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Abstract

NeRFs have revolutionized the world of per-scene ra-
diance field reconstruction because of their intrinsic com-
pactness. One of the main limitations of NeRFs is their
slow rendering speed, both at training and inference time.
Recent research focuses on the optimization of an explicit
voxel grid (EVG) that represents the scene, which can be
paired with neural networks to learn radiance fields. This
approach significantly enhances the speed both at train and
inference time, but at the cost of large memory occupation.
In this work we propose Re:NeRF, an approach that specifi-
cally targets EVG-NeRFs compressibility, aiming to reduce
memory storage of NeRF models while maintaining compa-
rable performance. We benchmark our approach with three
different EVG-NeRF architectures on four popular bench-
marks, showing Re:NeRF’s broad usability and effective-
ness.

1. Introduction

The rising of Neural Radiance Fields (NeRF) techniques
has heavily impacted the field of 3D scene modeling and
reconstruction in recent years [25, 43, 13, 14, 11]. Effi-
cient photo-realistic novel view generation from a fixed set
of training images has been a popular area of research in
computer vision with broad applications. The ability to dis-
till the essence of the 3D object from 2D representations of
it and its compactness is the main reason for making NeRF
a high-impact approach in the literature.

The original NeRF [25] consists of a multi-layer percep-
tron, which implicitly learns the manifold representing the
3D object. Because of its great generalization for synthesiz-
ing novel viewpoints and the high compactness of the model
itself, which typically consists of a few MB, NeRF has be-
come a prevalent approach for 3D reconstruction. However,
the NeRF’s MLP has to be queried million times to render
a scene, leading to slow training and rendering time.

In an effort to speed up the vanilla NeRF, follow-up
works introduced modifications to the original NeRF archi-
tecture [8, 3, 34]. One of the popular approaches, for exam-
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Figure 1: NeRF models with explicit voxel grid representa-
tions can be effectively compressed with Re:NeRF.

ple, encodes features of a scene in an explicit 3D voxel grid,
combined with a tiny MLP. This group of methods, which
utilizes an “explicit voxel grid” (EVG), is gaining more
and more popularity due to the high training and render-
ing speed while maintaining or improving the performance
of the original NeRF. Unlike traditional NeRF, EVG-NeRF
models require larger memory, limiting their deployment
in real-life applications, where models need to be shared
through communication channels, or many of these models
must be stored on memory-constrained devices.

In this work, we propose Re:NeRF, a method that re-
duces memory storage required by trained EVG-NeRF
models. Its goal is to accurately separate the object from its
background, discarding unnecessary features for rendering
the scene, guided by the loss functions designed for train-
ing the specific EVG-NeRFs. Re:NeRF enables generation
of highly compressed models with little or no performance
loss: it is specifically designed for EVG-NeRFs as it ex-
ploits a spatial locality principle for adding-back voxels to
the grid, and in such a sense its working flow resembles the
one of a sculptor (Fig. 1). We observe that Re:NeRF enables
high-level compression of pre-trained EVG-NeRF mod-
els, and that traditional general-purpose approaches, such
as blind pruning, perform worse than Re:NeRF. We test
Re:NeRF on four datasets with three recent EVG-NeRFs
validating the effectiveness of the proposed approach.

2. Related works

Rendering photo-realistic novel views of a 3D scene
from a set of calibrated 2D images of the given scene has
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Figure 2: Visualisation of traditional NeRF approach, con-
sisting of a multi-layer perceptron (a) and NeRF-based ap-
proaches with explicit voxel grid representation (b). The
latter can also have a small MLP.

been a popular area of research in computer vision and
computer graphics. Inspired by Mildenhall er al’s work
in 2020, which proposed to capture the radiance and den-
sity field of a 3D scene entirely using a multi-layer percep-
tron (MLP) [25], a large number of follow-up studies have
adopted the implicit representation of a scene. Here follows
an overview of 3D representation models, neural radiance
fields, and follow-up works.

3D representation for novel view synthesis. Inferring
novel views of a scene given a set of images is a long-
standing challenge in the field of computer graphics. Var-
ious scene representation techniques for 3D reconstruc-
tion have been studied in past decades. Light field ren-
dering [4, 19, 31] directly synthesizes unobserved view-
points by interpolating between sampled rays but it is slow
to render and requires substantial computational resources.
Meshes are another common technique that is easy to im-
plement and allows rendering in real-time [5, 39, 41]. How-
ever, it struggles to capture fine geometry and topological
information and its rendering quality is limited to mesh res-
olution. Differentiable methods have been recently pro-
posed to perform scene reconstruction [6, 21, 33]. They
use a differentiable ray-marching operation to encode and
decode a latent representation of a scene and achieve excel-

lent rendering quality.

Neural Radiance Fields. Unlike traditional explicit volu-
metric representation techniques, NeRF [25] stands out in
recent years to be the most prevalent method for novel view
rendering that infers photo-realistic views given a moder-
ate number of input images. It encodes the entire content
of the scene including view-dependent color emission and
density into a single multi-layer perceptron (Fig. 2a) and
achieves state-of-the-art quality. Besides, Neural Radiance
Field-based approaches are proving on-the-field to have
good generalization when undergoing several transforma-
tions, like changing environmental light [1, 32], image de-
formation [9, 27, 40] and are even usable in more challeng-
ing setups including meta learning [35], learn dynamically-
changing scenes [10, 20, 23, 42] and even in generative
contexts [2, 16, 29]. Compared to explicit representations,
NeRF requires very little storage space, but on the contrary
suffers from lengthy training time and very slow rendering
speed, as the MLP is queried an extremely high number of
times for rendering a single image.

NeRF with explicit voxel grids. To reduce inference and
training time, explicit prior on the 3D object representation
can be imposed. The most intuitive yet effective approach
relies on splitting the 3D volume into small blocks, each
of which is learned by a tiny NeRF model. With KiloN-
eRF [28], the advantage of doing this is twofold: the size
of a single NeRF model is much smaller than the origi-
nal one, reducing the latency time; secondly, the render-
ing process itself becomes parallelizable, as multiple pixels
can be rendered simultaneously. The downside of this ap-
proach is that the granularity of the KiloNeRFs needs to
be properly tuned, and the distillation of the single tinier
NeRFs can be quite an expensive process. An interesting
approach that leverages radiance fields with no explicit neu-
ral component is Plenoxels [8]. In this case, a sparse feature
grid is encoded with 3D spherical harmonics (it belongs to
EVG approaches without the MLP component in Fig. 2b).
Hence, both the training time and the inference times are
drastically improved, however, at the cost of a significant
increment in-memory storage for the learned model, de-
spite its sparse representation. Showing similar conver-
gence time but maintaining an MLP component for complex
view-dependent appearances, DVGO [34] proposes post-
activation interpolation. Recently, in order to further im-
prove the execution speed, TensoRF [3] has been proposed,
which decomposes a 4D tensor into low-rank components
prior to training. With the lower-quality rendering setup,
the authors deliver a model of size comparable to the orig-
inal NeRF, but with higher-quality rendering the memory
discrepancy with the vanilla NeRF model is still quite wide.
Compressing EVG-NeRF. Whilst dense voxel-based rep-
resentations increase rendering speed drastically, they re-
quire an order of magnitude more memory than implicit
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volumetric representations to achieve comparable render-
ing quality. Hierarchical structure representations using oc-
trees allow the 3D scene to be encoded in a sparse man-
ner, but the memory occupancy still remains high. Recent
work addressed the problem of training a model with neural
sparse voxel fields [22] progressively reducing the granular-
ity of voxels and skipping the rendering for empty voxels.
This approach, however, is designed for resource realloca-
tion. While it improves the rendering speed, it still suffers
from a long training time. To the best of our knowledge,
Re:NeRF is the first approach focusing on compression
specifically for EVG-NeRFs. While other works leverage
the knowledge of sparsity of the 3D scene [22, 8, 34], they
are focused on performance enhancement (fighting against
artifacts which might appear in the empty space) and are not
specific for compression. In this work, we are NeRF archi-
tecture agnostic, and our goal is to preserve the performance
while reducing the model’s size.

3. Re:NeRF

In this section, we present Re:NeRF, our approach to-
wards storage memory reduction for EVG-NeRFs. To re-
duce the model size, we iteratively remove parameters with
the least ranked importance. Following each round of prun-
ing, we design a strategy that adds back neighbor voxels to
avoid a drop in performance.

3.1. Which parameters are important?

One of the key characteristics making EVG-NeRF an ef-
fective approach is the possibility of end-to-end training:
given some target loss function £ evaluated on the rendered
image, using back-propagation, it is possible to train all the
parametersw of the model. This learning approach is com-
mon with any standard deep neural network, which allows
us to build on top of the existing technique with the same
set of optimizers (such as SGD and Adam). Methods based
on mini-batches of samples have gained popularity, as they
allow better generalization than stochastic learning while
being memory and time efficient. They also benefit from
libraries that exploit parallel computation on GPUs. In such
a framework, a network parameter w;is updated towards the
averaged direction which minimizes the averaged loss for
the mini-batch. Evidently, if the gradient’s magnitude is
zero, the parameter is not updated, meaning that the local
loss landscape for it is flat. A typical approach to reduce the
number of parameters in a deep neural network is to thresh-
old the parameters according to some hyper-parameters that
determine the amount to be removed [36, 7]:

w; = { g’v if|lwi| > Q| (7)

otherwise,
where Q|,,|(-) is the quantile function for the ¢; norm of the
parameters and v € [0; 1] is the percentage of parameters to

(D

be removed. Despite its simplicity and broad application,
this approach has a potential issue: parameters having very
low magnitude can be important for the model. For exam-
ple, a parameter can have a very low magnitude but a high
gradient: hard-setting it to zero according to (1) can sig-
nificantly influence the loss value/performance. Because of
this, other works have suggested evaluating the importance
of a parameter using the gradient of a parameter as a cri-
terion [17, 37]. A parameter w; can have a low gradient
locally, but removing it may potentially impose a drastic
change in both the loss value and its gradient. It is neces-
sary, hence, to find a compromise between these two condi-
tions. We can estimate the variation of the loss value using
a Taylor series expansion truncated to the first order:

oL

(2)
and from (2) we can define how to remove the parameters
according to

w=1 2
10

It is a known fact, however, that both gradient and weight
magnitudes for the parameters change depending on the ty-
pology of layers taken into consideration [18]. Hence, in
order to address a parameter-removing strategy that could
be applied globally (hence, removing a given ratio of the
parameters from the whole model, without imposing uni-
formity in this removal), the quantile function should be
evaluated on the layer-normalized quantity

if[L(wi)| > Qac(w) (V)

otherwise.

3)

oL ..
AL(w;) = —wi wj in same layer as w;.  (4)

9L ..
max ‘ D, Wi

Consequently, (3) becomes

_[wi ifIL(wi)] > Qazwy (V) 5
w; = . ( )
0  otherwise.
This strategy, however, evaluates the loss variation for each
parameter w; independently as in (2), which is known to be
sub-optimal, as there is a dependence between parameters
inside the model. How can we correct a potential “exces-
sive” removal of parameters?

3.2. Removing only?

Removing parameters from a model is always a mat-
ter of delicacy: if the parameters are removed too fast, at
some point the performance can not be recovered. On the
contrary, if they are removed too slowly, the training com-
plexity becomes large. Furthermore, the strategy to identify
which parameters can be removed from the model, for a
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Figure 3: Effect of RE-INCLUDE before (a) and after run-
ning one iteration (b). In red: voxels already in the model;
in green: non-neighbor voxels satisfying the re-inclusion
rule; in blue: neighbor voxels satisfying the re-inclusion
rule.

matter of efficiency, is limited to a first-order approxima-
tion in (2), making the parameter removal mechanism po-
tentially prone to approximation errors. How can we iden-
tify the parameters, which have been removed, and should
be added back in order not to degrade the performance ex-
cessively?

Let us consider the subset of parameters ) which have been
removed. Since these parameters have been removed, ac-
cording to (2), AL(w;) = OVw; € YW, meaning that this
metric cannot be used to eventually re-include parameters
in the model.

In order to determine whether the re-inclusion of a pre-
viously removed parameter will enhance the performance
further (or in other words, will cause the minimization of
the evaluated loss function) we can, for instance, look at
the value for its gradient. If the gradient is above a given
threshold, the parameter is added back. A simple threshold
could be defined by the distribution of the magnitude of the
gradients for the remaining parameters W:

oL
‘awz = Q‘% 7w€W(5) = w; €W, (6)
where § € [0;1] determines the relative threshold for the

re-inclusion.

Although (6) is a general rule and is potentially applica-
ble to all the layers for EVG-NeRFs, we can leverage the
voxel grid structure, imposing a prior over the 3D mani-
fold representation for the object itself. We expect it to be
compact and the least sparse possible. Towards this end,
we add, as an additional constraint to (6), that a parameter
w; € W, in order to be re-included, it should also be con-
nected, or should be a neighbor of some w; € V. Hence,
the re-inclusion rule becomes

2 Q wGW((S)

oL
Dw

‘ ow;

Cwew @
ij S W‘U}j S Q(wi),

where 2(w;) is the subset of parameters that are neighbors
of w;. Fig. 3a displays a practical case where there are some
voxels not included (white space), voxels in the model (red),
voxels removed which satisfy (7) (blue) and voxels which
satisfy the condition on the gradient, but are not neighbors
of any voxel in the model (green). After one re-inclusion it-
eration, the blue voxels are included, and some green voxels
(the neighbors of the blue ones) become the new candidates
for the re-inclusion (Fig. 3b). In order to find the whole
subset of voxels to be added-back, it is necessary to iterate
over the re-inclusion mechanism, until there are no voxels
in blue to add. Follows an overview on Re:NeRF.

3.3. Overview on the Re:NeRF scheme

Algorithm 1 Re:NeRF.
procedure RE:NERF(Wj.g, 7, 6)

1:
2 Trem = QAL (w)),weWse, (V)

3: W, W < REMOVE(W,eg, Trem)
4: Tinc — Q‘%‘Mew(é)

5 Wena < RE-INCLUDEOW, W, T
6: return W,,,4

7: end procedure

8: procedure REMOVEW.g, Tiem)

9

W0
10 W<«
11: for w; € W4 do
12: if |AL(w;)| > Trem then
13: W — WU {w;}
14: else
15: W WU {w;}
16: end if
17: end for

18: return W, W
19: end procedure o
20: procedure RE-INCLUDEOW, W, Tine)

21: one_added < True

22: while one_added do

23: one_added <+ False

24: for w; € W do

25: if ‘6‘%‘ > Tine then

26: Q + NEIGHBORS (w;)
27: if QN W # () then

28: W — WU {w;}

29: one_added < True
30: end if

31: end if

32: end for

33: end while

34: return W

35: end procedure

1239



... ) [Learning stage
(1 epoch)

Training
set

e £ 7 > REMOVE

. JRE-INCLUDE
Validation ' """" » parameters g parameters
set : A A
s snasssnrrrs s nsrEE s rEEa s nnaan R ana R nnnnnnand 3 5

Figure 4: Overview on Re:NeRF. The dashed arrows indi-
cate usage of some specific dataset/hyper-parameter at ev-
ery stage.

In this section, we provide an overview of Re:NeRF,
which is displayed in Fig. 4. Given a pre-trained model, we
perform a one-epoch fine-tuning on the model with the same
policy as in the original NeRF model, moving then to the
parameters removal/re-inclusion to determine the subset VW
of parameters belonging to the model. Every time we per-
form a step of parameter removal, we follow the steps as in
Algorithm 1. In particular, we are asked a subset of parame-
ters to belong to the model W4 and two hyper-parameters
v € [0;1] and 6 € [0;1]: while v determines how many
parameters are (tentatively) removed after every step, J de-
termines how many parameters are (eventually) added back.
Hence, we distinguish two phases for Re:NeRF: one (RE-
MOVE) splits the model parameters into those dropping
below or staying above a given threshold (line 3), and the
other (RE-INCLUDE) re-includes the tentatively removed
parameters that have both high derivative and are neighbors
of other parameters in the model. This will favor lower loss
(line 5). In particular, the latter might need to be run mul-
tiple times, every time at least one parameter is re-included
(line 22). This is necessary as, every time a new parameter
is added to W, the neighbor test as in line 27 potentially
gives a different outcome.

We iterate over this until the performance does not drop be-
low some pre-fixed performance threshold AT (from the
original performance): when this happens, we end our train-
ing process. In order to save the model, the state dictionary
is first quantized on 8-bits with a uniform quantizer and suc-
cessively compressed using LZMA.

In the next section, we are going to present the results ob-

tained on some common benchmarks for NeRFs.

4. Results

In this section, we present the empirical results obtained
on state-of-the-art datasets and three different EVG-NeRF
approaches, on top of which Re:NeRF has been executed in
order to reduce the storage memory. For all the experiments
the models have been pre-trained using the hyper-parameter
setup indicated in the respective original work. As a com-
mon stop criterion, we impose a maximum worsening in
performance AT of 1dB on the original model’s PSNR.
All the other hyper-parameters have been optimized using
a grid-search algorithm. Although every technique requires
a specific CUDA and PyTorch version, the Re:NeRF code
is compatible with pytorch 1.12 and back-compatible with
PyTorch 1.6. For all the experiments an NVIDIA A40
equipped with 40 GB has been used.!

4.1. Setup

Datasets. We have evaluated our approach on four
datasets. Synthetic-NeRF [25] and Synthetic-NSVF [22]
are two popular datasets, containing 8 different realistic ob-
jects each, which are synthesized from NeRF (chair, drums,
ficus, hotdog, lego, materials, mic and ship) and NSVF
(bike, lifestyle, palace, robot, spaceship, steamtrain, toad
and wineholder), respectively. For both, the image res-
olution has been set up to 800 x 800 pixels, having 100
views for training, 100 for validation, and 100 for testing.
The third dataset we have tested is Tanks&Temples [15]:
our choice fell on this dataset as it is a collection of real-
world images. Here we use a subset of the provided sam-
ples (namely: ignatius, truck, barn, caterpillar and fam-
ily). We use here FullHD resolution, and we use also in
this case 10% of the images used for validation and 10%
for testing. Finally, the fourth dataset we we run our ex-
periments is LLFF-NeRF [24]. Differently from the other
three datasets, this datasets contains realistic images, and
non blank background. Each scene consists of 20 to 60
forward-facing images with resolution 1008 x 756. In this
case, we have used all the 8 available samples (fern, flower,
fortress, horns, leaves, orchids, room and trex).
Architectures and compressibility configuration. We
have tested Re:NeRF on three very different EVG-NeRF
approaches: DVGO [34], TensoRF [3] and Plenoxels [8].2
DVGO models are trained using the same configuration
as in the paper, in the 160 voxel grid size configura-

IThe source code is available at https://github.com/
enzotarta/re-nerf.

2 Although Plenoxels is a method for learning radiance fields and does
not have any “neural network”, it still leverages the same optimization
tools. We include it in our experimental setup to show the even broader
adaptability of Re:NeRF to any approach minimizing a differentiable loss
function.
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Table 1: Results obtained on low compressibility regime (LOW) and high compressibility (HIGH). The first line indicates
the baseline. In every dataset, the various metrics are averaged for the samples in them.

Synthetic-NeRF Synthetic-NSVF Tanks&Temples LLFF-NeRF

Approach Compress PSNR SSIM  Size PSNR SSIM  Size PSNR SSIM  Size PSNR SSIM  Size
[dBI() ()  [MBI) [dBI(H) (P [MBI) [dBI(H (O  [MBI) [BIH) (1)  [MBIU)
NSVF [22] - 31.74 0953 ~ 16 35.13 0979 ~16 28.40  0.900 ~16 - - -
Instant-NGP [26] - 33.04 0934 28.64 36.11  0.966 46.09 28.81 0917 46.09 20.18  0.662 46.09
- 31.92 0957 160.09 3542 0979 104.12 2826 0909  106.48 - - -
DVGO [34] LOW 31.47  0.952 3.99 3529 0974 4.37 28.22 0910 4.69 - - -
HIGH 31.08  0.944 2.00 3490  0.969 2.46 2790  0.894 1.62 - - -
- 33.14  0.963 69.26 36.52  0.982 69.05 28.56  0.920 64.04 26.73  0.839  151.79
TensoRF [3] LOW 33.26  0.962 11.47 36.44  0.982 11.60 28.50 0916 9.99 26.80  0.820 32.34
HIGH 32.81  0.956 7.94 36.14 0978 8.52 28.24  0.907 6.70 26.55  0.797 20.27
- 3148 0956  189.08 - - - 27.37 0904 147.96 2590  0.838 1484.96
Plenoxels [8] LOW 31.52  0.952 91.77 - - - 27.66 0909  102.26 26.24  0.838  457.23
HIGH 3097  0.944 54.68 - - - 27.34  0.896 85.47 2595 0.828  338.02

oo

e
JwJ:'J:

(a) Ground truth. (b) TensoRF (baseline). (c) TensoRF low compress. (d) TensoRF high compress.

Figure 5: Qualitative results for “lego” (top), “mic” (middle) and “fern” (bottom).

tion. TensoRF models were obtained with their default 192- 4.2. Discussion
VM configuration, which factorizes tensors into 192 low-
rank components and optimizes the model for 30k steps.
Plenoxel models have obtained training first on 1283 grid,
up-sampled to 2563, and finally to 5123. For all the archi-
tectures and datasets we have used v = 0.5 and § = 0.5, ex-

cept for Plenoxel trained on the Synthetic-NeRF and LLFF-

All the results are reported in Table 1. Here the “LOW”
compressibility refers to compressibility achieved with the
best PSNR evaluated on the validation set, while “HIGH”
refers to the model achieved right before reaching the stop
criterion (which consists of a worsening of the original per-

NeRF datasets, where v = 0.66 has been used. For a mat-
ter of comparison with other efficiencing approaches, we
compare our results also with NSVF [22] and with Instant-
NGP [26].

formance of at most 1dB on the original PSNR). Some qual-
itative results are also displayed in Fig. 5.

In general, we observe that Re:NeRF effectively reduces
the size of the models in all the combinations of tested
datasets/EVG-NeRFs, with different impacts depending on
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the EVG-NeRF it is applied. In general, the approach hav-
ing higher average sizes while also having slightly worse
performance is Plenoxels [8], which is an EVG approach
with no neural elements in it. Nevertheless, Re:NeRF 1is
able to compress it effectively. In particular, in the low
compressibility setup, the performance is improved with an
overall size reduction. DVGO [34], consisting of a voxel
grid and of an MLP component, is massive, achieving for
example compression ratios of 80x for Synthetic-NeRF and
65x within the 1dB performance loss. The approach gener-
ally achieving better performance is TensoRF [3], where the
low compression setup maintains almost the same perfor-
mance still enabling 6 x compression. When compared to
DVGO, TensoRF occupies less memory as it relies on fac-
torized neural radiance fields in the 4D voxel grid, namely
it is by design more efficient at training time, and of course
in order to maintain such a higher performance the possi-
ble compressibility of the model is relatively limited. When
compared with other approaches, we observe in general a
significant improvement in performance for similar model’s
size (LLFF-NeRF) or a significantly lower memory for sim-
ilar performance (in the other three cases).

4.3. Ablation study

In this section, we propose the ablation study for
Re:NeRF. In particular, we want to evidence the single
contributions of the proposed technique, emphasizing their
effect. Towards this end, we have conducted experi-
ments on “Mic” from the Synthetic-NeRF dataset and used
DVGO [34] as the EVG-NeRF approach. The summary for
the ablation study is enclosed in Table 2. All the measures
here proposed are averaged on 3 different runs.

Remove all the layers or a subset of them? Consider-
ing the heterogeneity of the layers in the EVG-NeRF ap-
proaches, it is not straightforward that removing parame-
ters from all the layers is the best approach. Indeed, we
observe that focusing on the layers with explicit voxel rep-
resentation (indicated as “Voxel”) leads to a similar PSNR
as the baseline (33.19 dB) with a very high size reduction
(from 67.69MB to 7.02MB). Focusing on all the layers of
the model, as it would be done in a generic model pruning
scheme [12, 38, 7] leads to a very high drop in performance
(26.72dB, namely -6.42dB when compared to the baseline).
This shows how important it is to focus on voxels and de-
signing specific solutions rather than relying on generic ap-
proaches.

Re-including helps. The proposed strategy needs a “bal-
ancing” for the voxel removal phase, which can be ex-
treme. Towards this end, re-including come removed vox-
els slightly increases the size of the model, which however
turns into performance recovery. In particular, by adding
just 0.10MB we gain 0.07dB: please notice that the base-
line PSNR is lower than the achieved performance with

remove+re-include. This phenomenon is even more evident
in the high compressibility regime, where we gain approxi-
mately 2dB with just 0.16MB added.

Effect of quantization. In traditional NeRF models quan-
tizing is a delicate process, requiring non-uniform, custom
quantization strategies [30]. In our case, however, quantiz-
ing on 8 bits maintains the performance to high PSNR val-
ues (losing 0.16 dB without additional fine-tuning) but sig-
nificantly reduces the size of the compressed model (from
7.12MB to 1.48MB). This is very evident in the high com-
pressibility result, where we move from 1.24MB to 0.34MB
only.

4.4. A deeper view on Re:NeRF’s effect

As a final analysis, we wish to test what happens in
the voxel grid for a baseline model and for the same with
Re:NeRF applied. Fig. 6 visualizes the content of the
density.grid layer for the baseline (up, in red) and for
the compressed one (down, in blue). Looking at the spa-
tial occupancy for the density grid, without Re:NeRF ev-
idently we have a much higher than necessary voxel oc-
cupation (Fig. 6a) which is trimmed to the real object
shape by Re:NeRF (Fig. 6d). Looking at the effective
value of each voxel (here normalized and modeled as trans-
parency) we can easily guess the structure of the object in
the Re:NeRF case (Fig. 6e) while the density is so spread
in the space for the baseline case that the object is almost
impossible to distinguish (Fig. 6b). This has a clear ef-
fect on the distribution of the parameter’s value for the
layer: while in the baseline case we observe very differ-
ent behavior for positive and negative values, making prob-
lems like compression and quantization harder (Fig. 6c),
the distribution tends to be more specular when applying
Re:NeRF (Fig. 6f): this is due to both the suppression of
irrelevant parameters in the model and to the exclusive re-
inclusion of parameters having as neighbors others already
included.

5. Conclusion & future works

In this work we have presented Re:NeRF, an approach to
compress NeRF models that utilizes explicit voxel grid rep-
resentations. This approach removes parameters from the
model, while at the same time ensures not to have a large
drop in performance. This is achieved by a re-inclusion
mechanism, which allows previously removed parameters
that are neighbors of the remaining parameters to be re-
included if they show high gradient loss. Re:NeRF is eas-
ily deployable for any model, having different architecture,
training strategy, or objective function. For this reason,
we have tested its effectiveness on three very different ap-
proaches: DVGO [34], where a part of the model learns
the density and the other maps complex voxel dependencies
with an MLP, TensoRF [3] which learns a 4D grid and per-
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Figure 6: Visualization of the density.grid layer for DVGO [34] trained on “Mic” (Synthetic-NeRF). Up: baseline
model; down: Re:NeRF applied. Here are visualized the non-empty voxels (a, d), their effective value (b, e), and the
distribution of their values, in log scale (c, ). For visualization, the values in (b) have been amplified by a factor 10x.

Table 2: Ablation study conducted on “Mic” from Synthetic-NeRF. The approach used here is DVGO [34]. The first line is

the reference baseline.

LOW compressibility HIGH compressibility
Layers Remove Re-include Quantization PSNR[dB] Size[MB] PSNR[dB] Size[MB]

X X X X 33.15 67.69 - -

All v X X 26.72 6.88 25.09 0.87
Voxels v X X 33.19 7.02 27.67 1.08
Voxels v v X 33.26 7.12 29.54 1.24
Voxels v v v 33.10 1.48 29.41 0.34

forms low-rank decomposition on the radiance fields, and
Plenoxels [8] which optimized the voxel grid directly with
no MLP supporting the learning. These approaches have
been tested on four popular datasets, two synthetic and two
from real images.

In all the cases, Re:NeRF is able to compress the ap-
proaches with compression rates scaling up to 80x. Re-
ducing the storage memory required by these models, de-
signed mainly to improve training and inference time but

sacrificing storage memory when compared to the original
NeRF [25], further emphasizes EVG-NeRF’s benefits and
pushes towards their large-scale deployability in memory-
constrained or bandwidth-limited applications. Interest-
ingly, in a low compressibility setup, the performance is
essentially unharmed, while the model is effectively com-
pressed. This opens the road towards the model’s budget
re-allocation, like efficient ensembling, towards further per-
formance enhancement with specific memory constraints.
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