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Abstract: Sign language recognition is one of the most challenging tasks of today’s era. Most of the
researchers working in this domain have focused on different types of implementations for sign
recognition. These implementations require the development of smart prototypes for capturing and
classifying sign gestures. Keeping in mind the aspects of prototype design, sensor-based, vision-
based, and hybrid approach-based prototypes have been designed. The authors in this paper have
designed sensor-based assistive gloves to capture signs for the alphabet and digits. These signs are a
small but important fraction of the ASL dictionary since they play an essential role in fingerspelling,
which is a universal signed linguistic strategy for expressing personal names, technical terms, gaps in
the lexicon, and emphasis. A scaled conjugate gradient-based back propagation algorithm is used
to train a fully-connected neural network on a self-collected dataset of isolated static postures of
digits, alphabetic, and alphanumeric characters. The authors also analyzed the impact of activation
functions on the performance of neural networks. Successful implementation of the recognition
network produced promising results for this small dataset of static gestures of digits, alphabetic, and
alphanumeric characters.

Keywords: assistive glove; American Sign Language (ASL); gesture recognition; neural network
(NN); sign recognition

1. Introduction

In today’s world of smart technology, sign language (SL) recognition is a major task.
This is also the need for time as it can be used to overcome the communication gap for the
Deaf (The cap-case “Deaf” word refers to a community of deaf people who share a language
and a culture. In contrast, the lower-case “deaf” refers to the audiological condition of not
hearing). Globally, almost every country has Deaf communities (according to the world’s
population, 15% to 20% of people are part of the deaf population [1]) and people from these
communities are not always able to communicate by using the vocal national language in
written form. So, in order to help Deaf communities to overcome the language barrier, many
researchers try to develop software and hardware translation systems. For this purpose,
different methodologies such as sensor based, vision based, or hybrid approaches have
been adopted in the literature to design assistive models for capturing sign gestures [2].
These methodologies require the acquisition of posture data made by Deaf people.

Sensor-based prototypes cope with different types of sensors only [3–5]. Choosing
a good combination of different sensors is a subjective matter [6]. Based on the dataset
and classification requirements, a variety of different sensors can be used collectively.
However, this creates a problem. If the number of sensors is increasing, then system
complexity and cost are also increasing, and complex systems often result in low or bad
accuracy [7]. Similarly, for vision-based approaches, only image-based or video-based
data can be analyzed [8]. Usually, there is no proper involvement of sensors in the vision-
based model. However, this model also has some drawbacks regarding data extraction
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from the foreground, background, and noisy channels [9]. Lastly, a hybrid approach is
the combination of both sensor-based and vision-based models [10]. This approach can
normally be used for experimental setups, though the cost of these prototypes is very much
high and the prototype models are very much complex. For the fast computation of data,
normally GPUs or GPGPUs are required [11].

In this paper, we have developed a smart assistive glove (data glove) to capture two
specific sets of signs which are alphabetical signs and the numbers 0–10. Even though num-
bers and alphabetical signs are a small fraction (thirty-seven signs) of the ASL dictionary
(The project https://www.spreadthesign.com/ (accessed on 1 February 2023) contains
more than 20,000 signs for over 40 sign languages), these signs play an essential role in
fingerspelling, which is a universal signed linguistic strategy for expressing personal names,
technical terms, gaps in the lexicon and emphasis [12]. Both alphabetical signs and numbers
are signs which can be captured by a data glove since, to the best of our knowledge, in ASL
they are naturally signed only with hands, that is without using other articulators such as
the head, eyebrows, or shoulders.

This data glove contains five flex sensors embedded on each finger of the hand and a
gyroscope sensor attached to the top of the palm [13]. According to the posture orientation
for standard numeric (ASL), as shown in Figure 1, the dataset is collected for thirty-seven
different sign postures. These sign postures include data for the digit numbers 0 to 10 and
from the letter A to letter Z. Self-collected thirty-seven separate postures data are used to
train the fully connected bilayered and trilayered neural networks. A scaled conjugate
gradient back propagation-based algorithm is used to perfectly classify these sign data.
Listing all the deployments of the designed model, the whole procedure consists of the
following points.
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Figure 1. An overview of complete methodology for NN-based ASL recognition.

1. Developing an assistive glove based on flex and gyroscope sensors;
2. Collecting datasets for numeric, alphabetic, and alphanumeric (i.e., numbers and

alphabet) ASL;
3. Training NN models;
4. Analyzing the impact of activation functions on the performance of neural models;
5. Testing the trained models.

This proposed framework is novel as it is utilizing just two kinds of sensors to catch
the total ASL numbers and letter sets information, which simplifies our model. Beforehand,
various researchers working in the SL space had utilized a wide range of sensors that
made the framework complex. Due to a vast amount of information based on sensor
values, significant performance parameters such as general framework precision, effec-
tiveness, and acquisition time are impacted [14–19]. In the framework we propose, just
two sorts of sensors are utilized, i.e., a flex sensor to acquire the finger bowing data and
an accelerometer/gyroscope sensor to get the hand orientation. Furthermore, we had to
gather information physically since, to the best of our knowledge, no dataset containing
the total data on ASL stances utilizing just two sorts of sensors is available. This allowed us

https://www.spreadthesign.com/
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to perform the acquisition of the new dataset in an efficient way as no complex information
had to be collected. In addition to this, we have carried out our developed dataset on
various variations of neural networks and got noteworthy and cutting-edge performance
results as discussed in the later sections. These outcomes reflect the quality of our gathered
ASL dataset. Previously, most analysts exploited just one kind of neural model for obtaining
maximum precision and accuracy results [20].

We also used TabTransformers and gMLP-based most recent and state-of-the-art
models, though it does not perform well with our data in some preliminary experiments.
This is due to the two following reasons: (one) our dataset does not have any categorical
features, thus it contains all numeric features representing only sensor values; and (two) we
obtained an overfitting of data, which is obviously not desirable. To make the classification
and recognition process simple, we preferred to use a fully connected version of the neural
network (i.e., multilayer perceptron—MLP).

We are aware that data gloves are not always well accepted by the Deaf community
for at least two reasons. The first technical limitation of the data gloves is that they cannot
capture articulators differently by hands [21,22]. Furthermore, in our project, we focus on
numbers and alphabetical signs that are signed using only hands. A second sociological
limitation of data gloves is that the burden of communication by wearing the glove is taken
only by the deaf person to produce a one-way asymmetrical communication Deaf-to-not
Deaf, thus not solving the general problem of accessing the speech. We believe that this
second limitation is generally true, though, in some specific situations, data gloves can be
used advantageously. For instance, gloves can be used as educational tools for SL learners.
Moreover, in particular tasks, such as buying tickets in person, one can imagine that a Deaf
person can use the glove for communicating the name of a city to a not-signing ticket seller
by using fingerspelling [23].

The remaining paper Is structured as follows: a literature review is discussed in
Section 2. Section 3 focuses on methodology. Materials and methods are discussed in
Section 4. The results of the implementation are briefly discussed in Section 5, and Section 6
presents conclusion statements.

2. Literature Review

Accurate identification and classification of sign gestures perfectly and accurately is
always a challenging task for all researchers in this domain. Many different techniques
and methodologies have been adopted to perform this task. Different strategies have also
been adopted for capturing and classifying postures data. Keeping in mind the major
aspects of sign language, literature review-based studies are categorized into three main
domains. Sensor-based recognition models, vision-based recognition models, and hybrid
recognition models.

Sensor-based recognition models purely focus on one or a combination of different
types of sensors. For data acquisition, flex sensors, gyroscope sensors, accelerometer
sensors, contact sensors, optical sensors, or inertial motion sensors have been used [24].
Authors have used the mentioned sensors solo or in combination with different sensors to
capture sign data [25]. Some of the authors have also worked on EEG signals for capturing
brain data in the form of analog signals and then converting analog data into digital form
for machine training [26–29]. In this challenging aspect, some authors have also used
commercial data gloves that are purely made for capturing gesture data. However, in
this scenario, the purpose of using an already made commercial data glove is to increase
the accuracy and efficiency of an already-developed model [30]. Some of the authors
in this domain have also focused on regional languages e.g., Pakistani sign language,
Italian, Indian, Arabic, Russian, Chinese, Taiwanese, and Persian SLs, etc. [31–35]. This is
considered a more challenging task as there is no predefined dataset available for regional
languages and all the time authors must collect their own dataset for very few postures [36,37].
The good thing about sensor-based prototypes is that they are each worn and carried in
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public. The resultant data is normally displayed on an LCD or transmitted to the mobile or
computer screen via a Bluetooth module [38,39].

In concluding the literature discussion, our model is better than the literature models
due to the accompanying reasons. Initially, the majority of the writers have zeroed in on
just a single sort of SL information, for example, numbers or letter sets. Some of them had
zeroed in on both, however, this did not cover the total ASL domain due to stance and
sensor intricacies. However, we have zeroed in on all ASL numbers and letters in order
and a blend of numeric and alphabetic information also. Secondly, due to the expanded
number of sensors, by and large, framework effectiveness and precision have not created
many astonishing outcomes. However, in our model, we have utilized an extremely fine
blend of two kinds of sensors that gave us the best outcomes with phenomenal precision
and effectiveness. Third, a large number of authors take care of just the AI or neural
network model that gives them great outcomes. Be that as it may, we have tried our
manually-collected dataset on different neural models and it performed very well in all
neural formats, which mirrors the creativity and flawlessness of our model and information.
A point-by-point accuracy examination is likewise recorded in tabular form in the results
and discussion section.

3. Methodology

In sign language recognition, there is a list of concatenated tasks starting from cap-
turing posture data with the help of an assistive glove to the identification of resultant
values. For the development of assistive gloves, five flex sensors and gyroscope sensors are
used. It is a property of the flex sensor to produce a resistance value based on the bending
performed to make gestures. Sensors attached to each finger and the palm of the hand
help in getting values regarding one-sign posture. A user wearing an assistive glove will
make sign gestures for ASL and the resultant sensor values will be analyzed and captured
with the help of a microcontroller. A prototype design is a combination of microcontrollers
and sensors. The purpose of the microcontroller in the development of assistive gloves is
to capture sensor-based values and transmit these values to the processing unit i.e., the
computer or server. These collected values are preprocessed and then stored in a database
or file with the help of a parallax microcontroller data acquisition add-on tool for Microsoft
Excel (PLX-DAQ). The core functionality of PLX-DAQ is the transmission of sensor values
i.e., coming through a microcontroller via serial communication directly into the Excel file.
This is the point where dataset generation is performed by collecting all sensor values into
a local or online server-based file. This processed data is forwarded to a neural network
for training purposes. Once a model is completely trained, it is tested for new incoming
data to analyze its performance. The complete methodology is discussed in Figure 1,
which displays a neural network-based classification process for digits. Alphabetic and
alphanumeric neural models also work in the same way.

Neural network-based implementation of sign language requires data in numeric
format. The preprocessed data is utilized as input to train a fully connected neural network.
Based on patterns of sensor values, deep gesture classification is performed for thirty-seven
sign postures. A scaled conjugate gradient back propagation algorithm is used which has
proved helpful in getting maximum accuracy.

4. Materials and Methods

Materials are the connected components that are used collectively for capturing sign
postures. In our developed assistive glove, we have used flex sensors, gyroscope sensors,
resistances, and an Arduino microcontroller as materials and we have used a neural
network-based scaled conjugate gradient back propagation algorithm as a method to
classify postures made by wearing an assistive glove. A very brief description of materials
and methods is discussed in the sections below.
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4.1. Hardware Components
4.1.1. Flex Sensor

A flex sensor is also known as a bending sensor. The internal structure of the flex
sensor is based on a phenolic resin substrate with conducted ink deposits which produces
increased resistance when it is bent to some angle. A flex sensor works on the principle
of the voltage divider rule where Vin is the input voltage, Vout is the final output voltage,
while R1 and R2 are combinations of fixed resistances, and Rflex is the resistance of the flex
sensor, as shown in Equation (1):

Vout = Vin [R1/(R2 + Rflex)] (1)

The bending of the flex sensor is directly proportional to the resistance value. The
higher the bending is, the higher the resistance inside the material. The physical shape of
the sensor consists of two pins. While interconnecting with the microcontroller, as shown
in Figure 2, one pin is connected with the analog pin of the microcontroller, and the other
pin is connected to the ground. To avoid voltage overflow, a minimum value resistance is
also connected to the pin of the flex sensor. In our assistive glove, we have used five flex
sensors and five resistances connected with these flex pins.
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4.1.2. MPU 6050

A gyroscope sensor is a three-axis based shrewd sensor gadget that assists in catching
with protesting direction. Concerning the SLR model, not all standard American sign
motions can be caught with just flex sensors. This is due to the idea of sign motions. All
number-based sign motions have no kind of stance covering. Taking into account the ASL
letter sets’ poses, this is a kind of complicated characterization issue having 26 classes.
In an alphabet-based recognition problem, posture overlapping happens. Certain signals
cannot be caught without catching motion direction. A gyroscope sensor is utilized in this
experiment to effortlessly catch sign directions.

Hand orientations made toward any direction are caught as 3-axis-based numeric
values. Three-directional information is captured as the angle is caught. Hand orientation-
based or directional change in representing any letter set is caught with the assistance of
three parametric values, for example, the x-axis, y-axis, and z-axis. A complete prototype
design is shown in Figure 2.

4.1.3. Arduino Microcontroller

For processing the input data from the sensors, an AT mega 328P-based Arduino
microcontroller is used. This microcontroller has both analog and digital pins attached to it.
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This is a 10-bit microcontroller having values ranging from 0 to 1023 and can easily operate
on 16 MHz frequency. Arduino has 32 KB of memory and 2 KB of RAM for quick data
processing. It can easily be operated with the help of a 5v DC battery or by connecting with
the USB port on the computer. While interconnecting with flex sensors, five sensor pins are
connected with the five analog ports of Arduino, and the common ground of Arduino is
attached to all the second pins of flex sensors. A simple interconnection of the flex and the
Arduino microcontroller is shown in Figure 3.
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4.2. Dataset Generation

For the implementation of SL classification, we have used a self-collected dataset
based on the flex and gyroscope sensor values. For this experiment, we have created and
gathered three separate datasets: numeric ASL having 11 (numbers 0 to 10), alphabetic
ASL having 26 classes (letters A to Z), and alphanumeric ASL stances having 37 classes
(0–10 and A-Z). Every SL pose has 200 examples gathered from 9 distinct male and female
volunteers 24 to 26 years of age. All datasets are gathered under ordinary conditions of the
lab. The dataset size for every variation can be determined by multiplying the number of
sign posture classes with the number of SL samples gathered for each stance. This dataset
is further split into training, validation, and testing sets for neural implementation.

4.3. Neural Network Architecture

The classification of sign gestures is usually considered a complex task. In our exper-
iment, we have used a fully connected bilayered and trilayered neural network having
5 inputs and 11 outputs for the digit datasets, as shown in Figure 1; similarly, 8 inputs
and 26 and 37 outputs for alphabet and alphanumeric datasets, respectively. After the
input layer, the second layer is the hidden layer and the third one is the output layer. The
preprocessed training data is fed into the network through the input layer and the resulting
classified data is analyzed through the output layer of the network. All the statistical
information of the bilayered and trilayered neural models is listed in Table 1.
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Table 1. Statistical information of different variants of neural models on digit, alphabetic, and
alphanumeric datasets.

Neural Network
Specifications

Dataset Type

Digit Alphabet Alphanumeric

Bi
La

ye
re

d

Dataset Split 80% training, 10% validation, and 10% testing
Training Algorithm Scaled Conjugate Gradient based Back Propagation
Training accuracy 97.7% 95.3% 96.5%
Testing Accuracy 94.3% 90.7% 91.5%
Prediction speed 170,000 obs/s 260,000 obs/s 270,000 obs/s

Training time 1.9319 s 21.79 s 50.77 s
Connected Layers 2

Each layer size 10
Regularization strength Lambda

Performance Cross Entropy Error
Activation Functions ReLU, Tanh, Sigmoid

Iteration Limit 1000
ReLU Accuracy 98.7% 97.5% 95.1%
Tanh Accuracy 95.5% 94.8% 93.3%

Sigmoid Accuracy 91.9% 92.6% 90.2%

Tr
iL

ay
er

ed

Connected Layers 3
Each layer size 10

Regularization strength Lambda
Performance Cross Entropy Error

Activation Functions ReLU, Tanh, Sigmoid
Iteration Limit 1000

ReLU Accuracy 96.8% 93.2% 97.6%
Tanh Accuracy 94.7% 92.5% 95.9%

Sigmoid Accuracy 90.4% 87.9% 78.5%

4.4. Scaled Conjugate Gradient Back Propagation Algorithm

We consider the scaled conjugate gradient (SCG) back propagation algorithm for
implementing back propagation. With respect to other algorithms, it is computationally
fast and does not require a line search after each iteration. Equation (2), given below, is
the mathematical notation of the SCG algorithm where E(w) is a global error function
that depends on the biases and the weights associated with the neural network. E(w) is
calculated with one forward pass and E′(w) is calculated with one backward pass of the
neural network iteration. On each iteration, the optimal distance is measured which leads
to a better line search for gradient computation as in Equation (3). In Equation (3), p is
the number of patterns presented to the network as weighted vectors during training, and
ak denotes the step size of the function that aims at regulating the indefiniteness of the
Hessian metrics.

E(w + y) = E(w) + E′(w)Ty +
1
2

2yTE”(w)y (2)

yk+1 = yk + ak × pk (3)

The complete operational pipeline of the proposed model starts with the prototype
design. The purpose of making a new data glove is twofold; (one) it is possible to capture
all static sign postures with the help of only two sensors. This can make the computational
model less complex and fast in computations, and (two) analysis of the neural model
performance in case of less complex data samples i.e., whether it perfectly classifies or goes
towards underfitting or overfitting. While experimenting with capturing signs, in between
transitions of signs occurred when the signer switched from one posture to another posture.
To cope with this problem, we adopted a dual conditional approach i.e., we first checked the
orientation of each finger for each ASL posture and then analyzed the hand orientation for
each individual posture. Then, we set the minimum and maximum range for each sensor to
get the label of each posture made by the signer. In case of the posture perfectly matching
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the ranges of sensor value, we get the numeric or alphabetic label by the microcontroller,
e.g., 1,2,3 or A, B, C. In case of no matching, we get ‘−1′ as noise which was filtered out for
dataset formation.

5. Results and Discussion

Sign language recognition being the most emerging and challenging domain requires
very efficient and accurate findings. Results obtained after the successful implementation
of the discussed models are illustrated in detail in this section. Statistical information of the
neural model used for classification and recognition is completely listed in Table 1. The
information of the model includes the preset, the number of fully connected layers, the
first layer size, the activation function used, the limit of maximum iterations, the prediction
speed, the accuracy, and the training time. As in the implementation, different variants of
neural networks are used. Therefore, statistical information related to each neural model is
included in the table. Apart from different neural models, three different types of datasets
are also used. These different datasets include digits, alphabets, and alphanumeric datasets.
A very comprehensive description of each dataset is reported below.

a. Number datasets

The number dataset contains sensor information for eleven distinct stances. These
stances incorporate information from numbers 0 to 10, hence this is an 11-class problem.
Training of the neural network results into a display of performance in the form of training,
validation, and testing plots occurred. These plots provide information concerning epochs
and cross entropy of the model under progress. The blue line indicates training, the green
line reflects validation, the red line displays testing, and the dotted line highlights the best
performance of the model. The best validation performance for digits is 9.1511 × 10−7

at the 59th epoch, as shown in Figure 4a. For digit classification, only flex sensors are
utilized. Therefore, the value ranges for five flex sensors are listed on the y-axis and the
total number of sign gestures for 11 numbers of ASL sign postures are displayed on the
x-axis of Figure 4b. Each color represents each flex sensor attached to the prototype.
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Figure 4. Training, validation, and testing performance plot (a) along with flex sensors values plot
(b) for number dataset.

b. Alphabets dataset

The alphabet dataset contains sensor information for twenty-six distinct stances. These
stances incorporate information from letters A to Z, hence this is alluded to as a 26-class
problem. The training, validation, and testing plot of the alphabetic neural network is
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shown in Figure 5a below with the best validation performance of 1.2097 × 10−6 at the
62nd epoch. For alphabet classification, a combination of flex sensors, accelerometer, and
gyroscope sensors are utilized. Therefore, the value ranges for the five flex sensors, the
three-axis accelerometer, and the gyroscope sensors are listed in the y-axis and the total
number of sign gestures for the 26 letters of ASL sign posture is displayed on the x-axis of
Figure 5b. Each color represents each sensor value attached to the prototype.
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c. Alphanumeric dataset

The alphanumeric dataset contains sensor information for thirty-seven distinct stances.
These stances incorporate information from letters A to Z and data from numbers 0 to 10,
hence this is alluded to as a 37-class problem. The training, validation, and testing plot
of the alphanumeric neural network is shown in Figure 6a below with the best validation
score of 1.6671 × 10−6 at the 102nd epoch. For alphanumeric sign classification, the same
combination of flex sensors, accelerometer, and gyroscope sensors is utilized. Therefore, the
value ranges for the five flex sensors, the three-axis accelerometer, and the gyroscope sensors
are listed on the y-axis, and the total number of sign gestures for the 37 alphanumeric ASL
sign postures are displayed on the x-axis of Figure 6b. Each color represents each sensor
value attached to the prototype.

Activation functions play a very important role in updating the weights of the neural
nodes during training. Choosing the correct and most appropriate activation function for
your model helps in achieving good accuracy and training results. The authors in this
paper also adopted the strategy of analyzing the impact of activation functions on the
performance of the neural networks by using three different activation functions i.e., ReLU,
Tanh, and Sigmoid. Replicating the same experiment by changing the activation function
results in different accuracies, as listed in Figure 7 below. This experimental strategy is
repeated six times by taking three types of activation functions on a bilayered neural
network shown in Figure 7a and then implementing the same three types of activation
functions for the trilayered neural network shown in Figure 7b. The analysis states that for
the bilayered neural networks, ReLU has the highest accuracy for all formats of the dataset,
i.e., number, alphabetic, and alphanumeric. Tanh stands second in this implementation and
sigmoid lags due to the mathematical behavior of the function. The same is the case in the
trilayered neural network model. ReLU performs very well by providing the best results
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for number, alphabetic, and alphanumeric datasets. Tanh stands second and sigmoid is in
the last stage in this comparison. All these model values are also listed in Table 1.
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Accuracy comparison is a good way of checking the developed model’s progress.
Considering the literature review-based implementation of gesture classification, we have
compared the results of the literature with our results. Table 2, given below, highlights the
algorithmic performance of the literature model corresponding to the accuracy and the
reference number. Comparing our results (in bold) with the literature review, it is clearly
seen that our model performed very well in all aspects of evaluation, i.e., accuracy, speed,
and training time.
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Table 2. Literature review-based accuracy analysis and comparison.

Sr. No Literature-Based Recognition Models Accuracy

1 Support Vector Machine (SVM) [1] 91.93%
2 Template-matching approach [5] 83.58%
3 Template-matching approach [6] 99.5%
4 DTW and Nearest Mapping [7] 96.5%
5 LDA, KNN and SVM [10] 98%
6 Template-matching approach [12] 92%
7 Wrist-based gesture recognition system [13] 92.66% and 88.8%
8 Local Fusion algorithm on motion sensor [15] 91%, 92%, and 93%

9 K-Nearest Neighbor (KNN) [17] 99.53% for static gestures and
98.64% for dynamic gestures

10 Multilayer Perceptron [23] 96.1%
11 Template-matching algorithm [26] 98%
12 Convolutional Neural Network [31] 92.88%
13 Recurrent Neural Network [36] 95%
14 Feed-forward Artificial Neural Network [32] 91.11%
15 Color segmentation and Neural Network [33] 90%
16 Multistream 3D CNN [34] 91%
17 Long Short. Term Memory Networks [37] 92.8%
18 Artificial Neural Network [38] 93.91%
19 3-branch Convolutional Neural Network [35] 90%
20 Bilayered NN (digit dataset) 98.7%
21 Bilayered NN (alphabet dataset) 97.5%
22 Bilayered NN (alphanumeric dataset) 95.1%
23 Trilayered NN (digit dataset) 96.8%
24 Trilayered NN (alphabet dataset) 93.2%
25 Trilayered NN (alphanumeric dataset) 97.6%

For experimental and educational purposes these types of assistive technologies play
a very vital and effective role in society. For experimentation, the focus of researchers
is mainly on computational speed, model performance, prototype cost, and recognition
response. However, the prototypes associated with real-time recognition or translation
of sign postures must deal with all types of social factors as well, i.e., enabling two-way
communication by not putting the burden of communication on the Deaf only. Considering
the applications of sign-to-speech (S2S) assistive technologies, they only deal with 50% of
problems in the case of Deaf people.

Similarly, dealing with regional languages, e.g., Italian, Spanish, etc., requires much
experimental and analysis work to do since sign gestures for every region vary from
each other. Even considering just one regional language, it is not possible to capture and
translate all language postures with the data glove only. Data gloves can only capture
hand movements, not arm, head, articulation, and other body movements. If we consider
increasing the number of sensors to capture all movement types, then it would be very
unrealistic to go in public with a body full of sensors. These are some challenges and
future directions associated with our implementation that can lead researchers to think and
work accordingly.

6. Conclusions

In this paper, neural network-based model for sign language recognition was proposed
where the assistive glove was designed and implemented for capturing real-time data and
compiling it into a dataset. Among different domains of gesture classification, we have
focused on the purely sensor-based implementation of standard ASL postures. An assistive
glove was used to collect a dataset having 200 samples each for 11 numbers, 26 letters, and
37 alphanumeric sign postures. A fully connected bilayered and trilayered neural network
was used to classify eleven, twenty-six, and thirty-seven isolated static sign gestures. A
scaled conjugate gradient back propagation algorithm was used to train neural models for
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the self-collected datasets. The impact of the activation function on the performance of the
model was also analyzed in this paper. Successful implementation of the model has helped
the authors in achieving promising training and testing accuracy for numeric, alphabetic,
and alphanumeric datasets, respectively.

However, our self-generated dataset has a small portion of static gestures used by
the American Sign Language Community. In the future, all representative samples of
ASL would be collected using this glove and other models would be trained to perform
the recognition.
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