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Abstract

Background

Autism spectrum disorder (ASD) is a set of developmental conditions with widespread

neuroanatomical abnormalities and a strong genetic basis. Although neuroimaging studies

have indicated anatomical changes in grey matter (GM) morphometry, their associations

with gene expression remain elusive.

Methods

Here, we aim to understand how gene expression correlates with neuroanatomical atypicali-

ties in ASD. To do so, we performed a coordinate-based meta-analysis to determine the

common GM variation pattern in the autistic brain. From the Allen Human Brain Atlas, we

selected eight genes from the SHANK, NRXN, NLGN family and MECP2, which have been

implicated with ASD, particularly in regards to altered synaptic transmission and plasticity.

The gene expression maps for each gene were built. We then assessed the correlation

between the gene expression maps and the GM alteration maps. Lastly, we projected the

obtained clusters of GM alteration-gene correlations on top of the canonical resting state

networks, in order to provide a functional characterization of the structural evidence.

Results

We found that gene expression of most genes correlated with GM alteration (both increase

and decrease) in regions located in the default mode network. Decreased GM was also cor-

related with gene expression of some ASD genes in areas associated with the dorsal atten-

tion and cerebellar network. Lastly, single genes were found to be significantly correlated

with increased GM in areas located in the somatomotor, limbic and ganglia/thalamus

networks.
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Conclusions

This approach allowed us to combine the well beaten path of genetic and brain imaging in a

novel way, to specifically investigate the relation between gene expression and brain with

structural damage, and individuate genes of potential interest for further investigation in the

functional domain.

Introduction

Autism spectrum disorder (ASD) is a cluster of neurodevelopmental conditions characterized

by impairments in socio-communicative ability, repetitive behaviors, and abnormal sensory

perception [1]. The etiology of ASD is multifactorial and not comprehensively understood,

with both genetic and environmental factors playing a role [2, 3].

In the last decade, research in the genetic component of ASD has been fruitful, with hun-

dreds of genes having been identified as associated with the disorder [4]. Moreover, anomalies

at the level of the synapse have been identified since long ago as one of the main underlying

mechanisms of ASD [5, 6], as well as related to abnormal brain connectivity between neuronal

subpopulations and systems [7]. As individuated in a review by Guang and colleagues [5], as

well as in a transcriptomic analysis by He and colleagues [6], SHANK3, SHANK1, SHANK2,

NLGN3, NGLN4X, MECP2, and CNTNAP2 genes are of particular interest for ASD research

due to their role in synaptic formation, maintenance, and transmission. Specifically, the

SHANK family encodes for essential scaffold proteins in the postsynaptic density of excitatory

synapses [8], with mutations leading to altered levels of postsynaptic density proteins, synapse

morphology, and excitatory transmission [8–11]. NLGN3 and NLGN4X encode for postsyn-

aptic cell adhesion proteins, with NLGN3’s mutations having been reported to increase inhibi-

tory transmission and NLGN4X to cause altered excitatory transmission [12–14]. Moreover,

defects in NLGN3 and NLGN4X have been reported to lead to impaired synaptogenesis [12].

Presynaptic cell adhesion protein NRXN1’s role in synaptic disruption has been attributed to

altered Ca2+ entry at the synapse thus impairing neurotransmitter release [5]. Dysfunction in

CNTNAP2 has been linked to impaired axonal growth and reduced dendritic arborisation of

inhibitory interneurons as well as impaired synaptic transmission [15, 16]. MECP2 encodes

for a regulator of chromatin remodeling mostly responsible for silencing gene expression, with

deficiencies in the gene expression having been reported to induce decreased excitatory trans-

mission due to a decrease in synapse plasticity and number [17, 18].

The autistic brain has been studied extensively with various approaches, from cellular reso-

lution to whole-brain imaging. One such technique is voxel-based morphometry (VBM) [19],

which allows to quantify regional neuroanatomical differences in volume/concentration in

individuals with ASD compared to typically developing controls (TDCs). Moreover, using

coordinate-based meta-analytic (CBMA) approaches, different authors have identified spa-

tially consistent gray matter (GM) abnormalities across VBM published findings regarding

several ASD groups analyzed worldwide. To note, these abnormal territories tend to encom-

pass a wide set of multimodal, perceptual, subcortical, and cerebellar areas [20–24]. These

important findings notwithstanding, the pathophysiological mechanisms and genetic effects

that underpin atypical GM patterns in ASD remain largely unappreciated. A more compre-

hensive insight into the disease may be given by combining the genetic and neuroimaging

data. In recent years, studies linking genomic variation to neuroimaging meta-analysis are

starting to appear. For example, Grasby and colleagues [25] combined genetic and magnetic

PLOS ONE Linking neuroanatomical abnormalities in ASD with gene expression of candidate ASD genes

PLOS ONE | https://doi.org/10.1371/journal.pone.0277466 November 28, 2022 2 / 20

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0277466


resonance imaging data to link genetic variation to cortical surface area and thickness. The

authors demonstrated that genetic variants associated with brain morphology are also associ-

ated with cognitive function as well as neuropsychiatric diseases [25]. Also, Lau and colleagues

[26] related gradients of gene expression to brain structure and development.

Resting-state functional magnetic resonance imaging (rs-fMRI) [27], a technique able to

estimate the intrinsic activity interactions between brain regions that occur during the rest (i.e.

when no active task is being performed and the brain is not actively engaged), represents

another useful tool to further our understanding of brain disorders [28–32]. A number of rest-

ing-state networks (RSNs) have been identified via rs-fMRI [27]. As suggested by different

studies [33–36], these RSNs reveal patterns of activity that are consistent across subjects and

reproducible across participants and time. In particular, canonical RSNs such as the default

mode network (DMN), salience network (SN), dorsal attention network (DAN), and sensori-

motor network (SMN) were often found to be functionally or anatomically altered in ASD (for

a review on the topic see [37]). Moreover, RSNs are highly inheritable, and influenced by geno-

mic factors [38, 39]. Therefore, RSNs could be a useful perspective to interpret the genetic spa-

tial variation associated with ASD morphological alteration.

In this study, we aim to investigate the relation between brain anatomical alterations and

genetic expression of the following genes: SHANK3, SHANK1, SHANK2, NLGN3, NLGN4X,

MECP2 and CNTNAP2. These genes are selected because of their relation to ASD pathology

and role in synaptic transmission and plasticity [5, 6]. Specifically, we aim to identify the most

consistent brain anatomical alterations in ASD and link these alterations with the correspond-

ing genetic expression. Moreover, we also complement the gene-structure results with a func-

tional interpretation informed by the canonical resting state networks. This choice is motived

by an increasing number of experimental efforts suggesting that the development of neuroana-

tomical alteration patterns in brain disorders are influenced by functional connectivity con-

straints [29–31, 40, 41]. Therefore, we expect to see the neuronal alteration and the selected

genes distributed according to spatial patterns meaningful for brain function and functional

connectivity [29]. What is more, we expect that, when assigning those altered regions to

canonical RSNs, high-order networks typically associated with ASD, such as the DMN, would

be found to be particularly related to our set of genes [42].

Materials and methods

Gene expression data

The genetic expression data were obtained from the Allen Human Brain Atlas (AHBA; https://

human.brain-map.org/) [43, 44]. This resource stores anatomical and histological data

(including the RNA microarray data used in this study) collected from six healthy human

specimens with no known neurological disease history (one female; age range = 24–57 years;

mean age = 42.5 years). Two specimens contain data from the entire brain, whereas the

remaining four include data from the left hemisphere only. The microarray analysis was origi-

nally performed as follows: the brains tissues were partitioned into smaller blocks according to

their anatomical roles (i.e. if they were cortical or subcortical structures). A minimum amount

of tissue was collected from each block and subsequently processed for mRNA isolation.

Microarray analysis was carried out by a third-company party (Beckman Coulter Genomics).

The data were then normalized to be included in the Atlas [45].

Microarray data were extracted from the AHBA using the Allen Software Development Kit

[43]. We thus obtained gene expression data for specific brain locations that we labeled with

Talairach coordinates for each of the six specimens. For each gene focus we created Voronoi

polygons having the gene expression point as the barycenter using the Voronoi tessellation
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algorithm [46], as done by Torta and colleagues [47]. The Voronoi tessellation is a decomposi-

tion of metric space by distances between sets of points. We assigned to each Voronoi polygon

the same gene expression value as the barycenter. We thus obtained six brain maps for a single

gene—one for each specimen of the AHBA—that we averaged to obtain a single voxel-wise

brain map for each gene. In case of specimens having data only in the left hemisphere, we sup-

posed a symmetry of the data between the two hemispheres, obtaining gene expression for the

whole-brain [29]. For the whole-brain gene expression maps see also S1 Fig.

Voxel-based morphometry data

The VBM data were retrieved from the BrainMap and Medline databases. The BrainMap data-

base is part of the BrainMap Project and currently contains a collection of more than 3000

peer-reviewed VBM experiments [48–51]. Medline is an online database developed by the U.S.

National Library of Medicine, containing more that 26 million published works in the field of

biomedicine. The data from BrainMap were accessed through the Sleuth 2.4 software package

(http://www.brainmap.org/sleuth/). Two standardized search algorithms were employed as

described below to individuate experiments reporting either foci of GM decrease (i.e. neuroan-

atomical hypotrophy; ASD< TDCs) or increase (i.e. neuroanatomical hypertrophy;

ASD> TDCs) in subjects with ASD compared to TDCs:

GM decrease query: [Experiments Contrast is Gray Matter] + [Experiments Context is Disease
Effects] + [Subjects Diagnosis is Autism Spectrum Disorders] + [Experiments Observed
Changes is Controls> Patients];

GM increase query: [Experiments Contrast is Gray Matter] + [Experiments Context is Disease
Effects] + [Subjects Diagnosis is Autism Spectrum Disorders] + [Experiments Observed
Changes is Controls< Patients].

To retrieve eventual articles not stored in the BrainMap database, we also conducted a sys-

tematic search in the Medline database using the PubMed search engine as described below:

(“Autism Spectrum Disorders” [Title/Abstract] OR “ASD” [Title/Abstract] OR “Autism”) AND
(“Voxel-Based Morphometry” [Title/Abstract] OR “VBM” [Title/Abstract]).

The search design adhered to the PRISMA Statement international guidelines [52, 53] (see

also the checklist in the S1 Table). This study was also compliant with the latest guidelines for

the implementation of neuroimaging CBMA [54]. We selected peer-reviewed articles contain-

ing experiments conducted using whole-brain VBM analysis, for which the results were

reported either in Talairach (TAL) or Montreal Neurological Institute (MNI) stereotaxic space

(i.e. x-y-z coordinates). Moreover, the experiments must have reported alteration of GM in

subjects with ASD compared between-group to TDCs. We discarded all the experiments

which were based either on samples of less than 10 participants, or on a region-of-interest

(ROI) analysis [54–56]. Moreover, we minimized potential bias regarding the analysis of over-

lapping ASD populations both within and between published data. In details, in the case of

multiple VBM experiments included in a single article we included only the x-y-z coordinates

coming from those experiments analyzing no redundant subjects with ASD (see also S2

Table). In the case of two or more articles published by the same first author, we evaluated the

presence of the duplicated clinical population and results, including eventually only the first

published paper.

PLOS ONE Linking neuroanatomical abnormalities in ASD with gene expression of candidate ASD genes

PLOS ONE | https://doi.org/10.1371/journal.pone.0277466 November 28, 2022 4 / 20

http://www.brainmap.org/sleuth/
https://doi.org/10.1371/journal.pone.0277466


Resting-state functional networks atlas

To interpret the correlation between the gene expression and the GM alteration maps in a

large-scale networking perspective (details below), the Yeo’s atlas [57] was adopted. Using rest-

ing-state functional magnetic resonance imaging (rs-fMRI) data from 1,000 typically develop-

ing subjects, Yeo and colleagues [56] parcellated the human cerebral cortex in 7 large-scale

functional networks, namely the default mode network (DMN), dorsal attention network

(DAN), somatomotor network (SMN), frontoparietal network (FPN), limbic network, visual

network, and ventral attention/salience network (VAN/SN).

However, since previous CBMAs on ASD also found consistent neuroanatomical abnor-

malities at the level of cerebellum and subcortical nuclei [20–24], two other networks repre-

senting the basal ganglia/thalamus (BG/Thal) and the cerebellum were included in the

analysis. Specifically, the BG/Thal and cerebellar volumes were obtained from the Brainne-

tome Atlas [58].

Anatomical likelihood estimation meta-analysis

To evaluate consistent patterns of GM alteration across the selected VBM experiments, we

used the GingerALE software package (v. 3.0.2; https://www.brainmap.org/ale/), employing

the current version of the anatomical likelihood estimation (ALE) algorithm [59–62]. ALE is a

quantitative coordinate-based meta-analytical method that allows to estimate consistent areas

of neuroanatomical variation across independent experiments. In the ALE analysis, a three-

dimensional Gaussian probability distribution is constructed around every focus of each

experiment. Let Xi denote the ith focus is in a given voxel. The probability the Xi is located at

voxel x-y-z is

p Xið Þ ¼
1

s3

ffiffiffiffiffiffiffiffiffiffiffi

ð2pÞ
3

q e� di
2=2s2

Where di is the Euclidean distance between the voxel and the given focus and the standard

deviation of the gaussian distribution is determined through the full-width half-maximum

(FWHM) as:

s ¼
FWHM
ffiffiffiffiffiffiffiffiffi
8ln2
p

A final ALE map was obtained from the union of all the maps calculated from each experi-

ment [62]. The level of significance was based on a null distribution. A threshold P-value was

derived by a non-parametric permutation test. In this test, n random foci are generated, where

n equals the number of foci in the ALE meta-analysis, and the corresponding ALE values for

these random foci are computed. The set of ALE values calculated form the null distribution of

the statistic. The GingerALE software generates various output images: the thresholded map

with the Monte Carlo procedure, the unthresholded map, the Z map in which the ALE map is

converted in Z-points, and the map of the significant clusters based on the results of the ALE

and the dimension of the clusters, respectively. To note, the cluster map is a logical map in

which each cluster is labeled with a different color and number. This logic map is useful for

later selecting the clusters to analyze.

We carried out two separate ALE analyses to determine the most spatially consistent pat-

terns of GM decrease (i.e. hypotrophy; ASD < TDCs) and increase (i.e. hypertrophy;

ASD> TDCs), respectively, across selected experiments. Since the ALE maps served as input

to a set of network-oriented correlational analyses with their own statistical significance testing
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(details in the next section), we opted for a liberal threshold at this step in order to not miss

any potential areas of converging GM alteration. Therefore, the significance threshold was set

at P-value < 0.05 uncorrected and minimum cluster size = 150 mm3. All coordinates of the

experiments taken in consideration were placed in the Talairach space. Original MNI coordi-

nates were transformed in Talairach space via the icbm2tal algorithm [63].

Correlation between ALE and gene expression maps

We then investigated the relation between GM alteration assessed through the ALE and gene

expression. This was iteratively performed for each cluster of GM alteration, distinguishing

decrease and increase, and for each gene expression map (i.e., cluster1:decrease-SHANK3,

cluster1:increase-SHANK3, cluster1:decrease-SHANK1, etc.). For each cluster in a given alter-

ation-gene expression couple, we calculated the Pearson’s correlation between the ALE values

(converted in z-points) of the voxels inside the cluster and the values of gene expression

(again, in z-points) of the same voxels, applying the Fisher’s r to t transformation. The result-

ing r value was assigned to all the voxels of that cluster. We thus obtained 16 gene-specific

maps, 8 related with GM decrease and 8 related with GM increase.

Next, we wanted to assess if such cluster-wise association varied between RSNs. To do so,

we used the Yeo’s cortical atlas [57] (complemented with regions representing the basal gan-

glia, the thalamus and the cerebellum as explained above [58]), converted in Talairach space

using FLIRT [64, 65]. Each of the previously obtained 16 correlation maps was then projected

onto the RSNs atlas. The correlation coefficients (if different from 0) of the voxels inside each

network were averaged to obtain the network-level mean gene-alteration association. To assess

statistical significance, we used a Monte Carlo method to evaluate if a RSN gene-alteration

association was higher than chance. We randomly permuted the correlation clusters

(N = 10,000), reassigning the value of correlation of each cluster to another one. Then, for each

iteration, we recalculated each network’s mean correlation value, thus obtaining a distribution

of mean correlations for every RSN. We then calculated the significance threshold with a 95%

confidence interval (CI). Genes correlation values falling above the 95% CI were considered to

be statistically significant.

Results

Descriptive overview

Of the initial 517 potential published articles, only 51 fit the inclusion criteria. They included a

total of 80 VBM experiments reporting 541 coordinates of GM alterations, subdivided in 244

decreases and 297 increases, respectively (S2 Fig). A total of 4849 subjects were included, for a

total of 2366 subjects with ASD (372 female; mean age (group range) = 18.3 years (4.4–37.9)

and 2483 TDCs (430 female; mean age (group range) = 17.8 years (4.4.–39.0). Demographic,

methodological, and diagnostic details of the VBM data are shown in S2–S4 Tables,

respectively.

Correlation of decrease clusters

Fig 1 (obtained with BrainNet Viewer [66]) represents a graphical overview of the correlation

value between gene expression and ALE value for each cluster of GM decrease. GM decrease

clusters are located in distributed parts of the brain consistently found by previous CBMAs

[20, 24, 67, 68], including the left posterior insula, around left and right central sulcus, along

the cingulate cortex, in the bilateral medial temporal cortex, in the precuneus and across the
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lateral parietal and occipital cortices. The cerebellum shows several clusters of GM decrease as

well.

Fig 2 illustrates the average correlation between gene expression and decrease ALE value

for each gene and RSN. The correlation values and significance of each gene for each RSN are

reported in Table 1. Although most genes are expressed homogeneously across networks, the

DMN and the DAN make significant exceptions. In the DMN, the genes NLGN4X, NRXN1,

NLGN3, SHANK1, SHANK3, MECP2 and CNTNAP2 seem to be significantly more corre-

lated than chance (p = 0.05; 10,000 permutation runs). Similarly, NRXN1, SHANK3 and

MECP2 have correlation values significantly higher than the null model in the DAN. Also, the

cerebellum has one significantly correlated gene (i.e. NRXN1, r = 0.07).

Correlation of increase clusters

The correlation values between the gene expression and the GM increase ALE values are repre-

sented in Fig 3, while the average correlations of each network for each gene are shown in Fig

4. Here, the lateral prefrontal and temporal cortices are more involved than in the decrease

maps, while the parietal and occipital lobes are relatively preserved. Compared to the GM

decrease maps, the cerebellum seems to be less altered as well. Curiously, the midline cortical

structures of the left hemisphere show several clusters of increases, while their homotopic

Fig 1. Map with the correlation between gene expression and ALE-derived gray matter decrease of each cluster. SMN: Sensorimotor Network,

DAN: Dorsal Attention Network, VAN/SN: Ventral Attention/Salience Network, DMN: Default Mode Network, BG/Thal: Basal Ganglia/Thalamus.

https://doi.org/10.1371/journal.pone.0277466.g001
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Fig 2. Average correlation between genetic expression and gray matter decreases values for each gene and

functional network. The maps are visualized as three-dimensional cortical and cerebellar surfaces. Brain templates are

in neurological convention (i.e. R is right, L is left). Color maps represent the correlation values for each gene

expression selected. Both significant and non-significant values are represented. SMN: Sensorimotor Network, DAN:

Dorsal Attention Network, VAN/SN: Ventral Attention/Salience Network, DMN: Default Mode Network, BG/Thal:

Basal Ganglia/Thalamus.

https://doi.org/10.1371/journal.pone.0277466.g002

Table 1. The correlation value of gene expression related to areas of GM decrease (ASD< TDCs) in Yeo’s [57] and Brainnetome’s [58] resting-state functional

networks.

MECP2 SHANK1 SHANK2 SHANK3 NLGN3 NLGN4X NRXN1 CNTNAP2

Visual 0.07 0.05 0.07 0.01 0.04 0.02 0.01 0.02

SMN 0.01 0.02 0.05 0.05 0.04 0.01 0.09 0.02

DAN 0.09 0.01 0.01 0.03 0.09 0.01 0.12 0.03

VAN/SN 0.10 0.02 0.04 0.05 0.09 0.04 0.06 0.05

Limbic 0.01 0.07 0.05 0.06 0.04 0.01 0.06 0.04

FPN 0.01 0.04 0.05 0.03 0.01 0.08 0.08 0.04

DMN 0.10 0.13 0.02 0.09 0.12 0.10 0.13 0.07

BG/Thal 0.05 0.05 0.10 0.02 0.04 0.01 0.03 0.09

Cerebellum 0.02 0.01 0.06 0.03 0.11 0.02 0.07 0.06

The numbers in bold indicate significant values at p = 0.05 and 10,000 permutation runs. SMN: Sensorimotor Network, DAN: Dorsal Attention Network, VAN/SN:

Ventral Attention/Salience Network, DMN: Default Mode Network, BG/Thal: Basal Ganglia/Thalamus.

https://doi.org/10.1371/journal.pone.0277466.t001
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counterparts display less alterations of the same kind. Apart from these observations, the vari-

ous genes show different local correlations, with no obvious pattern to report.

As can be seen in the radar plot in Fig 4, most genes correlate similarly with the increase

ALE values of the various RSNs, with the exception of the BG/THAL and the cerebellum.

However, such a visible trend is not confirmed by the Monte Carlo procedure. The signifi-

cance of the correlation values is represented in Table 2. Compared to the decreases results,

there are less significant values per RSNs. The cerebellum is not significantly more correlated

to any gene than chance. The discrepancy between the Monte Carlo test and the average cere-

bellar values observed in the radar graph is likely due to the fact that such structure is charac-

terized by only two increase clusters. The networks revealing at least an average correlation

between gene expression and GM increases are the SMN (i.e. NLGN4X, r = 0.06), the limbic

(i.e. NLGN3, r = 0.14), the DMN (i.e. NLGN3, r = 0.06) and BG/Thal (i.e. NLGN3, r = 0.31;

CNTNAP2, r = 0.27). To note, NLGN3 is the only gene significantly correlated with increases

in more than one network, and BG/Thal is the only system presenting more than one signifi-

cant correlation. In any case, it might be worth noting that the DMN is the only functional sys-

tem showing significant values in both states of GM alteration (i.e. decrease and increase),

highlighting a potentially significant role of the network in the pathological structural alter-

ations found in ASD.

Fig 3. Map with the correlation between gene expression and ALE-derived gray matter increase of each cluster. SMN: Sensorimotor Network,

DAN: Dorsal Attention Network, VAN/SN: Ventral Attention/Salience Network, DMN: Default Mode Network, BG/Thal: Basal Ganglia/Thalamus.

https://doi.org/10.1371/journal.pone.0277466.g003
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Fig 4. Average correlation between genetic expression and gray matter increases values for each gene and

functional network. The maps are visualized as three-dimensional cortical and cerebellar surfaces. Brain templates are

in neurological convention (i.e. R is right, L is left). Color maps represent the correlation values for each gene

expression selected. Both significant and non-significant values are represented. SMN: Sensorimotor Network, DAN:

Dorsal Attention Network, VAN/SN: Ventral Attention/Salience Network, DMN: Default Mode Network, BG/Thal:

Basal Ganglia/Thalamus.

https://doi.org/10.1371/journal.pone.0277466.g004

Table 2. The correlation value of gene expression related to areas of GM increase (ASD> TDCs) in Yeo’s [57] and Brainnetome’s [58] resting-state functional

networks.

MECP2 SHANK1 SHANK2 SHANK3 NLGN3 NLGN4X NRXN1 CNTNAP2

Visual 0.01 0.06 0.01 0.04 0.08 0.01 0.11 0.05

SMN 0.03 0.01 0.01 0.07 0.01 0.06 0.04 0.03

DAN 0.08 0.05 0.03 0.11 0.01 0.01 0.09 0.06

VAN/SN 0.06 0.01 0.05 0.04 0.01 0.07 0.01 0.07

Limbic 0.04 0.08 0.05 0.01 0.14 0.03 0.08 0.01

FPN 0.01 0.01 0.04 0.01 0.07 0.01 0.08 0.02

DMN 0.02 0.02 0.03 0.01 0.06 0.01 0.02 0.01

BG/Thal 0.05 0.04 0.15 0.10 0.31 0.05 0.11 0.27
Cerebellum 0.15 0.08 0.20 0.10 0.04 0.04 0.02 0.19

The numbers in bold indicate significant values at p = 0.05 and 10,000 permutation runs. SMN: Sensorimotor Network, DAN: Dorsal Attention Network, VAN/SN:

Ventral Attention/Salience Network, DMN: Default Mode Network, BG/Thal: Basal Ganglia/Thalamus.

https://doi.org/10.1371/journal.pone.0277466.t002
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Discussion

In this study we investigated the relation between genetic and neuroanatomical data in the

autistic brain. Adopting a VBM meta-analytic and functional resting-state network perspec-

tive, we correlated consistent patterns of brain variation with eight gene expressions previously

related with both synaptopathology and ASD.

We found that the DMN-related alteration was significantly correlated with gene expres-

sion of at least one candidate ASD gene in both decrease and increase neuroanatomical analy-

ses. Specifically, in relation to GM decrease results, the DMN pattern correlates significantly

with six out of eight of the genes selected. The DMN is a resting-state brain network exten-

sively associated with psychological functions deficient in the disorder, including mentalizing,

empathy, episodic memory, and Theory of Mind [41, 69, 70]. Moreover, dysfunction in its

connectivity has been linked with ASD [41, 70, 71]. In light of this, our results confirm and

extend previous literature, highlighting the DMN as a network of particular interest in the

pathology of ASD. Moreover, we identified MECP2, SHANK1, SHANK3, NLGN3, NLGN4X

and NRXN1 as significantly expressed, therefore opening up a path of investigation into how

altering their function and expression in specific areas that are functionally connected in the

DMN may be reflected in pathogenic anatomical changes.

The DAN-related alteration results significantly correlated with three genes in the VBM

decrease but not increase data. The DAN is another RSN of particular interest in the pathology

in ASD due to its association to attentional functions, one of the most consistent domain defi-

ciencies across the spectrum [72]. Our results supplement a study by Farrant and Uddin [73],

revealing that individuals with ASD display lower functional connectivity between nodes of

the DAN compared to TDCs. Interestingly, we found significance for such networks only in

the decrease analysis, highlighting a possible correspondence between functional hypo-con-

nectivity, genetic expression, and GM morphometrical reductions. We also found that in the

VBM decrease data there was a significant correlation between the cerebellar alteration pattern

and the NRXN1. This result is in line with previous MRI research that shows a volumetric

reduction of Purkinje cells, as well as a marked hypo-connectivity between the cerebellum and

the cortical regions, in both pediatrics and adults with ASD [20, 74–76]. Interestingly, NRXN1

knockdown in primary cerebellar culture impairs synaptogenesis by altered interaction with

glutamate receptor GluRdelta2 [77]. Mice NRXN1 knockdown models also show ASD-like

abnormal social behaviors [78].

With respect to GM increase, we found a minor number of significant correlations between

genes and RSNs compared to the decrease analysis. Despite the fact that this type of neuro-

pathological phenomenon remains partially unclear in ASD and other psychiatric conditions

[79], it is worth noting that the somatomotor, limbic, DMN and BG/Thal alterations present at

least a significant correlation. These findings can be interpreted in light of previous functional

connectivity studies, which report an abnormal over-connectivity in each one of these net-

works in autism [80, 81], again supporting a correspondence between the direction of connec-

tivity changes and volumetric modifications.

With regard to the genes investigated, NLGN3 was the gene with the most overall signifi-

cant correlations when considering both decrease and increase together. Interestingly, ASD

cognitive deficits have been hypothesized to be correlated with altered NLGN family function

[5, 6]. Specifically, NLGN3 encodes for a cell adhesion protein that is fundamental for proper

synaptic transmission. The relation between this gene and ASD is supported by electrophysio-

logical and molecular studies. For example, a study by Gutierrez and colleagues [82] found

that a common ASD-mutation in NLGN3 decreases synchronicity between brain regions and

affects axon architecture complexity, thereby decreasing neuronal connectivity.
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NLGN4X, which we found to be significantly associated to DMN-related alteration in the

decreases, and to the somatomotor-related RSN in the increases analyses, is known to be

involved with ASD phenotypes by altering excitatory synaptic transmission due to its location

in the postsynaptic density [13, 83]. However, its role in long-range connectivity and transmis-

sion of electric signaling is still not well understood, in part owing to the fact that NLGN4-like

protein in mice co-localizes at inhibitory synapses, instead of excitatory as in humans [83].

Further insight into the role of this protein in the transmission of electric signaling would be

beneficial in understanding the correlation with the areas of GM alteration found in the pres-

ent study.

The neurexin superfamily (consisting in our data of NRXN1 and CNTNAP2, respectively)

was also found to be significantly correlated with areas of altered GM in the DAN, DMN, Cer-

ebellar, and the BG/Thal networks. CNTNAP2 is found mostly at the nodes of Ranvier and is

involved with the electrochemical transmission in neurons [84]. Various CNTNAP2 polymor-

phisms have been found to predispose to ASD via altered long-range connectivity in the brain

[84]. NRXN1 is a presynaptic protein which forms complexes with various post-synaptic pro-

teins including the neuroligin family. NRXN1 heterozygous mutations have been found to

reduce the brain metabolism and thus reduce the efficiency of connectivity in neural networks

including thalamic, mesolimbic and cortical systems [85]. As previously mentioned, long-

range disconnections between brain regions are often thought to be the etiology of neurodeve-

lopmental disorder, including ASD [86–89].

We found that the SHANK family of scaffolding post-synaptic proteins to be significantly

correlated to some canonical RSNs only in the decrease analysis. SHANK3 ASD-causative loss

of functions mutations in particular has been found to be associated with low-functioning

ASD, with both intellectual and language disability, on top of the social deficit [5, 6]. One of

the underlying mechanisms may be the disruption of long- and short-range projections in the

prefrontal and frontal striatal cortex areas associated with DMN [89]. This would reduce the

connectivity in the prefrontal cortex, which Pagani and colleagues [90] linked to social com-

munications deficits. Interestingly, a correspondence with our data can be noted: SHANK3

was found here to be significantly correlated with GM decrease clusters in the DMN, and

Pagani and colleagues report that Shank3B-/- mice have a decreased brain volume in DMN

areas [90]. The role of SHANK1 in long-range connectivity is still not comprehensively under-

stood, possibly because mutations in this gene may have less of an impact on synapse morphol-

ogy, therefore causing a less severe phenotype than fellow SHANK family proteins [11].

Nonetheless, it is still known to alter post-synaptic protein composition, thereby reducing the

size of the dendritic spines, weakening basal synaptic transmission [11, 91]. We did not find

any significant correlations between SHANK2 and neuroanatomical data, even though it is

known to be associated with ASD phenotypes [10]. This however, does not mean that it is not

implicated with ASD. In fact, our results only imply that its expression in the altered GM

regions is not associated to any specific network, that is, its effect might be homogeneous

across RSNs.

Unlike the other genes considered, MECP2 encodes for a transcription factor. Autistic indi-

viduals with mutation in MECP2 have been found to have increased cerebellum volume [92].

It is hypothesized that loss of MECP2 leads to weakening of neuronal connections, therefore

inhibiting spontaneous synaptic activity and weakening synaptic plasticity [93] which could

explain the correlation found with areas of decreased GM.

Recently, Liloia and colleagues [94] have demonstrated in a meta-connectomic manner that

GM abnormalities form a non-random network of co-alteration in individuals with ASD,

which tends to overlap with the structural brain connectivity pathways. Interestingly, DMN

was found to have a crucial topological role. Similarly, we found that the DMN was correlated
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with at least one candidate gene in increase and decrease analysis. It is also interesting to note

that Liloia and colleagues [94] found no significant correlation between the GM co-alteration

network and genetic co-expression connectivity. This may be because co-alteration is a differ-

ent phenomenon than simple alteration. Another possible explanation is that the authors cor-

related one network to the entirety of the genome as found on AHBA, further supporting our

rationale of selecting individual genes and testing them one by one.

Methodological considerations and limitations

The current study proposes a new outlook on the brain pathobiology of ASD, extending previ-

ous research in several ways. The multimodal approach embraced here permits extending

canonical information given by the ALE method, providing valuable insights on the mutual

relationships between VBM abnormalities and genetic expressions of selected genes. In addi-

tion, shifting from a regional to large-scale network perspective, we have exerted a more com-

prehensive resolution of the autistic brain landscape, in line with the notion of ASD as a

syndrome due to network-level disturbances [94–97]. Lastly, this work offers novel insights

into brain architecture in ASD. Moreover, it is important to note that the current approach

can be potentially applied to other disorders reporting appreciable structural brain atypicalities

and genetic basis.

Despite these strengths, the present findings should be considered in the light of the follow-

ing limitations. First, the meta-analytic and cross-sectional nature of VBM findings does not

permit to evaluate the longitudinal sequence of GM variations across the lifespan in ASD and

its link to gene expressions. At the same time, it should be noted that the CBMA approach

tends to afford more robust and reliable results in terms of generalization for the clinical popu-

lation of interest [98]. Second, although age-related and sex-related brain alterations have been

previously noted in the disorder [74, 99], the design constraints of published VBM data ham-

per the possibility to perform subanalyses related to the age-stratified and sex-stratified popu-

lations. For instance, 32 out of 51 experiments (i.e. 63% of the total VBM dataset) analyzed

both male and female subjects with ASD (S2 Table). Third, although potential bias regarding

the VBM analysis of overlapping ASD populations was systematically minimized, we are

unable to determine whether and to what extent a population overlap occurs, in particular for

the efforts using subjects from the Autism Brain Imaging Data Exchange (ABIDE) database

[100]. Fourth, correlational results are based exclusively on Yeo’s large-scale functional atlas

and part of the Brainnettome’s atlas. Owing to random statistical fluctuation and possible dif-

ferent parcelings of neural populations, the results may change slightly when using a different

atlas. Fifth, the genetic expression data obtained from the AHBA are characterized by a non-

negligible degree of spatial uncertainty. Specifically, only two out of the six individuals have a

bi-hemispheric mapping, and data were obtained with different stereotactic coordinates. To

address these issues, we employed the Voronoi tassellation method and chose to average the

genetic maps in a voxel-wise manner to reduce the variance among the gene expression pat-

terns of the individuals, thus minimizing these weaknesses as much as possible. Sixth, genetic

and VBM data analysed here did not come from the same cohort of subjects. However, Cauda

et al. [29] had previously shown that comparing VBM meta-analytic data with functional and

genetic data from different groups of subjects gives interpretable and statistically correct

results. Finally, we only covered 8 out of the many putative ASD genes, with the intent of con-

ducting an exploratory analysis on some of the genes that might be more representative of the

disorder. Therefore, our findings are clearly not representative of the whole relation between

ASD genetics and neuroanatomical variations. Future research may adopt the current pipeline
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to explore the relationship between a larger set of genes and brain networks, as well as to

embrace a longitudinal design, to provide further insight into this complex disease.

Conclusions

We conducted a coordinate-based meta-analysis using the ALE method to identify gray matter

alterations in ASD. Having selected putative genes linked to ASD, we obtained typical gene

expression patterns in healthy adults from the AHBA database. We correlated gene and struc-

tural alterations. The correlation coefficients of each voxel were projected in the Yeo’s cortical

atlas and the mean coefficient for each resting-state network was calculated. We confirmed the

role of DMN in the disorder, as it correlated with the gene expression of most genes both in

areas with GM decrease and increase. Conversely, gene expression in areas in the DAN and

cerebellar network correlated only with GM decrease, whereas in the somatomotor, ganglia/

thalamus and limbic networks contained correlation between gene expression of a few genes

and GM increase. This novel approach thus allowed us to combine structural and genetic

information to study ASD and to identify meaningful correlations in functional networks.
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