫

S
(qv′(t) − qv(t)) hv(dv′), (3.1)

subject to qv(0) = u(v), where f is the Laplace exponent defined in (2.9). Whenever
f (λ) = λ (hence there is no time-change and V (t) isMarkovian) one recovers, formally,
the linear Boltzmann-type equation

∂t qv(t) − Gvqv(t) = θv

∫

S
(qv′(t) − qv(t)) hv(dv′). (3.2)

In this section we proceed as follows. In Sect. 3.1 we address the problem of defining the
operator f (∂t − Gv) appearing in the left hand side of (3.1); as f is a Bernstein function,
we take inspiration from the theory of Bochner subordination, and the corresponding
functional calculus, whose basic facts will be outlined at the beginning of Sect. 3.1 (the
reader can consult [54, Chapter 12] or [22, Chapter 2] for a thorough discussion on
Bochner subordination). Then, in Sect. 3.2, we obtain some technical properties of qv(t)
which will be needed throughout the paper.
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3.1. The operator f (∂t − Gv) through Bochner subordination. Take a family of oper-
ators (Tt )t≥0 and suppose that it forms a strongly continuous contraction semigroup on
B and define

Au := lim
t→0+

Ttu − u

t
(3.3)

the generator of Tt on the domain Dom(A), i.e.,

Dom(A) := {u ∈ B : the limit (3.3) exists as strong limit} . (3.4)

Then take a subordinator σ(t), t ≥ 0, with Laplace exponent f , and define the family
(T f

t )t≥0 as

T f
t u :=

∫ ∞

0
Tsu P (σ (t) ∈ ds) (3.5)

where the integral (3.5) is meant as a Bochner integral. The Phillips’ theory states that
the family T f

t is still a semigroup (this comes from Markov property of σ(t)) and that
the generator of T f

t is given by the operator A f (with domain Dom(A f )) such that

A f u
∣∣
Dom(A)

= − f (−A)u :=
∫ ∞

0
(Tsu − u) ν(ds) (3.6)

and, in general, Dom(A f ) ⊃ Dom(A) (for all the assertions above, see [54, Proposi-
tions 12.1, 12.5 and Theorems 12.6]). We observe that formula (3.6) uses the represen-
tation (2.9) for the Bernstein function f (with a = b = 0) and the basic definition of
pseudo-differential operators.

We note that, on functions L1 ([0, T ];R), for any T > 0, the operator MD f
t defined

in (2.29) can be interpreted by means of the above theory. Indeed, if we define the family
of operators (�t )t≥0 as

�su(t) =
{
u(t − s), s ≤ t,
0, s > t,

(3.7)

then it is well known that this family forms a strongly continuous contraction semigroup
on L1 ([0, T ];R), for T > 0. Hence one might be tempted to write, in the spirit of
Bochner subordination, MD f

t u(t) = f
(−A�

)
, where A� denotes the generator of

�t . However the generator of the (killed) translation �s is defined on functions that
are differentiable, in appropriate sense, and such that u(0) = 0. So we apply Phillips’
formula as in (3.6) to the function u0(t) := u(t)−u(0) and this yields the representation

D f
t u(t) = −

∫ ∞

0

(
u(t − s)1[s≤t] − u(t)

)
ν(ds) − ν̄(t)u(0)

= −
∫ ∞

0

(
�su

0(t) − u0(t)
)

ν(ds)

= f
(−A�

)
(u(t) − u(0)) (3.8)

and the integral makes sense as a Bochner integral because of (3.6), under suitable
assumptions on u(t).
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In this paper we consider a generalization of (3.8) on L1 ([0, T ];B), T > 0, i.e., the
space of functions [0, T ] � t 	→ u(t) ∈ Bwith finite L1 norm

∫ T
0 ‖u(t)‖ dt . The reader

can consult [28, Section 5.13] for a general theory of semigroups acting on Banach-
valued functions (see in particular Proposition 5.13.1 and Theorem 5.13.1 of which the
forthcoming Lemmas 3.1 and 3.3 are analogs for translations on L1 ([0, T ],B)).

Indeed consider the operators

�su(t) =
{
u(t − s), s ≤ t,
0, s > t,

(3.9)

on L1 ([0, T ];B), T > 0. It turns out that this family is a strongly continuous contraction
semigroup, as it is outlined in the forthcoming result; in the following the derivative is
meant on absolutely continuous functions u : [0, T ] 	→ B with the representation

u(t) − u(0) =
∫ t

0
u′(s)ds (3.10)

for any t ∈ [0, T ]. We remind that in this framework a function u is said to be ab-
solutely continuous if for every ε > 0 there exists δ > 0 such that for every finite
collection {(ai , bi )} of disjoint intervals in [0, T ] with∑i (bi − ai ) < δ it is true that∑

i ‖u(bi ) − u(ai )‖ < ε. We denote this class of functions as AC([0, T ];B). We re-
mark that the fundamental theorem of calculus as in the scalar-valued case does not
hold for Bochner integral, which has instead a weaker version of it (see [1, Proposi-
tion 1.2.3].) Hence a function u ∈ AC ([0, T ];B) is not necessarily a.e. differentiable
and the representation (3.10) is not necessarily true.

In view of the previous heuristic discussion it is clear that we will need the following
technical Lemma.

Lemma 3.1. The family of operators �t , t ≥ 0, defined in (3.9) forms a strongly
continuous contraction semigroup on L1 ([0, T ];B), for any T > 0. The generator(
A�,Dom(A�)

)
is given by A�u = −u′ with Dom(A�) = W where

W : =
{
u ∈ L1 ([0, T ],B) : u(t) − u(0)

=
∫ t

0
u′(s)ds for all t ∈ [0, T ] and u(0) = 0

}
. (3.11)

Remark 3.2. We remark that W coincides with AC ([0, T ],B) (with u(0) = 0), when-
ever the Banach space B has the Radon–Nikodym property, i.e., when the Banach
space is such that absolutely continuous functions are a.e. differentiable (see [1, Defini-
tion 1.2.5]). Otherwise W is a subset of it.

Proof of Lemma 3.1. Fix T > 0 arbitrarily. First we prove that �t is a contraction. We
have that

∫ T

0
‖�su(t)‖ dt =

∫ T

0
‖u(t − s)‖1[s≤t] dt

= 1[s≤T ]
∫ T−s

0
‖u(t)‖ dt
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≤
∫ T

0
‖u(t)‖ dt. (3.12)

Strong continuity of �s on L1 ([0, T ],B) can be proved by checking it first on the set
of continuous functions with compact support which is dense in L1 ([0, T ],B) and then
extending to the whole Banach space (see, for example, [14, Proposition 5.3] or the
discussion in [1, p. 14]). To obtain the generator and its domain we proceed as follows.
Let
(
Â,Dom( Â)

)
be the operator Âu = −u′ on W , we first check that Dom(A�) ⊂ W

and that Â|Dom(A�) = A� . Note that, for any t ∈ [0, T ] and u ∈ Dom(A�) one has

−h−1
∫ t

t−h
u(s)ds = h−1

∫ t

0
(u(s − h)1[s−h≥0] − u(s))ds. (3.13)

As h → 0 the rhs converges to
∫ t
0 g(s)ds, where g(s) := A�u(s), since integration

over compact intervals is continuous on L1 while the lhs instead converges to −u(t) for
almost all t ∈ [0, T ]. If we define appropriately u on a null set we get

u(t) =
∫ t

0
(−g(s))ds (3.14)

and thus u is an L1 ([0, T ],B) function and is absolutely continuous (according to [1,
Proposition 1.2.2]) with derivative−A�u(s) and u(0) = 0. This shows that Dom(A�) ⊂
W and that Â|Dom(A�) = A� . Denote now ρ( Â) and ρ(A�) the resolvent sets of the two
operators. It is easy to see that the resolvent operator of Â is,

R(λ, Â)u(t) =
∫ t

0
e−λ(t−s)u(s)ds, t ∈ [0, T ], (3.15)

forλ > 0. It follows easily thatρ( Â)∩ρ(A�) �= ∅ and thus from[14,Exercise IV.1.21.(5)]
we can conclude that

(
A�,Dom(A�)

) = ( Â,W
)
. ��

We are now in position to define the operator f (∂t − Gv).
As−A� is the differentiation operator on absolutely continuous functions, in the rest

of the paper we will use the notation −∂t in place of A� .
For any v ∈ S we consider the family

(
U v
s

)
s≥0 of operators on functions u ∈

L1 ([0, T ];B) given by

U v
s u(t) := Tv(s)�su(t) (3.16)

As a consequence of Lemma 3.1 it is easy to prove that the operators U v
s form a

strongly continuous contraction semigroup on L1 ([0, T ];B) whose generator has the
form AU

v u(t) = −∂t u(t) + Gvu(t) on an appropriate subset of Dom(AU
v ), and thus we

will use Phillips formula to define

f (−(−∂t + Gv)) u(t) := f (−AU
v )u(t)

:= −
∫ ∞

0

[
U v
s u(t) − u(t)

]
ν(ds), (3.17)

for suitable functions u (and thus with u(0) = 0).
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Lemma 3.3. Fix T > 0 arbitrarily. The family
(
U v
s

)
s≥0 forms a strongly continuous

contraction semigroup on L1 ([0, T ];B). The generator
(
AU

v ,Dom(AU
v )
)
is such that

Hv : =
{
u ∈ L1 ([0, T ];B) : u ∈ W, u(t) ∈ B0 for any t ≥ 0

and Gvu ∈ L1 ([0, T ];B)
}

(3.18)

is a subset of Dom(AU
v ) and AU

v

∣∣
Hv = −∂t + Gv .

Proof. Properties follow from Lemma 3.1. Indeed
∫ T

0

∥∥U v
s u(t)
∥∥ dt =

∫ T

0
‖Tv(s)�su(t)‖ dt

≤
∫ T

0
‖�su(t)‖ dt

≤
∫ T

0
‖u(t)‖ dt (3.19)

where the last inequality follows from Lemma 3.1 while the second last from the fact
that Tv(s) is a contraction onB. The propertyU v

s U
v
t u = U v

s+t u is easily checked. Strong
continuity instead can be checked by observing that

∫ T

0

∥∥U v
s u(t) − u(t)

∥∥ dt =
∫ T

0
‖Tv(s)�su(t) − u(t)‖ dt

≤
∫ T

0
‖Tv(s)�su(t) − Tv(s)u(t)‖ dt

+
∫ T

0
‖Tv(s)u(t) − u(t)‖ dt

≤
∫ T

0
‖�su(t) − u(t)‖ dt

+
∫ T

0
‖Tv(s)u(t) − u(t)‖ dt (3.20)

and then sending s → 0 in (3.20): the first member goes to zero by Lemma 3.1 while
the second goes to zero by dominated convergence (e.g., [1, Theorem 1.1.8]) since s 	→
Tv(s)u(t) is continuous as a function [0,∞] � s 	→ B and ‖Tv(s)u − u‖ ≤ 2 ‖u(t)‖.

Supposing now that u ∈ Hv , we have that

lim
h↓0

U v
h u − u

h
(3.21)

exists as strong limit in L1 ([0, T ];B). Note that, indeed,

lim
h↓0

U v
h u − u

h
= lim

h↓0
Tv(h)�hu − Tv(h)u + Tv(h)u − u

h

= lim
h↓0 Tv(h)

�h − I

h
u +

Tv(h)u − u

h
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= lim
h↓0

[
Tv(h)A�

h u +
Tv(h)u − u

h

]
, (3.22)

where A�
h u := (�h − I ) /h. The last member in (3.22) is Gvu as h → 0 by dominated

convergence since, whenever u(t) ∈ B0, one has h−1 ‖Tv(h)u(t) − u(t)‖ ≤ ‖Gvu‖.
For the first note that

∫ T

0

∥∥Tv(h)A�
h u(t) − (−∂t ) u(t)

∥∥ dt

=
∫ T

0

∥∥Tv(h)A�
h u(t) − Tv(h) (−∂t ) u(t) + Tv(h) (−∂t ) u(t) − (−∂t ) u(t)

∥∥ dt

≤
∫ T

0

∥∥A�
h u(t) − (−∂t ) u(t)

∥∥ dt +
∫ T

0
‖Tv(h) (−∂t ) u(t) − (−∂t ) u(t)‖ dt (3.23)

goes to zero as h → 0: the first member goes to zero since u(t) ∈ Dom(−∂t ) while
the second goes to zero by dominated convergence for Bochner integrals since Tv(h) is
strongly continuous (on B). ��

With the properties of U v
s at hand, we are finally able to define f (∂t − Gv) as

f (∂t − Gv) := f
(
−AU

v

) ∣∣
Hv = −

∫ ∞

0

(
U v
s − I
)

ν(ds), (3.24)

since on Hv the generator AU
v reduces to −∂t +Gv . In the following Lemma we clarify

this in terms of Bochner subordination.

Lemma 3.4. The subordinate semigroup

Uv
t :=
∫ ∞

0
U v
s P (σ (t) ∈ ds) (3.25)

is generated by Av with domain Dom(Av) ⊃ Hv , such that

Av

∣∣
Hv = − f (∂t − Gv) . (3.26)

Proof. Phillips’ theorem implies that Dom(AU
v ) ⊂ Dom(Av) and

Av

∣∣
Dom(AUv )

= − f
(
−AU

v

)

=
∫ ∞

0

(
U v
s − 1
)
ν(ds). (3.27)

Since Hv ⊂ Dom
(
AU

v

)
and, by Lemma (3.3), AU

v

∣∣
Hv = −∂t + Gv then

Av

∣∣
Hv = − f (∂t − Gv) . (3.28)

��
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3.2. The expectation of a semi-Markov random evolution. We obtain here some prop-
erties of

qv(t) := EvT (t)u(V (t)) (3.29)

for suitable functions u : S 	→ B.

Lemma 3.5. Let u : S 	→ B0 be such that

sup
v1···vn
t1···tn
n∈N

∥∥Gv1Tvn (tn) · · · Tv1(t1)u(vn)
∥∥ < ∞. (3.30)

Then we have that qv(t) ∈ B0 for any v ∈ S and t ≥ 0 and further Gvqv ∈
L1 ([0, T ];B) for any v ∈ S.

Proof of Lemma 3.5. We have by the assumptions that T (t, ω)u(V (t, ω)) ∈ B0 and
further that ‖GvT (t)u(V (t))‖ < C where C does not depend on ω and t . It follows that
GvT (t)u(V (t)) is Pv-Bochner integrable.ThenGvE

vT (t)u(V (t)) = EvGvT (t)u(V (t))
since Gv is linear and closed. It follows that EvT (t)u(V (t)) ∈ B0 and also

∫ T

0
‖Gvqv(t)‖ dt ≤ CT . (3.31)

Assumption (3.30) is satisfied in many situations of interest, such as the cases of
translation and rotation groups, as shown in the following examples.

Example 3.6 (Translation). Let S be finite and let Tv(t) be a translation on B = L1(R)

at velocity v, say Tv(t)h(x) = h(x + vt) (see, e.g., the case of the random evolution
driven by the “telegraph” process, treated in Sect. 4, where S contains two elements).
Use the notation u(vn) = hvn . Then, for hvn ∈ AC(R), such that h′

vn
∈ L1(R) we have

∥∥Gv1Tvn (tn) · · · Tv1(t1)hvn

∥∥
L1 =
∫

R

∣∣v1∂xhvn (x + v1t1 + · · · + vntn)
∣∣dx

= |v1|
∥∥h′

vn

∥∥
L1 (3.32)

as the L1 norm is translation-invariant. Hence we have

sup
v1···vn
t1···tn
n∈N

∥∥Gv1Tvn (tn) · · · Tv1(t1)hvn

∥∥
L1 = sup

v1,vn

|v1|
∥∥h′

vn

∥∥
L1 < ∞ (3.33)

the last inequality holding since S is finite. A similar argument applies to the case where
Tv(t) is a translation on B = C0(R), endowed with the sup-norm ‖·‖∞. Indeed, for
hvn ∈ C1

0(R), we have

∥∥Gv1Tvn (tn) · · · Tv1(t1)hvn

∥∥∞ = sup
x

|v1 ∂

∂x
hvn (x + v1t1 + · · · + vntn)|

= |v1|
∥∥h′

vn

∥∥∞ (3.34)

since the sup-norm is invariant under translations. Then, by finiteness of S, we have

sup
v1···vn
t1···tn
n∈N

∥∥Gv1Tvn (tn) · · · Tv1(t1)hvn

∥∥∞ = sup
v1,vn

|v1|
∥∥h′

vn

∥∥∞ < ∞. (3.35)
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Example 3.7 (Rotation). Let Tv(t) be a rotation in L1
(
R
2
)
(or C0

(
R
2
)
) defined by

Tv(t)h(x1, x2) = h(x1 cos t + vx2 sin t, −vx1 sin t + x2 cos t),

t ≥ 0, v = ±1, (3.36)

where v = ±1 respectively denote the clockwise and the counterclockwise rotation,
with generator

Gvh(x1, x2) = v
(
x2∂x1h(x1, x2) − x1∂x2h(x1, x2)

)
.

Similarly to Example 3.6, it is easy to prove that assumption (3.30) is satisfied in this
case of rotation operators, because the L1 and the sup-norm are invariant even under
rotations; we leave the proof to the interested reader.

The following result characterizes continuity and differentiability properties of qv(t).

Lemma 3.8. Assume that u : S 	→ B0 is such that supv ‖u(v)‖ < ∞ and that the
assumptions in Lemma 3.5 are satisfied. Suppose further that hv(w) satisfies (2.21).
Then, for any v and T > 0, it is true that, qv(t) ∈ AC ([0, T ];B), q ′

v exists a.e. and is
Bochner integrable on [0, T ] and further

qv(t) − qv(0) =
∫ t

0
q ′
v(s)ds, t ∈ [0, T ]. (3.37)

Proof. Denote γ (t) := t − τN (t) and Bu(v) := ∫S
(
u(v′) − u(v)

)
hv(dv′) and use the

Dynkin-type representation of the semi-Markov random evolution T (t) which can be
found (for example) in [58, Corollary 2.5]: for s > 0,

qv(s) − qv(0) = Ev

∫ s

0

(
gV (y)(γ (y))

FV (y)(γ (y))
T (y)Bu(V (y)) + T (y)Gvu(V (y))

)
dy

=
∫ s

0
Ev

(
gV (y)(γ (y))

FV (y)(γ (y))
T (y)Bu(V (y)) + T (y)Gvu(V (y))

)
dy,

(3.38)

where g and F are the densities and the survival functions of the waiting times according
to Sect. 2.1. The last equality is justified by the following arguments. Since Tv(t)u(v′) ∈
B0 for any v, v′ and t ≥ 0, by our assumptions, we can find constants, say it C1 and C2,
such that

‖T (y)Bu(V (y))‖ ≤ ‖Bu(V (y))‖ ≤ 2 sup
v

‖u(v)‖ ≤ C1 < ∞ (3.39)

‖T (y)Gvu(V (y))‖ ≤ ‖Gvu(V (y))‖ ≤ C2 < ∞ (3.40)

and further C1 and C2 depend on u but are independent from y. Therefore, using that
Fv is non increasing and that a.s. γ (y) ∈ [0, y],

∫ s

0

∥∥∥∥∥E
v

(
gV (y)(γ (y))

FV (y)(γ (y))
T (y)Bu(V (y)) + T (y)Gvu(V (y))

)∥∥∥∥∥ dy

≤ C1

F�(s)

∫ s

0
EvgV (y)(γ (y))dy + sC2. (3.41)
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where, using (2.18), it is easy to see that F�(s) := infv Fv(s) > 0 because supv θv <

∞. Since the waiting times between jumps are absolutely continuous r.v.’s, then the
distribution of γ (y) can be estimated as in [11, p. 61] to be

Pv (γ (y) ∈ dw) ≤ δy(dw) + hv(y − w)dw. (3.42)

It follows that

EvgV (y)(γ (y)) =
∫

S

∫ y

0
gz(w)Pv (γ (y) ∈ dw, V (y) ∈ dz)

=
∫

S

∫ y

0

∫ +∞

0
μs(w)θze

−θzsdsPv (γ (y) ∈ dw, V (y) ∈ dz)

≤ sup
z

θz

∫ y

0
u f (w)Pv (γ (y) ∈ dw)

≤ sup
z

θz

∫ y

0
u f (w)

(
δy(dw) + hv(y − w)dw

)

= sup
z

θz

(
u f (y) +

∫ y

0
u f (w)hv(y − w)dw

)
(3.43)

where u f is defined in (2.24). Since u f ∈ L1
loc

(
R
+
)
it follows that the second term in

(3.43) is in L1
(
R
+
)
by the properties of Laplace convolution (e.g., [1, p. 22]). Therefore

y 	→ Ev
(
gV (y)(γ (y))

)
is in L1

loc

(
R
+
)
for any v and thus the last term in (3.41) is finite.

Hence the integrand on the lhs of (3.38) is the (Bochner integrable) function (a.e. q ′
v(t))

we were looking for and further we have by [1, Proposition 1.2.2] that qv(t) is also
AC ([0, T ];B) and a.e. differentiable. ��

Before stating the governing equation we need the following techical Lemma.

Lemma 3.9. Under the assumptions of Lemmas 3.5, 3.8 we have that the function
[0, T ] � t 	→ q0v (t) := qv(t) − Tv(t)u(v) is in Hv (see (3.18)), for any v ∈ S.

Proof. Note that q0v (0) = 0 and further

q0v (t) = u(v) +
∫ t

0
q ′
v(s)ds −

(
u(v) +

∫ t

0
Tv(s)Gvu(v)ds

)

=
∫ t

0
q ′
v(s)ds −

∫ t

0
Tv(s)Gvu(v)ds (3.44)

where we used Lemma (3.8) and the well known integral representation of semigroups
for u(v) ∈ B0. Then since we know from Lemma 3.5 that Gvq(t) ∈ L1 ([0, T ];B) it
follows from Lemma 3.3 that q0v ∈ Hv . ��

3.3. The governing equation. In this sectionwe give the rigorous result on the governing
equation of qv(t).

Theorem 3.10. Let the assumptions of Lemma 3.9 prevail. Then qv(t) satisfies the fol-
lowing problem on B

f (∂t − Gv) (qv(t) − Tv(t)qv(0)) = θv

∫

S
(qv′(t) − qv(t)) hv(dv′),
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qv(0) = u(v), (3.45)

for any v ∈ S and t ≥ 0.

Proof. Use [29, Theorem 3.1] to say that

qv(t) = EvT (t)u(V (t))1{J1>t} + EvT (t)u(V (t))1{J1≤t}

= Tv(t)u(v)Pv(J1 > t) +
∫ t

0

∫

S
Tv(s)qv′(t − s)

hv(dv′) Pv (J1 ∈ ds) . (3.46)

Since ‖u(V (t))‖ ≤ supv ‖u(v)‖ < ∞ we have that u(V (t)) is Pv-Bochner integrable
and since

∥∥T (t)u(V (t))1{J1≤t}
∥∥ ≤ ‖u(V (t))‖ we have that T (t)u(V (t))1{J1≤t} is Pv-

Bochner integrable. It follows that also Tv(−t)T (t)u(V (t))1{J1≤t} is Pv-Bochner inte-
grable and thus we can apply Tv(−t) to both sides of (3.46) and move Tv(−t) inside the
integral to get

Tv(−t)qv(t) = u(v)Pv(J1 > t) +
∫ t

0

∫

S
Tv(−(t − s))qv′(t − s)

hv(dv′) Pv(J1 ∈ ds). (3.47)

Introduce the notation ϕv,v′(t) := Tv(−t)qv′(t). We have that

ϕv,v(t) = u(v)Pv(J1 > t) +
∫ t

0

∫

S
ϕv,v′(t − s) hv(dv′) Pv(J1 ∈ ds). (3.48)

Since qv ∈ L1 ([0, T ];B) for any T > 0, it follows that qv ∈ L1
loc

(
R
+;B) and thus

we can take the Laplace transform (t 	→ λ) in both sides of (3.48) in the sense of [1,
Chapter 1.4]. As the last term in (3.48) is a convolution, we can use [1, Proposition 1.6.4]
to get that, for λ > 0,

ϕ̃v,v(λ) = f (λ)

λ

1

θv + f (λ)
u(v) +

θv

θv + f (λ)

∫

S
ϕ̃v,v′(λ)hv(dv′). (3.49)

For the Laplace transform of Pv (J1 ∈ ds) and Pv (J1 > t) see [35, Eqs. (4.5) and (4.6)].
Now multiply by λ−1 both sides of (3.49) and rearrange to get

f (λ)

λ
ϕ̃v,v(λ) − f (λ)

λ2
u(v) = 1

λ
θv

∫

S

(
ϕ̃v,v′(λ) − ϕ̃v,v(λ)

)
hv(dv′). (3.50)

Let ϕ0(w) := ϕv,v(w) − u(v). Then the following equation

−
∫ t

0

∫ ∞

0

(
�sϕ

0(w) − ϕ0(w)
)

ν(ds)dw

=
∫ t

0
θv

∫

S

(
ϕv,v′(w) − ϕv,v(w)

)
hv(dv′) dw, (3.51)

where �s is the operator defined in (3.9), coincides in the Laplace space (t 	→ λ) with
(3.50) and this proves that (3.51) is verified for almost all t ≥ 0. First note that the lhs
is an element of B since the integrand is such that

∫ ∞

0

(
�sϕ

0(w) − ϕ0(w)
)

ν(ds)
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=
∫ ∞

0
Tv(−w)

(
U v
s q

0
v (w) − q0v (w)

)
ν(ds) (3.52)

where q0v (w) := qv(w) − Tv(w)u(v) = Tv(w)ϕ0(w), and the rhs of (3.52) is in
L1 ([0, T ];B) by Lemma 3.9. For the rhs note that

θv

∫

S
‖(qv′(t) − qv(t))‖ hv(dv′) ≤ 2θv sup

v
‖qv(t)‖

≤ 2θv sup
v

‖u(v)‖ < ∞. (3.53)

For checking the Laplace transform of the rhs one just need to apply Fubini theorem for
Bochner integral (e.g., [1, Theorem 1.1.9]) together with [1, Corollary 1.6.5]. For the lhs
the existence of Laplace transform can be ascertained by standard arguments (e.g., [54,
Theorem 13.6]) using the definition of AU

v together with the estimates in (3.31), (3.41)
and (3.43). Then we compute

−
∫ ∞

0
e−λt
∫ t

0

∫ ∞

0

(
�sϕ

0(w) − ϕ0(w)
)

ν(ds) dw dt

= −1

λ

∫ ∞

0
e−λw

∫ ∞

0

(
�sϕ

0(w) − ϕ0(w)
)

ν(ds) dw

= −1

λ

∫ ∞

0
e−λw

∫ ∞

0

(
ϕv,v(w − s)1{s≤w} − ϕv,v(0)1{s≤w}

−ϕv,v(w) + ϕv,v(0)
)
ν(ds) dw

= −1

λ

∫ ∞

0
e−λw

∫ ∞

0

(
ϕv,v(w − s)1{s≤w} + ϕv,v(0)1{s>w}

−ϕv,v(w)
)
ν(ds) dw

= −1

λ

∫ ∞

0

(
e−λs ϕ̃v,v(λ) + λ−1ϕv,v(0)

(
1 − e−λs)− ϕ̃v,v(λ)

)
ν(ds)

= −1

λ

∫ ∞

0

((
ϕ̃v,v(λ) − λ−1ϕv,v(0)

) (
e−λs − 1

))
ν(ds)

= f (λ)

λ
ϕ̃v,v(λ) − f (λ)

λ2
u(v) (3.54)

where in the last step we used (2.9), in the third last we used Fubini while in the second
line we used again [1, Corollary 1.6.5].

The fact that the equality (3.51) is true for any t ≥ 0 (and not only for almost all
t ≥ 0) comes from (strong) continuity of both sides which is a consequence of properties
of Bochner integrals (e.g., [1, Proposition 1.2.2]). Further s 	→ ϕv,v′(s) − ϕv,v(s) =
Tv(−s) (qv′(s) − qv(s)) and, since s 	→ qv(s) is continuous by Lemma 3.8, we have
that s 	→ ϕv,v′(s) − ϕv,v(s) is continuous. Thus we can take the strong derivative in
(3.51), use representation (3.52) and apply Tv(t) to both sides of the equation to get

f (∂t − Gv) (qv(t) − Tv(t)qv(0)) = θv

∫

S
(qv′(t) − qv(t)) hv(dv′). (3.55)

��
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Remark 3.11. Take a function u ∈ L1 ([0, T ];B) with u(0) �= 0 so that u /∈ Hv and
define u0(t) := u(t)− Tv(t)u(0). Now u0(0) = 0 so that one could have u0 ∈ Hv . This
is exactly the case of qv and q0v . Here the regularizing term−Tv(t)u(0) has the same role
of the regularization−u(0) in the canonical fractional derivative (3.8). Indeed, whenever
u(t) is such that following computations are justified, the function f (∂t − Gv) u0(t) can
be rewritten as

f (∂t − Gv)) u
0(t) = −

∫ ∞

0

[
U v
s u

0(t) − u0(t)
]
ν(ds)

= −
∫ ∞

0

[
U v
s u(t) −U v

s Tv(t)u(0) − u(t) + Tv(t)u(0)
]
ν(ds).

(3.56)

Since

U v
s Tv(t)u(0) = Tv(s)�sTv(t)u(0)

= Tv(s)Tv(t − s)u(0)1[s≤t]
= Tv(t)u(0)1[s≤t] (3.57)

it follows that

f (∂t − Gv)) u
0(t) = −

∫ ∞

0

[
U v
s u(t) − u(t)

]
ν(ds) − ν̄(t)Tv(t)u(0) (3.58)

which has the form of the first line in (3.8). It follows that the lhs in (3.45) has the
structure of a canonical fractional derivative. A particular case which will be of great
interest in the next sections is given by specializing Tv(t)u(x) = u(x + vt) on suitable
function spaces, to get from (3.58)

f (∂t − v · ∇x ) (u(t, x) − u(0, x + vt)) =
∫ ∞

0

(
u(t − s, x + vs)1[s≤t] − u(t, x)

)
ν(ds)

− ν̄(t)u(0, x + vt). (3.59)

In this last case our operator provides a rigorous way to define explicitly (∂t − v · ∇x )
α ,

which is usually understood as a pseudo-differential operator (see Sect. 5.1 below for
details and references).

We proved until now that the function qv(t) satisfies the Boltzmann-type Eq. (3.45)
where the operator f (∂t − Gv) is obtained with Bochner subordination theory. This
operator in the governing equation represents the “coupling” between the time evolution
(delayed by the inverse subordinator) and the evolution onB (characterized by the non-
exponential waiting times), induced by the non Markovian perturbations. Now we show
that the function

ϕv,v′(t) := Ev′
Tv(−t)T (t)u(V (t)) = Tv(−t)qv′(t) (3.60)

satisfies an integro-differential equation of fractional type. We remark that applying
Tv(−t) to the random operator T (t) makes, under Pv , the evolution on B constant
before the first perturbation induced by the semi-Markov process:

Tv(−t)T (t)u(V (t))1[t≤τ1] = u(v). (3.61)
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Therefore we will see that the equation contains only the scattering component and not
the operator Gv .

In order to write the equation, let us first recall the canonical form of the fractional
derivative (said Caputo-type),

Dα
t φ(t) = ∂t

∫ t

0
φ(s)

(t − s)−α

�(1 − α)
ds − φ(0)

t−α

�(1 − α)

= ∂t

∫ t

0
(φ(s) − φ(0))

(t − s)−α

�(1 − α)
ds, (3.62)

which can be generalized by replacing the kernel s−α/�(1−α)with the tail of the Lévy
measure ν̄(s) as

D f
t φ(t) := ∂t

∫ t

0
φ(s)ν̄(t − s)ds − φ(0)ν̄(t)

= ∂t

∫ t

0
(φ(s) − φ(0)) ν̄(t − s)ds. (3.63)

for suitable functions φ. Here is the rigorous statement on the equation.

Proposition 3.12. If supv ‖u(v)‖ < ∞, the function t 	→ ϕv,v′(t) defined in (3.60)
satisfies the following problem on B

D f
t ϕv,v(t) = θv

∫

S

(
ϕv,v′(t) − ϕv,v(t)

)
hv(dv′), ϕv,v′(0) = u(v′), (3.64)

for any v, v′ ∈ S and t ≥ 0.

Proof. Take the representation in the Laplace space given in (3.50)

f (λ)

λ
ϕ̃v,v(λ) − f (λ)

λ2
u(v) = 1

λ
θv

∫

S

(
ϕ̃v,v′(λ) − ϕ̃v,v(λ)

)
hv(dv′). (3.65)

Note that (3.65) is still valid here since it comes from the renewal Eq. (3.46). In the same
spirit of the Theorem 3.10 we first prove that the equation

∫ t

0

(
ϕv,v(s) − ϕv,v(0)

)
ν̄(t − s)ds

=
∫ t

0
θv

∫

S

(
ϕv,v′(w) − ϕv,v(w)

)
hv(dv′)dw (3.66)

coincides in Laplace space (t 	→ λ) with (3.65). For the right-hand side we already did
this in the proof of Theorem 3.10. For the left-hand side first note that since t 	→ ϕv,v(t)
is in L1 ([0, T ];B) for any T > 0 and t 	→ ν̄(t) is in L1 ([0, T ];R) for any T > 0,
then their Laplace convolution is in L1 ([0, T ];B) (see the discussion at the end of [1,
p. 22]). Then, by an application of the convolution theorem for Laplace transform for
Bochner integrals (e.g., [1, Proposition 1.6.4]), using that

∫ ∞

0
e−λt ν̄(t)dt = f (λ)

λ
, (3.67)
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the equality follows.We already proved that the rhs of (3.66) is differentiable in Theorem
3.10. The lhs is instead continuous since, using that ν̄(s) ∈ L1 ([0, T ],R), for any T > 0,
and
∥∥ϕv,v(t)

∥∥ ≤ supv ‖u(v)‖, we can apply [1, Proposition 1.3.2 (and the discussion
below)]. Hence both sides of (3.66) can be differentiated to get, for any t > 0,

D f
t ϕv,v(t) = θv

∫

S

(
ϕv,v′(t) − ϕv,v(t)

)
hv(dv′). (3.68)

��

4. Abstract Wave Equation with semi-Markov Damping

We find here a generalized wave equation with damping which governs the expected
value of a particular class of random evolutions. The results in this section provide the
semi-Markov counterpart of the theory valid in theMarkov case, given in [19, Section 4].

In this section we still work under (A1) and (A2). However, we further assume that:

(1) S = {v1, v2}
(2) θv1 = θv2 =: θ , so that N (t) is a renewal counting process.
(3) The semigroups Tv1(t) and Tv2(t) commute.
(4) The generators Gv1,Gv2 are scalar multiples of the same operator, with the form

Gv1 = G and Gv2 = −G, where G generates the group T (t), t ∈ R.

Assumption (3) means that Gv1 generates Tv1(t) = T (t), t ≥ 0, the forward evolution
for T , whileGv2 = −G generates Tv2(t) = T (−t), t ≥ 0, the backward evolution for T .
As a remarkable example, the above hypoteses include the translation group on C0(R)

or L1 (R), such that T (t)u(x) = u(x + t) and G = d/dx (in suitable sense).
Without losing the generality of the above hypotheses, we will assume S = {1,−1}.

Hence, the underlying semi-Markov process can be written in the “telegraph” form

V (t) = V0(−1)N (t) (4.1)

where V0 is a random variable with values in S and N (t) is the number of renewals up
to time t .

As before use T (t) for the random evolution operator and define

q1(t) := E1(T (t)u(V (t))
)

q−1(t) := E−1(T (t)u(V (t))
)
.

If V0 is a r.v. with P(V0 = 1) = P(V0 = −1) = 1/2, hence

q(t) := EEV0(T (t)u(V (t)))

= q1(t)P(V0 = 1) + q−1(t)P(V0 = −1)

= q1(t) + q−1(t)

2
. (4.2)

In [19] the authors studied the special case of Markov random evolutions and found a
second order abstract equation. By using our notations, we re-formulate their result in
the following theorem (for the proof we refer to the original paper).
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Theorem 4.1 [19, Section 4]. Let u(1) = u(−1) := u, so that u(V (t)) = u for any
t ≥ 0, where u ∈ Dom(G2). Moreover, let P(V0 = 1) = P(V0 = −1) = 1/2 and let
N (t) be a Poisson process with intensity θ > 0. Then (4.2) solves the abstract telegraph
equation

(
∂2t − G2

)
q(t) = −2θ∂t q(t), (4.3)

under the initial conditions q(0) = u and q ′(0) = 0.

Equation (4.3) is also called abstract wave equation with damping. The reason of
this name is that, in the case of translation groups on C0(R), where G2 = d2/dx2, the
abstract Eq. (4.3) is formally equivalent to the classical damped wave Eq. (5.70) as we
will see in the next section (the equivalence is only formal because (4.3) is an abstract
equation while (5.70) is a classical equation).

We observe that (4.3) has an interesting connection to the abstract wave equation

∂2t w(t) = G2w(t) w(0) = u w′(0) = 0, (4.4)

where u ∈ Dom(G2). It is immediate to verify that (4.4) is solved by the “free” evolution

w(t) = 1

2

(
T (t)u + T (−t)u

)
. (4.5)

It is proved by Griego and Hersh [19] that the solution to (4.3) is related with w(t) by
the following equality

q(t) = Ew

(∫ t

0
(−1)N (τ )dτ

)
(4.6)

whereN (τ ) is the underlying Poisson process pacing the jumps of the velocity. Heuris-
tically, this means that the solution to (4.3) is obtained by perturbing the free evolution
(4.5) at random times. This causes the origin of the damping term in Eq. (4.3), making
Eq. (4.3) different from Eq. (4.4). This is proved in [19, Thm. 4].

In the following Theorem, we show that q(t) in (4.2), also in our general semi-
Markov setting, is again the average of the free evolution (4.5) with the time t suitably
randomized.

Theorem 4.2. Let q(t) and w(t) be defined in (4.2) and (4.5). The following represen-
tation holds:

q(t) = Ew

(∫ t

0
(−1)N (τ )dτ

)
,

where N (τ ) is the underlying renewal counting process.

Proof. Let us denote the occupation measure of V (t) in the state v by

Hv
t =
∫ t

0
1{V (s)=v}ds, v = ±1, (4.7)

and observe that the difference of occupation times can be written as

H1
t − H−1

t = V0

∫ t

0
(−1)N (τ )dτ. (4.8)
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Taking into account that T1(t) and T−1(t) commute, and using the semigroup property,
the random evolution can be re-written as

T (t)u = T1(H
1
t ) T−1(H

−1
t )u (4.9)

so that the waiting times Ji are no more relevant. Using the assumption that T±1(t) =
T (±t), where T (t) is a group, we can write (4.9) as

T (t)u = T (H1
t ) T (−H−1

t )u = T (H1
t − H−1

t )u

= T

(
V0

∫ t

0
(−1)N (τ )dτ

)
u. (4.10)

Let γt = ∫ t0 (−1)N (τ )dτ . The expected value of (4.10) can be written as

q(t) = E(T (t)u) = 1

2

(
E(T (t)u|V0 = 1) + E(T (t)u|V0 = −1)

)

= 1

2

(
E
(
T (γt )u

)
+ E
(
T (−γt )u

))

= 1

2
E

(
T (γt )u + T (−γt )u

)

= Ew(γt ) (4.11)

and the proof is complete. ��
We derive now the semi-Markov version of the damped wave Eq. (4.3). Let us first

note that the d’Alembert-type operator on the lhs of (4.3) is, formally,

� :=
(
∂2t − G2

)
= (∂t − G) (∂t + G) . (4.12)

In order to write down the governing equation of q(t) in our semi-Markov setting we
introduce the compact notation

D+ := f (∂t + G) (4.13)

D− := f (∂t − G) (4.14)

where the operators on the rhs of (4.13) and (4.14) are defined as in Sect. 3.1. Then we
define the operator

D� := D+D− (4.15)

on L1 ([0, T ];B) with domain D ⊂ L1 ([0, T ];B).
We observe that when f (λ) = λα , the operator in (4.15) has the form of the fractional

power

�α :=
(
∂2t − G2

)α
. (4.16)

Let us first note that, under the more restrictive assumptions in this section, the sets
Hv , v ∈ {−1, 1} defined in (3.18) are the same set for any v. Hence we will use the
notation H .
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Lemma 4.3. The operators D− and D+ commute on H ∩ D.

Proof. Note that

f (∂t − G) f (∂t + G) φ(t)

=
∫ ∞

0

∫ ∞

0

[
φ(t) − T (s′)φ(t − s′)1[s′<t] − T (t)φ(0)1[s′≥t] − T (−s)φ(t − s)1[s<t]

+ 1[s<t]1[s′<t−s]T (s′ − s)φ(t − s − s′)

+ 1[s<t]1[s′≥t−s]T (t − 2s)φ(0)

]
ν(ds)ν(ds′). (4.17)

Since φ ∈ H , it follows that φ(0) = 0 and therefore we have from (4.17)

f (∂t − G) f (∂t + G) φ(t)

=
∫ ∞

0

∫ ∞

0

[
φ(t) − T (s′)φ(t − s′)1[s′<t] − T (−s)φ(t − s)1[s<t]

+ 1[s<t]1[s′<t−s]T (s′ − s)φ(t − s − s′)
]
ν(ds)ν(ds′)

= f (∂t + G) f (∂t − G) φ(t) (4.18)

where exhange in the order of integrals is guaranteed by Fubini Theorem for double
Bochner integrals [1, Thm. 1.1.9], since φ ∈ D. ��

We are now in position to state the following result, which is a semi-Markov coun-
terpart of Eq. (4.3). Before stating the following theorem we introduce the functions
w± : [0,∞) 	→ B defined as

w±(t) := T (±t)u. (4.19)

We remark that w± are the unique solutions to the wave equation, under suitable initial
conditions:

(
∂2t − G2

)
φ(t) = 0, φ(0) = u, φ′(0) = ±Gu. (4.20)

Theorem 4.4. Let u(1) = u(−1) := u, so that u(V (t)) = u for any t ≥ 0, where
u ∈ Dom(G2). Moreover, let P(V0 = 1) = P(V0 = −1) = 1/2. Then (4.2) satisfies
the equation on B

D� (q(t) − w(t)) = −θD− (q(t) − w+(t)
)− θD+ (q(t) − w−(t)

)
, (4.21)

under the initial condition q(0) = u, where w±(t) = T (±t)q(0) and w(t) are the free
evolution (see (4.5) for w(t)), i.e., the unique solutions to the abstract wave Eq. (4.4)
under appropriate initial conditions, according to the above definitions.

Proof. The equations given in Theorem 3.10 split into

D− (q1(t) − T (t)q1(0)) = −θq1(t) + θq−1(t), (4.22)

D+ (q−1(t) − T (−t)q−1(0)) = θq1(t) − θq−1(t). (4.23)
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under q1(0) = q−1(0) = u. By adding and subtracting the appropriate terms we have

D− (q1(t) − T (t)q1(0)) = −θ (q1(t) − T (t)q1(0))

+ θ (q−1(t) − T (−t)q−1(0)) − θ (T (t) − T (−t)) u, (4.24)

D+ (q−1(t) − T (−t)q−1(0)) = θ (q1(t) − T (t)q1(0))

− θ (q−1(t) − T (−t)q−1(0)) + θ (T (t) − T (−t)) u. (4.25)

By Lemma 3.9 we know that both q1(t) − T (t)q1(0) and q−1(t) − T (−t)q−1(0) are in
H and therefore they lie in the domain ofD+ andD− and further, by linearity, also their
linear combination does. Further, since u ∈ B0 it is clear that (T (t) − T (−t)) u ∈ H
and thus by Lemma 3.4 it also lies in the domain of D+. So we can apply D+ to both
sides of (4.24). By analogous considerations, we can apply D− to both sides of (4.25).
It follows that (q1(t) − T (t)q1(0)) and q−1(t) − T (−t)q−1(0) are elements of D ∩ H .
Hence we can apply Lemma 4.3 to get

D� (q1(t) − T (t)q1(0)) = −θD+ (q1(t) − T (t)q1(0))

+ θD+ (q−1(t) − T (−t)q−1(0)) − θD+ (T (t) − T (−t)) u, (4.26)

D� (q−1(t) − T (−t)q−1(0)) = θD− (q1(t) − T (t)q1(0))

− θD− (q−1(t) − T (−t)q−1(0)) + θD− (T (t) − T (−t)) u. (4.27)

Using now (4.24) and (4.25) we see that

D+ (q−1(t) − T (−t)q−1(0)) = −D− (q1(t) − T (t)q1(0)) (4.28)

and substituting in (4.26) and (4.27) we obtain

D� (q1(t) − T (t)q1(0)) = −θD+ (q1(t) − T (t)q1(0))

− θD− (q1(t) − T (t)q1(0)) − θD+ (T (t) − T (−t)) u, (4.29)

D� (q−1(t) − T (−t)q−1(0)) = −θD+ (q−1(t) − T (−t)q−1(0))

− θD− (q−1(t) − T (−t)q−1(0)) + θD− (T (t) − T (−t)) u, (4.30)

and again by linearity

D� (q1(t) − T (t)q1(0)) = −θD+ (q1(t) − T (−t)u)

− θD− (q1(t) − T (t)u) (4.31)

D� (q−1(t) − T (−t)q−1(0)) = −θD+ (q−1(t) − T (−t)u)

− θD− (q−1(t) − T (t)u) . (4.32)

By summing (4.31) and (4.32) we get

D� (2q(t) − (T (t) + T (−t))u)

= −θD+ (2q(t) − 2T (−t)u) − θD− (2q(t) − 2T (t)u) (4.33)

and then dividing by 2 both sides of (4.33) we obtain the result. ��
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5. Transport with Infinite Mean Flight Times and Superdiffusion

Wehere consider amodel for scattering transport such that the waiting times between ve-
locity changes (collisions) have infinite expectation. Therefore this model substantially
differs from the classical Markov case with exponentially distributed time intervals, in
particular for what concerns scaling limits. It is a classical result (e.g., [61]) that a trans-
port process with uniform velocity changes paced by i.i.d. exponential r.v.’s converges,
after a suitable scaling limit, to a Brownian motion, therefore exhibiting a diffusive be-
haviour (the mean square displacement grows like Ct , C > 0, as t → ∞) and infinite
velocity. However the exponential waiting time is not crucial to have this behaviour: if
one takes arbitrary finite mean waiting times, then in the long run (or after a scaling
limit) the convergence is still to a diffusive process (see, for example, [29, Chapter 3]).
However the infinite expectation case seems to be always ruled out by classical assump-
tions in this literature. In this section we are able to deal with the infinite expectation
case using some CTRWs scaling limit theory. In particular we show that a suitable scal-
ing yields to a superdiffusive transport process whose one-dimensional distribution is
supported (when the process starts from the origin) on

Bd
t :=
{
z ∈ R

d : ‖z‖d ≤ t
}

. (5.1)

This agrees with the intuition because the longer flight times tend to be (on average)
longer (heavy tailed) than in the exponential (or finite mean) case and permits a space
scaling as fast as the time scaling.

Here is a more rigorous discussion.
Consider a semi-Markovmodel of transporting particle inRd as follows. It is assumed

that the particle originating at x ∈ R
d moves along the unit vector v1 with constant

velocity 1, until it has a collision after a random waiting time J1; then the particle moves
(again with constant velocity 1) along the unit direction v2 for a random time J2, and so
on. Let the vi have uniform distribution on the unit sphere

Sd−1 :=
{
v ∈ R

d : ‖v‖d = 1
}

, (5.2)

where ‖·‖d stands for the euclidean norm, independently on the past history, and let the
Ji be i.i.d. random variables in R

+. Hence, let V (t) be a semi-Markov chain on Sd−1,
representing the unit velocity vector of the moving particle, i.e.,

V (t) = vn τn−1 ≤ t < τn, n ∈ N

where τn =∑n
i=1 Ji denotes the time of the n-th scattering, with τ0 = 0.

Let, for x ∈ R
d ,

X (t) = x +
∫ t

0
V (τ )dτ (5.3)

be a continuous additive functional of V , representing the position of the particle. With
the usual notation

N (t) = max{n ≥ 0 : τn ≤ t},
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the number of scatterings up to time t , we can re-write (5.3) as

X (t) = x +
N (t)∑

i=1

Jivi +
(
t − τN (t)

)
vN (t)+1. (5.4)

We call (X (t), V (t)) semi-Markov isotropic transport process.
For any x ∈ R

d and v ∈ Sd−1 we denote the one-dimensional distribution of the
process, started at x and v, as

pt (dz, dw|x, v) := P(X (t) ∈ dz, V (t) ∈ dw|V (0) = v), (5.5)

which is compactly supported on the set

{(z, w) ∈ R
d × Sd−1 : ||z − x ||d ≤ t, w ∈ Sd−1}.

Denoting by Ev the integration with respect to the measure (5.5), we define the mean
value

g(x, v, t) = Evh(X (t), V (t)), (5.6)

where h ∈ C0(R
d × Sd−1). Clearly, (5.6) is nothing more that the mean value defined

in (2.6) with reference to the particular random evolution

TV (t)(t − τN (t)) · · · Tv2(J2)Tv1(J1) (5.7)

where Tvi are translations groups on C0(R
d × Sd−1) acting on the coordinate x ∈ R

d ,
namely Tv(t)h(x, v′) := h(x + vt, v′), for any v, v′ ∈ Sd−1.

In the special case where the waiting times have exponential law with mean 1/θ , then
V (t) is a continuous time Markov chain and also (X (t), V (t)) is jointly Markov. Such
a process has been studied in several papers (e.g., [40,61]). In this case it is true that
(5.6) defines a strongly continuous contraction semigroup on C0(R

d × Sd−1) equipped
with the sup-norm (consult [61, Section 2]); for all h ∈ C1

0(R
d × Sd−1) the following

equation holds

∂t g(x, v, t) = v · ∇x g(x, v, t) + θ

∫

Sd−1
(g(x, v′, t) − g(x, v, t))μ(dv′), (5.8)

under the condition g(x, v, 0) = h(x, v), where μ(·) is the uniform measure on Sd−1.
Equation (5.8), also known as linear Boltzmann equation, is the backward equation
for the Markov process (X (t), V (t)) and the operator acting on the right side is the
infinitesimal generator.

In the framework of statistical physics, one of the things that makes this Markov
process important is the fact that it is an approximation of a diffusion process; indeed
X (t) converges to a Brownian motion by re-scaling the space variable as x → cx and
the time variable as t → tc2 and letting c → ∞. For a discussion on this point, consult,
for example, [61, Sections 3 and 4].

We stress again that, alongside this classic result, there is another important fact,
which perhaps is not so well known: a large class of semi-Markov transport processes
shares the same asymptotic property which leads to a limit diffusion. This means that, in
the scaling limit of small and rapid jumps, the exponential distribution of waiting times
(and the consequent Markovianity of the process) is not a crucial condition to have
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convergence to Brownian motion. Rather, the only thing that matters is that the waiting
times have finite mean and variance. We refer to the next Remark (5.4) for a sketched
proof, and to [29, Section 4.3] for a more general discussion. The reader can consult also
[46] for a general theory concerning the limits ofMarkov transport processes. Moreover,
for an example of a transport process whose flight times have finite mean but are not
exponential, consult [41], where the authors assume Dirichlet distributed flight times.

Thus, transport processes with infinite mean waiting times are cut out from the above
consideration. But yet, semi-Markov processes with such a property have proven to be
a fundamental tool in statistical physics, especially in models of anomalous diffusions
(see, for example, [36,39] and references therein). In Sect. 5.2, we focus on this aspect
and find new results in this direction using some CTRWs limit theory.

5.1. Transport processes with heavy-tailed flight times. We here consider a particular
type of semi-Markov process V (t) on Sd−1, whose waiting times exhibit power-law
decaying densities, with infinite mean and variance.

In order to construct such a process, we refer to the time-change assumption in-
troduced in Sect. 2.2. Hence, assume that σα(t) is a stable subordinator with index
α ∈ (0, 1), corresponding to the Bernstein function f (λ) = λα , and let Lα(t) denote its
inverse; if W (t) is a continuous time Markov chain on Sd−1, whose waiting times are
exponentially distributed with mean 1/θ , we construct the time-changed process

Vα(t) := W (Lα(t)). (5.9)

By applying (2.17), the waiting times Jn of Vα(t) follow the heavy tailed distribution

P(Jn > t) = Ee−θLα(t) = Eα(−θ tα), α ∈ (0, 1], (5.10)

where

Eα(x) :=
∞∑

k=0

xk

�(1 + αk)

denotes the so-called Mittag Leffler function. It is not hard to see that waiting times with
these distribution have infinite expectation: one has indeed by [38, Theorem 2.1] that

P (Jn > t) = Eα(−θ tα)
∞∼ 1

θ

t−α

�(1 − α)
(5.11)

from which it easily follows that EJn = ∞.
Note that the Markov case is formally re-obtained by putting α = 1, whence we

obtain the exponential waiting times P(Jn > t) = e−θ t .
Denote now

Xα(t) := x +
∫ t

0
Vα(s)ds. (5.12)

Note that in the one-dimensional case this process has already been considered in [12],
where the authors studied several distributional properties (e.g., the distribution of the
first passage time of the process).

We now prove that in this framework the transport process (Xα(t), Vα(t)) is governed
by an equation which is formally similar to the Boltzmann Eq. (5.8), except that the
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material derivative ∂t − v · ∇x on the left-hand side will be replaced by its fractional
power (∂t − v · ∇x )

α . This operator has been considered in several papers as a pseudo-
differential operator with Laplace–Fourier (x, t) 	→ (ξ, λ) symbol (λ + iv · ξ)α and
associated with the so-called Lévy flights or Lévy walks (e.g., [31,55]). The reader can
consult, for example, [5,62] for an introduction to the theory of Lévy walks and some
interesting applications.

We provide here the mathematical background of this idea by showing how these
processes are related to semi-Markov random evolutions and how this fractional material
derivative can be adjusted to be included in our general framework. In other words, we
reformulate part of the theory of Sect. 3 in terms of pseudo-differential operators.

So, let us consider the Banach space of functions L1([0, T ] × R
d) endowed with

its natural norm. Moreover, let H be the subset of L1([0, T ] × R
d) whose elements

have value zero at t = 0 and are absolutely continuous functions such that their first
derivatives (in time and space) are in L1([0, T ]×R

d). Finally, let Tv(t) be the translation
operator, such that Tv(s)h(x, t) = h(x + vs, t), and let �s denote the killed time shift,
i.e., �sh(x, t) = h(x, t − s)1[s≤t]. Consider the family of operators {U v

s }s≥0 defined by

U v
s h(x, t) := Tv(s)�sh(x, t) =

{
h(x + vs, t − s), s ≤ t,
0, s > t.

(5.13)

ByLemma3.3, (U v
s )s≥0 defines a strongly continuous contraction semigroupon L1([0, T ]

×R
d). On functions h ∈ H , the generator of {U v

s }s≥0 has the form− ∂
∂t +v ·∇x . Consider

the subordinate semigroup (Uv
s )s≥0 defined by the following Bochner integral

Uv
s h =
∫ ∞

0
U v
s′h P(σα(s) ∈ ds′).

By Phillips theorem (see [54, Theorem 12.6]), (Uv
s )s≥0 is again a strongly continuous

contraction semigroup on L1([0, T ] × R
d) and, if AU

v is the generator of U v
s , then the

generator of Uv
s is −(−AU

v )α which is defined at least on Dom(AU
v ). For h ∈ H , since

AU
v takes the form − ∂

∂t + v · ∇x , then −(−AU
v )α has the form

− (∂t − v · ∇x )
α h(x, t) :=

∫ ∞

0
(U v

s h(x, t) − h(x, t))
αs−α−1

�(1 − α)
ds

=
∫ ∞

0
(h(x + vs, t − s)1[s≤t] − h(x, t))

αs−α−1

�(1 − α)
ds.

(5.14)

It turns out that we can take the last line in (5.14) as a Lebesgue integral, and use it
to define the operator (∂t − v · ∇x )

α as a Lebesgue integral. We are now in position to
prove the following result, which extends the linear Boltzmann Eq. (5.8) to this kind of
semi-Markov processes.

Proposition 5.1. Let x 	→ h(x, v) be in L1
(
R
d
)
for any v and such that supv ‖h(·, v)‖L1

< +∞ and supv ‖v · ∇xh(·, v)‖L1 < +∞. Denote

q(x, v, t) = Evh(Xα(t), Vα(t)). (5.15)
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Then q(x, v, t) solves the following equation

(∂t − v · ∇x )
α q(x, v, t) − t−α

�(1 − α)
h(x + vt, v)

= θ

∫

Sd−1
(q(x, v′, t) − q(x, v, t))μ(dv′) (5.16)

whereμ denotes the uniformmeasure onSd−1 and the operator (∂t − v · ∇x )
α is defined

as a Lebesgue integral, in the sense that the lhs exists for all v ∈ S and almost all (x, t).
Further, it satisfies the equation in the Fourier–Laplace space

(λ + iξ · v)α ̂̂q(ξ, v, λ) = (λ + iξ · v)α−1 ĥ(ξ, v)

+ θ

∫

Sd−1
(̂q̂(ξ, v′, λ) − ̂̂q(ξ, v, λ))μ(dv′). (5.17)

Proof. From the construction of the process and the law of total probability, by condi-
tioning on the first jump time (see [29, Theorem 3.1]) and using the Markov property of
semi-Markov processes at jump times, the following renewal equation holds

q(x, v, t) = h(x + vt, v)Pv (J1 > t)

+
∫ t

0
Pv (J1 ∈ ds)

∫

Sd−1
q(x + vs, v′, t − s)μ(dv′). (5.18)

It follows by the assumptions on h that, for any T > 0,
∫ T

0

∫

Rd
|q(x, v, t)|dx dt ≤ sup

v
‖h(·, v)‖L1 T < +∞ (5.19)

and thus the Fourier–Laplace transform (x 	→ ξ, t 	→ λ) of q(x, v, t) exists. Hence we
apply the Fourier transform in x to both members of (5.18), to obtain

q̂(ξ, v, t) = e−iξ ·vt ĥ(ξ, v)Pv(J1 > t)

+
∫ t

0
Pv(J1 ∈ ds)e−iξ ·vs

∫

Sd−1
μ(dv′)q̂(ξ, v′, t − s).

This allows to have a convolution operator in t on the right side. Then, by applying the
Laplace transform in t , we get

̂̂q(ξ, v, λ) = ĥ(ξ, v)
(λ + iξ · v)α−1

θ + (λ + iξ · v)α
+

θ

θ + (λ + iξ · v)α

∫

Sd−1
μ(dv′)̂q̂(ξ, v′, λ)

which can be re-arranged as

̂̂q(ξ, v, λ)(λ + iξ · v)α = (λ + iξ · v)α−1ĥ(ξ, v)

+ θ

∫

Sd−1
(̂q̂(ξ, v′, λ) − ̂̂q(ξ, v, λ))μ(dv′).

This proves that (5.17) is verified. Moreover, by the assumption on h, we can apply the
results of the previous section to say that

(t, x) 	→ (∂t − v · ∇x )
α q(x, v, t) (5.20)
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is in L1
([0, T ] × R

d
)
for any T > 0 and v ∈ Sd−1. We also note that

∫ ∞

0

∫

Rd
e−λt eiξ ·x (∂t − v · ∇x )

α q(x, v, t)dxdt

=
∫ ∞

0

∫

Rd
e−λt eiξ ·x

(∫ ∞

0
(−q(x + vs, v, t − s)1[s≤t]

+ q(x, v, t))
αs−α−1

�(1 − α)
ds

)
dxdt

=
∫ ∞

0
e−λt
(∫ ∞

0
(−e−iξ ·vs q̂(ξ, v, t − s)1[s≤t]

+ q̂(ξ, v, t))
αs−α−1

�(1 − α)
ds

)
dt

= ̂̂q(ξ, v, λ)

∫ ∞

0
(1 − e−s(λ+iξ ·v))

αs−α−1

�(1 − α)
ds

= ̂̂q(ξ, v, λ)(λ + iξ · v)α.

��
Remark 5.2. We observe that the distribution of Xα(t) has support on ||z− x ||d ≤ t and
has a discrete component on the sphere ||z − x ||d = t , the last one being the probability
that Vα(t) has no jumps up to time t :

P(||Xα(t) − x ||d = t) = Eα(−θ tα)

where Eα(·) is the Mittag–Leffler function.
Whenever (5.5) has a Lebesgue density pt (z, w|x, v) on the open ball ||z − x ||d < t

(this is true, for example, in the case of isotropic Markov transport process, consult [56]
for the explicit expression) by Proposition 5.1 the following backward equation holds
on the set ‖z − x‖d ≤ t :

(∂t − v · ∇x )
α pt (z, w|x, v) − δ(z − x − vt)δ(w − v)

t−α

�(1 − α)

= θ

∫

Sd−1
(pt (z, w|x, v′) − pt (z, w|x, v))μ(dv′), (5.21)

where δ(x) denotes the Dirac delta. Hence, on the open set ||z − x ||d < t , the density
solves the following forward equation

(∂t + w · ∇z)
α pt (z, w|x, v)

= θ

∫

Sd−1
(pt (z, w

′|x, v) − pt (z, w|x, v))μ(dw′). (5.22)

Remark 5.3. For another model of random flight process whose governing equations
exhibit fractional operators, consult [16].
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5.2. Convergence to a superdiffusive transport process. We prove in this section that,
under a suitable scaling, the process Xα(t), defined in the previous section, converges
in distribution to a superdiffusive process. It turns out that this limiting process can be
represented as a transport process with continuous paths.

In order to study a scaling limit of Xα(t), we recall here some basic notions from the
theory of CTRWs (see, for example, [8,37]). In this section we adopt the notation used
for Xα(t), with the intepretation given in the CTRWs setting.

Hence consider i.i.d. random vectors (Ji ,Yi ), where Yi ∈ R
d represents a particle

jump and Ji ∈ R
+ is the waiting time preceeding that jump. Let Y (n) = Y1 + · · · + Yn

represent the location of the particle after n jumps and τn = J1 + · · ·+ Jn denote the time
of the n-th jump. Moreover, let N (t) = max{n ≥ 0 : τn ≤ t} be the renewal counting
process representing the number of jumps up to time t . A CTRW is defined as

Y (N (t)) =
N (t)∑

i=1

Yi .

The wording “coupled” CTRWs means that Ji and Yi are stochastically dependent.
By formula (5.4) we see that, apart from the initial position x , the process X (t) can

be written as a particular CTRW with waiting times Ji and jumps Yi = Jivi (this is a
Lévy walk in the sense of [31]) plus a corrective term

ε(t) := (t − τN (t))vN (t)+1.

Our goal is to understand wheter the scaled process

Xc
α(t) := x + c−H

∫ ct

0
Vα(s)ds

= x + c−H
N (ct)∑

i=1

Jivi + c−H ε(ct) (5.23)

converges, as c → ∞, to some stochastic process for some H > 0.

Remark 5.4. As mentioned in the previous section, if Ji have finite expectation and
variance, it is well known that a Brownianmotion is obtained in the limit when H = 1/2.
The diffusive behavior is caused by some facts, which we recall here in a heuristic way,
without claiming to be exhaustive. First note that when the r.v.’s Ji have finite mean
1/θ the renewal theorem states that N (ct) ≈ cθ t . Further ‖ε(ct)‖ ≤ c−H JN (ct)+1 ≈
c−H Jcθ t and the latter quantity tends to zero a.s., for any H > 0. Now, if the Ji also
have finite variance, putting H = 1/2 and using central limit arguments, we have that
c−1/2Y ([ct]) → B(t), where B(t) is a Brownian motion in R

d . Combining these two
facts, we have

Xc(t) = x + c−1/2Y (N (ct)) + c−1/2ε(ct) ≈ x + c−1/2Y ([cθ t]) → x + B(θ t),

hence the time-change simply yields a change of scale in the limit process.

In our case the r.v.’s Ji are i.i.d. with infinite expectation. We show here that this
permits to obtain a limit process with the scaling x → c−1/αx , t → c1/αt , α ∈ (0, 1),
i.e., putting H = 1 in (5.23) and renaming c as c1/α for convenience.

When studying this kind of limit of Xα(t), there are two problems to address. One
is that the Mittag–Leffler distributed waiting times Ji have infinite expectation and

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



From Semi-Markov Random Evolutions

variance, so there is no hope to apply the arguments of Remark 5.4. The second is that
the quantity c−1/αε(c1/αt) does not converge to zero and gives a contribution to the
limit. In order to distinguish the two components we rewrite (5.23) as

Xc
α(t) := x + Y c

α(t) + εα
c (t) (5.24)

where

Y c
α(t) := c−1/αY (N (c1/αt)), (5.25)

and

εα
c (t) := c−1/αε(c1/αt). (5.26)

It is instructive to deal with the two components separately, therefore we first study Y c
α

and εα
c and then we prove the convergence of the sum Xc

α .
We begin with Y c

α which is a particular CTRW whose waiting times belong to the
domain of attraction of a stable law. In what follows, we refer to [8,37] (and references
therein) for the corresponding theory of scaling limits for this kind of coupled CTRWs.

Since Ji has a Mittag–Leffler distribution, then the Jivi belong to the domain of
attraction of a rotationally invariant α-stable law, hence

c−1/α
[ct]∑

i=1

Jivi
fdd→ A(t)

where A(t) is a rotationally invariant stable process and
fdd→ denotes convergence of all

finite-dimensional distributions. Moreover, the time τn of the n-th scattering and the
renewal counting process N (t) are such that

c−1/ατ[ct]
fdd→ σα(t) c−1N ([c1/αt]) fdd→ Lα(t)

where σα(t) is a α-stable subordinator and Lα(t) is its inverse. The reader can consult
[36, Section 6.4]) for the above results. Heuristically, combining the above results, we
should have for the scaled process

Y c
α(t) = c−1/α

N (c1/α t)∑

i=1

Jivi = c−1/α
cc−1N (c1/α t)∑

i=1

Jivi ≈ A
(
Lα(t)
)
. (5.27)

Actually this is not exactly true: it will turn out that the process A (Lα(t)) is the limit of
the overshooting CTRW, i.e., the process

c−1/α
N (c1/α t)+1∑

i=1

Jivi

while our process converges to A(Lα(t)−). The role of the following theorem is to make
rigorous the above heuristic idea.
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Remark 5.5. In particular, the theorem below will clarify what is the stochastic depen-
dence between Lα(t) and A(t), which can be described heuristically as follows. The
process Lα(t) is the first passage time through level t of a stable subordinator σα(t),
while A(t) is the sum of displacements whose direction is uniformly choosen on Sd−1

and whose length is equal the jump of the stable subordinator σα(t). It follows that
‖A(Lα(t)−)‖d ≤ σα (Lα(t)−) < t , a.s., since A(Lα(t)−) is the position of the process
A(t) when the subordinator is in the starting point of the jump over t . It is clear from the
construction of A(t) that, on any finite interval of time, it performs a countable infinity
of displacements with length less than δ, for any δ and a finite number with length more
than δ, for some δ > 0.

Also, some physical properties of the limit process are interesting. It turns out that
A (Lα(t)−) is superdiffusive (we recall that a process is said to be superdiffusive if its
mean square displacement grows as tγ , with γ > 1; in our case we find that γ = 2).

Theorem 5.6. Let Y c
α(t) be the process defined in (5.25). Suppose (without loss of gen-

erality), that the waiting time distribution (5.10) has θ = 1. Let es be a Poisson point
process on R

d × (0,∞) with the intensity

K (dx, ds) =
∫

Sd−1
δvs(dx)

αs−α−1

�(1 − α)
ds μ(dv). (5.28)

Define the process on R
d × (0,∞)

(
A(t), σα(t)

) :=
∑

s≤t

es . (5.29)

Then the following is true.

(1) A(t) and σα(t) are stochastically dependent, with joint distribution given by

Ee−λσα(t)+iξ ·A(t) = e−tψ(ξ,λ), ξ ∈ R
d , λ ≥ 0,

where

ψ(ξ, λ) =
∫

Sd−1
(λ − iξ · v)αμ(dv). (5.30)

The marginal processes A(t) and σα(t) are, respectively, a rotationally invariant
α-stable process and an α-stable subordinator.

(2) We have that Y c
α(t) converges, in the sense of one-dimensional distributions, to the

process M(t) := A (Lα(t)−) as c → ∞ where Lα(t) := inf {s ≥ 0 : σα(s) > t}.
(3) For all t > 0, M(t) has distribution with Fourier–Laplace transform

ψM (ξ, λ) :=
∫ ∞

0
e−λtEeiξ ·M(t)dt = λα−1

ψ(ξ, λ)
. (5.31)

(4) The limit process M(t) is self-similar with scaling rate M(ct)
d= cM(t), hence it

has a superdiffusive behavior with mean square displacement

E ‖M(t)‖2d = t2E ‖M(1)‖2d .

Proof. We prove each item of the theorem separately.
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(1) Note that, by definition, we have

(
A(t), σα(t)

) =
∑

X∈�

g(X ) (5.32)

where � is a Poisson process on R
d × (0,∞) × [0, t] with the mean measure

K (dx, ds)dt and g(x, s, t) = (x, s). Further
∫

Rd×(0,∞)×[0,t]
(‖g(x, s, t)‖d+1 ∧ 1

)
K (dx, ds)dt < ∞ (5.33)

and thus it follows from Campbell theorem (e.g., [24, p. 28]) that, for ξ = (iξ,−λ),
ξ ∈ R

d , λ ≥ 0,

Eeξ ·(A(t),σα(t)) = Eeiξ ·A(t)−λσα(t)

= e−t
∫
Rd×(0,∞)

(
1−eiξ ·x−λs

)
K (dx,ds)

= e−t
∫
Sd−1 (λ−iξ ·v)αμ(dv). (5.34)

It follows from (5.34) that

Ee−λσα(t) = e−tλα

(5.35)

Eeiξ ·A(t) = e−t B‖ξ‖α
d , (5.36)

where B is the constant depending on α and d, given by

B := cos(πα/2)
∫

Sd−1
|v · 1|αμ(dv), (5.37)

where 1 is any unit vector. In (5.36) we used [36, Example 6.24] to say that
∫

Sd−1
(−iξ · v)α μ(dv) =

∫

Sd−1
(iξ · v)α μ(dv) = B ‖ξ‖α

d . (5.38)

Therefore, marginally, A(t) is a rotationally invariant α-stable process while σ(t) is
an α-stable subordinator.

(2) Since (Ji , vi ), i = 1 · · · n, are i.i.d., we can write the Fourier–Laplace transform of
n−1/α(Y (n), τn) in the following way

E exp
{
n−1/α(−λτn + iξ · Y (n)

)} = E exp

{
−

n∑

i=1

n−1/α(λ − iξ · vi
)
Ji

}

=
(
E exp

{
−n−1/α(λ − iξ · v1

)
J1
})n

. (5.39)

By using conditional expectation, (5.39) can be re-written as
(∫

Sd−1
E
[
exp{−n−1/α (λ − iξ · v1) J1} | v1 = v

]
μ(dv)

)n

=
(∫

Sd−1

1

1 + n−1(λ − iξ · v)α
μ(dv)

)n

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



C. Ricciuti, B. Toaldo

=
(
1 − 1

n

∫

Sd−1
(λ − iξ · v)αμ(dv) + o

(
n−1
))n

n→∞−→ exp

{
−
∫

Sd−1
(λ − iξ · v)αμ(dv)

}

= e−ψ(ξ,λ) (5.40)

whichmeans thatn−1/α
(
Y (n), τn

) d→ (A(1), σα(1)
)
. Therefore c−1/α

(
Y ([ct], τ[ct])

)

d→ (A(t), σα(t)
)
, where the limit has Fourier–Laplace transform exp {−tψ(ξ, λ)}.

The result then follows by using [8, Theorem3.4]:we have that Xc
α(t)

d→ A(Lα(t)−)

for any fixed t > 0.
(3) This comes from an application of [8, Corollary 4.3].
(4) It is easy to check that the Fourier–Laplace transform of M(t) satisfies the condition

c−1ψM (ξ, c−1λ) = ψM (cξ, λ), from which one has M(ct)
d= cM(t) and therefore

M(t)
d= tM(1) so that E ‖M(t)‖2d = t2E ‖M(1)‖2d . This concludes the proof. ��

Remark 5.7. Let h(x, t) be a density of M(t). Then, following the lines of [8, p. 748],
Fourier–Laplace inversion of (5.31) gives, at least formally, the following equation

∫

Sd−1
μ(dv) (∂t − v · ∇x )

α h(x, t) = h(x, 0)
t−α

�(1 − α)
. (5.41)

To the best of our knowledge, (5.41) has never appeared. However, its one-dimensional
version

(∂t + ∂x )
α h(x, t) + (∂t − ∂x )

α h(x, t) = 2h(x, 0)
t−α

�(1 − α)
(5.42)

had already appeared in [34] in the study of one-dimensional continuous time random
walks; our theory implies that (5.42) governs the scaling limit of a one-dimensional
transport process. Equation (5.42) was also studied in [31] where the authors find explicit
solutions.

We deal now with the component εα
c . Write ε(t) as

ε(t) = (t − τN (t)
)
vN (t)+1 = γ (t)vN (t)+1 (5.43)

where the process γ (t) is the sojourn time in the current position of Vα(t). Since the r.v.’s
vn are independent, vN (t)+1 is a uniform r.v. on Sd−1, independent from γ (t), it follows
that γ (t)vN (t)+1 is a vector with norm γ (t) and independent uniform orientation. In our
process (5.23) it represents the last displacement of Xα(t) (after the last scattering).
Therefore, in the limit, it converges to the last displacement of the process A(t) with
length t − σα(Lα(t)−) and uniform orientation.

Consider the process

εα
c (t) = c−1/αγ (c1/αt)vN (c1/α t)+1. (5.44)

Since the orientation (velocity) is independent on γ and its distribution is uniform inde-
pendently on c and t , when studying the convergence in distribution of εα

c it is sufficient
to study the norm γ α

c (t) := c−1/αγ (c1/αt) separately. In the next result we show that
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c−1/αγ (c1/αt), i.e., the length of the last scattering of the process Xc
α , converges (in

distribution) to the process

γ σ (t) := t − σα
(
Lα(t)−) , (5.45)

i.e., the current time passed from the last renewal of the process A (Lα(t)−) (see [37,
Section 2.1] for a thorough discussion on renewal times of semi-Markov processes.)

Proposition 5.8. We have that γ α
c (t) converges to γ σ (t) in distribution as c → ∞ and

therefore εα
c (t) converges in distribution to γ σ (t)U where U is an independent uniform

random variable on Sd−1.

Proof. We prove the result under the assumption θ = 1, without loss of generality. The
proof can be conducted by computing directly the limit. The distribution of γ (t) is given
by (e.g., [11, p. 61])

P (γ (t) ∈ dw) = δt (dw)Eα(−tα) + 1[w<t]h(t − w) Eα(−wα) dw, (5.46)

where h(w) is the renewal density which can be computed explicitely by resorting to
(2.23) and Theorem 5.6. By combining the information we know indeed that

h(dw) = E

∫ ∞

0
1[σα(t)∈dw]dt (5.47)

where σα(t) is a stable subordinator. It is well known that for a stable subordinator one
has that

E

∫ ∞

0
1[σα(t)∈dw]dt = wα−1

�(α)
dw. (5.48)

It follows that, for z > 0,

P
(
c−1/αγ (c1/αt) > z

)
= 1[z≤t]

[
Eα(−ctα) +

∫ c1/α t

c1/αz
Eα(−wα)h(c1/αt − w)dw

]
.

(5.49)

Therefore we get from (5.49), using (5.48) and after a change of variable,

P
(
c−1/αγ (c1/α t) > z

) = 1[z≤t]

[
Eα(−ctα) + c1/α

∫ t

z
Eα(−cwα)

(
c1/α(t − w)

)α−1

�(α)
dw

]

= 1[z≤t]
[
Eα(−ctα) +

c

�(α)

∫ t

z
Eα(−cwα)(t − w)α−1dw

]
. (5.50)

Now, in order to compute the limit as c → ∞, we use (5.11). Indeed by repeatedly
applying dominated convergence to the integral on the rhs of (5.50) (on the set [z, t))
we find

lim
c→∞ P

(
c−1/αγ (c1/αt) > z

)
= lim

c→∞1[z≤t]
c

�(α)

∫ t

z

w−α

c�(1 − α)
(t − w)α−1dw

= 1[z≤t]
1

�(α)�(1 − α)

∫ t

z
w−α(t − w)α−1dw.

(5.51)
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By [9, Lemma 1.10], the distribution of σα (Lα(t)−) is

P
(
σα
(
Lα(t)−) ∈ dw

) = 1[0<w<t]
1

�(α)�(1 − α)
(t − w)−αwα−1dw, (5.52)

whence c−1/αγ (c1/αt)
d→ t − σα (Lα(t)−). ��

So far, we dealt with the convergence in distribution of the two components Y c
α(t) →

A (Lα(t)−) and εα
c (t) → γ σ (t)U separately. Now we show that their sum converges to

the sum of the limit.

Theorem 5.9. We have that the process Xc
α(t) converges to X∞(t) := A (Lα(t)−) +

γ σ (t)U, in the sense of one-dimensional distributions. Further the process X∞(t) is
superdiffusive with order 2, i.e.,E ‖X∞(t)‖2d = Kt2 for K = E ‖M(1)‖2d + (1−α)(2−
α)/2.

Proof. The proof can be conducted by resorting again to [8, Theorem 3.4], as follows.
Consider the process (Y (N (t)), γ (t)) in R

d × (0,∞), where γ (t) = t − τN (t). Note
that

(
Y (N (t)), t − τN (t)

) = (0, t) +
N (t)∑

i=1

(Yi ,−Ji )

has the form of a coupled continuous time random walk in Rd × (−∞, 0), plus a drift.
Take now the vector process Zn := (Y (n),−τn). In order to apply [8, Theorem 3.4]
we compute the Laplace–Fourier transform of n−1/α (Z(n), τn) by performing the same
computation as in (5.40). We get indeed, for λ ≥ 0, ξ ∈ R

d , k ∈ R,

Een
−1/α(−λτn+iξ ·Y (n)−ikτn) → exp

{
−
∫

Sd−1
(λ + ik − iξ · v)α μ(dv)

}
. (5.53)

It follows that n−1/α(Zn, τn) → (A(1),−σα(1), σα(1)) and also

c−1/α (Z[ct], τ[ct]
) d→ (A(t),−σα(t), σα(t)

)
. (5.54)

Therefore, we have by [8, Theorem 3.4] that

c−1/α
N (c1/α t)∑

i=1

(Yi ,−Ji )
d→
(
A
(
Lα(t)−) ,−σα

(
Lα(t)−)

)
(5.55)

so that

c−1/α
(
Y (N (c1/αt), c1/αt − τN (c1/α t)

)

= (0, t) + c−1/α
N (c1/α t)∑

i=1

(Yi ,−Ji )

d→ (0, t) +
(
A
(
Lα(t)−) ,−σα

(
Lα(t)−)

)
. (5.56)
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It follows that
(
Y c

α(t), γ α
c (t)
) d→ (A (Lα(t)−) , γ σ (t)) and, equivalently,

(
Y c

α(t), εα
c (t)
) d→ (A (Lα(t)−) , γ σ (t)U

)
. (5.57)

By using the continuous mapping theorem we have that the scaled transport process

Xc
α(t) = c−1/αY (N (c1/αt)) + c−1/αγ (c1/αt)U,

is such that

Xc
α(t)

d−→ A(Lα(t)−) +
(
t − σα(Lα(t)−)

)
U

for each t ≥ 0.
The asymptotic behaviour of X∞(t) can be obtained as follows: we have that

E ‖X∞(t)‖2d = E
∥∥M(t) + γ σ (t)U

∥∥2
d = E ‖M(t)‖2d + E

∥∥γ σ (t)U
∥∥2
d (5.58)

since U is uniform, independent on γ σ and M(t) and has zero expectation (with all its

marginals). It is clear from (5.51) that γ σ (t)
d= tβ where β is a Beta r.v. with parameters

α and 1 − α. It follows from (5.58), using Theorem 5.6, that

E
∥∥M(t) + γ σ (t)U

∥∥2
d = t2E ‖M(1)‖2d + t2Eβ2

= t2
(
E ‖M(1)‖2d + (1 − α)(2 − α)/2

)
. (5.59)

��
Remark 5.10. It is interesting to note that the proof of previous theorem could be con-
ducted explicitely, computing directly the limit on the distribution of

(
Y c

α(t), γ α
c (t)
)
.

However, since some computations are cumbersome, we outline here only the main
parts of it in order to specify the explicit distributions. We have that

P (Y (t) ∈ dx, γ (t) ∈ ds) = δt (ds)μt (dx)Eα(−tα)

+ 1[s<t]1[‖x‖d<t−s]h(dx, t − ds)Eα(−sα), (5.60)

where μt (dx) is the uniform measure on Sd−1
t and

h(dx, ds) :=
∞∑

n=1

P (τn ∈ ds,Y (n) ∈ dx) (5.61)

reprents the probability to have a jump of the process Y (t) at time t − s which ends at
x . The last term in (5.60) can be justified by observing that

h(dx, t − ds)Eα(−sα) =
∞∑

n=1

P (τn ∈ t − ds,Y (n) ∈ dx) P (J1 > s)

=
∞∑

n=1

P (τn ∈ t − ds,Y (n) ∈ dx) P (τn+1 − τn > s)

= P

(
⋃

n

{τn ∈ t − ds,Y (n) ∈ dx, τn+1 − τn > s}
)

. (5.62)

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



C. Ricciuti, B. Toaldo

Use the notation h(x, s)dxds = h(dx, ds) since it is clear from (5.62) that h(dx, ds) is
absolutely continuous on ‖x‖d < s. It follows that, for w ∈ R

d , ε > 0,

P
(
Y c

α(t) > w, γ α
c (t) > ε

)

= 1[‖w‖d<t−ε,ε<t][
Eα

(−csα
)
+
∫ c1/α t

c1/αε

∫

x>c1/αw,‖c1/αx‖d<c1/α t−s
h(x, c1/αt − s)Eα(−sα) dx ds

]

= 1[‖w‖d<t−ε,ε<t][
Eα

(−csα
)
+ c2/α

∫ t

ε

∫

x>w,‖x‖d<t−s
h(c1/αx, c1/α(t − s))Eα(−csα)dx ds

]
.

(5.63)

By a simple argument, using (5.61) and (5.40), we get that h(c1/αx, c1/αt) ∼ u(c1/αx,
c1/αs), as c → ∞, where uα(x, s) is the potential density

uα(x, s)dxds := E

∫ ∞

0
1[A(t)∈dx,σα(t)∈ds]dt. (5.64)

Use this estimation together with (5.11), applying dominated convergence properly to
get that, as c → ∞,

lim
c→∞ P

(
Y c

α(t) > w, γ α
c (t) > ε

)

= 1[‖w‖d<t−ε,ε<t] lim
c→∞ c2/α−1

∫ t

ε

∫

x>w,‖x‖d<t−s
u(c1/αx, c1/α(t − s))

s−α

�(1 − α)
dx ds

= 1[‖w‖d<t−ε,ε<t]
∫ t

ε

∫

x>w,‖x‖d<t−s
u(x, t − s)

s−α

�(1 − α)
dx ds (5.65)

where, in the last stepwe used self-similarity of (A(t), σα(t)), to say that u(c1/αx, c1/αs)
= c1−2/αu(x, s). Thedistribution in (5.65) coincideswith thedistributionof (M(t), γ σ (t))
which was obtained in [37, Remark 4.2]. To check this, observe that

K
(
R
d × [s,∞)

)
= s−α

�(1 − α)
. (5.66)

Remark 5.11. It is interesting to note that the theory of CTRW limit [37] states that the

c−1/α
N (c1/α t)∑

i=1

Jivi → A (L(t)−) (5.67)

while

c−1/α
N (c1/α t)+1∑

i=1

Jivi → A (L(t)) (5.68)

in distribution. Further both processes have discontinuous paths. The process X∞(t)
instead has continuous paths: the particle is moving, for any t , from the point A (L(t)−)

to the point A (L(t)) where a new displacement will be performed.
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5.3. On the telegraph process: an hyperbolic-type equation. In the case d = 1, the
isotropic transport process (X (t), V (t)) takes values inR×{+1,−1}. In compact form,
it can be defined by

V (t) = V0(−1)N (t) X (t) = x + V0

∫ t

0
(−1)N (τ )dτ, (5.69)

where V0 takes values in {1,−1} and N (t) denotes the number of renewals up to time t .
The Markov case, i.e., the case where N (t) is a Poisson process, is usually called

telegraph process and has been widely studied in the literature (consult, e.g., [18,23,26]
and [49, Chapter 1]); it is useful to specify that such a process can be constructed in two
ways which are equivalent in terms of governing equations:

(i) At random times governed by a Poisson process with intensity 2θ , the particle can ei-
ther continue tomove in the same direction or it can reverse directionwith probability
1/2.

(ii) At random times governed by a Poisson process with intensity θ , the particle reverses
direction with probability 1.

These constructions are equivalent, in the sense that the semigroup of (X (t), V (t))
exhibits in both cases the same infinitesimal generator

Gh(x, v) = v∂xh(x, v) + θ

(
h(x,−v) − h(x, v)

)
, v = ±1.

Moreover, concerning the Markov case, it is well known (see e.g., [23]) that the
density of the continuous component of X (t), say pt (z|x) = ∂z P(X (t) < z|X (0) = x)
for |z − x | < t , is the fundamental solution of the damped wave equation

∂2t pt (z|x) = ∂2z pt (z|x) − 2θ∂t pt (z|x) (5.70)

under the initial conditions p0(z|x) = δ(z − x) and ∂t pt (z|x)|t=0 = 0. Due to homo-
geneity and isotropy, pt (z|x) depends on z and x through their difference, so (5.70) is
equivalent to

∂2t pt (z|x) = ∂2x pt (z|x) − 2θ∂t pt (z|x) (5.71)

We derive here, heuristically, a generalization of (5.71) holding for the telegraph pro-
cesswithMittag–Lefflerwaiting times (i.e., the one-dimensional versionof (Xα(t), Vα(t))
of previous section), where the related renewal counting process N (t) is the so-called
fractional Poisson process (consult, e.g., [7,35]). The forthcoming derivation is the
heuristic version of the general case of Sect. 4. Indeed, consider the Eq. (5.21) on the
open set |z − x | < t and sum both members in the variable w ∈ {−1, 1}; then such
equation splits into

(∂t − ∂x )
α pt (z|x, 1) = θ

(
pt (z|x,−1) − pt (z|x, 1)

)

(∂t + ∂x )
α pt (z|x,−1) = θ

(
pt (z|x, 1) − pt (z|x,−1)

)
(5.72)

where pt (z|x, v) := ∂z P(X (t) < z|X (0) = x, V (0) = v), with v = ±1. Now, let
(
∂2t − ∂2x

)α := (∂t − ∂x )
α (∂t + ∂x )

α

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



C. Ricciuti, B. Toaldo

be the fractional version of the D’Alembert operator (see [52, pp. 554–555]), having
Fourier–Laplace symbol

(λ + iξ)α(λ − iξ)α = (λ2 + ξ2)α. (5.73)

Using that pt (z|x) = 1
2

(
pt (z|x,−1) + pt (z|x, 1)

)
, by simple algebraic manipulations,

Eq. (5.72) can be re-arranged as
(
∂2t − ∂2x

)α
pt (z|x) = −θ (∂t − ∂x )

α pt (z|x) − θ (∂t + ∂x )
α pt (z|x), (5.74)

which is the fractional version of (5.71) and formally reduces to (5.71) when α = 1.

Remark 5.12. In the paper [7] the authors studied another random flight driven by a
fractional Poisson process, hence having Mittag–Leffler waiting times. However, such a
process is obtained by the time-change of the position process and thus it strongly differs,
e.g., pathwise, from our process Xα(t). The reader should compare the results in this
section with [15] where the author derives the governing equation for the probability
density function of a classical Lévy walk. It turns out that this equation involves a
classical wave operator together with memory integrals (induced by the spatiotemporal
coupling) and therefore it can be viewed as an alternative to (5.74).
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