
ORIGINAL RESEARCH
Ramucirumab plus erlotinib versus placebo plus erlotinib in previously
untreated EGFR-mutated metastatic non-small-cell lung cancer (RELAY):
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Background: Ramucirumab plus erlotinib (RAM þ ERL) demonstrated superior progression-free survival (PFS) over
placebo þ ERL (PBO þ ERL) in the phase III RELAY study of patients with epidermal growth factor receptor (EGFR)-
mutated metastatic non-small-cell lung cancer (EGFRþ mNSCLC; NCT02411448). Next-generation sequencing (NGS)
was used to identify clinically relevant alterations in circulating tumor DNA (ctDNA) and explore their impact on
treatment outcomes.
Patients and methods: Eligible patients with EGFRþ mNSCLC were randomized 1 : 1 to ERL (150 mg/day) plus RAM (10
mg/kg)/PBO every 2 weeks. Liquid biopsies were to be prospectively collected at baseline, cycle 4 (C4), and
postdiscontinuation follow-up. EGFR and co-occurring/treatment-emergent (TE) genomic alterations in ctDNA were
analyzed using Guardant360 NGS platform.
Results: In those with valid baseline samples, detectable activating EGFR alterations in ctDNA (aEGFRþ) were
associated with shorter PFS [aEGFRþ: 12.7 months (n ¼ 255) versus aEGFR�: 22.0 months (n ¼ 131); hazard ratio
(HR) ¼ 1.87, 95% confidence interval (CI) 1.42-2.51]. Irrespective of detectable/undetectable baseline aEGFR,
RAM þ ERL was associated with longer PFS versus PBO þ ERL [aEGFRþ: median PFS (mPFS) ¼ 15.2 versus 11.1
months, HR ¼ 0.63, 95% CI 0.46-0.85; aEGFR�: mPFS ¼ 22.1 versus 19.2 months, HR ¼ 0.80, 95% CI 0.49-1.30].
Baseline alterations co-occurring with aEGFR were identified in 69 genes, most commonly TP53 (43%), EGFR (other
than aEGFR; 25%), and PIK3CA (10%). PFS was longer in RAM þ ERL, irrespective of baseline co-occurring
alterations. Clearance of baseline aEGFR by C4 was associated with longer PFS (mPFS ¼ 14.1 versus 7.0 months,
HR ¼ 0.481, 95% CI 0.33-0.71). RAM þ ERL improved PFS outcomes, irrespective of aEGFR mutation clearance. TE
gene alterations were most commonly in EGFR [T790M (29%), other (19%)] and TP53 (16%).
Conclusions: Baseline aEGFR alterations in ctDNA were associated with shorter mPFS. RAM þ ERL was associated with
improved PFS outcomes, irrespective of detectable/undetectable aEGFR, co-occurring baseline alterations, or aEGFRþ
clearance by C4. aEGFRþ clearance by C4 was associated with improved PFS outcomes. Monitoring co-occurring
alterations and aEGFRþ clearance may provide insights into mechanisms of EGFR tyrosine kinase inhibitor resistance
and the patients who may benefit from intensified treatment schedules.
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INTRODUCTION

Non-small-cell lung cancer (NSCLC) accounts for w85% of
primary lung cancers worldwide. Most patients present
with advanced or metastatic NSCLC (mNSCLC) at diag-
nosis.1-3 Epidermal growth factor receptor (EGFR) muta-
tions are important drivers of NSCLC, occurring in w40% of
Asian and 10%-20% of white patients with NSCLC.4
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Activating EGFR (aEGFR) mutations, either an exon 19
deletion (ex19del) or a leucine to arginine substitution in
exon 21 (ex21.L858R), account for the majority of EGFR
mutations in patients with mNSCLC.3,5,6

aEGFR-mutated (aEGFRþ) NSCLC is associated with
sensitivity to EGFR tyrosine kinase inhibitors (EGFR-TKIs).6,7

National Comprehensive Cancer Network (NCCN) guidelines
for EGFRþ NSCLC recommend EGFR-TKI monotherapy or
combined with ramucirumab (RAM) or bevacizumab (BEV).8

EGFRþ NSCLC is a heterogenous disease with a high prev-
alence of co-occurring gene alterations,9-11 which have
been identified as a negative prognostic factor associated
with poorer treatment outcomes with EGFR-TKI.9,11

Despite an initial response to EGFR-TKIs, most patients
with EGFR mutations develop resistance within 1-2
years.12,13 Factors contributing to progression and relapse
include treatment-emergent (TE) gene alterations that
confer resistance. Approximately 50% of patients whose
disease progresses on a first- or second-generation EGFR-
TKI acquire the EGFR T790M resistance mutation.14-17 EGFR
T790M confers sensitivity to third-generation TKI, osi-
mertinib (OSI),18 highlighting the need to better understand
TE gene alterations. To identify emerging, potentially
targetable, resistance mutations, a rebiopsy at progression
is recommended.19 Repeat biopsies, however, pose chal-
lenges and provide limited understanding of tumor het-
erogeneity and resistance mechanisms.20 Use of circulating
tumor-derived cell-free DNA detected (ctDNA) may help to
overcome such issues. ctDNA analysis is established for
dynamic monitoring of TE gene alterations20-23 and clear-
ance of EGFR mutations in ctDNA in response to first-line
TKI treatment is reported to predict better treatment out-
comes.20,21,24-27

The RELAY study assessed the safety and efficacy of RAM,
a human vascular endothelial growth factor receptor 2
(VEGFR2) antagonist, combined with erlotinib (ERL), an
EGFR TKI, in patients with untreated EGFRþ mNSCLC.
RAM þ ERL demonstrated superior clinical outcomes
compared with placebo plus ERL (PBO þ ERL).28

Next-generation sequencing (NGS) technology was used
to identify clinically relevant genomic alterations in ctDNA
from patients in RELAY treated with RAM þ ERL or PBO þ
ERL. We report NGS results on alterations co-occurring with
aEGFR at baseline, aEGFR mutation clearance during treat-
ment, TE alterations, and associated clinical outcomes
aiming to identify predictors of response and potential
mechanisms of resistance.

PATIENTS AND METHODS

Study design

The RELAY study design and eligibility criteria are published
elsewhere.28 In brief, RELAY is an ongoing, global, phase III
study of RAM þ ERL or PBO þ ERL in patients with previ-
ously untreated, EGFRþ mNSCLC.28 Eligible patients had
stage IV mNSCLC with an aEGFR mutation (ex19del/
ex21.L858R) by local laboratory testing; Eastern Cooperative
Oncology Group Performance Status (ECOG PS) 0-1; no
2 https://doi.org/10.1016/j.esmoop.2023.101580
central nervous system (CNS) metastasis nor T790M muta-
tion at study entry. Randomization was stratified by EGFR
mutation (ex19del/ex21.L858R), local EGFR testing method
[Therascreen (Qiagen, Holden, Germany)/Cobas (Roche,
Risch-Rotkreuz, Switzerland) versus other PCR/sequencing-
based methods], sex (male/female), and region (East Asia/
other). Randomized patients (1 : 1) received intravenous
RAM (10 mg/kg) or matching PBO every 2 weeks combined
with daily ERL (150 mg oral). Study treatment continued
until radiographic progression as assessed by the investi-
gator according to RECIST version 1.1, unacceptable toxicity,
withdrawal of consent, noncompliance, or investigator de-
cision. The study adhered to the Declaration of Helsinki,
International Conference on Harmonization Guidelines for
Good Clinical Practice, and applicable local regulations. All
patients provided written informed consent. RELAY is
registered at ClinicalTrials.gov (NCT02411448).

Assessments

Tumor assessments were conducted at baseline, then every
6 weeks for 72 weeks, followed by every 12 weeks there-
after until progression or unacceptable toxicity, and at the
30-day follow-up visit. Adverse events were assessed every
cycle and graded as previously described.28 Liquid biopsies
were prospectively collected at baseline, cycle 4 (C4), and
postprogression, and analyzed with Guardant360 NGS
platform (Guardant Health, Redwood City, CA),29 which
evaluates 73 cancer-related genes.

Study endpoints and analysis populations

The primary endpoint was progression-free survival (PFS).
Secondary endpoints included objective response rate,
duration of response, overall survival (OS), safety, and
tolerability. Prespecified NGS biomarker analyses were
exploratory.

Efficacy analyses were carried out in the population of
randomized patients [intent-to-treat (ITT) population].

NGS analyses were carried out on the following pop-
ulations (Supplementary Figure S1, available at https://doi.
org/10.1016/j.esmoop.2023.101580) to identify genomic
alterations in ctDNA. The translational research (TR) popu-
lation consisted of patients who had a valid ctDNA sample
(passed NGS testing QC) and who had one or more
detectable baseline genetic alteration. ctDNA was analyzed
during treatment (C4, day 1) to identify clearance of alter-
ations in ctDNA detectable by NGS and postprogression to
identify clearance or emergence of gene alterations.

To examine TE alterations following progression, the TR
population was further subdivided into two populations of
patients who had disease progression prior to poststudy
treatment discontinuation visit: TE population 1 (TEpop1)
consisted of patients who had one or more detectable
genetic alterations by NGS at both baseline and post-
progression; TE population 2 (TEpop2) consisted of patients
who specifically had a detectable aEGFR alteration at base-
line and postprogression. Although population selection
criteria did not restrict alteration type (to germline/somatic),
Volume 8 - Issue 4 - 2023
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all analyses of Guardant360 (Guardant Health) NGS results
were restricted to somatic mutations.30-32
Statistical analyses

RELAY was not powered for subgroup analyses and no ad-
justments were made for testing multiple comparisons;
therefore results of subgroup analyses should be inter-
preted with caution, including comparisons within Guar-
dant360 NGS TR populations.

Hazard ratios (HRs) and 95% confidence intervals (CIs) for
time-to-event outcome endpoints were estimated with
unstratified Cox proportional hazards regression modeling.
95% Wilson CIs were generated for the proportion of pa-
tients with TE alterations. Relationships between somatic
gene alterations and treatment arms on PFS were explored
using an unstratified Cox proportional hazards model
including main effects for treatment and mutation status in
addition to an interaction term, mutation status: treatment.
KaplaneMeier estimation was used to calculate median
survival times and plot time-to-event outcomes. The likeli-
hood ratio G-test for independence was used to compare
baseline characteristics between analysis populations and
gene alteration frequencies across treatment arms for
baseline and TE gene alterations. Fisher’s exact test was
used to compare clearance of ctDNA aEGFR rates over the
course of treatment between treatment arms. Descriptive
summary statistics were used for summaries of safety
outcomes.
RESULTS

Patient population

In RELAY, 449 patients were randomized (1 : 1) between
January 2016 and February 2018 to receive RAM þ ERL (n¼
224) or PBO þ ERL (n ¼ 225; ITT population; Supplementary
Figure S1, available at https://doi.org/10.1016/j.esmoop.
2023.101580). The safety population (n ¼ 446) received
one or more study dose. At primary data cut-off (23 January
2019), 29% (n ¼ 64) of patients in the RAM þ ERL arm and
19% (n ¼ 43) in the PBO þ ERL arm were still on treatment.

A valid baseline ctDNA sample, with one or more gene
alterations detectable by NGS (TR population), was ob-
tained from 86% of patients (n ¼ 386; RAM þ ERL ¼ 192,
PBO þ ERL ¼ 194). As expected, baseline characteristics
were similar between the ITT and TR populations
(Supplementary Table S1, available at https://doi.org/10.
1016/j.esmoop.2023.101580). The RAM þ ERL safety pro-
file was consistent with that of the individual agents.28

Similarly, the safety profile of the TR population was
consistent with the overall RELAY safety population
(Supplementary Table S2, available at https://doi.org/10.
1016/j.esmoop.2023.101580).

In the ITT population, patients in the RAM þ ERL arm
demonstrated a significantly lower risk of progression or
death (stratified HR ¼ 0.59, 95% CI 0.46-0.76; unstratified
HR ¼ 0.64, 95% CI 0.50-0.81).28 In addition, a superior
median PFS (mPFS) was observed in RAM þ ERL (19.4
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months) compared with PBO þ ERL (12.4 months). In the
TR population, mPFS was consistent with the overall RELAY
results of 19.4 and 12.5 months in the RAM þ ERL and
PBO þ ERL arms, respectively (Supplementary Figure S2,
available at https://doi.org/10.1016/j.esmoop.2023.
101580).

Baseline detection of aEGFRmutations in ctDNA associates
with shorter PFS

All patients had a documented aEGFR mutation (ex19del/
ex21.L858R) by local testing (a prerequisite of enrollment in
RELAY). Of those with one or more baseline gene alter-
ations, an aEGFR mutation was detected by NGS (ctDNA
aEGFRþ) in 66.1% of patients [n ¼ 255 (RAM þ ERL ¼ 122,
PBO þ ERL ¼ 133)].

Overall, patients with aEGFR positivity detectable by NGS
in baseline ctDNA had a shorter mPFS (12.7 months) than
those whose aEGFR alteration was not detected (ctDNA
EGFR�; 22.0 months; HR ¼ 1.91, 95% CI 1.44-2.55;
Figure 1A). Patients who were ctDNA aEGFRþ at baseline in
RAM þ ERL had a longer mPFS (15.2 months) than those in
PBO þ ERL (11.1 months; HR ¼ 0.63, 95% CI 0.46-0.85).
Patients who were ctDNA EGFR� at baseline in the RAM þ
ERL arm (22.1 months) had a more modestly numerically
increased mPFS compared with those in PBO þ ERL (19.4
months; HR ¼ 0.80, 95% CI 0.49-1.30; Figure 1B).

Baseline alterations co-occurring with aEGFR mutations

Examination of other genes in the Guardant panel at
baseline allowed us to determine co-occurring somatic gene
alterations. Of those with a detectable aEGFR mutation in
baseline ctDNA, 88.2% (n ¼ 225; RAM þ ERL ¼ 107, PBO þ
ERL ¼ 118) had a detectable co-occurring gene alteration at
baseline. Such alterations were identified in 69 genes, most
frequently in TP53 (n ¼ 165, 42.7%), EGFR other than
ex19del/ex21.L858R (EGFR other; n ¼ 97, 25.1%), and
PIK3CA (n ¼ 39, 10.1%; Figure 2A and B). Other genetic
alterations observed in >5% patients were NF1 (n ¼ 30,
7.8%), APC (n ¼ 27, 7.0%), BRAF (n ¼ 24, 6.2%), CDK6 (n ¼
20, 5.2%), and MET (n ¼ 20, 5.2%; Figure 2A).

At baseline, 42 ‘EGFR other’ alterations were identified
(40 single-nucleotide variants, one gene amplification, and
one splice-acceptor variant). Of the 40 single-nucleotide
variants identified, 16 were in the tyrosine kinase domain.

Overall, the presence of any detectable baseline co-
occurring alteration was associated with worse PFS
compared with those without (12.5 versus 19.4 months;
HR ¼ 1.94, 95% CI 1.19-3.14; Figure 2C). This was similarly
true for the most frequently identified co-occurring alter-
ations (Figure 2E, G, and I).

Irrespective of whether a baseline co-occurring alteration
was detected (RAM þ ERL 15.2 versus PBO þ ERL 10.8
months; HR ¼ 0.62, 95% CI 0.45-0.85) or not (RAM þ ERL
28.1 versus PBO þ ERL 16.2; HR ¼ 0.61, 95% CI 0.24-1.52),
patients benefitted from combined RAM þ ERL. Given the
similar benefit observed in both groups, the interaction
between detection of co-occurring alterations and
https://doi.org/10.1016/j.esmoop.2023.101580 3
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Figure 1. KaplaneMeier curves of PFS among patients in the TR population with detectable or undetectable activating EGFRmutations in baseline ctDNA. Kaplane
Meier curves for PFS of patients grouped by (A) detection of activating EGFR alteration in baseline ctDNA and (B) further grouped by treatment arm. The TR population
included patients with a valid baseline sample and one or more detectable genomic alterations in any gene.
CI, confidence interval; ctDNA, circulating tumor DNA; EGFR, epidermal growth factor receptor; HR, hazard ratio; PBO þ ERL, placebo plus erlotinib; PFS, progression-
free survival; RAM þ ERL, ramucirumab plus erlotinib; TR, translational research.
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treatment arms was not significant (P ¼ 0.963; Figure 2D).
This benefit was also observed for the most frequently
identified co-occurring alterations (Figure 2F, H, and J).
EGFR ctDNA clearance

To investigate the prevalence and impact of ctDNA aEGFR
clearance during treatment, the aEGFR mutation status of
patients and associated PFS was examined.

Of the 255 patients who were ctDNA aEGFRþ at baseline,
207 patients (RAM þ ERL ¼ 102, PBO þ ERL ¼ 105) had a
valid ctDNA sample with one or more alterations detected
at C4. Of those, aEGFR mutations were undetectable in
79.2% (n ¼ 164) of patients and detectable in 20.8% (n ¼
43) by C4 (Figure 3A). mPFS was longer (n ¼ 164; 14.1
months) in those whose aEGFR mutation cleared by C4
compared with those with a detectable aEGFR mutation
(n ¼ 43; 7.0 months; HR ¼ 0.48, 95% CI 0.33-0.71;
Figure 3B). Addition of RAM to ERL improved PFS outcomes,
irrespective of aEGFR mutation clearance (Figure 3C).

Of the 120 patients (RAM þ ERL ¼ 44, PBO þ ERL ¼ 76)
who were ctDNA aEGFRþ at baseline and had a valid
postprogression ctDNA sample, 20.0% (n ¼ 24) had unde-
tectable aEGFR mutations postprogression and 80.0% (n ¼
96) had a detectable aEGFR mutation.

Of the 104 patients (RAM þ ERL ¼ 40, PBO þ ERL ¼ 64)
who were ctDNA aEGFRþ at baseline who had valid NGS
samples at all three timepoints (baseline, C4, and post-
progression), 25.0% (n ¼ 26) were ctDNA aEGFRþ at C4,
80.7% (n ¼ 84) were ctDNA aEGFRþ at progression, and
38.5% (n ¼ 40) had a detectable T790M mutation,
demonstrating the usefulness of serial monitoring of liquid
biopsies in shedding tumors (Supplementary Figure S3A and
B, available at https://doi.org/10.1016/j.esmoop.2023.
101580).

Among the 40 patients (RAM þ ERL ¼ 18, PBO þ ERL ¼
22) who were ctDNA aEGFR� at baseline and had valid NGS
4 https://doi.org/10.1016/j.esmoop.2023.101580
samples available at all three timepoints, 100% (n ¼ 40)
were persistently negative at C4 and 72.5% (n ¼ 29) were
persistently negative postprogression (Supplementary
Figure S3C and D, available at https://doi.org/10.1016/j.
esmoop.2023.101580).
TE gene alterations and clinical outcomes

To investigate TE gene alterationsdabsent at baseline but
present postprogressiondtwo prespecified analysis pop-
ulations were used: TEpop1 [patients with a valid ctDNA
sample and �1 alteration detectable by NGS at baseline and
postprogression (n ¼ 168)] and TEpop2 [patients with a valid
ctDNA sample and specifically an aEGFR mutation detectable
by NGS at baseline and postprogression (n ¼ 96)].

In general, baseline characteristics were similar between
ITT and TE populations; however, patients in both TE anal-
ysis populations were more likely to have an ECOG PS of 1
and were more likely to be <65 years old compared with
the ITT population (Supplementary Table S1, available at
https://doi.org/10.1016/j.esmoop.2023.101580).

TE gene alterations were detected in the ctDNA of 64.9%
(n ¼ 109) patients in TEpop1 and 72.9% (n ¼ 70) patients in
TEpop2. Overall, the distribution of TE gene alterations was
similar between RAM þ ERL and PBO þ ERL arms (Table 1).

The most common TE gene alterations were EGFR T790M
(TEpop1 ¼ 28.6%; TEpop2 ¼ 46.9%), EGFR other (excluding
T790M; TEpop1 ¼ 19.0%; TEpop2 ¼ 13.5%), TP53
(TEpop1 ¼ 16.1%; TEpop2 ¼ 15.6%), NF1 (TEpop1 ¼ 4.8%;
TEpop2 ¼ 6.3%), and APC (TEpop1 ¼ 4.8%; TEpop2 ¼
5.2%). T790M emergence was not significantly different
between treatment arms (Table 1); there was no noticeable
difference in T790M emergence between those with either
baseline aEGFR mutation subtype, although T790M emer-
gence was slightly more common among those with
detectable baseline co-occurring TP53 alterations than
those without (Supplementary Table S3, available at
Volume 8 - Issue 4 - 2023
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Figure 2. Baseline alterations co-occurring with activating EGFR alterations and associated clinical outcomes. (A) Heatmap of genomic alterations co-occurring with
EGFR activating alterations. (B) Forest plot representing the hazard ratio associated with co-occurring gene alterations at baseline detected by NGS. KaplaneMeier
plots representing mPFS associated with the (C) presence or absence of any detectable baseline co-occurring alterations and (D) presence/absence of baseline co-
occurring alterations within each treatment arm. Statistical analysis of the interaction between baseline co-occurring gene alteration and treatment arm is repre-
sented by the interaction P value calculated using the log-likelihood ratio test (D). KaplaneMeier plots representing mPFS associated with the presence or absence of
co-occurring (E) TP53, (G) EGFR other, and (I) PIK3CA alterations and by treatment arm (F, H, and J).
CI, confidence interval; CNA, copy number alteration; EGFR, epidermal growth factor receptor; HR, hazard ratio; INDEL, insertion/deletion; mPFS, median progression-
free survival; Mut, mutation; NA, not applicable; NGS, next-generation sequencing; PBO þ ERL, placebo plus erlotinib; PFS, progression-free survival; RAM þ ERL,
ramucirumab plus erlotinib; SNV, single-nucleotide variant.
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https://doi.org/10.1016/j.esmoop.2023.101580). TE NF1
alterations may be numerically higher in RAM þ ERL in both
TE analysis populations, while TE APC and GNAS alterations
may be numerically higher in the RAM þ ERL arm of
TEpop2.
DISCUSSION

The phase III RELAY study demonstrated superior PFS in
patients with previously untreated aEGFRþ mNSCLC
without CNS metastasis when treated with RAM þ ERL
compared with PBO þ ERL.28 To further understand the
clinical benefit observed in response to RAM þ ERL and to
gain greater understanding of resistance mechanisms, we
carried out exploratory analyses using NGS to assess aEGFR
mutation dynamics and genomic alterations co-occurring
with aEGFR in the ctDNA of patients from RELAY. The
impact of identified alterations on treatment outcomes was
also explored.

NGS allows for simultaneous analysis of multiple genes to
identify genomic alterations in ctDNA that may play a role in
efficacy and clinical outcomes.33 The ESMO Precision
Medicine Working Group recommends using NGS analysis
of ctDNA in treatment-naïve patients with lung cancer when
tissue genotyping may be delayed or invasive and as a
complementary/alternative to tissue NGS for biomarker
evaluation.34 NGS analysis of ctDNA is well established for
detection of resistance mutation, EGFR T790M, in aEGFRþ
NSCLC and other mechanisms in oncogene-addicted NSCLC
(e.g. ALK- or ROS1-positive disease).34
Volume 8 - Issue 4 - 2023
In this exploratory analysis, an aEGFR mutation was
detectable in ctDNA of 66% of patients. According to the
RELAY inclusion criteria, patients were required to have an
aEGFR mutation by local laboratory tissue testing. Detection
rates of EGFR mutations in ctDNA vary according to the
method used.35 In RELAY, EGFR mutations in ctDNA were
assessed using Guardant360, which shows a 100% positive
agreement with an externally validated plasma-based NGS
assay for ex21.L858R, 96.8% for ex19del, and 95.0% for
EGFR T790M.36 Similarly, healthy donor samples pre-
screened by an externally validated orthogonal method
show 100% average negative agreement for EGFR ex19del,
L858R, T790M, and ex20 insertions (97.4% across the
panel).36 Variances in concordance rates, between tissue
and plasma samples, have similarly been reported else-
where, for patients with NSCLC,37,38 possibly explained by
reports that plasma ctDNA concentrations correlate with
radiographic tumor volume39-41 and, in mNSCLC, are
reportedly affected by anatomic location and genomic
subtype.37,38

In RELAY, undetectable aEGFR mutation at baseline was
associated with a longer mPFS (aEGFR� 22.0 versus
aEGFRþ 12.7 months), indicating that detection of aEGFR
mutations in baseline ctDNA is a negative prognostic factor,
as reported elsewhere.42,43 In both first-line treatment arms
of the FLAURA study, comparing first- with third-generation
EGFR-TKIs in patients with aEGFRþ mNSCLC, detectable
aEGFR mutations in baseline ctDNA were associated with
worse PFS (aEGFRþ 15.0 versus aEGFR� 23.5 months).43

This correlation may be due to the higher tumor burden
https://doi.org/10.1016/j.esmoop.2023.101580 5
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Figure 2. Continued.
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in patients who are aEGFRþ at baseline, who may progress
sooner, and could benefit from stricter follow-up and more
aggressive treatment schedules. This highlights the rele-
vance of liquid biopsies for monitoring genomic alterations
during treatment and follow-up, which can capture the
dynamic aspects of the disease.44 Notably, patients in RELAY
benefitted from combined RAM þ ERL, independent of
plasma aEGFR mutation status at baseline, although to a
greater extent in the aEGFRþ group. Moreover, while sub-
group analysis of FLAURA found a less substantial benefit in
terms of PFS for patients with baseline EGFR ex21.L858R,45

and no improvement in OS,46 compared with those with the
ex19del, this difference between aEGFR subtypes detect-
able by NGS at baseline was not observed in RELAY
(Supplementary Figure S4, available at https://doi.org/10.
1016/j.esmoop.2023.101580). A recent meta-analysis
found that similar PFS benefits were observed in patients
with baseline EGFR ex19del/ex21.L858R with an intensified
treatment approach of first-line EGFR-TKI plus chemo-
therapy.47 Recent studies indicate that EGFR variant allele
frequency (VAF) may be associated with clinical outcomes
among patients treated with TKIs in mNSCLC.48,49 The
relationship between specific EGFR VAF quantity and out-
comes was not analyzed here, however future in-
vestigations of VAF may provide further clarity on
6 https://doi.org/10.1016/j.esmoop.2023.101580
treatment outcomes for those with EGFR alterations. The
observed benefit of RAM þ ERL in RELAY adds support to
the importance of angiogenesis in EGFR-TKI resistance. The
VEGF pathway is a key mediator of angiogenesis and VEGF
expression is thought to increase in response to upregu-
lated EGFR signaling in EGFRþ mNSCLC,50,51 perhaps
explaining the greater benefit observed in the aEGFRþ
group.

Here, we report widespread genomic alterations co-
occurring with aEGFR at baseline, consistent with previous
reports that mNSCLC is a heterogenous disease, with a high
prevalence of co-occurring gene alterations.9-11 Existence of
submolecular characteristics, including EGFR mutation
subtypes and co-occurring alterations, may partially account
for the significant variance in clinical efficacies observed in
patients with aEGFRþ mNSCLC in response to EGFR-
TKIs.12,52-55 To date, concomitant genomic alterations that
impact clinical outcomes in EGFRþ mNSCLC remain largely
unknown, although a role for TP53 mutations, present as a
concurrent mutation in 30%-72% of patients, has been re-
ported.11 In RELAY, genomic alterations in TP53 were the
most common baseline co-occurring alteration (43%) fol-
lowed by alterations in EGFR (other than aEGFR mutations)
and PIK3CA. Presence of concomitant baseline alterations
has previously been associated with poorer survival
Volume 8 - Issue 4 - 2023
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Figure 2. Continued.
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outcomes,56 although investigations into the impact of
baseline alterations co-occurring specifically with aEGFR
remain limited. In a study by Chen et al.,57 baseline alter-
ations co-occurring with aEGFR were compared between
patients in short (�6 months) and long (�24 months) PFS
groups. TP53, EGFR other, and PIK3CA alterations were
common baseline co-occurring alterations and were
numerically more prevalent in the short versus long PFS
group. In RELAY, detectable baseline alterations in TP53,
EGFR other, and PIK3CA were also the most prevalent al-
terations co-occurring with aEGFR and were associated with
worse PFS. However, patients benefitted from combined
RAM þ ERL, regardless of baseline co-occurring alterations.
Evidence suggests that p53 inhibits angiogenesis through
the regulation of proangiogenic factors (e.g. VEGF and
VEGFR2) and promotes transcription of anti-angiogenic
factors (e.g. thrombospondin-1),58-60 perhaps partially
explaining the benefit observed with the addition of
VEGFR2 antagonist, RAM, to ERL.

The PFS benefits associated with combining first-
generation EGFR-TKIs and anti-VEGF treatment observed
in RELAY, NEJ026, and other studies for first-line treatment
of EGFRþ mNSCLC28,61,62 have not been observed with
third-generation TKI, OSI, plus anti-VEGF treatment to date.
Volume 8 - Issue 4 - 2023
Phase II WJOG8715L and BOOSTER, comparing BEV þ OSI
with OSI alone for the second-line treatment of patients
with EGFRþ mNSCLC63,64 who had acquired EGFR T790M,
revealed no significant prolongation of PFS or OS.45,65,66

Similarly, no significant PFS improvement was observed in
a randomized phase II trial,WJOG9717L, comparing first-line
OSI with/without BEV, although the small sample size may
have limited the ability to demonstrate significant differ-
ences between arms.67 Comparisons with RELAY or NEJ026
cannot be extrapolated due to lack of first-line phase III data
and differences in enrolled patients’ characteristics,
including CNS metastasis, smoking status, and comutation
profile. Results of ongoing randomized phase II [OSI with/
without RAM, US: NCT03909334; Japan: TORG183368

(registration number 184146)] and phase III studies (OSI
with/without BEV, NCT04181060), may reveal whether
these combinations could improve OSI efficacy in previously
untreated patients with EGFRþ mNSCLC. Moreover, while
investigation of the comutation profile of patients treated
with OSI is limited, recent NGS analysis of ctDNA from
FLAURA (first-line OSI treatment) reported TP53 as the most
common baseline co-occurring genomic alteration,69

similar to observations in RELAY. Patients with
co-occurring baseline TP53 alterations benefitted from
https://doi.org/10.1016/j.esmoop.2023.101580 7
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Figure 3. Clearance of activating EGFR mutations and clinical outcomes. (A) Bar graph representing detection of aEGFR mutations during treatment and post-
progression in those with a detectable ctDNA activating alteration at baseline. KaplaneMeier curves representing (B) mPFS associated with detection of aEGFR
alterations during treatment and (C) mPFS associated with detection of aEGFR within each treatment arm. Statistical analysis of the interaction between aEGFR
detection during treatment and treatment arm is represented by the interaction P value (C).
aEGFR, activating epidermal growth factor receptor; CI, confidence interval; ctDNA, circulating tumor DNA; EGFR, epidermal growth factor receptor; HR, hazard ratio;
mPFS, median progression-free survival; PBO þ ERL, placebo plus erlotinib; RAM þ ERL, ramucirumab plus erlotinib.
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combined anti-VEGFReEGFR-TKI therapy, both in RELAY
with RAM þ ERL (Figure 2F and 70) and in the phase III
ACTIVE study of combined VEGFR2 TKI apatinib with
gefitinib.62 However, co-occurring TP53 alterations,
especially within exon 8, reportedly reduce OSI efficacy,71,72

and worsen prognosis in those with brain metastasis.72

Further investigation of comutations, especially in
treatment-naïve patients, may provide additional insights
into the impact of combining anti-VEGF therapy with OSI
and which patient subgroups it could benefit.

Clearance of detectable aEGFR alterations in ctDNA dur-
ing treatment has been associated with improved PFS for an
extensive range of therapies, including in response to first-
line EGFR-TKIs21,39,73 and in those receiving second-line
treatment following acquired resistance to EGFR-TKIs.74

Here, clearance of aEGFR mutations by C4 in patients
who had detectable aEGFRþ at baseline was similarly
associated with improved mPFS (aEGFRþ 14.1 months
versus aEGFR� 7.0 months). These observations are similar
to those of the NEJ026 trial, comparing BEV þ ERL with ERL
alone, where clearance was associated with improved PFS
8 https://doi.org/10.1016/j.esmoop.2023.101580
in both treatment groups (BEV þ ERL: 15.5 months versus
6.0 months; ERL: 11.1 versus 4.3 months).73 The benefit of
combined BEV þ ERL was most pronounced in those who
were aEGFRþ at baseline and had clearance during treat-
ment (aEGFR� at 6 weeks). Here, patients with and without
aEGFR mutation clearance benefitted from combined RAM
treatment, indicating that clearance of aEGFR mutations
early in treatment is prognostic, as, irrespective of treat-
ment, patients who do not clear their aEGFR during EGFR-
TKI treatment have poorer PFS outcomes than those who
do. The PACE-Lung study is currently exploring if patients
treated with first-line OSI, without aEGFR mutation clear-
ance in the ctDNA after 3-4 weeks, will benefit from a more
intensified treatment schedule.

Currently, there are no standard criteria to define pop-
ulations for analysis of TE genomic alterations. In line with
populations used in the primary RELAY study,28 two similar
analysis populations, TEpop1 and TEpop2, are presented.
The requirement for one or more detectable alterations
ensured that the patient population had tumors that were
shedding DNA, such that genomic alterations in the tumor
Volume 8 - Issue 4 - 2023
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Table 1. Treatment-emergent gene alterations.

TE population 1 (N [ 168) TE population 2 (N [ 96)

RAM þ ERL (n ¼ 67) PBO þ ERL (n ¼ 101) RAM þ ERL (n ¼ 36) PBO þ ERL (n ¼ 60)

Gene name, % (95% Wilson CI)
EGFR 37.3 (26.7 to 49.3) 42.6 (33.4 to 52.3) 44.4 (29.5 to 60.4) 55.0 (42.5 to 66.9)
T790M 25.4 (16.5 to 36.9) 30.7 (22.5 to 40.3) 41.7 (27.1 to 57.8) 50.0 (37.7 to 62.3)
Others 16.4 (9.4 to 27.1) 20.8 (14.0 to 29.7) 5.6 (1.5 to 18.1) 18.3 (10.6 to 29.9)

TP53 20.9 (12.9 to 32.1) 12.9 (7.7 to 20.8) 22.2 (11.7 to 38.1) 11.7 (5.8 to 22.2)
NF1 9.0 (4.2 to 18.2) 2.0 (0.5 to 6.9) 13.9 (6.1 to 28.7) 1.7 (0.3 to 8.9)
APC 7.5 (3.2 to 16.3) 3.0 (1.0 to 8.4) 11.1 (4.4 to 25.3) 1.7 (0.3 to 8.9)
MET 6.0 (2.3 to 14.4) 6.9 (3.4 to 13.6) 8.3 (2.9 to 21.8) 8.3 (3.6 to 18.1)
KRAS 9.0 (4.2 to 18.2) 3.0 (1.0 to 8.4) 5.6 (1.5 to 18.1) 5.0 (1.7 to 13.7)
FGFR2 4.5 (1.5 to 12.4) 3.0 (1.0 to 8.4) 5.6 (1.5 to 18.1) 3.3 (0.9 to 11.4)
GNAS 3.0 (0.8 to 10.2) d 5.6 (1.5 to 18.1) d
BRAF 3.0 (0.8 to 10.2) 5.9 (2.8 to 12.4) 2.8 (0.5 to 14.2) 10.0 (4.7 to 20.1)
PIK3CA 1.5 (0.3 to 8.0) 6.9 (3.4 to 13.6) 2.8 (0.5 to 14.2) 6.7 (2.6 to 15.9)
BRCA2 3.0 (0.8 to 10.2) 4.0 (1.6 to 9.7) d 5.0 (1.7 to 13.7)
ERBB2 3.0 (0.8 to 10.2) 4.0 (1.6 to 9.7) 2.8 (0.5 to 14.2) 5.0 (1.7 to 13.7)
AR 1.5 (0.3 to 8.0) 2.0 (0.5 to 6.9) d 3.3 (0.9 to 11.4)
CDK6 1.5 (0.3 to 8.0) 2.0 (0.5 to 6.9) 2.8 (0.5 to 14.2) 3.3 (0.9 to 11.4)
RB1 3.0 (0.8 to 10.2) 2.0 (0.5 to 6.9) 2.8 (0.5 to 14.2) 1.7 (0.3 to 8.9)
CDK4 1.5 (0.3 to 8.0) 2.0 (0.5 to 6.9) 2.8 (0.5 to 14.2) 1.7 (0.3 to 8.9)
SMAD4 1.5 (0.3 to 8.0) 2.0 (0.5 to 6.9) 2.8 (0.5 to 14.2) 1.7 (0.3 to 8.9)
KIT 4.5 (1.5 to 12.4) 1.0 (0.2 to 5.4) 2.8 (0.5 to 14.2) 1.7 (0.3 to 8.9)
PTEN 3.0 (0.8 to 10.2) 2.0 (0.5 to 6.9) 2.8 (0.5 to 14.2) 3.3 (0.9 to 11.4)
ARID1A 3.0 (0.8 to 10.2) 3.0 (1.0 to 8.4) 2.8 (0.5 to 14.2) 1.7 (0.3 to 8.9)
FGFR1 1.5 (0.3 to 8.0) 1.0 (0.2 to 5.4) 2.8 (0.5 to 14.2) d
MAP2K1 3.0 (0.8 to 10.2) d 2.8 (0.5 to 14.2) d
MAPK3 1.5 (0.3 to 8.0) d 2.8 (0.5 to 14.2) d
MTOR d 1.0 (0.2 to 5.4) d 1.7 (0.3 to 8.9)
MYC 1.5 (0.3 to 8.0) 2.0 (0.5 to 6.9) 2.8 (0.5 to 14.2) d
RET 1.5 (0.3 to 8.0) d d d
STK11 d 1.0 (0.2 to 5.4) d d

aEGFR, activating epidermal growth factor receptor; CI, confidence interval; N, total number of patients; n, number of patients per category; PBO þ ERL, placebo plus erlotinib;
RAM þ ERL, ramucirumab plus erlotinib; TEpop1, TE population 1 (i.e. patients who had �1 detectable genetic alteration by NGS at both baseline and poststudy treatment
discontinuation); TEpop2, TE population 2 (i.e. patients who had a detectable aEGFR alteration at both baseline and poststudy treatment discontinuation); TR, patients who had a
valid baseline circulating tumor DNA sample with one or more detectable genetic alteration.
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could be detected in the liquid biopsy sample. The types
and frequencies of co-occurring baseline and TE alterations
appeared similar between treatment arms, although sample
sizes were limited. As progressive disease was required for
the poststudy treatment discontinuation follow-up sample,
fewer patients in RAM þ ERL met this criterion, as pro-
gression was less frequent in those patients compared with
the PBO þ ERL group within the timeframe of the primary
analysis dataset. Moreover, addition of RAM to ERL did not
impact the profile of TE genomic alterations or treatment
resistance. As with other genes, the sensitivity of T790M
detection in plasma ctDNA is reportedly lower than the
detection rate in tissue samples.75,76 Accordingly, it should
be noted that rates of T790M at progression may be higher
than identified here by NGS, highlighting the need to
confirm negative plasma-based results with tissue samples.
The most abundant TE genomic alterations were identified
in the EGFR (particularly the T790M resistance mutation)
and TP53 genes. No differences were identified between
TEpop1 and TEpop2. Final NGS analysis at the time of OS
maturity is expected to provide a clearer understanding of
the impact of TE alterations.

Limitations of this study include that co-occurring and TE
alterations were identified by NGS from liquid biopsies only.
A considerable proportion of patients enrolled in RELAY did
not have disease progression while on first-line treatment,
Volume 8 - Issue 4 - 2023
therefore further follow-up is warranted. As with any
analysis of blood liquid biopsies, it is possible that non-
tumor mutations due to clonal hematopoiesis of indeter-
minate potential77 can occur, however previous reports
indicate that actionable NSCLC-driver mutations are not
among the alterations commonly associated with clonal
hematopoiesis of indeterminate potential.78,79 Similar to
other studies,21,39,42,74 aEGFR clearance was examined at an
early treatment timepoint; more frequent ctDNA assess-
ments during treatment may provide a more complete
picture. RELAY was not powered for subgroup analysis;
further, no adjustments were made to control the type I
error rate when conducting multiple testing procedures and
biomarker analyses were exploratory. The inherent limita-
tions of NGS should also be considered.
Conclusions

In RELAY, detection of aEGFR alterations, in ctDNA, was
associated with poorer PFS outcomes. aEGFR clearance
during treatment was associated with improved PFS out-
comes. Moreover, RAM þ ERL was associated with
improved PFS outcomes, irrespective of detectable or un-
detectable aEGFR, co-occurring baseline alterations, or
aEGFR clearance by C4. Monitoring co-occurring gene al-
terations and aEGFR clearance may provide insights into
https://doi.org/10.1016/j.esmoop.2023.101580 9
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mechanisms of EGFR-TKI resistance and which patients may
benefit from more intensified treatment schedules. Further
studies are warranted to demonstrate the potential clinical
utility of serial ctDNA EGFR testing in NSCLC management.
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