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Polymers in non-uniform flows undergo strong deformation, which in the presence of persistent
stretching can result in the coil-stretch transition. This phenomenon has been characterized by using
the formalism of nonequilibrium statistical mechanics. In particular, the entropy of the polymer
extension reaches a maximum at the transition. We extend the entropic characterization of the
coil-stretch transition by studying the differential entropy of the polymer fractional extension in a
set of laminar and random velocity fields that are benchmarks for the study of polymer stretching
in flow. In the case of random velocity fields, a suitable description of the transition is obtained by
considering the entropy of the logarithm of the extension instead of the entropy of the extension
itself. Entropy emerges as an effective tool for capturing the coil-stretch transition and comparing
its features in different flows.

I. INTRODUCTION

The configuration of a linear polymer in a moving fluid drastically changes from coiled to fully stretched when
the Weissenberg number Wi, i.e. the product of the characteristic velocity gradient and the polymer relaxation time,
exceeds a critical threshold. This phenomenon is known as the coil-stretch transition [1] and is observed in both
laminar [2, 3] and random flows [4–6], even though with partially different features in the two cases. In addition to
the nature of the flow, the coil-stretch transition is influenced by whether the polymer is confined spatially or not [7],
as well as by the solvent quality [8–10], the polymer concentration [11], and the occurence of knots along the polymer
[12]. Moreover, a coil-stretch transition has also been observed in ring polymers [13–15], entangled polymer melts
[16–18], and elastic-sheets [19].

Characterizing the coil-stretch transition and accurately identifying the value of Wi at which it occurs is essential for
predicting the viscoelastic properties of polymer solutions. For instance, phenomena such as turbulent drag reduction
[20–22] and elastic turbulence [23–25] are observed only if the polymers get sufficiently stretched by the flow. In
the case of linear polymers, several observables have been used to characterize the coil-stretch transition. A natural
quantity is the steady-state distribution of polymer extensions [2–6], which changes dramatically near to the critical
Wi: the mean increases rapidly, the coefficient of variation attains its maximum value, and the peak shifts from
the equilibrium extension Req to the maximum length L (here Req is the polymer root mean square extension in
the absence of flow). Another characterization considers the equilibration time of the statistics of polymer extension
[26, 27] or alternatively the autocorrelation time of the extension [28]. Near the coil-stretch transition these properties
are strongly amplified, and this causes a critical slowing down of the stretching dynamics.

The coil-stretch transition has also been studied using non-equilibrium thermodynamic concepts [29–35]. In partic-
ular, it has been shown that, in an extensional flow, the entropy of the polymer extension is maximum at the critical
Wi [32]. This result has a clear interpretation in terms of information, since the entropy quantifies the “randomness”
of the extension within an ensemble of polymers. In the coiled and stretched states the information concerning the
polymer elongation reaches a maximum because the distribution of polymer extensions is peaked around a single value
(Req and L, respectively). These states are hence minima of entropy. Conversely, the broadening of the probability
distribution of polymer elongations at the transition corresponds to a loss of information and therefore a maximum
of entropy. Recently, Sultanov et al. [36] have extended this result to random flows by measuring the entropy of the
extension of an ensemble of T4 DNA molecules of maximum length L = 71.7µm and radius of gyration Rg = 1.5µm
in an elastic turbulence of von Kármán flow [23, 37].

Here we pursue the entropic characterization of the coil-stretch transition by examining a set of analytical and
numerical flows. The goal of our study is to show that since it concentrates information on the statistics of the
extension in a single scalar quantity, entropy is as an effective tool for comparing polymer stretching in different flows.

II. POLYMER MODEL AND FLOW CONFIGURATIONS

The polymer is modelled as a finitely extensible nonlinear elastic (FENE) dumbbell [38–40]. In the Appendix, we
show that, for a bead-spring chain, the results only differ in minor quantitative details. The evolution equation for
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the polymer end-to-end vector R is

dR

dt
= κ(t) ·R− f(R)

R

2τ
+

√
R2

0

τ
ξ(t), (1)

where κij(t) = ∇jui(t) is the velocity gradient at the centre of mass of the polymer, τ is the polymer longest relaxation

time, R0 = Req/
√

3, f(R) = (1−R2/L2)−1, and ξ(t) is three-dimensional white noise. Within this model, the radius

of gyration is Rg = Req/2 =
√

3
2 R0 and the extensibility parameter is defined as b = (L/R0)2 [38]. The dumbbell

model can in principle be refined to include effects such as hydrodynamic interactions or a conformation-dependent
drag force [38, 39]. Given that our work is focused on the entropic characterization of the coil-stretch transition,
rather than on the properties of the dumbbell model itself, for the sake of simplicity we restrict to the basic version
of the model, which in any case has proved useful for a qualitative, and sometimes even quantitative, understanding
of the coil-stretch transition, in both steady [1–3, 41] and random [21, 42–44] flows.

Calculating the entropy requires obtaining the stationary probability density function (PDF) of the extension,
P (R), from Eq. (1), analytically or numerically. We shall consider the following set of model flows, which have been
widely employed in the study of polymer stretching and are representative of more complex situations. For each of
these flows, the main results on the statistics of the extension are recalled below.

Extensional flow The uniaxial extensional flow u = γ(−x/2,−y/2, z) is the first configuration in which the coil-
stretch transition has been predicted [1] and observed experimentally [2]. It consists of a direction of pure stretching
and two directions of compression with magnitudes that ensure incompressibility. The Weissenberg number is defined
as Wi = γτ and its critical value is Wicr = 1/2. If the rescaled end-to-end vector ρ = R/L is expressed in spherical
coordinates as ρ = ρ(sin θ cosφ, sin θ sinφ, cos θ), then the stationary PDF of ρ is

P (ρ) ∝
(
1− ρ2

)b/2
exp

{
bWi

2
ρ2[3 cos2(θ)− 1]

}
, (2)

where b = (L/R0)2 is the extensibility parameter [38]. An integration over the angular variables yields

P (ρ) = 2πρ2

∫ π

0

P (ρ) sin θ dθ ∝ ρ e− bWi
2 ρ2

(
1− ρ2

)b/2
erf

(
i

√
3bWi

2
ρ

)
, (3)

where erf is the error function.
Shear flow In a linear shear flow u = (σy, 0, 0), the coil-stretch transition is not observed [45]. Owing to thermal

fluctuations, the dynamics of the polymer indeed consists of a sequence of tumbling events which in turn correspond
to as many coiling and stretching events, so that persistent stretching is never realized [46–48]. Nevertheless, it will
be instructive to study the entropy of polymer extension also in this configuration and compare its behaviour with
that observed in other flows. The Weisseinberg number is Wi = στ , and the PDF of ρ is now calculated numerically
by means of Brownian Dynamics simulations of Eq. (1), where the nonlinearity of the elastic force is resolved by using

Öttinger’s rejection algorithm [49].
Batchelor-Kraichnan (BK) flow In random flows, it is convenient to define the Weissenberg number as Wi = λτ ,

where λ is the Lyapunov exponent of the flow, i.e. the average stretching rate of line elements. A general theory of
the coil-stretch transition in random flows has been developed by Balkovsky et al. [43] for linear polymer elasticity
(Oldroyd-B model) and by Chertkov [44] for nonlinear polymer elasticity (FENE model). For intermediate extensions

1/
√
b� ρ� 1, the PDF of ρ behaves as ρ−1−α with α decreasing as a function of Wi and crossing zero at Wi = 1/2.

Therefore, in the limit L → ∞ the PDF of ρ is not normalizable if Wi > 1/2. This is interpreted as an indication
that the coil-stretch transition also exists in random flows and the critical Wi is again Wicr = 1/2. For finite L,
the measured slope may be affected by the nonlinearity of the elastic force, but the theory still implies an analogous
strong modification of P (R) at Wic [44].

The BK flow has been used extensively in the analytical study of turbulent transport below the viscous-dissipation
scale (see Ref. [50] and, for applications to polymer dynamics, Ref. [51] and references therein). The velocity gradient
is an isotropic tensorial white noise with correlation 〈κij(t)κkl(t′)〉 = λδ(t − t′)(4δikδjl − δijδkl − δilδjk)/3, where
i, j = 1, 2, 3. The properties of this stochastic flow allow an exact calculation of P (ρ) (see Refs. [44, 52]):

P (ρ) = c ρ2

(
1 +

2bWi

3
ρ2

)−β (
1− ρ2

)β
(4)

with Wi = λτ , β−1 = 2(b−1 + 2Wi/3), and

c−1 =

√
π Γ(β + 1)

4Γ(5/2 + β)
2F1(3/2, β; 3/2 + β + 1;−2bWi/3). (5)
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Here Γ and 2F1 denote the Gamma and hypergeometric functions, respectively. In this case, the exponent of the
power-law region of the PDF is α = 2β − 3 ≈ −3(1− 1/2Wi) for b� 1.

Isotropic turbulence Although useful for a qualitative study of the coil-stretch transition, the BK flow is Gaussian
and has zero correlation time. It therefore cannot capture all features of a fully turbulent flow. Thus, we also consider
polymers in homogeneous isotropic turbulence. To this end, we use a database of Lagrangian trajectories from a
direct numerical simulation (DNS) of the three-dimensional incompressible Navier-Stokes equations [53, 54]. These
were solved by means of a standard, fully de-aliased pseudo-spectral method on a cubic domain of size 2π with 5123

collocation points and periodic boundary conditions. The flow was driven to a stationary state by an external force
that maintained a constant energy injection rate. The choice of the kinematic viscosity and the energy injection rate
yielded a Taylor-microscale Reynolds number Rλ = 111. The velocity gradient κ(t) was calculated along a large
number of fluid trajectories by using a bilinear interpolation algorithm. Here we use this database of time series of
κ(t) to solve Eq. (1) for an ensemble of 104 polymers. Since attention is restricted to single polymer dynamics, the

polymer feedback on the flow is disregarded. Equation (1) is again solved by using Öttinger’s rejection algorithm [49].
The values of the parameters of the dumbbell model in the DNS are R0 = 1 and L = 18. The extensibility parameter
is b = (L/R0)2 = 182. The effect of thermal noise on the position of the centre of mass is disregarded, since thermal
fluctuations are negligible compared to the fluctuations of the turbulent velocity field. The Weissenberg number is
again defined in terms of the Lyapunov exponent. In the present simulation λ ≈ 0.136τK , where τK is the Kolmogorov
dissipation time scale, in accordance with previous estimates in isotropic turbulence [55, 56]. Numerical simulations

of isotropic turbulence [28, 57] have shown that P (ρ) behaves as a power of ρ for 1/
√
b � ρ � 1, as predicted by

Balkovksy et al. [43].

III. DIFFERENTIAL ENTROPY

Recent studies [32, 36] have shown that the P (R) broadens at the transition from the coiled to the stretched state.
The broadening of P (R) can be interpreted as a loss of information concerning the polymer elongation, which can be
quantified in terms of the Shannon entropy. The results of Refs. [32, 36] confirms that the Shannon entropy attains
a maximum at the Weissenberg number corresponding to the transition.

The definition of the information entropy in the case of polymers requires some care, because the elongation R is
a dimensioned and continuous variable. The extension of the discrete information entropy to a continuous random
variable x ∈ R has been originally proposed by Shannon, which introduced the concept of differential entropy:

Sx = −
∫
P (x) log[P (x)] dx, (6)

where P (x) is the steady-state probability density function of the variable x. Unlike the discrete entropy, the dif-
ferential entropy has some drawbacks. It can be negative (because P (x) can assume values larger than 1) and it
is not invariant under a change of variable. Considering a trasformation y = g(x), the corresponding entropies are

related via Sy ≤ Sx +
∫
P (x) log

∣∣∣ ∂g∂x ∣∣∣ dx, where
∣∣∣ ∂g∂x ∣∣∣ is the Jacobian of the transformation g and the equality holds

if the transform is a bijection. A further problem arises if x is a dimensioned variable, as in the case of the polymer
elongation. In this case, P (x) has the dimension of [1/x] and therefore the defintion of log[P (x)] is inappropriate.

Jaynes proposed to fix these issues by introducing the concept of relative entropy in terms of the limiting density
of discrete points [58]. The relative entropy is defined as the negative Kullback-Leibler divergence [59] from the
distribution P to the reference invariant measure M :

Hx = −DKL(P ||M) = −
∫
P (x) log

[
P (x)

M(x)

]
dx. (7)

An alternative approach consists in non-dimensionalizing the argument of the logarithm with a characteristic scale ∆
homogeneous to x:

S∆
x = −

∫
P (x) log[P (x)∆] dx. (8)

The modified entropy S∆
x is related to the Shannon differential entropy via S∆

x = Sx− log ∆. Recalling that P (x)∆ =
P (x/∆), the modified entropy is equivalent to the differential entropy of the dimensionless quantity x/∆, that is,
S∆
x = Sx/∆.
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For the specific case of the polymer end-to-end distance R, we propose here to use the differential entropy of the
rescaled polymer elongation ρ = |R|/L, defined as

Sρ = −
∫ 1

0

P (ρ) ln[P (ρ)] dρ. (9)

Here and in the following we use the natural logarithm in the definition of the entrophy. The variable ρ assumes values

in the interval (0, 1) and its PDF is normalized as follows:
∫ 1

0
P (ρ) dρ = 1. The differential entropy (9) is equivalent to

the relative entropy (7) with respect to the uniform measure M(ρ) = 1. As a consequence, the entropy Sρ assumes only
negative or null values. The maximum value Sρ = 0 is attained for a uniform distribution P (ρ) = 1, which corresponds
to the maximun uncertainty of the polymer elongation. The differential entropy (9) is also equivalent to the modified
entropy (8) of R with characteristic scale L: Sρ = SLR = −

∫
P (R) ln[P (R)L]dR. The relation Sρ = SLR = SR − lnL

shows that a change of the maximum elongation L corresponds to a shift of the entrophy. In the next Section we will
discuss how this property can be exploited to determine the parameter L of the dumbbell model which best fits the
experimental data. For the cases of random or turbulent flows, we will also show that the coil-stretch transition is
better described in terms of the differential entrophy of the dimensionless quantity y = ln ρ. The entropies of y and ρ
are related via Sy = Sρ − E[ln(ρ)]. Finally, we note that in the case of a dumbbell in potential flows, the differential
entropy SR = Sρ + lnL coincides with the thermodynamic entropy in [32].

IV. RESULTS

The differential entropy of the rescaled polymer length is now used to characterize and compare the coil-stretch
transition in the flows introduced in Sect. II. Sρ is plotted in Fig. 1 (left panel) as a function of Wi; in all cases
(except for the experimental data) the extensibility parameter is set to a representative value of b = 182.

In the extensional flow, Sρ displays a narrow maximum at Wi near critical, i.e. the coil-stretch transition is marked
by a strong amplification of the entropy of ρ. This behaviour reflects the fact that, at both small and large Wi, the
PDF of ρ is dominated by a peak (near to either 1/

√
b or 1), whereas only in a narrow range of Wi around Wicr the

PDF has a broader shape. A large variety of polymer configurations is thus observed at the coil-stretch transition, as
can be appreciated by direct inspection of the time series of ρ [27, 60].

In the shear flow, Sρ starts growing in an appreciable way only when Wi is significantly greater than Wicr. However,
it eventually reaches values higher than for the extensional flow. This is consistent with the distributions of the
extensions that have been observed in experiments [45, 46] and numerical simulations [61, 62]. The aforementioned
tumbling events indeed entail continuous recoiling and restretching of the polymer. Therefore, fairly large Wi are
required to strech polymers appreciably, and since the tumbling frequency increases with Wi [46–48], the distribution
of the extensions becomes broader and broader as Wi grows. A pronounced maximum at extensions comparable to L
only forms for Wi as large as 200 [62], and only then is Sρ expected to start decreasing.

Coming to the random case, Sρ displays a maximum for both the BK flow and isotropic turbulence. At small
and moderate Wi, the two curves are remarkably close despite the idealization of the BK flow. It has indeed been
shown in Ref. [63] that the shape of P (R) and the exponent of the power-law intermediate region [P (R) ∼ R−1−α

for R0 � R � L] are largely insensitive to the correlation time of the flow up to correlation times of the order of
λ−1. At large Wi, the behavior differs: Sρ saturates in the BK flow, whereas it decreases in isotropic turbulence. The
reason for this is that if the flow is turbulent and Wi is sufficiently large, P (R) displays a power-law intermediate
region together with peak near to L [28]. The development of this sharp peak causes the reduction of Sρ at increasing
Wi. In contrast, such a peak is absent in the BK flow, because a time-decorrelated velocity field is less effective in
stretching polymers up to their maximum length [52] .

Figure 1 (left panel) also shows a qualitative comparison with the experimental data of Sultanov et al. [36]. This
comparison requires some caveats. First of all, the experimental points have been translated vertically, which corre-
sponds to using the extensibility parameter b of the dumbbell model as fitting parameter [2, 41]. Indeed, the entropy
Sρ defined from the PDF of the rescaled elongation ρ = R/L can be expressed in terms of the entropy of P (R/R0)
as Sρ = SR/R0

− ln(b)/2, where SR/R0
=
∫
P (R/R0) ln(P (R/R0)) d(R/R0), therefore a vertical translation of the

entropy is equivalent to a change of b. In particular, the observation that S
(dumb)
ρ ' S

(exp.)
ρ + ∆Sρ corresponds to

fitting the experimental data with a dumbbell with equivalent extensibility b(fit) = b(exp.)[exp(−∆Sρ)]
2. Thanks to

this simple relation, the comparison of the entropy curves provides a useful tool for determining the parameter b of the
dumbbell model which fits the experimental data. A precise, quantitative comparison between the experiment and the
theory is not possible because the Weissenberg number was defined in a different way in the two cases. However, the
analysis shows that the experimental data are qualitatively compatible with the entropy of a dumbbell in a random
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FIG. 1. Left: Entropy of ρ vs Wi for different flows. In all cases (except for the experimental data) the extensibility parameter
is set to b = 182. The experimental data have been translated vertically by ∆Sρ = 0.33, which corresponds to a fit to a
dumbbell with b ≈ 302. Right: Entropy of y = ln ρ for the BK and turbulent flows and for the same parameters as in the left
panel. The inset shows Sy together with the entropies S−

y and S+
y associated with the PDFs of y conditional on Q < 0 and

Q > 0, respectively.

flow with extensibility parameter b ≈ 302. The latter estimate is obtained from the entropy shift ∆Sρ = 0.33. The

corresponding value of the ratio (L/Rg)
(fit) ≈ 34.5 is not far from the experimental value (L/Rg)

(exp.) = 47.8.
Let us now come back to the comparison between the entropy curves in the random flows and the extensional flow.

In both cases, the maximum of Sρ is an indication of an increased randomness of the polymer configuration in the
transitional regime. However, there are some important differences in the behavior of Sρ observed in random flows
with respect to that of the extensional flow. First, for a comparable value of Wi the entropy is always greater in
random flows. This is because in random flows P (ρ) has a power-law intermediate region and is therefore broader.
Second, the maximum of Sρ is much wider, since in random flows the transition from the coiled to the stretched state
is much less sharp [4]. Third, the maximum of Sρ is located at a value of Wi larger than Wicr = 1/2. To understand
this latter point, it is necessary to examine the power-law behaviour of P (ρ).

As mentioned earlier, in random flows the P (ρ) displays a power-law in the intermediate region 1/
√
b � ρ � 1

which scales as P (ρ) ∼ ρ−1−α, where the exponent α turns from positive to negative at Wicr. Therefore, at the
transition P (ρ) ∼ ρ−1. Given that α decreases monotonically with Wi, it is rather at Wi > Wicr that P (ρ) ∼ ρ0 and
the PDF of ρ is the broadest [28, 52]. Since Sρ is a measure of the randomness of ρ, it is therefore natural that in
random flows Sρ reaches its maximum value at Wi > Wicr. This fact explains the behavior of Sρ. However, it also
raises the issue of an apparent discrepancy between the critical Wi for the coil-stretch transition and the value of Wi
at which Sρ is maximum. How to reconcile these two different thresholds?

The time-dependent PDF P (ρ, t) satisfies the diffusion equation

∂P

∂T
= − ∂

∂ρi
{[κij(t)ρj − f(Lρ)ρi]P}+

1

b
∆ρP, (10)

where time has been rescaled as T = t/2τ [38, 49]. In a statistically isotropic flow and after the initial transient,
the PDF of the rescaled extension can be assumed to depend only on the polymer length and not on the polymer
orientation (this is true at any time if the initial PDF of ρ is independent of the polymer orientation). It is therefore
convenient to move to spherical coordinates (see Ref. [64] for the transformation of the diffusion equation under a
change of variables) and drop the derivatives with respect to the angular variables. This turns the relaxation and
Laplacian terms into ∂ρ[ρf(Lρ)P ] and b−1∂ρρ

2∂ρ(P/ρ
2), respectively. The flow term can be modelled à la Richardson,

i.e. by describing the stretching effect on the polymer as a diffusion with ρ-dependent eddy diffusivity [65]. For a
smooth random flow (recall that even in turbulent flows polymers generally lie in the dissipation range, where the
velocity field is smooth), the eddy diffusivity must be proportional to ρ2 [50]. In summary, moving to spherical
coordinates, assuming that the solution of Eq. (10) only depends on ρ, and modelling the flow term via an eddy
diffusivity proportional to ρ2 yields the following equation for P (ρ, t):

∂P

∂T
=

∂

∂ρ
[ρf(Lρ)P ] +

∂

∂ρ
ρ2K(ρ)

∂

∂ρ

P

ρ2
(11)



6

with K(ρ) = Kρ2 + b−1. The coefficient K depends on the the Reynolds and Weissenberg numbers in a way that is
specific to the particular random flow. However, its explicit expression is not needed for the discussion below.

Equation (11) can be recast as a Fokker-Planck equation with drift coefficient D1(ρ) = 4Kρ− ρf(Lρ) + 2/bρ and
diffusion coefficient D2(ρ) = Kρ2 + b−1. The associated Itô stochastic equation is

ρ̇ = D1(ρ) +
√

2D2(ρ) η(t), (12)

where η(t) is white noise. Note that, for the BK flow, Eqs. (11) and (12) hold exactly with K = 2Wi/3 [44, 52]. One
important property of Eq. (12) is that the amplitude of the noise depends on ρ. This follows from the fact that if
the flow is random, the velocity gradient in Eq. (1) plays the role of a multiplicative noise. However, to be able to
use Wi as a control parameter for the coil-stretch transition, it is desirable to move to a representation where the
amplitude of the noise is independent of the stochastic variable, i.e. a stochastic equation with additive noise only.
This is achieved by considering a transformation of variable of the form [64]:

y ∝
∫

dρ√
D2(ρ)

=
1√
K

ln[Kρ+
√
K(Kρ2 + b−1)] + const. (13)

Around the coil-stretch transition, the coefficient K is O(1). For ρ� 1/
√
b Eq. (13) thus gives

y ∼ ln ρ. (14)

Now note that the PDF of y is related to that of ρ via the relationship P (y) ∝ ρP (ρ). Therefore, according to the
theory of Balkovsky et al. [43], at Wi = Wicr the power-law region of P (y) is flat and the entropy of y,

Sy = −
∫
P (y) ln[P (y)] dy, (15)

is expected to reach its maximum value. This suggests that, for random flows, it may be more appropriate to
characterize the coil-stretch transition by measuring the entropy of y rather than that of ρ. (The logarithm of the
polymer extension has also been used in other contexts, for instance to improve accuracy in numerical simulations of
constitutive models of polymer solutions [66, 67] or to develop a geometric decomposition of the conformation tensor
C = 〈ρ⊗ ρ〉ξ that guarantees the positive definiteness of both its mean and fluctuating components [68].)

Figure 1 (right panel) shows Sy vs Wi for the BK flow and isotropic turbulence. The experimental data have not
been included because calculating P (y) from P (ρ) would require a higher resolution of the small extensions than
that available in the experiment [recall that P (y) ∼ ρP (ρ)]. As expected, Sy is maximum at Wi = Wicr, which
confirms that in random flows Sy provides a convenient characterization of the coil-stretch transition. The differences
between the BK flow and isotropic turbulence that have been discussed earlier obviously also manifest themselves in
the behaviour of Sy.

Previous studies have investigated the correlation between the polymer extension and the local flow topology
[28, 69, 70]. In a three-dimensional turbulent flow, the sign of the second invariant of the velocity gradient, Q =
− tr(∇u)2/2, discriminates between the regions of the flow that are dominated by strain (Q < 0) and those that are
dominated by vorticity (Q > 0) [71]. In order to determine the dependence of entropy on the local flow topology, we
consider the conditional probabilities P−(y) = P (y|Q < 0) and P+(y) = P (y|Q > 0) and the associated entropies S−y
and S+

y , respectively. These are shown in the inset of Fig. 1 (right panel) as a function of the Weissenberg number.

S−y is obviously greater than S+
y at large Wi, but the difference between the two entropies is not big. This is consistent

with the fact that the extension of a polymer depends on its stretching history and not only on the instantaneous
velocity gradient.

V. SUMMARY AND CONCLUSIONS

In a non-uniform flow, polymers can be highly deformed by the local velocity gradients. However, the statistics of
the deformation and the way it varies with Wi depend very sensitively on the properties of the flow. In particular,
substantial differences are observed between laminar and random velocity fields. An entropic characterization of the
coil-stretch transition was proposed by Latinwo et. al. [32] for an extensional flow. This characterization has been
recently extended to random flows by Sultanov et al. [36]. We have further developped this approach by examining
a set of flows that have been regarded as benchmarks for the study of polymer stretching, in both the laminar and
the random case. This study confirms that the dependence of entropy on Wi provides a useful characterization of
the change in the statistics of polymer extension that occurs near the coil-stretch transition. Moreover, it allows
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a quantitative comparison between flows with different stretching properties. This characterization is particularly
relevant to practical situations where limited statistics is available. Entropy is indeed less sensitive to statistical
fluctuations than quantities, such as the slope of P (ρ) or the correlation time of ρ(t), which have been used previously
to describe the coil-stretch transition.
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Appendix A

Consider a chain with N beads and N − 1 springs. If the position of the i-th bead is denoted as xi, the connectors
Qi = xi+1 − xi (i = 1, . . . , N − 1) satisfy

Q̇1 = κ(t) ·Q1 −
1

4τ
(2f1Q1 − f2Q2) +

Qceq√
6τ

[ξ2(t)− ξ1(t)],

Q̇i = κ(t) ·Qi −
1

4τ
(2fiQi − fi+1Qi+1 − fi−1Qi−1) +

Qceq√
6τ

[ξi+1(t)− ξi(t)], (i = 2, . . . , N − 2)

Q̇N−1 = κ(t) ·QN−1 −
1

4τ
(2fN−1QN−1 − fN−2QN−2) +

Qceq√
6τ

[ξN (t)− ξN−1(t)],

(A1)

where τ c and Qceq are the relaxation time and equilibrium length of the springs, respectively, and ξi(t) are independent
three-dimensional white noises. The coefficients

fi =
1

1− (Qi/Qcmax)2
(A2)

describe the nonlinear elasticity of the springs and fix the maximum length of each of them to Qcmax. Therefore the
maximum length of the chain is Lc = Qcmax(N − 1).

Equations (A1) have been solved by means of the Euler-Maruyama method supplemented with Öttinger’s rejection
algorithm, which rejects those time steps for which there exists at least one index i such that |Qi| > Qcmax(1 −√
dt/10τ)1/2 [49]. We have checked that the fraction of rejected time steps was negligible for all Wi and for all flows

considered here.
The end-to-end separation vector of the chain is R =

∑N−1
i=1 Qi. In order to compare the results for a dumbbell

(N = 2) with those for a multi-bead chain (N > 2), we have used the mapping proposed in Ref. [72]. This mapping
assumes that the statistics of the end-to-end separation of a N -bead chain is equivalent to that of a dumbbell with
parameters:

τ =
N(N + 1)τ c

6
, Req = Qceq, L = Qcmax

√
N − 1 = Lc/

√
N − 1. (A3)

In Fig. 2, we plot the entropy of the rescaled end-to-end separation ρ = R/Lc as a function of Wi for the uniaxial
extensional flow, the linear shear flow, and isotropic turbulence. The curves for the dumbbell model shown in Fig. 1(a)
are compared with those for an equivalent chain with N = 10 beads. Only small quantitative differences are observed
between the results for N = 2 and N = 10.

[1] P.-G. de Gennes, Coil-stretch transition of dilute flexible polymers under ultrahigh velocity gradients, J. Chem. Phys. 60,
5030 (1974).



8

−2.2

−2.0

−1.8

−1.6

−1.4

−1.2

−1.0

−0.8

−0.6

 0.1  0.5  1

(a)

S
ρ

Wi

N = 2
N = 10

−2.0

−1.8

−1.6

−1.4

−1.2

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

 0.1  0.5  1  10

(b)

S
ρ

Wi

N = 2
N = 10

−1.0

−0.5

0.0

0.5

1.0

1.5

 0.1  0.5  1  10

(c)

S
y

Wi

N = 2

N = 10

FIG. 2. Entropy of the fractional end-to-end separation as a function of Wi for a dumbbell and a chain with N = 10 in (a) a
uniaxial extensional flow, (b) a linear shear flow, and (c) isotropic turbulence.

[2] T. Perkins, D. E. Smith, and S. Chu, Single polymer dynamics in an elongational flow, Science 276, 2016 (1997).
[3] C. M. Schroeder, H. P. Babcock, E. S. G. Shaqfeh, and S. Chu, Observation of polymer conformation hysteresis in

extensional flow, Science 301, 1515 (2003).
[4] S. Gerashchenko, C. Chevallard, and V. Steinberg, Single-polymer dynamics: Coil-stretch transition in a random flow,

Europhys. Lett. 71, 221 (2005).
[5] Y. Liu and V. Steinberg, Stretching of polymer in a random flow: Effect of a shear rate, Europhys. Lett. 90, 44005 (2010).
[6] Y. Liu and V. Steinberg, Single polymer dynamics in a random flow, Macromol. Symp. 337, 34 (2014).
[7] J. Tang, D. W. Trahan, and P. S. Doyle, Coil–stretch transition of DNA molecules in slitlike confinement, Macromolecules

43, 3081 (2010).
[8] S. Somani, E. S. G. Shaqfeh, and J. R. Prakash, Effect of solvent quality on the coil–stretch transition, Macromolecules

43, 10679 (2010).
[9] R. Radhakrishnan and P. T. Underhill, Models of flexible polymers in good solvents: relaxation and coil-stretch transition,

Soft Matter 8, 6991 (2012).
[10] R. Radhakrishnan and P. T. Underhill, Impact of solvent quality on the hysteresis in the coil-stretch transition of flexible

polymers in good solvents, Macromolecules 46, 548 (2013).
[11] R. Prabhakar, C. Sasmal, D. A. Nguyen, T. Sridhar, and J. R. Prakash, Effect of stretching-induced changes in hydrody-

namic screening on coil-stretch hysteresis of unentangled polymer solutions, Phys. Rev. Fluids 2, 011301(R) (2017).
[12] B. W. Soh, V. Narsimhan, A. R. Klotz, and P. S. Doyle, Knots modify the coil–stretch transition in linear DNA polymers,

Soft Matter 14, 1689 (2018).
[13] J. G. H. Cifre, R. Pamies, M. C. L. Martinez, and J. G. de la Torre, Steady-state behavior of ring polymers in dilute

flowing solutions via Brownian Dynamics, Polymer 46, 267 (2005).
[14] Y. Li, K.-W. Hsiao, C. A. Brockman, D. Y. Yates, R. M. Robertson-Anderson, J. A. Kornfield, M. J. S. Francisco, C. M.

Schroeder, and G. B. McKenna, When ends meet: Circular DNA stretches differently in elongational flows, Macromolecules
48, 5997 (2015).

[15] K.-W. Hsiao, C. M. Schroeder, and C. E. Sing, Ring polymer dynamics are governed by a coupling between architecture
and hydrodynamic interactions, Macromolecules 49, 1961 (2016).

[16] M. H. Nafar Sefiddashti, B. J. Edwards, and B. Khomami, Communication: A coil-stretch transition in planar elongational
flow of an entangled polymeric melt, J. Chem. Phys. 148, 141103 (2018).

[17] M. H. Nafar Sefiddashti, B. J. Edwards, and B. Khomami, Configurational microphase separation in elongational flow of
an entangled polymer liquid, Phys. Rev. Lett. 121, 247802 (2018).
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