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Abstract. Deep machine learning models, e.g., image classifier, are in-
creasingly deployed in the wild to provide services to users. Adversaries
are shown capable of stealing the knowledge of these models by sending in-
ference queries and then training substitute models based on query results.
The availability and quality of adversarial query inputs are undoubtedly
crucial in the stealing process. The recent prior art demonstrates the
feasibility of replacing real data by exploring the synthetic adversarial
queries, so called data-free attacks, under strong adversarial assumptions,
i.e., the deployed classier returns not only class labels but also class
probabilities. In this paper, we consider a general adversarial model and
propose an effective data-free stealing algorithm, TandemGAN, which
not only explores synthetic queries but also explicitly exploits the high
quality ones. The core of TandemGAN is composed of (i) substitute
model which imitates the target model through synthetic queries and their
inferred labels; and (ii) a tandem generator consisting of two networks,
Gx and Ge, which first explores the synthetic data space via Gx and then
exploits high-quality examples via Ge to maximize the knowledge transfer
from the target to the substitute model. Our results on four datasets
show that the accuracy of our trained substitute model ranges between
96–67% of the target model and outperforms the existing state-of-the-art
data-free model stealing approach by up to 2.5X.

Keywords: model stealing · data-free · generative adversarial networks.

1 Introduction

Emerging intelligent services, such as Google translate and optical character
recognition [8], are increasingly powered by deep models. Users can access these
services by sending queries via APIs to get outputs, for instance, the class labels
of queried images. While an open access to deployed models greatly eases users’
experience, it opens up vulnerability issues related to model stealing [26, 29,
10]. Adversaries may use such an access to steal the knowledge of the deployed
model and create a copy of it, named substitute model, which can then be used
to do malicious actions, e.g., adversarial attacks [6, 14, 26, 27, 4] or membership

Robert Birke
Authors’ copy of C. Hong, J. Huang, R. Birke, and L. Y. Chen, “Exploring and Exploiting Data-Free Model Stealing,” in European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD), Turin, Italy, 2023.



2 C. Hong et al.

attacks [28]. Several studies design defenses against model stealing [21, 11, 12] ,
but [2] provides theoretical evidence that model extraction is inevitable.

To launch a model stealing attack, the adversary first needs to query the
target model and get the corresponding inference results. For instance, to steal
an image classifier, the adversary sends query images to the deployed classifier
and then receives the predicted class labels. Recognizing the issue of limited
availability of real data, recent studies [26, 10] introduce data-free model stealing
methods, i.e., only using synthetic query images. Generative adversarial networks
(GANs), composed of generator and substitute models, are key to synthesize
queries. Synthetic query quality is paramount to extract knowledge from the
target model. Low quality queries provide little information to train the substitute
model, e.g. low confidence results from the target model leading to small feedback
losses.

Though the existing studies demonstrate the feasibility to steal models in a
(real) data-free way, they are limited in the adversarial assumptions and quality
of synthesised queries. The common adversarial assumption of the prior art [26,
10] is that both predicted class labels and confidence are provided by the target
model. The additional information beyond class labels is crucial for existing
methods to carry out GANs training which can not backpropagate the gradients
simply from the class labels.

Furthermore, the competition between generator and substitute models pushes
the two networks to continuously explore the synthetic data space, but the classic
minmax loss used in training GANs eschews to exploit synthetic examples [3].
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Fig. 1: Average target model confidence
on 1K real data and 1K synthetic data
generated by DFME, DaST, MAZE and
TandemGAN respectively.

As a result the average quality of syn-
thetic queries is low, i.e., target model
has low confidence in classifying syn-
thetic data, and further limits the
knowledge extraction performance in
model stealing. Fig. 1 illustrates the
average prediction confidence of the
target model on real and synthetic
data generated by the state of the
art data-free stealing methods, namely
DFME [26], DaST [29] and MAZE [10].
In this example, the target model is
RestNet34 trained on CIFAR 10 and
the settings of adversaries can be found
in the evaluation section. Shown in the
figure, the existing methods can only generate synthetic queries reaching an aver-
age confidence level of 80% that is 20% lower than the real data and limits its
capacity to extract knowledge.

In this paper, we propose an effective data-free model stealing framework,
TandemGAN, which does not require any real data and considers general adver-
sarial assumptions where queries return label predictions, termed label-only, or
label probabilities, termed probability-only. The core components of Tandem-
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GAN are (i) the substitute model and (ii) the tandem generator consisting of
two networks to explore and exploit the synthesizing space. The substitute model
minimizes the distance loss between its and the target model’s predictions while
the two tandem generator networks jointly synthesize diverse and high confi-
dence query examples which maximize the stealing potential. The first network,
Gx, explores the synthetic data space, whereas the second network Ge exploits
and refines the synthesizing space to produce high-quality synthetic examples
with high target model confidence. In the example of Fig. 4, we demonstrate
more systematically the effectiveness of incorporating exploitation evaluating the
performance of TandemGAN on stealing four deployed classifiers under both
scenarios of label-only and probability-only against SOTA prior art.

The contributions of this paper are: (i) an effective data-free model steal-
ing framework, TandemGAN, which uniquely features joint exploration and
exploitation of synthetic data space and examples; (ii) more general adversarial
scenarios: only class labels are available to the adversary; (iii) extensive evaluation
and comparison against existing SOTA data-free model stealing approaches; and
(iv) remarkable accuracy of the trained substitute models, i.e., reaching 67% up
to 96% accuracy of the target classifiers.

2 Related work

Model stealing aims to distill the knowledge from a deployed (target) model,
specifically, to train a highly similar substitute model [13, 2, 29, 26, 9, 20, 24]. A
successful substitute model is able to obtain the implicit mapping function (or
knowledge, at high level) of the target model via different (simpler) network
structures [10, 20]. Two types of model stealing methods exist depending on
whether the attackers have (partially) access to real training data or not. When
real data is available, knowledge distilling [7, 19] extracts the knowledge of the
target model through its class probabilities and transfers it to a lightweight
substitute model. Without real data attackers can only query the target model
through synthetic examples [18, 13, 29, 10] –a data-free approach.

The core of existing data-free model stealing methods [10, 26, 29] follows the
design principle of GANs –competing generator-substitute networks. A generator
produces synthetic examples to query the target model, T , whereas the substitute
model, S, tries to imitate/steal T via the synthetic query results. The target
model parameters and architecture are unknown. MAZE [10] and DFME [26] rely
on a gradient approximation [22] to train their generator. DFME and MAZE can
not be applied to scenarios where the target model provides only inference labels,
Furthermore, DaST [29] regards the output of the target model as a constant
vector forgoing the need for gradient approximation. Aforementioned studies
explore the general synthesizing space, overlooking the option of exploitation.
The features of different data-free model stealing methods are summarized in
Tab. 1.
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Table 1: Existing data-free model stealing methods.
Method Probability-only Label-only Exploration Exploitation

MAZE [10] ✓ ✗ ✓ ✗
DFME [26] ✓ ✗ ✓ ✗
DaST [29] ✓ ✓ ✓ ✗

TandemGAN (ours) ✓ ✓ ✓ ✓

3 Methodology

In this section, we introduce TandemGAN, a data-free model stealing framework
that explores and exploits synthetic queries. Prior to introducing the design of
TandemGAN, we first introduce the adversarial assumptions.
Adversarial assumptions. We consider a realistic deployment setting where
a target classifier3 T is deployed and its parameters and architecture of T are
unknown. The only way to interact with the target model is by sending queries,
e.g., images, and getting the inferred results, for both benign and malicious
adversaries. Furthermore, due to the limitation and difficulty of obtaining real
data, we further assume adversaries have no access to the real data. According to
the format of the inference results, we consider two types of adversarial scenarios:
(i) label-only scenario: T only provides a label prediction for each query without
any additional information, and (ii) probability-only scenario: T returns the class
probabilities instead.

3.1 TandemGAN framework
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Fig. 2: TandemGAN framework: data-free model stealing process.

3 TandemGAN can be extended to other model types but here we only discuss
classification tasks.
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We propose TandemGAN to steal the knowledge from T and train an
accurate substitute model S, shown in Fig 2. S can be regarded as a clone
of T but with a different network architecture. Different from related work
TandemGAN leverages a tandem generator which generates synthetic queries 4

with high classification confidence. Specifically, the generating process includes
two networks, one network for exploring the new areas of the synthetic data
space and one network for exploiting a particular space to generate high-quality
synthetic queries. In Fig. 3, we illustrate the projected synthesizing space of
TandemGAN on CIFAR10, the exploration points randomly scatter, whereas
the exploitation points center around some exploration points. Note that we
apply UMAP [16] to reduce the data dimension for visualization.

exploit

Fig. 3: Exploration and exploitation of TandemGAN in projected 2D space.

Preliminary. In the data-free model stealing, a generator G is fed a noise
vector z as seed to generate a synthetic example x = G(z) to query T and obtain
T (x). We assume T to be a model for classification task with N classes. Depending
on the context, T (x) is either the predicted probability vector (probability-only)
or predicted one-hot encoded label (label-only) for input x and Ti(x) denotes the
i-th (i = 1, ..., N) class output. Similarly, we use S(x) to denote the probability
output of the substitute model S for input x.

Algorithm architecture. Fig. 2 shows the architecture of our proposed
model stealing framework, TandemGAN. The key components are the substitute
model S, and the tandem generator, G(z) = Ge(Gx(z)), comprising Gx and Ge.
G generates synthetic queries that explore the synthetic data space via Gx and
exploit a particular generation space via Ge. We use θS , θGx

and θGe
to denote

the model parameters of S, Gx and Ge, respectively.
During model stealing, a noise vector z is fed into G to produce a synthetic

example x via Gx and Ge. Gx transforms z into a latent code Gx(z) while Ge

generates the query, e.g. image, from the latent code x = Ge(Gx(z)). x is used to
query T and get the prediction T (x). Next, x associated with T (x) is used to
train S. When training S, we minimize the distance measure to maximize the
4 We refer the data sample sent to the target model as a query. In case of querying via

synthetic data sample, we abbreviate it as a synthetic query.
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agreement between S and T . Besides training S, we separately train Gx and Ge

according to the outputs T (x) and S(x). Since Gx is designed to explore new
areas of the data generating space which can provide new knowledge to train S,
we employ the design idea of GANs – a minmax optimization to train Gx and S
jointly.

Hence to train Gx, we optimize the model parameters θGx
to maximize the

distance measure between T (x) and S(x). Ge is responsible to refine the new area
searched by Gx to generate high-quality synthetic queries. The objective of Ge thus
needs to be aligned with the definition of query quality. Following the risk analysis
of knowledge distillation [17], we define the optimization objective of Ge according
to effectiveness of knowledge extraction, i.e., maximizing the confidence of the
target model in predicting synthetic queries. Other possible definitions by active
learning [1] are discussed in Sec. 5. As a result G simultaneously explores and
exploits the synthetic data space to find diverse and highly informative examples
which maximize the knowledge transfer to S. The optimization objectives of S,
Gx and Ge are detailed in the following.

3.2 Optimization objectives and training procedure

Optimization objective of S. Since S is a substitute of T , their outputs are
expected to be as similar as possible. Inspired by knowledge distillation [7], S
imitates the outputs of T through the loss of distance measure. The loss function
of S over a query example x is as follows:

LS = D(T (x),S(x)), (1)

where D(·) denotes the distance measure for loss, e.g., L1-Norm or cross-entropy.
L1-Norm provides a stronger feedback than cross-entropy. This fits well the
probability-only scenario where the loss inputs are the class probabilities. When
working with the more limited scenario of label-only, the L1-Norm would require
the output of the two models to be identical which is an aggressive condition
given that only a one-hot output is provided rather than the full distribution on
all classes. Thus, cross-entropy is applied for label-only. After training S, we can
steal the knowledge of T because S learns the mapping of T .

Optimization objective of Gx. We incorporate Gx to diversify the latent
codes fed to Ge and generate queries in new areas of the data space. Gx aims at
making S(x) as different as possible from T (x). This is the opposite training
objective of S. Thus, we formulate the loss of Gx as:

LGx
= −LS = −D(T (x),S(x)), where x = Ge(Gx(z)). (2)

By this means, Gx ensures that S is trained by a broad spectrum of diverse
synthetic queries in data space to prevent model collapse or degenerated cases.
It should be noted that although T (x) can not be differentiated directly via
backpropagation (since its network parameters are unavailable), it is possible to
apply gradient approximation (details below) under probability-only scenario. On



Exploring and Exploiting Data-Free Model Stealing 7

the other hand, under label-only scenario, the output of the target model is the
class label and it is a non-differentiable constant.

Optimization objective of Ge. We incorporate Ge to generate high quality
queries around a latent space explored by Gx. We derive the loss function of Ge

inspired by the risk analysis of knowledge distillation [17]. We aim to achieve
high quality T so as to better teach S. Specifically, the quality of the probability
estimate of T can be measured by log-loss and calibration error [5], the lower the
better. Inspired by this observation, for minimizing the log-loss (or calibration
error) on the outputs T (x), in our model stealing process, the inference confidence
of x, i.e., the biggest element of T (x), is expected to be high. Consequently, the
objective of Ge is to generate a synthetic query x that maximizes the confidence
over model T . We thus define high-quality queries as ones with high inference
confidence on T . Then, we define the loss function of Ge as:

LGe
= −{log Tk(x) | ∀j : Tj(x) ≤ Tk(x)} , where x = Ge(Gx(z)). (3)

With this loss, for an input example x = Ge(Gx(z)), we maximize the value of the
k-th element of T (x) where k is the index of the biggest element. For probability-
only, calculating Eq. (3) relies on gradient approximation (details below). For
label-only, T (x) is a constant (one-hot label) and gradient approximation is not
applicable because one can not obtain its directional derivative. Thus, we use
S(x) to approximate T (x) since S(x) gradually approaches T (x) during training.
Hence, updating Ge only needs the gradient of S which fits the label-only scenario.

Gradient approximation. Training the generator G requires the gradient
∇θgL where L has two arguments T (x) and S(x). However, T is not differentiable
in our black-box setting as its model parameters are unknown. Therefore we
cannot obtain ∇θgL without ∇θgT (G(z)). To address this challenge, we apply
gradient approximation [26] to approximate ∇θgL. Given

∇θgL =
∂L
∂θg

=
∂L
∂x

× ∂x

∂θg
,

the second term can be computed because G is differentiable with known param-
eters. Thus, we only need to approximate ∂L

∂x . This can be done by the forward
differences method [22]. It approximates the gradient of a function at a point by
computing directional derivatives along some random directions. For a synthetic
example x ∈ Rd, the approximate gradient is:

∇̂xL (x) =
1

M

M∑
j=1

L (x+ ϵuj)− L(x)
ϵ

uj

where uj is a random direction (a d-dimensional unit vector) and M is the
number of directions used for the approximation. ϵ is a small step size in the
direction of uj . The approximate value becomes more precise when M increases.
For TandemGAN, gradient approximation is used to optimize both Gx and Ge

under probability-only scenario.
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Algorithm 1 TandemGAN
Input: nx, ne, ns, µx, µe and µs

In the following, z ∼ N (0, 1)
for number of rounds do

for i = 1, ..., nx do // explore the data space
1 Get T (x) and S(x), x = Ge(Gx(z))

if probability-only then
2 LGx(x) = −∥T (x)− S(x)∥1
3 else
4 LGx(x) = −CE(T (x),S(x))
5 θGx ← θGx − µx∇θGx

LGx(x)

6 for j = 1, ..., ne do // exploit the data space
7 Get T (x) and S(x), x = Ge(Gx(z))

Compute LGe(x) // see Eq. (3) for the loss calculation
θGe ← θGe − µe∇θGe

LGe(x)

8 for j = 1, ..., ns do
9 Get T (x) and S(x), x = Ge(Gx(z))

if probability-only then
10 LS(x) = ∥T (x)− S(x)∥1
11 else
12 LS(x) = CE(T (x),S(x))
13 θS ← θS − µs∇θSLS(x)

Result: The trained S

Stealing algorithm Algorithm 1 shows the training process. In each round,
there are two stages, exploration (line 1-5) and exploitation (line 6-7). In explo-
ration, G and S are playing a min-max game just like GANs. By the game, Gx

is updated to explore a new area in the latent space of Ge. In exploitation, Ge

exploits the area and produces synthetic examples to train S. After the exploita-
tion, we sample multiple examples for updating the substitute model S (line
8-13).

To fine-tune the balance between exploration and exploitation in each round,
each training stage of the tandem generator is repeated nx and ne times, re-
spectively. The optimization goal of Gx is opposite to S. If the exploration is
too aggressive, the training of S diverges. If the exploration is too conservative,
S can collapse to a bad local optima because of the limited area searched in
the latent space during training. After training Ge, S needs enough updates to
extract knowledge from T .

4 Evaluation

In this section, we comprehensively evaluate the model stealing performance via
the accuracy of the substitute model. We compare TandemGAN with state-
of-the-art data-free model stealing approaches and conduct an ablation study
to verify the effectiveness of exploration and exploitation, and the impact of
different substitute model architectures.
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Table 2: Comparison of the Substitute model Acc(uracy) under DaST, MAZE,
DFME, and TandemGAN. Arch. stands for model architecture.

T arget S Label-only Probability-only
Dataset Acc. Arch. Arch. DaST TandemGAN MAZE DFME DaST TandemGAN

MNIST 99.51 VGG16 VGG11 83.98 91.30 95.13 90.22 90.16 95.95
F-MNIST 93.09 VGG16 VGG11 43.00 72.15 41.63 48.43 44.43 79.96

SVHN 94.96 ResNet34 VGG11 58.39 62.41 52.60 50.62 55.69 68.80
CIFAR10 90.71 ResNet34 VGG11 21.28 29.58 58.67 54.79 29.81 75.81

Datasets and model structures. We evaluate our proposed method on four
benchmark datasets: MNIST, Fashion-MNIST (F-MNIST), SVHN and CIFAR10.
For MNIST and F-MNIST, we use VGG16 for the target model and ResNet34 for
SVHN and CIFAR10. For the substitute model, we apply VGG11 for every dataset
so that comparisons on the same/different network architecture(s) family between
S and T are possible. However, for each baseline approach and TandemGAN,
we use the same target and substitute models to guarantee a fair comparison.
Finally, TandemGAN uses a two convolutional layers network for Gx and a one
convolutional layer network for Ge.

Evaluation criteria. The goal of our data-free model stealing is to achieve
high classification accuracy on substitute model. We also compare the conver-
gence process of TandemGAN with the baseline models to show the learning
performance. For evaluating the attack efficiency, we also show the accuracy of
the substitute model on different number of queries during model stealing.

Experiment settings. The networks S, Gx and Ge are trained with a
batch size of 256. We apply RMSprop as the optimizer for all the networks.
The recommended learning rates for S, Gx and Ge are 0.001, 10−5 and 10−6

respectively. Gx has two convolutional layers and Ge has one convolutional layer.
We apply batch normalization after each convolutional layer on the generator.
For gradient approximation, we set the number of random directions M to be 1
and choose the step size ϵ = 0.001. To balance the training of S, Gx and Ge, we
let ns = 5, nx ∈ {1, 3, 5} and ne ∈ {1, 3, 5} for all experiments. We implement
our method using pytorch. Intel Xeon E3-1200 CPUs and Nvidia GeForce RTX
2080 Ti GPUs are utilized to run the experiments. The code of our method will
be released should the paper be accepted.

4.1 Model stealing performance

Model stealing accuracy. We evaluate the accuracy of model stealing results
compared to the DaST, MAZE and DFME, for both label-only and probability-
only scenarios, and the original target model. Tab. 2 and Fig. 4 summarize the
results. Here we use VGG11 as substitute model. This is more challenging for
SVHN and CIFAR10 since the target model is ResNet34, differing significantly in
neural network architecture family. The accuracy of the target model represents
the upper bound accuracy for the substitute model. It should be noted that
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MAZE and DFME are only used on probability-only scenario since they require
the additional information on class probabilities. We further note that DaST,
MAZE, DFME and TandemGAN generate synthetic data per training iteration
for generator or substitute model in different ways and different order. For a fair
comparison, we report the accuracy under same number of queries.

Tab. 2 shows that TandemGAN achieves the highest accuracy among all
datasets and inference scenarios. The accuracy of TandemGAN’s substitute
models trails behind the target models by margins of 4 to 32%, except for
CIFAR10 under the label-only case. In other words, TandemGAN can achieve
roughly 96 to 67% of the accuracy of the target model for a given dataset and
inference scenario. The substitute model accuracy of TandemGAN is consistently
and significantly higher than DaST, MAZE and DFME, showing an accuracy
improvement up to 67% for the challenging label-only scenario, and up to 250%
for the probability-only scenario.

Comparing probability-only to label-only, the accuracy of substitute models is
higher for any given stealing method that is applicable to both scenarios. This is
due to the fact that probability-only provides more inference information about
the target model and we do not need to use S to approximate T . For label-only
scenarios, the accuracy of the substitute model trained by TandemGAN on
MNIST surpasses 90% with a less than 10 percent points gap to the target
model. This strongly demonstrates the effectiveness of TandemGAN. Owing
to the increasing task difficulty, for F-MNIST, SVHN and CIFAR10, the steal-
ing performance of TandemGAN drops. Even so the accuracy of the trained
substitute models is still more than half of the target models (except CIFAR10),
and 1.67x, 1.06x and 1.39x the accuracy achieved by DaST. For probability-only
scenarios, the additional information provided by the class probabilities improves
the accuracy of the substitute models. DFME outperforms MAZE and DaST on
F-MNIST. MAZE outperforms DFME and DaST on MNIST and CIFAR10. DaST
is better on SVHN. However, TandemGAN outperforms all. More impressive,
TandemGAN achieves results close to the target model. The gap is limited from
3 to 26 percent points.

Model stealing convergence. Fig. 4 shows the evolution of the substitute
model accuracy across the number of queries to the target model. For DaST, we
can see that for all cases the accuracy fluctuates and does not converge at a good
local optima during the entire training.Sometimes the accuracy does not even
show an increasing trend, for instance Fig. 4b, 4f and 4h. Due to the unstable
convergence, another issue with DaST is to choose an appropriate stopping
criteria for training. Further, DaST saves the substitute model at each iteration,
and chooses the one with the highest accuracy to be the final result. We argue
that this is normally infeasible because attackers do not have real data to evaluate
their saved substitute models. It also requires additional resources and efforts
to store and select the best substitute model once the model stealing process
ends. This further leads to the unstable training process of DaST. For MAZE
and DFME, the convergence has no significant oscillation. The convergence of
TandemGAN is almost monotonic. The accuracy increases smoothly during the
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Fig. 4: The convergence of accuracy of substitute models during training.
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whole training, and converges to local optima at around 2M queries for MNIST
and SVHN, and 4M for F-MNIST respectively. For CIFAR10, label-only scenario
requires 6M queries while it takes around 13M for probability-only scenario. The
reason behind the different number of queries is that label-only scenario provides
limited information which cannot improve the accuracy even with increased
queries for this relatively difficult task. This observation also implies that less
information provided by the target model may serve as the short board for
challenging tasks to apply model stealing attack.

Inherited from GANs, the generator design of DaST, MAZE and DFME only
contains exploration to train the generator and substitute model in a min-max
game. In TandemGAN, besides Gx to search for new space areas which generate
diverse data examples, the tandem generator also contains Ge to exploit the
latent code generated by Gx, fine-tuning the task-specific data properties to train
S for model stealing. Benefiting from both exploration and exploitation, our
synthetic data captures the real data training scenarios better, resulting in stable
convergence towards a good local optima.

4.2 Ablation study

Table 3: Ablation study for exploration
and exploitation.

Ablation TandemGAN

main results 75.81

w/o exploration 60.74
w/o exploitation 67.23

Table 4: Analysis for different substitute
model architectures.

Architecture TandemGAN

VGG11 75.81

ResNet18 84.70
AlexNet 23.25

Importance of both exploring and exploiting. In previous sections
we highlight the advantages to additionally exploit, and not only explore, the
synthetic examples. To quantify the benefits of either phase, we present an
ablation study using VGG11 as S for CIFAR10 where TandemGAN forgoes
either Gx (w/o exploration) or Ge (w/o exploitation). This is achieved by skipping
the corresponding training phase, i.e. keeping either θGx or θGe fixed. Tab. 3
shows the results. One clearly sees that both exploring the synthetic data space
and exploiting known examples holds the best results. Without exploitation the
accuracy drops by 8 percent. This is in line with the result obtained by DFME
which also performs only exploration (see Tab 2). Without exploration the
accuracy is reduced by 15 percent. This shows that exploration and exploitation
are both important for training a high accuracy substitute model.

Impact of architecture choice. As the neural network architecture is un-
known by the attacker, we evaluate the impact of choosing different architectures
for S Besides VGG11, we try ResNet-18, which is of the same neural network
family of the target model (using ResNet34), as well as AlexNet which is a
simpler CNN [15, 25]. The accuracy of the substitute AlexNet is low, i.e., 23.25%
(see Tab 4). The reason is that AlexNet contains 5 convolutional layers and 3
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Table 5: Comparison of the Substitute model Acc(uracy) under DaST, MAZE,
DFME, and TandemGAN. Arch. stands for model architecture.

T arget S Label-only Probability-only
Dataset Acc. Arch. Arch. Public Samples TandemGAN Public Samples TandemGAN

F-MNIST 93.09 VGG16 VGG11 37.08 72.15 32.06 79.96
CIFAR10 90.71 ResNet34 VGG11 15.45 29.58 14.01 75.81

fully connected layers which is too shallow to train on CIFAR10. Choosing a
suitable task-specific substitute model architecture is crucial.ResNet18 achieves
the highest accuracy. While ResNet18 is able to achieve slightly better accuracy
than VGG11 on CIFAR10, i.e. 92.36% against 91.6%, we impute the performance
gap of 9 percent points mainly to the sharing of the same neural network family
between S and T . Since the exact architecture of T is unknown to attackers we
choose VGG11 for our main results. Using VGG11 we can better verify broadly
the effectiveness and generality of TandemGAN.

Stealing the target using publicly available data samples. It is possible
to query a target model and steal it using publicly available data samples (E.g.,
MNIST samples etc), when the real training dataset of the target model is
unknown. To study the effectiveness of directly using publicly available data
samples for model stealing, in the following, we apply MNIST samples to steal a
F-MNIST target model and use SVHN samples to steal a CIFAR10 target model.
The results are shown in Tab. 5. We can see that TandemGAN significantly
outperforms the baseline which directly uses public samples for querying. Besides,
comparing to Tab. 2, DaST, MAZE and DFME also outperform the baseline.
Directly using public data samples to query cannot effectively and efficiently
search the input data space of the target model, especially when the model and
the task are complicated e.g., the CIFAR10 target. It also cannot utilize the
inference feedback from the target to adjust the stealing process. That’s why it
is much worse than DaST, MAZE, DFME and TandemGAN which apply data
sample generators for data space searching. In a data-free scenario, it is important
to design a good data space searching strategy to perform model stealing attacks.

5 Possible extension

In this section, we discuss the possible extension of the proposed algorithm. In
the following, we show some other perspectives of exploitation.

In the methodology part, we derive the optimization objective of Ge from
a statistical observation [17] that the quality of a target (or a teacher) T can
be measured by log-loss and calibration error (the lower the better). Since we
regard the predictions from T as the ground truth labels in model stealing, in
order to minimize the log-loss (or calibration error) on T we aim to increase the
inference confidence of each data example x. Then we define the loss (see Eq. (3))
according to this motivation. From the statistical perspective, the high-quality
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examples produced by exploitation are defined as examples with high inference
confidence on T . Actually, it is possible to extend TandemGAN by designing
the optimization objective of Ge from other perspectives.

From active learning [23] perspectives, T can be seen as an oracle or a expert
who can provide ground truth labels for unlabeled examples. In order to train
S, we need examples to query T and get the predictions. For efficiently and
effectively querying T , we need query strategies to select informative examples
(high-quality examples). Therefore the query strategies, e.g., variance reduction,
entropy sampling and margin sampling etc, of active learning can be utilized to
define high-quality examples and design the optimization objective of Ge.

If attackers know some prior information about the training data space of
T , e.g., data distribution, we can also consider the information when designing
the loss of Ge. In this case, Ge can be utilized to ensure that the data examples
are sampled from the prior distribution. A special case is to consider the class
balance of the generated examples when training Ge.

6 Conclusion

It is challenging to design adversarial attacks without knowing the target model
parameters nor having access to real-world data. In this paper, we propose a
novel and effective data-free model stealing framework, TandemGAN, consisting
of substitute model and a tandem generator networks, which aims to steal the
knowledge of the target model by synthetic queries. Beyond the state of the art,
we not only consider a general adversarial scenario with only the availability
of predicted class labels only but also design a steal optimization algorithm to
explore and exploit synthetic queries generation. We empirically demonstrate
that TandemGAN effectively steals the target model using a small number of
queries for four datasets. Under various adversarial scenarios, we show that the
model stolen through TandemGAN achieves up to 2.5 times higher accuracy
than state-of-the-art data-free model stealing attacks, and its accuracy is as high
as the 96− 67% of target model.
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