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. Rationale 

Ophiolites and ophiolitic mélanges are among the key tectonic 

omponents of both accretionary- and collisional-type orogenic 

elts around the world, representing significant archives of the 

volutionary history of the Earth. These tectonostratigraphic units 

re not simple rock assemblages; their formation and coexistence 

equire specific geological conditions and environments, internal 

nd external Earth processes, and preservation during certain time 

ntervals in the past. Therefore, they offer most valuable insights 

nd windows into the Earth’s history. They occur widely in the 

recambrian and Phanerozoic accretionary and orogenic belts, 

elineating major boundaries between disparate terranes, crustal 

locks, and even lithospheric plates. Most geoscientists have tra- 

itionally considered these boundaries as ‘ suture zones’ , and hence 

phiolites and mélanges have been accepted as the signature 

allmarks of suture zones, and the sites of former subduction 

nd collision zones in orogenic belts ( Dewey, 1977 ; Dilek, 2006 ; 

esta et al., 2010 ; Furnes and Dilek, 2022 ). 

Unlike their 1972 Penrose definition ( Anonymous, 1972 ), ophi- 

lites do not fit into a simple and uniform template of an oceanic 

ithosphere template ( Dilek, 2003 ). They are highly diverse struc- 

urally, geochemically, and in terms of their tectonic settings of for- 

ation ( Dilek and Furnes, 2011 , 2014 ). The differences among dif- 

erent ophiolite types reflect variations in seafloor spreading rates, 

agma budgets, mantle melt sources and melting conditions, the 

xtent of subduction influence on the melt column, and slab dip 

ngle beneath oceanic spreading centers ( Dilek and Furnes, 2014 ). 

herefore, the stratigraphic and structural architecture, lithologi- 

al makeup, and geochemical characteristics of ophiolites can pro- 

ide significant information about: (i) the mode and tempo of 

agmatic and tectonic processes during oceanic crust generation; 

ii) the pressure–temperature–time paths during the metamorphic 

volution of ancient oceanic lithosphere within subduction zones; 

iii) the fluid flux and element recycling in subduction–accretion 

ystems. On the other hand, the stratigraphic and structural ar- 

hitecture, lithological makeup, and geochemical characteristics of 

phiolitic mélanges can provide significant information about: (i) 

he processes of mélange formation during the accretion of frag- 

ents of oceanic lithosphere at both shallow and deep struc- 

ural levels at slab interface in subduction zones; (ii) sedimen- 

ological, erosional and other physical processes that occur dur- 

ng the accretion of oceanic lithosphere into continental margins 

 Dilek and Furnes, 2011 ; Safonova et al., 2016 ; Festa et al., 2019 ,

022 ; Furnes et al., 2020 ). 
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. Organization of this special issue 

The contributions in this Special Issue present case studies 

f various Precambrian and Phanerozoic ophiolites and ophiolitic 

élanges exposed in different parts of the world ( Fig. 1 ), dis- 

ussing the nature and timing of Earth processes involved in their 

ormation and how they were incorporated into accretionary and 

ollisional orogenic belts. We have organized this Special Issue 

n five sections, according to the geographic locations of the case 

tudies reported in the papers. 

The first section includes four research papers on different 

phiolite and ophiolitic mélange occurrences that are exposed 

long discrete suture zones in the Mediterranean Orogenic Belts. 

s such, these suture zones separate a series of ribbon continents, 

hich were derived mainly from Gondwana (i.e., Apulia and 

auride Platform; Dilek, 2006 ), and represent distinct seaways 

ithin the Tethyan paleogeography ( Dilek and Furnes, 2019 ). Two 

f the papers in this section focus on the geology of the Northern 

alcareous Alps and the Western Carpathians ( Fig. 1 ). The other 

wo contributions deal with the internal structure of different 

uture zones within the Anatolian Peninsula, which occurs in a 

ajor transition from the Africa–dominated convergence front in 

he west to the Arabia–dominated convergence front in the east 

ithin the Alpine–Himalayan orogenic belt ( Fig. 1 ). 

The second section involves two case studies from the eastern 

editerranean region to the north of the Persian Gulf that repre- 

ent the central sector of the Alpine-Himalayan orogenic system 

 Fig. 1 ). These orogenic belts include ophiolites and ophiolitic 

élanges recording the complex tectonomagmatic evolution of 

he Neotethyan Ocean from its opening between the Arabian and 

urasian plates and its closure with multiple subduction zones 

ssociated with the northward drift of the Arabian plate. 

The third section includes three papers documenting ophiolite 

nd ophiolitic mélanges from two different Orogenic belts in Asia 

 Fig. 1 ) that are characterized by several suture zones formed 

rom multi-stage related closure of oceanic basins and continental 

lates collision during a long-lived geodynamic evolution of the 

eoproterozoic-Paleozoic Paleo-Asian Ocean (Junggar region) and 

he Mesozoic Neotethyan Ocean (Southern Tibet). 

The fourth section includes a review of the Catalina Schist 

élange within the westernmost part of the North American 

ordillera. This mélange records tectonic and chaotic rock forma- 

ion processes along a subducting plate interface between the 

owngoing Farallon plate and the North American continent in 

he upper plate during the Cretaceous. The fifth and last section 
of China. This is an open access article under the CC BY-NC-ND license 

https://doi.org/10.1016/j.geogeo.2023.100191
http://www.ScienceDirect.com
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Fig. 1. World map showing the distribution of lithospheric plates, their boundaries (modified from Dilek et al., 2012 ), and the case studies of ophiolite and mélanges covered 

by the papers in this Special Issue (marked by red boxes). 
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ncludes a review paper dealing with the remnants of a Neopro- 

erozoic oceanic lithosphere in the Precambrian orogenic belts in 

E Brazil and NW Africa ( Fig. 1 ). 

In the following section, we first provide a brief nomenclature 

or the concepts of ophiolites and ophiolitic mélanges as a prelude 

o the ideas and interpretations presented in the papers. In the 

econd part, we provide a synoptic review of the main topic, 

bjectives, and findings of each paper in this Issue. 

. Nomenclature: ophiolite and ophiolitic mélange concepts 

.1. Definition of an ophiolite 

The French mineralogist Alexandre Brongniart (1770–1847) used 

he term “ophiolite” for the first time in 1813 in reference to ser- 

entinites in mélanges. In his 1821 paper he redefined an ophiolite 

 Brongniart,1821 ) as a suite of magmatic rocks (ultramafic rocks, 

abbro, diabase, and volcanic rocks) that are exposed in the Apen- 

ines (Italy). He was, thus, the first geologist to recognize the sig- 

ificance of the coexistence ophiolites and mélanges in the field 

o signal their spatial association. However, it was Gustav Stein- 

ann (1856–1929), who redefined the “ophiolite” term as a new 

oncept representing spatially associated and genetically related 

ocks that formed as in-situ intrusions in axial parts of geosyn- 

lines ( Steinmann, 1927 ). Although his interpretation of ophiolites 

s magmatic intrusions in deep marine sedimentary rocks was in- 

orrect, his recognition of tripartite oceanic rocks as part of a mag- 

atic sequence was highly insightful and important. This recogni- 

ion helped many geologists around the world to be aware of the 

xistence of these kindred rock assemblages in the mountain belts 

nd ultimately led to the 1972 Penrose definition of ophiolites (see, 

ilek, 2003 for the historical perspective). 

A great number of multidisciplinary research on worldwide 

phiolite since the first definition of this concept in 1821 

 Brongniart, 1821 ) has for sure contributed to major advance in 

he scientific understanding of ophiolite and its rigorous classifi- 
2 
ation based on forming processes and geodynamic setting of for- 

ation. In light of these data sets and observations, Dilek and 

urnes (2011) proposed a new classification of ophiolites based 

n their distinctive internal structures, geochemical signatures, and 

egional tectonics. In this classification system, an ophiolite is as 

an allochthonous fragment of upper-mantle and oceanic crustal 

ocks that is tectonically displaced from its primary igneous ori- 

in of formation as a result of plate convergence. Such a slice 

hould include a suite of, from bottom to top, peridotites and ul- 

ramafic to felsic crustal intrusive and volcanic rocks (with or with- 

ut sheeted dikes) that can be geochronologically and petroge- 

etically related; some of these units may be missing in incom- 

lete ophiolites” ( Dilek and Furnes, 2011 ). The major novelty of this 

lassification lies in the fact that the diversity in the structural–

tratigraphic architecture and geochemical fingerprints observed in 

phiolite is related to variations of petrological, geochemical, and 

ectonic processes operating during ophiolite formation in different 

eodynamic settings. Thus, this modern classification of ophiolites 

rovides as the first order criteria the geodynamic setting of for- 

ation, distinguishing the subduction-unrelated and subduction- 

elated types. This classification has been effective for the recog- 

ition of different ophiolites in Phanerozoic and Precambrian ac- 

retionary and orogenic belts and to constrain their geodynamic 

volution. 

.2. Definition of mélange and ophiolitic mélange 

The term mélange was first used by Greenly (1919) in de- 

cribing a tectonically disrupted and internally strained phyllite- 

andstone succession in the Mona Complex (Gwna Group) in An- 

lesey, north Wales. Since its first introduction, this term has been 

xtensively used to describe the occurrence of chaotic rocks as- 

emblages, typically occurring in modern and exhumed (ancient) 

ubduction – accretion complexes in orogenic belts. Several clas- 

ification schemes and terminology have been made to categorize 

hese chaotic units on the basis on field observations in different 
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élanges around the world (e.g., Berkland et al., 1972 ; Wood, 1974 ; 

ilver and Beutner, 1980 ; Raymond, 1984 ; Cowan, 1985 ; Pini, 1999 ;

esta et al., 2010 , 2019 , 2022 and references therein). According to 

hese classifications, the term “mélange” should be used as a de- 

criptive and nongenetic term to define mappable (at 1:25,0 0 0 or 

maller scale) chaotic units composed of exotic rock blocks embed- 

ed in a pervasively deformed matrix. The term “exotic” includes 

ll types of blocks that are “foreign” (i.e., out-of-place) with re- 

pect to the matrix, indicating that their source is not present in 

he surrounding lithological units and in the countryside within a 

élange zone ( Festa et al., 2019 , for details). Mélanges may form 

hrough tectonic, sedimentary, and diapiric processes that facili- 

ate mixing of exotic blocks within a matrix. The alternation and 

uperposition of these processes through geological times and cy- 

les commonly rework the structural fabric of different types of 

élanges, producing polygenetic mélanges (e.g., Festa et al., 2019 , 

020 , and references therein). A rigorous definition of the term 

phiolitic mélange is still lacking in the literature, and it is com- 

only used with different meanings to indicate tectonic elements 

f accretionary and collisional belts, in which fragments of ophi- 

lites are mixed with different sedimentary rocks. This term is 

ommonly used to define either chaotic rock units with a matrix 

nclosing blocks of an ophiolitic suite or an assemblage of dif- 

erent ophiolitic blocks tectonically juxtaposed without a clearly 

efined matrix (e.g., McCall, 1983 ; Elter et al., 1991 ; Kimura and 

ukai, 1991 ). It is also very common that this term is used 

o refer to the products of tectonic dismembering of ophiolite 

uites. 

. Ophiolites and ophiolitic mélanges in Mediterranean 

rogenic Belts 

Drvoderic et al. (2023 – in this issue) defines and describes the 

allstatt Mélange in the Northern Calcareous Alps. This mélange 

onsists of blocks derived from an Upper Triassic carbonate se- 

uence of Adria continental margin and blocks and clasts of ophi- 

litic subunits and radiolarite originated from Neotethys, all of 

hich are embedded in a matrix made of an upper Middle–lower 

pper Jurassic argillite–radiolarite. The Hallstatt mélange appears 

o have formed as a result of a complex interplay between tec- 

onic and sedimentary processes during the closure of Neotethys, 

phiolite obduction, and tectonic stacking during the Mid to Late 

urassic. The interpretations and the tectonic model presented in 

his contribution provide new constraints for the Triassic–Jurassic 

eodynamic evolution of the Dinaride–Hellenide segment of the 

lpine orogenic belt. 

Putiš et al. (2023 – in this issue) present new petrological, geo- 

hemical, and geochronological data on meta-basaltic rocks from 

he Meliatic Bôrka Nappe in the Western Carpathians. Thermo- 

arometric modelling results indicate that analysed rocks reached 

lueschist facies P–T conditions at a subduction interface, and that 

hey were subsequently emplaced within an accretionary wedge 

f a Meliatic subduction zone. Based on the lithological types and 

etamorphic facies conditions the authors suggest the subdivision 

f the Inner Carpathian belt into two distinct accretionary wedges: 

ne corresponds to the Late Jurassic – Early Cretaceous Meliatic–

emeric–Veporic accretionary wedge with a Neotethyan affinity . 

he other one represents the Late Cretaceous – Eocene Fatric–

atric–Infratatric wedge, defining the Alpine or Atlantic Tethys do- 

ain. Thus, the Inner Carpathians may represent a tectonic locale 

here two different Tethyan ocean domains may have intersected 

uring the Late Mesozoic and earliest Cenozoic. 

Sayit (2023 – in this issue) provides new geochemical data from 

riassic mafic and ultramafic mega-blocks within a clastic mélange, 

hich makes up a significant component of the Karakaya Complex, 

xposed in the Imrahor area near Ankara (north–central Turkey). 
3 
oth ocean-island basalt – (OIB) and enriched mid-ocean ridge 

asalt – (E-MORB) type mafic rocks coexist in the mélange repre- 

enting the products of partial melting of metasomatized oceanic 

ithospheric mantle, which was infiltrated by very low-degree melt 

ractions. These findings point to the chemical heterogeneity of the 

eotethyan mantle even during the very early stages of the de- 

elopment of Neotethys and are consistent with similar findings 

eported from the Jurassic and Cretaceous mafic rock units within 

he Ankara Mélange exposed in the same region ( Sarıfakıo ̆glu et al., 

014 , 2017 ). 

Simsek et al. (2023 – in this issue) presents the results 

f their geochemical analyses and ion-probe U-Pb zircon dat- 

ng of various crustal rocks (plagiogranites, isotropic gabbros, and 

ikes) in the Cretaceous Kızılda ̆g ophiolite in southern Turkey. 

he new geochronological data show that the Neotethyan oceanic 

rust preserved in this ophiolite developed in a very short time 

pan (i.e., within ∼2 million years) between 92.9 ± 0.52 and 

3.83 ± 0.46 Ma. The geochemical data presented in this pa- 

er and reported in earlier publications ( Dilek and Furnes, 2009 ; 

ilek and Thy, 2009 ) support the magmatic development of the 

ate Cretaceous Kizildag oceanic crust in a forearc tectonic set- 

ing of a North–dipping Neotethyan slab, analogous to the evolu- 

ion of the coeval Troodos ophiolite to the southwest ( Pearce and 

obinson, 2010 ; Furnes et al., 2020 ). Rapid construction of fore- 

rc oceanic crust in a slab rollback tectonic setting during the 

ery early stages of subduction initiation is a significant con- 

ept that is supported by most recent observations and data from 

n-situ subduction systems (i.e, the Izu–Bonin–Mariana forearc; 

shizuka et al., 2014 ) and the Oligocene ophiolites in the West 

hilippines orogenic belt ( Yu et al., 2020 , 2022 ). 

Hall and Thomas (2023 – in this issue) report the occurrence of 

carn (or tactite) at the contact between serpentinized peridotides 

f the the Neyriz ophiolite and the underlying recrystallized lime- 

tone within in the Zagros orogen in southern Iran. The origin of 

hese rocks has been a subject of debate in the literature. The au- 

hors provide a synoptic review of the extant interpretations on 

he origin of these skarn rocks, and then present their field obser- 

ations on their contact relationships, electron microprobe data on 

ineral compositions, and Raman micro-spectroscopy data from 

elt inclusions in the skarn minerals. They propose that the scarn 

ocks beneath the Neyriz peridotites represent a contact metamor- 

hism zone in which the hot upper mantle rocks came into contact 

ith the extended passive margin carbonates during the emplace- 

ent of the ophiolite. 

Saccani et al. (2023 – in this issue) present a new interpreta- 

ion for the origin of Early Cretaceous ophiolites in the Makran 

ccretionary Prism in SE Iran that is significantly different from 

hat the current models suggest (i.e., Moslempour et al., 2015 ; 

mrani et al., 2017 ). Using their new mineral chemistry, geo- 

hemical, and petrological data from the Remeshk–Mokhtarabad 

nd Fannuj–Maskutan ophiolites, Saccani and co-authors show that 

he crustal rock units in these ophiolites have N-MORB and E- 

ORB geochemical affinities, suggesting a mantle source that was 

n places variably metasomatized and enriched by plume-type 

OIB-) components. Similar findings have been reported previously 

rom different domains of the Alpine–Himalayan orogenic belt (i.e., 

accani et al., 2015 ). The inferred enrichment might have occurred 

ue to ridge–plume interactions beneath an oceanic spreading cen- 

er, far from any subducting slab influence. If so, the mantle en- 

ichment patterns deduced by high Ti, P, Y contents, significant 

b depletion, and higher Th/Ta and LREE/HREE ratios compared 

o MORBs may not necessarily characterize the influence of sub- 

ucted slab derived fluids and melts beneath a backarc basin 

 Moslempour et al., 2015 ). These different interpretations of the 

elt evolution of the Makran ophiolites have important implica- 

ions for the paleogeography of the Southern Neotethys and should 



E. Barbero, Y. Dilek, A. Festa et al. Geosystems and Geoenvironment 2 (2023) 100191 

b

I

5

m

c

t

g

o

u

s

s

r

c

i

t

p

o

e

c

o

t

t

C

k

l

s

t

T

a

w

s

a

w

t

t

M

s

g

t

p

i

s

T

f

T

t

Y

c

t

t

w

O

t

s

n

o

f

m

L

z

c

i

t

p

m

e

e

o

l

o

6

C

r

o

C

b

n

p

t

b

t

m

l

p

h

a

c

c

7

b

m

m

t

s

c

a

P

r

o

s

f

p

n

s

n

t

c

c

(

D

c

i

A

a

i

e tested with further research on other Makran ophiolites in SE 

ran and SW Pakistan. 

. Ophiolites and ophiolitic mélanges in Asian Orogenic Belts 

Zhang et al. (2023 – in this issue) utilize detailed geological 

apping, structural observations, and geochronological and geo- 

hemical analyses to characterize the age and geochemical affini- 

ies of magmatic rocks in four ophiolitic mélanges in the Jung- 

ar region of NW China. These ophiolitic mélanges include blocks 

f mafic and felsic rocks derived from different ophiolitic sub- 

nits incorporated into a matrix composed of argillaceous and 

erpentinite. The matrix displays tectonic imbrication and exten- 

ive ductile to brittle deformation fabrics. Ophiolitic material rep- 

esents both subduction–influenced and non–subduction related 

rustal material, indicating the juxtaposition of oceanic crust orig- 

nated from different tectonic settings during the assembly of tec- 

onic mélanges via subduction–accretion and post–ophiolite em- 

lacement, intracontinental deformation events. Thus, the mélange 

ccurrences in the region keep a record of magmatic and tectonic 

vents that were associated with rifting, subduction zone, ocean 

losure, and post–ophiolite emplacement stages during the devel- 

pment of the Junggar basin and its surrounding orogenic belts. 

Xie and Dilek (2023 – in this issue) present new U-Pb de- 

rital zircon ages, internal stratigraphy, depositional history, and 

ectonic model for the Upper Cretaceous – Lower Cenozoic Liuqu 

onglomerate in southern Tibet. The Liuqu Conglomerate is a ∼5–

m–thick terrestrial deposits, composed entirely of fluvial and al- 

uvial fan deposits developed within an orogen-parallel transten- 

ional basin that formed exclusively within the Yarlung Zangbo Su- 

ure Zone. This suture zone marks the collision front between the 

ethyan Himalaya, which is rifted passive margin of Greater India, 

nd the Late Jurassic–Cretaceous Trans-Tethyan arc-trench system 

ithin Neotethys. The results of new U-Pb detrital zircon dating of 

andstones from the Liuqu Conglomerate reveal a youngest zircon 

ge of 307 ± 13 Ma and an oldest zircon age of 3362 ± 51 Ma, 

ith and age spectrum and peaks pointing to East Gondwana as 

he likely provenance of Liuqu sediments. The lack of any detri- 

al zircon grains and clastic material originated from the Gangdese 

agmatic Belt or the Lhasa block further points to the distal po- 

ition of the Liuqu Conglomerate depocenter to the active mar- 

in of Eurasia. The complete, sedimentological, stratigraphic, struc- 

ural, and geochronological record of the Liuqu Conglomerate sup- 

ort a Late Cretaceous arc-continent collision in sub-tropical lat- 

tudes within Neotethys, followed by a continent-continent colli- 

ion between Greater India and Asia during the Oligo-Miocene. 

he tectonic model proposed in this paper is significantly different 

rom most of the existing models on the collision history of the 

ibetan–Himalayan orogenic belt in that the depositional, struc- 

ural and tectonic history of the Liuqu geochronometer within the 

arlung Zangbo Suture Zone in Southern Tibet indicate two dis- 

rete collision events, first between an intraoceanic arc–trench sys- 

em with the northern edge of Greater India in the Latest Cre- 

aceous, and the second event between the Indian sub-continent 

ith its accreted arc and the convergent margin of Asia in the 

ligo–Miocene. This model of two separate subduction zone sys- 

ems within Neotethys to the north of India that facilitated two 

eparate and discrete collision events explains better why India’s 

orthward motion towards Asia in an accelerated mode through- 

ut the late Mesozoic, and why the Xigaze basin was mainly the 

orearc basin of the Gangdese Magmatic Belt. 

Fu et al. (2023 – in this issue) document the occurrence of poly- 

etallic ore deposits in an Early Cambrian ophiolite exposed in the 

üliangshan area in the northern Tibetan Plateau. The Early Paleo- 

oic ophiolite here consists of serpentinized peridotites, pyroxenite, 

hromitite, dolerite dikes that are spatially associated plagiogran- 
4 
te intrusions, lavas, chert, and limestone. The lavas that are in- 

ercalated with fine–grained clastic rocks host massive sulfide de- 

osits. The authors propose that the Lüliangshan ophiolite and its 

assive sulfide deposits developed in a forearc setting during the 

arly-stages of subduction within the Proto-Tethys Ocean in the 

arly Cambrian. This massive sulfide ore formation within a forearc 

phiolite, as reported in this contribution, is reminiscent of simi- 

ar Cu deposits and their genesis in the Late Cretaceous Troodos 

phiolite in Cyprus ( Eddy et al., 1998 ). 

. Ophiolitic mélanges in the Western North American 

ordillera 

Penniston-Dorland and Harvey (2023 – in this issue) provide a 

eview of the geology of the Cretaceous Catalina Schist, exposed 

n the Channel Islands off the Coast of Los Angeles in southern 

alifornia, and discuss its origin along a subduction plate interface 

etween the Farallon oceanic plate and the North American conti- 

ent. The Catalina Schist represents an exhumed subduction com- 

lex that is composed of up to kilometer-scale sequence of both 

he downgoing slab and overring plate separated by mélanges with 

lock-in-matric structures. The authors’ geochemical data support 

he evidence of mechanical mixing of blocks in the matrix and ele- 

ental redistribution by fluid-rock interactions during fluids circu- 

ation along the plate interface shear zone. The observations, inter- 

retations and discussions presented in this paper show effectively 

ow the combination of deformation and fluid circulation patterns 

long subduction plate interface may impact seismic behaviour at 

onvergent margins and may also influence the melt evolution and 

hemistry of arc magmas in the upper plate. 

. Ophiolites and ophiolitic mélanges in Precambrian orogenic 

elts in South America and West Africa 

The Borborema province in NE Brazil consists of an amalga- 

ation of high–grade Proterozoic metamorphic rocks (gneissic and 

igmatitic), metamorphosed supracrustal rocks, and Brasiliano in- 

rusions that are dissected by numerous E–W– to NE–SW–oriented 

hear zones and strike–slip fault systems. These shear zones in- 

lude mafic–ultramafic rock bodies and meta-sedimentary rocks 

nd continue into the Cameroon, and East and West Nigerian 

rovinces to the east in Western Africa. These mafic–ultramafic 

ocks represent highly disfigured ophiolites of possible Pan–African 

rigin. de Lira Santos et al. (2023 – in this issue) present new 

tructural field observations, mineral, geochemical, isotopic data 

rom some of these deformed ophiolitic subunits in the Borborema 

rovince, and propose that ophiolitic rocks may represent the rem- 

ants of intraoceanic and intracontinental rifting products, which 

ubsequently became part of the Western Gondwana superconti- 

ent as the Amazonian, West African, and São Francisco/Congo cra- 

ons were sutured. The geology of the Borborema province with 

rustal–scale shear zones containing ophiolitic rocks is reminis- 

ent of the geology of the Arabian–Nubian Shield in eastern Africa 

 Dilek and Ahmed, 2003 ). 
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