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Efficient Calculation of Derivatives of Integrals in a Basis of Non-Separable Gaussians

Jacques K. Desmarais,1, ∗ Alessandro De Frenza,1 and Alessandro Erba1

1Dipartimento di Chimica, Università di Torino, via Giuria 5, 10125 Torino, Italy
(Dated: March 16, 2023)

email address: ∗jacqueskontak.desmarais@unito.it

A computational procedure is developed for the efficient calculation of derivatives of integrals over
non-separable Gaussian-type basis functions, used for the evaluation of gradients of the total energy
in quantum-mechanical simulations. The approach, based on symbolic computation with computer
algebra systems and automated generation of optimized subroutines, takes full advantage of sparsity
and is here applied to first energy derivatives with respect to nuclear displacements and lattice
parameters of molecules and materials. The implementation in the Crystal code is presented and
the considerably improved computational efficiency over the previous implementation is illustrated.
To this purpose, three different tasks involving the use of analytical forces are considered: i) geometry
optimization; ii) harmonic frequency calculation; iii) elastic tensor calculation. Three test case
materials are selected as representatives of different classes: i) a metallic 2D model of the Cu (111)
surface; ii) a wide-gap semiconductor ZnO crystal, with a wurtzite-type structure; and iii) a porous
metal-organic crystal, namely the ZIF-8 Zinc-imidazolate framework. Finally, it is argued that the
present symbolic approach is particularly amenable to generalizations, and its potential application
to other derivatives is sketched.

I. INTRODUCTION

Atom-centered Gaussian-type functions (GTFs) were
proposed for variational wavefunction calculations in
quantum chemistry, independently by Boys1 and
McWeeny,2 and nowadays represent an important class
of basis functions for practical first-principle calculations.
Other notable choices (being in no means exhaustive, es-
pecially with regards to citations to computer programs)
are Slater functions,3 used in the Adf program, numer-
ical atomic orbitals, used in the OpenMX and Siesta
programs,4,5 or wavelet basis sets used in the BigDFT
program.6 For the special case of infinite, periodic, three-
dimensional systems, plane waves represent another no-
table alternative.7–9

In the overwhelming majority of Gaussian-based quan-
tum chemical programs (with Crystal being an excep-
tion), integrals are calculated in the basis of so-called
Cartesian GTFs (CGTFs), Ct,u,v, which read:10–18

Ct,u,v(α, r−A) = (rx−Ax)t(ry−Ay)u(rz−Az)ve−α|r−A|
2

,
(1)

where t, u, v are positive integers, r is the coordinate of an
electron, and A the center of the basis function (usually
the position of an atomic nucleus). A CGTF in Eq. (1)
is, then, a separable Gaussian as it may be written as a
product of three functions:

Ct,u,v(α, r−A) =
∏
i

c(i)(α, ri −Ai) , (2)

where i = x, y, z is a Cartesian index and

c(i)(α, ri −Ai) = (ri −Ai)Tie−α(ri−Ai)
2

, (3)

with Ti = t, u, v for i = x, y, z, respectively. The separa-
bility of CGTFs, then, considerably simplifies the compu-
tation of integrals. Powerful algorithms based on CGTFs

have been developed by McMurchie and Davidson (MD),
based on recursion relations of the CGTF pair product.19

Notwithstanding, the exact order in which to perform the
MD recursions is not obvious and any departure from
ideality can result in significant loss of computational
efficiency.20 A variety of “recursion trees” have corre-
spondingly been proposed.21–23 A notable alternative to
the MD strategy is the prescription of Obara and Saika,
where recursions are developed instead on individual in-
tegrals, rather than on CGTF pair products.24 For the
specific case of electron-nuclear attraction and electron-
electron repulsion integrals, Dupuis, Rys and King intro-
duced efficient quadrature formulas.25

Despite the obvious simplifying advantages of separa-
ble Gaussians, CGTFs are not eigenfunctions of the elec-
tronic angular-momentum operator, and thus classifica-
tion based on conventional quantum numbers becomes
ambiguous. Although this poses no problems for per-
forming the calculation, interpretation based on conven-
tional chemical concepts is somewhat hindered. There-
fore, practical quantum-chemical calculations are some-
times instead based on the non-separable real solid spher-
ical harmonic GTF (RSSHGTF) functions:

R (α, r−A, n, l,ml) = |r−A|2nX (r−A, l,ml) e
−α|r−A|2 ,

(4)
where n, l,ml are the usual principal, azimuthal and mag-
netic quantum numbers and X is an unnormalized real
spherical harmonic. Although only n = 0 RSSHGTFs are
used as basis functions, the n 6= 0 ones are useful as aux-
iliary functions for computing integrals. If the basis func-
tions are R, a calculation of integrals in the CGTF ba-
sis requires a subsequent transformation to RSSHGTFs,
which may be achieved via:

|r|2n X (r, l,ml) =
∑
t,u,v

′
Dt,u,v (l,ml) r

t
xr
u
y r
v
z , (5)
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where Dt,u,v are linear coefficients, and the prime over
the sum indicates that it is restricted to triplets t, u, v
that satisfy the equality t + u + v = l + 2n.26 A more
direct and efficient strategy was proposed by Saunders,
who suggested to evaluate the integrals directly in the
RSSHGTF basis.27 This strategy has been implemented
in the Crystal program, alongside powerful screen-
ing algorithms and a particularly efficient strategy for
evaluating the Coulomb series of infinite-periodic sys-
tems, based on Ewald summation and by approximat-
ing the Coulomb potential by a distributed point multi-
pole model.26,28 The approach has also been extended to
analytical first energy gradients w.r.t. nuclear displace-
ments and cell parameters.29–32 On the other hand, the
added complication resulting from the non-separability
of RSSHGTFs means, for instance, that second analyti-
cal derivatives are not yet available. And the algorithm
was only recently generalized to l = 4 g-type functions.33

Here we provide a way forward through efficient cal-
culation of derivatives of integrals in a basis of non-
separable RSSHGTFs by symbolic computation with
computer algebra systems. Our approach is inspired by
previous work of Saunders et al. on the calculation of
derivatives of the Boys’ function.34 In the case of first
energy derivatives, the approach is shown to yield signif-
icant improvements over the previous implementation.
Generalization to other derivatives of particular interest
(second order nuclear derivatives and first-order magnetic
field derivatives with field-dependent GTFs) is discussed.

II. FORMAL AND COMPUTATIONAL
ASPECTS

In the Saunders scheme, the RSSHGTF pair product
(or its derivatives) is expanded into so-called Hermite
GTFs Λ:27

Λt,u,v (α, r−A) =

(
∂

∂Ax

)t(
∂

∂Ay

)u(
∂

∂Az

)v
e−α|r−A|

2

.

(6)
For calculating the integrals themselves, the expansion
of the pair product of two RSSHGTFs involves linear
coefficients E:

R (α, r−A, n, l,ml)R
(
β, r−B, n′, l′,m′l

)
=

E(n,n′,l,l′)∑
t,u,v

Et,u,v
[
n, l,ml, n

′, l′,m′l
]

Λt,u,v (γ, r−P) ,(7)

where the sum over t, u, v runs over all values in the set
of integer triplets E

(
n, n′, l, l′

)
that satisfy the criteria

t + u + v ≤ 2n + 2n′ + l + l′, as well as t ≥ 0, u ≥ 0,
v ≥ 0. In Eq. (7), γ = α+β and P is the centroid of the
RSSHGTF pair P = (αA + βB) /γ.

A. First-Order Derivatives with respect to Atomic
Positions

For the derivative w.r.t. the i-th Cartesian component
of A, the expansion is done through linear coefficients
GAi :

∂

∂Ai
R (α, r−A, n, l,ml)R

(
β, r−B, n′, l′,m′l

)
=

G(n,n′,l,l′)∑
t,u,v

GAi
t,u,v

[
n, l,ml, n

′, l′,m′l
]

Λt,u,v (γ, r−P) ,(8)

where the set G
(
n, n′, l, l′

)
includes all positive integer

triplets t, u, v that satisfy t+u+v ≤ 2n+ 2n′+ l+ l′+ 1.
The two sets of coefficients introduced in Eqs. (7) and

(8) are related by:30

GAi
t,u,v

[
n, l,ml, n

′, l′,m′l
]

=
∂

∂Ai
Et,u,v

[
n, l,ml, n

′, l′,m′l
]

+
α

γ
Et−δi,x,u−δi,y,v−δi,z

[
n, l,ml, n

′, l′,m′l
]
,(9)

where δi,j is the Kronecker delta. The full set of E and
GAi coefficients may be obtained from a set of recurrence
relations, deriving from the corresponding recurrences
for spherical harmonics and Hermite polynomials.27,30,33

Once they are known, the coefficients required for deriva-
tives w.r.t. all other centers may be determined as:30

GBi
t,u,v

[
n, l,m, n′, l′,m′

]
= −GAi

t,u,v

[
n, l,m, n′, l′,m′

]
+Et−δi,x,u−δi,y,v−δi,z

[
n, l,m, n′, l′,m′

]
∀i = x, y, z .(10)

For quantum chemical computations, the application of
recurrence relations (i.e. the direct approach) to com-
pute the E and GAi turns out to be impractical, espe-
cially because the “best” order in which the recurrences
need to be applied for fast computations is not known.
Indeed, even in the simpler case of separable Gaussians,
combinatorial complexity is substantial, and the optimal
algorithm is only known for low quantum numbers.21

TABLE I. Ratio of vanishing/total coefficients required for
computing the derivatives of the integrals (G) for RSSHGTF
pair product shells of increasing angular quantum numbers.
Percentages of vanishing coefficients are also reported in
parentheses.

l-l′ s p sp d

s 6
12

(50%) 57
90

(63%) 63
102

(62%) 178
300

(59%)

p 57
90

(63%) 372
540

(69%) 429
630

(68%) 997
1575

(63%)

sp 63
102

(62%) 429
630

(68%) 492
732

(67%) 1175
1875

(63%)

d 178
300

(59%) 997
1575

(63%) 1175
1875

(63%) 2470
4200

(59%)
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In the case of non-separable Gaussians, the direct ap-
plication of recurrence relations requires evaluation of a
very large number of logical statements, whose cost can
be prohibitive.33 Finally, the direct approach is not well
suited for exploiting the sparsity of the GAi .

Indeed, a large number of E andGAi coefficients vanish
from the requirement that integer triplets t, u, v belong to
the sets E

(
n, n′, l, l′

)
or G

(
n, n′, l, l′

)
. The importance of

sparsity in the computation of GAi and E coefficients in
the n = n′ = 0 case is discussed with the help of Table I.
The table provides the ratio of vanishing/totalGAi and E
coefficients for RSSHGTF pair product shells of increas-
ing quantum numbers. In the case of GAi , more than
half (complexively, around 65%) of the coefficients are
vanishing up to l = 2 d-d products. Proper exploitation
of sparsity, then, becomes key for efficient computations.

Here the explicit expressions for the GAi coefficients
are predetermined using the computer algebra system
(CAS) for symbolic computation available in Matlab,
along with automated generation of Fortran77 rou-
tines. The CAS generates a list of explicit symbolic
expressions of all non-zero GAi

t,u,v

[
n, l,ml, n

′, l′,m′l
]

for
i = x, y, z for a selected value of n, l as well as n′, l′, (e.g.
n = 0, l = 2 and n′ = 0, l′ = 1 for a d − p RSSHGTF
pair product). Explicit Fortran77 routines are then
automatically generated from these symbolic expressions
for the chosen set of quantum numbers. The approach
is applicable in a straightforward way to both scalar and
vectorized computations.34,35

The computational savings afforded by the new rou-
tines for GAx , GAy and GAz coefficients is documented in
Fig. 1, which provides speedups of the new vs. previously
existing routines for s to d-type functions. We exclude
f and g-type functions in this presentation, as the exist-
ing routines were implemented at a later time and have
different behaviours.33 To generate the figure, we called
the new vs. old Fortran77 routines for generating the
GAx , GAy and GAz coefficients for each RSSHGTF pair
product. Due to the fast execution of these routines, we
found that one million calls were required to provide ac-
curate and consistent timing figures. We stress that the
speedups are general, in the sense that they are indepen-
dent on the details of the particular material system for
which the calculation is performed. These calculations
were performed sequentially on a single processor. The
speedups are asymmetric (e.g. factor of 3.66 for d-p vs.
6.15 for p-d) because of the derivative in Eq. (8), which
is only taken on the left Gaussian function. In the best
cases (p-d and sp-d), the relevant GAx , GAy and GAz co-
efficients are calculated over six times faster, compared to
the previous implementation. As discussed above, these
speedups are due to the fact that the direct approach:

1. Requires a large number of logical statements in
the application of recurrence relations, representing
additional operations w.r.t. our approach;

2. Is not well-suited to exploit the sparsity of the GAx ,
GAy and GAz coefficients (i.e. resulting in the ex-

FIG. 1. Speedups for calculating s-s, s-p,..., p-s, p-p,..., d-d
RSSHGTF pair Ga

x, Ga
y and Ga

z coefficients as compared to
previously existing routines of the Crystal program.

plicit calculation of many null terms, see Table I).

Of course, the speedups reported in Fig. 1 are not
reflective of the actual gains on an overall calculation,
which includes more than just calculating the GAi expan-
sion coefficients of Eq. (8). In practice, an energy gra-
dient calculation also requires a converged self-consistent
field (SCF) procedure, involving i) integral calculations
(in particular, evaluating the infinite Coulomb and ex-
change series) and their contraction with the density ma-
trix to construct the Fock matrix in the atomic-orbital
(AO) basis, followed by ii) transformation of the Fock
matrix from the AO to crystalline-orbital (CO) basis,
and iii) diagonalization of the CO Fock matrix. Steps
i) to iii) are repeated until convergence. Once the SCF
procedure is converged, the energy gradient may be sub-
sequently computed through a procedure requiring, most
importantly, the derivatives of the electron-repulsion in-
tegrals. These, in turn, are computed by a contraction
of the density matrix with the GAi coefficients of Eq. (8)
and derivatives of the Boys’ function. It is then clear
that computation of the coefficients GAi of Eq. (8), rep-
resents merely one (although important) step of the full
calculation.

In a practical calculation, the total energy gradients
are used to compute a variety of physical properties of
materials, including: i) the equilibrium crystal struc-
ture through a geometry optimization process, requir-
ing first derivatives of the energy;36 ii) the effect of
pressure on the structure via an equation-of-state or
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stress tensor approach, through constrained geometry
optimizations;37–39 iii) harmonic and quasi-harmonic lat-
tice dynamics, requiring second derivatives of the energy
with respect to atomic displacements, here computed
as numerical first derivatives of the analytical energy
gradients;40–42 iv) anharmonic vibrational states, requir-
ing higher-than-quadratic terms of the potential energy
surface, here computed with a finite-difference approach
based on the energy and analytical first derivatives;43–47

v) Elastic and thermo-elastic constants, requiring second
derivatives of the energy with respect to strain, here com-
puted as numerical first derivatives of analytical energy
gradients;48–53 and many others.

To provide figures that are more reflective of the actual
gains of the new implementation on an actual calcula-
tion, we have performed geometry optimizations, Γ-point
harmonic vibration frequency, and elastic tensor calcula-
tions on three representative systems with the Crystal
code. All calculations are performed with all-electron
basis sets and hybrid exchange-correlation functionals,
and employing 20 processors. The full input decks are
reported in the electronic supporting information.54 The
systems are 1) a metallic Cu (111) surface with six atoms
in the primitive cell, of which three are irreducible by op-
erations of the space group of symmetry; 2) a wide-gap
semiconductor ZnO crystal with a Wurzite-type struc-
ture, with four atoms in the cell and two irreducible ones;
and 3) an open-framework crystal represented by the
ZIF-8 Zinc-imidazolate metal-organic framework, with
138 atoms in the cell and eight irreducible ones. Figure 2

FIG. 2. (Upper panel) Percentage speedup of the new im-
plementation on overall calculations (geometry optimization
in blue, harmonic phonons in green, elastic tensor in red)
for the three representative systems. (Lower panels) Atomic
structure of the three representative systems.

shows the atomic structure of the three systems. Symme-
try is fully exploited at each step of the calculation. For
each of the three systems, we repeated twice each calcula-
tion, employing the new vs. previously-existing routines
for computing the RSSHGTF pair Gax, Gay and Gaz coeffi-
cients of Eq. (8), everything else being equal. We stress
that any other factors, such as the particular strategy for
parallelization of the integrals, remains consistent in both
calculations. The latter is treated at a level that is exter-
nal to the routines for computing the RSSHGTF pair Gax,
Gay and Gaz coefficients. The reported speedups are only
reflective of the gains provided by the new RSSHGTF
pair coefficient routines.

The percentage speedup on the overall calculations is
reported in the bar plot of Figure 2, being usually on
the order of 10%. In the best case (elastic tensor cal-
culation for the dense Cu metallic surface), a speedup
of about 11.6% on the complete calculation is obtained.
In the worst case (geometry optimization on the open-
framework ZIF-8 crystal) a speedup of 5.54% is reported.
The gains are largest where calculation of integrals domi-
nates over diagonalization and AO-to-CO transformation
of the Fock matrix, and where calculation of energy gra-
dients dominates over the cost of the SCF procedure.
This is expected to occur in relatively small (in terms of
irreducible atoms in the cell) and dense periodic systems
with small or vanishing gaps (in this case, represented by
the Cu metallic surface). Inspection of the figure suggests
that the speedup systematically increases when moving
from a geometry optimization to harmonic phonon or
elastic tensor calculations. The latter differ from the for-
mer in one significant respect: they involve many cal-
culations at low symmetry nuclear configurations (either
atomically displaced or strained), which suggests that the
relative cost associated to the calculation of the forces in-
creases upon symmetry removal and thus makes the new
implementation particularly advantageous for low sym-
metry systems.

B. Second-Order Derivatives with respect to
Atomic Positions

One particular nice feature of the present symbolic
approach is its straightforward generalization to other
derivatives. We sketch this first for the computation of
second derivatives of the integrals w.r.t. nuclear displace-
ments. Taking the derivative of Eq. (8) with respect to a
pair of arbitrary centers Ii, Jj = Ax, Ay, Az, Bx, By, Bz,
we obtain:
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∂

∂Ii

∂

∂Jj
R (α, r−A, n, l,ml)R

(
β, r−B, n′, l′,m′l

)
=

∂

∂Ii

G(n,l,n′,l′)∑
t,u,v

G
Jj
t,u,v

[
n, l,ml, n

′, l′,m′l
]

Λt,u,v (γ, r−P)

≡
F(n,l,n′,l′)∑

t,u,v

F
IiJj
t,u,v

[
n, l,ml, n

′, l′,m′l
]

Λt,u,v (γ, r−P) . (11)

It will become apparent below that the set F
(
n, l, n′, l′

)
includes all positive integer triplets that satisfy t+u+v ≤

2n + 2n′ + l + l′ + 2. Distributing the derivative in Eq.
(11), gives:

F(n,l,n′,l′)∑
t,u,v

F
IiJj
t,u,v

[
n, l,ml, n

′, l′,m′l
]

Λt,u,v (γ, r−P) =

G(n,l,n′,l′)∑
t,u,v

∂

∂Ii
G
Jj
t,u,v

[
n, l,ml, n

′, l′,m′l
]

Λt,u,v (γ, r−P)

+
ζI
γ
G
Jj
t,u,v

[
n, l,ml, n

′, l′,m′l
]

Λt+δi,x,u+δi,y,v+δi,z (γ, r−P) ,(12)

where ζI = α if I = A and ζI = β if I = B. From Eq.
(12), we deduce:

F
IiJj
t,u,v

[
n, l,ml, n

′, l′,m′l
]

=
∂

∂Ii
G
Jj
t,u,v

[
n, l,ml, n

′, l′,m′l
]

+
ζI
γ
G
Jj
t−δi,x,u−δi,y,v−δi,z

[
n, l,ml, n

′, l′,m′l
]
.(13)

From Eq. (13), we obtain the important result that once
the symbolic expressions for the GJj are known, the ones
for the second energy gradients F IiJj can be trivially
obtained from symbolic differentiation and addition.

C. First-Order Derivatives with respect to a
Magnetic Field

Another noteworthy and straightforward generaliza-
tion of the present approach is the computation of first
energy derivatives w.r.t. an applied magnetic field B.
Then, with a finite basis-set, the well-known gauge-origin
problem is typically solved by including field-dependent
phase factors in the basis functions - the so-called gauge-

including atomic-orbital, or GIAO, approach:55–57

R̃ (α, r−A, n, l,ml) = e−
ı
2B∧A·rR (α, r−A, n, l,ml) .

(14)
For the purposes of computing integrals for magnetic
response properties that are first order in the field,
the RSSHGTF pair-product is correspondingly modified
as:58

ı

2
r∧(B−A)R (α, r−A, n, l,ml)R

(
β, r−B, n′, l′,m′l

)
.

Then, considering terms, for instance, involving rx, the
RSSHGTF pair-product may be expanded as (up to a
constant factor):

rxR (α, r−A, n, l,ml)R
(
β, r−B, n′, l′,m′l

)
≡
Ẽ(n,l,n′,l′)∑

t,u,v

Ẽ
(x)
t,u,v

[
n, l,ml, n

′, l′,m′l
]

Λt,u,v (γ, r−P) .(15)

As will become apparent below, the set Ẽ
(
n, l, n′, l′

)
co-

incides with G
(
n, l, n′, l′

)
. We now make use of the fol-

lowing recurrence relation for HGTF:27,59

rxΛt,u,v (γ, r−P) =
1

2γ
Λt+1,u,v (γ, r−P)

+PxΛt,u,v (γ, r−P) + tΛt−1,u,v (γ, r−P) . (16)

Then, inserting Eq. (16) into Eq. (15), and using also
Eq. (7), gives:

Ẽ(n,l,n′,l′)∑
t,u,v

Ẽ
(x)
t,u,v

[
n, l,ml, n

′, l′,m′l
]

Λt,u,v (γ, r−P) =

E(n,l,n′,l′)∑
t,u,v

Et,u,v
[
n, l,ml, n

′, l′,m′l
] { 1

2γ
Λt+1,u,v (γ, r−P)

+ PxΛt,u,v (γ, r−P) + tΛt−1,u,v (γ, r−P)
}
, (17)
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from which we deduce the relation:

Ẽ
(x)
t,u,v

[
n, l,ml, n

′, l′,m′l
]

=
1

2γ
Et−1,u,v

[
n, l,ml, n

′, l′,m′l
]

+ PxEt,u,v
[
n, l,ml, n

′, l′,m′l
]

+ (t+ 1)Et+1,u,v

[
n, l,ml, n

′, l′,m′l
]

and therefore once the symbolic expressions are known

for E, the first-order GIAO coefficients Ẽ
(x)
t,u,v may also

be obtained by elementary symbolic manipulation. The
procedure can also be extended to derivatives of higher
order in the field, using the methods provided above.

III. CONCLUSIONS

A computational procedure was developed for the ef-
ficient calculation of derivatives of integrals over non-
separable Gaussian-type basis functions, within the
framework of Saunders’ algorithm. The strategy involved
symbolic computation with computer algebra systems, as
well as automated generation of optimized subroutines
and took full advantage of sparsity. The procedure was
practically applied to calculating first energy derivatives
with respect to nuclear displacements and lattice param-

eters of molecules and materials. The implementation in
the Crystal code considerably improved computational
efficiency over the previous one. The facility in generaliz-
ing the proposed symbolic approach to other derivatives
was noted, and two generalizations of particular future
interest were illustrated.

SUPPLEMENTARY MATERIAL

See Supplementary Material for full input decks asso-
ciated with the reported calculations.

ACKNOWLEDGEMENTS

J.K.D. is grateful to the National Science and Engi-
neering Research Council of the Government of Canada
for a Postdoctoral fellowship application No. 545643.

∗ jacqueskontak.desmarais@unito.it
1 S. F. Boys, Proc. R. Soc. Lond. 200, 542 (1950).
2 R. McWeeny, Nature 166, 21 (1950).
3 J. C. Slater, Phys. Rev. 36, 57 (1930).
4 Https://openmx.ssri.psu.edu.
5 A. Garcia, N. Papior, A. Akhtar, E. Artacho, V. Blum,

E. Bosoni, P. Brandimarte, M. Brandbyge, J. I. Cerdá,
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