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Abstract. Good performance in supervised text classification is usually
obtained with the use of large amounts of labeled training data. How-
ever, obtaining labeled data is often expensive and time-consuming. To
overcome these limitations, researchers have developed Semi-Supervised
learning (SSL) algorithms exploiting the use of unlabeled data, which are
generally easy and free to access. With SSL, unlabeled and labeled data
are combined to outperform Supervised-Learning algorithms. However,
setting up SSL neural networks for text classification is cumbersome and
frequently based on a trial and error process.
We show that the hyperparameter configuration significantly impacts
SSL performance, and the learning rate is the most influential parame-
ter. Additionally, increasing model size also improves SSL performance,
particularly when less pre-processing data are available. Interestingly,
as opposed to feed-forward models, recurrent models generally reach a
performance threshold as pre-processing data size increases.
This article expands the knowledge on hyperparameters and model size
in relation to SSL application in text classification. This work supports
the use of SSL work in future NLP projects by optimizing model design
and potentially lowering training time, particularly if time-restricted.

Keywords: Machine Learning · Text classification · Semi-Supervised
learning

1 Introduction

Text classification has many useful application areas, for example, classifying
emails, medical texts, or even sentiments. Manual text classification is unfeasi-
ble due to significant time and economic costs. Artificial Intelligence (AI) tech-
niques automate text classification tasks, making text classification cheaper and
practical. Within AI, neural networks using traditional supervised learning often
require a substantial amount of labeled data to achieve good text classification
performance. Unfortunately, obtaining labeled data frequently requires domain-
specific expertise. In contrast, getting an extensive volume of unlabeled data



is often free and simple. There is a significant amount of research within the
exciting area of semi-supervised learning (SSL) for text classification. The SSL
technique exploits both unlabeled and labeled data to achieve improved classifi-
cation performance.
Semi-Supervised Learning
The field of machine learning frequently draws a line between supervised learning
and unsupervised learning [4]. Supervised learning uses a dataset containing data
(x-samples) and respective labels/targets (y-samples). In contrast, unsupervised
learning uses a dataset containing data (x-samples) but not labels (y-samples).
SSL uses both supervised and unsupervised learning [6] [22]. SSL aims to in-
crease the performance of either the supervised or unsupervised approach. It
exploits knowledge from both approaches. In particular, if labeled data is chal-
lenging to obtain, using unlabeled data can be significantly useful. For successful
use of SSL, three assumptions need to be satisfied: the smoothness assumption,
the cluster assumption, and the manifold assumption [6, p. 6].
Pre-Training
Unsupervised pre-training utilizes labeled and unlabeled data within two phases.
Parameters for unsupervised pre-training are static within feature extraction
techniques. They can, however, be modified during the supervised fine-tuning
within pre-training techniques. Before supervised learning, unlabeled data moves
the decision border towards potentially more relevant areas with pre-training
methods. Unsupervised pre-training of a model commonly lowers the required
volume of labeled data necessary to achieve good performance. Downstream
NLP tasks then became simpler and cheaper to implement. Unsupervised pre-
training also makes it possible to fine-tune a model to multiple downstream
tasks, reducing training time and regularly improving downstream performance.
Pre-training research is therefore valuable within NLP.
Impact of Parameters on SSL Performance
It is challenging to define precise circumstances where an SSL technique is effec-
tive. It is important to highlight that unlabeled data does not always improve
results [19]. Previous literature has shown decreased performance as a result of
SSL, a phenomenon probably under-reported because of publication bias [22].
Several articles have investigated the use and implementation of SSL [22] [6]
[18] [13] [16], but it is still unclear how to maximise its performance. This is
especially true when good results are reached using purely supervised classifiers,
and deploying SSL are more likely to degrade performance. There are multiple
parameters that can significantly impact SSL performance within text classifi-
cation. These include:
Pre-training Data Size
Raffel [17] et al. and Baevski et al. [2] show that reducing the volume of pre-
training data can result in performance degradation since a large network could
overfit on a small quantity of pre-training data. Raffel et al. [17] recommend
utilizing a significant amount of pre-training data. Importantly, obtaining addi-
tional unlabeled data is inexpensive and straightforward.
Model size



Enlarging network size and/or training time generally improve results [17]. Ac-
cording to a recent paper by Bender et al. [3], the expanding scale of language
models, estimated by volume of training data and parameters, has been a sig-
nificant trend within NLP.
Hyperparameters
There is much literature showing that hyperparameters are very relevant for
achieving good performance with SSL. Devlin et al. [8] observe that using a sig-
nificant amount of data and increasing the number of hyperparameters, improves
results particularly for GLUE [20] . In the RoBERTa paper [15], Liu et al. show
that hyperparameters have a significant impact on SSL performance. You et al.
[21] show that with 32k as batch size, BERT training time can be shortened sig-
nificantly without affecting performance. Dai and Le [7] show that LSTM models
can be trained and reach good performance on multiple text classification tasks,
with fine adjustment of hyperparameters. It is important to highlight that some
hyperparameters have bigger impact on the model performance than others.
According to Goodfellow et al. [9], “The learning rate is perhaps the most im-
portant hyperparameter”. However, there is not a significant volume of research
exploring the impact of parameters on SSL performance for text classification.

This article explores the impact of hyperparameters, including pre-training
data size and model size, on an SSL algorithm employed in a text classification
task. A limited number of epochs and smaller models are used, due to hardware
limitations. A program for running experiments is written based on code from
an earlier project [14].

2 Methods

Structure of Experiments
Two experiment types are run for each model: Supervised learning (SL) experi-
ments and Semi Supervised Learning (SSL) experiments. SL experiments train
the models with labeled data only, without pre-training. SSL experiments pre-
train the models using unlabeled data first. Then, the model is fine-tuned with
labeled data.
-Feed-Forward Model
It contains an embedding layer, a dropout layer, two hidden layers, and one or
multiple output layers. It uses a single output layer for the text classification
task because this requires only a single output. For the pre-training task with
predicting two or three masked tokens, it uses two or three output layers. These
output layers are sharing hidden layers. Therefore, this model does multi-task
pre-training with hard parameter sharing.
-GRU model
This model contains an embedding layer, a dropout layer, a GRU layer, a dense
hidden layer followed by a ReLU activation function, and a single or two/three
output layers. The output layers are similar to the output layers in the feed-
forward model.
-Sequence to Sequence (Seq2seq), Classifier



It contains an encoder and a decoder. The decoder implements an attention
mechanism. The encoder contains an embedding layer, a dropout layer, a bidi-
rectional GRU layer, and the hidden layer. The decoder contains an embedding
layer, a dropout layer, a GRU layer, an energy layer, and an output layer. The
implemented Seq2seq model with attention mechanism is based on code from
GitHub by aladdinpersson [1]. This model does single-task learning during pre-
text task training. Pretext task training uses the Seq2seq model, while supervised
text classification training uses the Classifier model. Both these models contain
an encoder. In contrast to the Seq2seq model, the Classifier model does not have
a decoder. The Classifier achieved similar performance as the Seq2seq model
during testing in a previous project [14]. Therefore, to improve training time,
the Classifier model was used when possible. Additionally, in this work, we ref-
erence both the Seq2seq and Classifier model as Seq2seq model.
Data Handling
For pre-training, training, validation, and testing datasets are created from the
original 20newsgroups [11] dataset. This data contains no headers, footers, or
quotes. Unwanted characters are removed from this data. Data is split into sen-
tences containing at the minimum 11 words. For each sentence, a sliding 10-word
window iterates over the words. For each 10-word sequence, the words “sos” and
“[MASK]” are inserted before the 10 words themselves. This includes the “sos”
and “[MASK]” tokens in the resulting tokenizer. The eleventh word is also used,
mainly because of using the codebase from the previous project [14]. Both su-
pervised and downstream text classification training use data from the original
Banking77 dataset [5]. A testing dataset is also obtained from [5] and used in
experiments as validation data.
Experimental procedure
After creating the 11-word datasets from the 20newsgroups and Banking77
datasets, both supervised learning and SSL experiments are run for each model.
The vocabulary used by the tokenizer is limited to words that appear at least
twice in the data. A downstream task experiment initializes model weights with
the best model weights obtained during pretext task training. Best model weights
achieve the lowest validation loss. If not pre-trained, model weights are randomly
initialized. A model trains and validates for a particular number of epochs. The
pre-training uses a masking pretext task. The “[mask]” token replaces two or
three random tokens in the sequence and the objective is to predict the masked
tokens. During pre-training or validation, each batch uses dynamic masking. By
randomly masking sequences in each batch, the pre-training dataset is enlarged
artificially. Sequences in pre-training batches randomly mask during both train-
ing and validation. For training, the cross entropy loss is calculated and model
parameters are updated using the Adam optimizer.
Hyperparameters
This article uses two baseline hyperparameter configurations for experimenta-
tion. The Vanilla configuration, is meant to represent a typical configuration of
hyperparameters used in machine learning. The SOTA configuration, is partly
based on hyperparameters in two GitHub projects [10] [12], based on a paper [7]



by Dai and Le. The SOTA configuration masks three tokens in each ten-word
sequence. This results in a masking of 30 percent for each 10-word sequence.
Additionally, supervised, pre-training, and downstream training use 200 epochs
each during experimentation.

Table 1 summarizes the hyperparameters used in this study. Additional con-
trolled parameters are:
-Dataset size. The number of 10-word sequences created from the 20newsgroups
dataset, to generate training, validation, and testing datasets. Used sizes range
from 25k to 500k.
-Training, validation and test ratio. Ratios of 80%/10%/10% are used.
-15 Newsgroups from the 20newsgroups dataset are used.
-Length of word sequences. 10-word sequences are generated from the 20news-
groups dataset.
Model evaluation
We evaluate the performance of the models not by an absolute measure but with
a relative measure called SSL performance. The lowest achieved text classifica-
tion validation loss using supervised learning, minus the lowest achieved text
classification validation loss using SSL. This measure allows us to easily see if a
model benefits from using a SSL scheme or not.

SSL performance = LS − LSSL (1)

In Equation 1, LS is the text classification loss using purely supervised learn-
ing, and LSSL is the text classification loss using SSL.

3 Results

Impact of hyperparameters configuration and model size on the SSL
performance
Figure 1 shows the impact of hyperparameter configuration and model size on
the SSL performance for each model, represented as the mean and variance of
10 simulations each. For all models with SOTA configuration, SSL performance
improves compared to the Vanilla configuration. This improvement supports the
hypothesis that the hyperparameters configuration significantly impacts SSL
performance. Ten simulations are not a substantial number of simulations for
each model, so this figure should not be observed as significantly conclusive. As
expected, more extensive models improve SSL performance compared to smaller
models.

Impact of increasing pre-training dataset size on the SSL performance
To test the impact of the pre-processing data size on the SSL performance we run
each model configurations, both Vanilla and SOTA, with different pre-training
data size. We expect that increasing the size of pre-training data leads to im-
proved performance across all models. Additionally, based on the results observed
in Figure 1 we expect bigger models to outperform smaller ones. The results of
SOTA simulations are shown in Figure 2. For the feed-forward model, increasing
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Fig. 1. Vanilla configuration versus SOTA con-
figuration, using 25k pre-training data, 200
epochs for each training phase, and ten simu-
lations for each configuration.

Hyperparameter Vanilla SOTA

Embedding size 512 256

Batch size 512 1024

Hidden size 1024 512

Dropout rate 0.0 0.2

Learning rate 0.0001 0.001

Number of masked
tokens 2 3

Table 1. Baseline Vanilla configu-
ration and SOTA configuration hy-
perparameters for experimentation
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Fig. 2. Comparing pre-training data amounts, using SOTA and Vanilla configuration
and 200 epochs for each training phase.

the pre-training data amount leads to an increase in SSL performance. However,
for both GRU and Seq2seq models, the SSL performance reaches a plateau when
more than 100k sequences are used for pre-training. This experiment shows that
a feed-forward model improves SSL performance as long as pre-training data
volume increases. Importantly, with a recurrent model, increasing pre-training
data size beyond 100k does not improve the SSL performance significantly. This
result is unexpected. Next, we investigate the SSL performance across epochs by
calculating the loss function for a fix 25K sequences pre-training dataset. This
analysis clearly shows that for larger models, the loss graph converges faster



(data not shown in this manuscript) and reaches lower values. Both these ob-
servations support the idea that more comprehensive models learn more useful
features from pre-training data per epoch. These results, taken together with
Figure 2 also show that the more the loss graph converges, the less additional
pre-training data improves SSL performance. Increasing pre-training data vol-
ume with SOTA configuration results in improved SSL performance for all mod-
els with different dynamics, as described in this paragraph. However, when the
Vanilla configuration is tested in a similar framework, we observe a small or no
impact of pre-training data size on SSL performance. This result is unexpected,
particularly for the feed-forward model when compared to the SOTA configura-
tion.

Impact of changing single hyperparameter on the SSL performance
To test the impact of each parameter on the SSL performance of the model and
investigate whether the impact depends on other hyperparameters, we modify
one parameter at a time while keeping the others constant. Simulations are per-
formed with two different pre-training dataset sizes of 25K and 100K sequences.
Only the 100K simulation is presented in Figure 3. In Figure 3 the impact of SSL
performance is quantified across all models with the SOTA configuration as a
starting point. As expected, the learning rate has a crucial impact on the results
of the simulation: changing it from 0.001 to 0.0001 significantly lowers the SSL
performance across all models. It is of particular interest to investigate the im-
pact of different learning rates on the loss function of the model. In essence, when
tested in a Seq2seq model, a higher learning rate (0.001) results in loss graphs
converging significantly faster. Thus, indicating that the model has learned more
useful knowledge during pre-training leading to improved downstream task per-
formance. Another observation is that changing the dropout rate from 0.2 to 0.0
slightly increases the SSL performance for all models when using 100k dataset
size. However, when the 25k dataset size is used (data not presented), changing
the dropout rate to 0.0 significantly lowers the SSL performance for all models.
This might be due to overfitting during pre-training when using only 25k data
samples. This shows that the pre-training dataset size has an impact on the
significance of single hyperparameters.

We last simulate the impact of changing single hyperparameters across mod-
els using the Vanilla configuration, Figure 4. Again, the learning rate shows to
be an important hyperparameter also for the Vanilla configuration. However, the
way the learning rate influences SSL performance in the two configurations is
not the same. In the SOTA configuration, decreasing the learning rate leads to
lower SSL performance, Figure 3. Therefore, it might be reasonable to expect
the SSL performance to increase when increasing the learning rate. However,
this is not the case. A similar decrease in SSL performance can be seen in the
Vanilla configuration when increasing the learning rate from 0.0001 to 0.001,
see Figure 4. This performance indicates that individual hyperparameters can
not be tuned independently, and some interplay between hyperparameters ex-
ists. Another unexpected result in the Vanilla configuration is that changing the
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Fig. 4. Changing one parameter at a time from Vanilla configuration, using 25k pre-
training data and 200 epochs for each training phase

dropout to 0.2 does not change SSL performance as significantly as it did for the
SOTA configuration. This result is unexpected.

Impact of changing two hyperparameters on the SSL performance
To further understand the relationships between hyperparameters, we continue
to modify two hyperparameters at a time, from SOTA configuration, and quan-
tify the SSL performance. This tests if patterns emerge showing which combi-
nation of hyperparameters generally have the strongest impact on SSL perfor-



mance. Figure 5 shows that both the feed-forward and the Seq2seq model obtain
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Fig. 5. Changing two parameters at a time from SOTA configuration, using 25k pre-
training data and 200 epochs for each training phase while keeping everything else
fixed.

the highest SSL performance when modifying batch size from 256 to 512 and
hidden size from 512 to 1024. The GRU model obtains the highest SSL perfor-
mance when embedding size changes from 256 to 512 and hidden size changes
from 512 to 1024. The common factor here is that increasing hidden size from
512 to 1024 makes SSL performance the best for all three models. The differences
in SSL performance might not exceed the performance variance. Therefore, if the
same experiments are rerun, the results can change. Figure 5 also solidifies that
the learning rate is a vital hyperparameter to consider for SSL. When the learn-
ing rate changes from 0.001 to 0.0001, performance decreases. Similarly, when
dropout is modified from 0.2 to 0.0, SSL performance decrease.

3.1 Discussion

The hyperparameters configuration has a significant impact on the
SSL performance. Based on the results presented, the hyperparameter con-
figuration significantly impacts SSL performance at least within a fixed number
of epochs. The smaller and less sophisticated feed-forward models are frequently
more sensitive to hyperparameter modifications. One possible explanation is that
less sophisticated models are more dependent on hyperparameters for learning
effectively. Potentially, more epochs could allow smaller models to converge more
during pre-training and learn more useful knowledge for the downstream classifi-
cation task. Some hyperparameters have a stronger impact on SSL performance



compared to others. Particularly:
-The learning rate has a significant impact.
Increasing the learning rate can lead to a faster model adjustment to the pre-
training task. Because the number of epochs is fixed at 200, increasing the learn-
ing rate results in more substantial weight modifications per update. This results
in faster convergence of the model. A higher learning rate can allow the model to
learn more useful features in fewer epochs, resulting in better downstream per-
formance. However, when tested in the Vanilla configuration, a higher learning
rate results in a lower SSL performance. A possible explanation can be that the
combination of larger embedding size, hidden size, and no dropout may lead to
overfitting on pre-training data.
-The dropout impact on SSL depends on the model.
Dropout is known for lowering overfitting and improving generalization in deep
neural networks. Adding dropout results in models learning more general knowl-
edge during pre-training, which improves downstream classification performance
on validation data. Surprisingly, with 100k pre-training data, changing the dropout
to 0.0 has a minor impact for the GRU and Seq2seq models, while for the feed-
forward model, it has a small positive impact. Larger models with recurrent
layers have more use of dropout, compared to the feed-forward model, because
of a higher tendency to overfit. While for simpler models, dropout results in
ignoring useful information. Additionally, if only 25K data are used, changing
dropout to 0.0 results in the feed-forward model overfitting and lower perfor-
mance. Using 100k pre-training data will then prevent overfitting. However, the
dropout is less relevant when it comes to the Vanilla configuration. The Vanilla
configuration has a lower learning rate, leading to slower learning dynamics. In-
creasing dropout to 0.2 additionally slows down the learning resulting in lower
SSL performance within 200 epochs. The feed-forward model is the exception
here, which can be a random incident. It is possible that if more epochs are used,
then using a dropout of 0.2 would improve SSL performance for both Vanilla
configuration and SOTA configuration.
The amount of pre-training data improves the SSL performance.
For hyperparameter configurations tuned for SSL, SSL performance improves
for smaller models as pre-training data quantity increases, while larger models
reach a performance threshold, at least with a fixed amount of epochs. There-
fore, one should experiment with different data volumes and use as little data
as possible. This can significantly save training time. One possible explanation
for this is that with recurrent layers a model learns faster, and learns a larger
number of useful features from pre-training data. This is because of using more
parameters. Therefore, more expansive models containing more parameters re-
quire less pre-training data to learn the most useful features during pre-training.
This is only speculation. It is possible that Figure 2 looks different with other
hyperparameters. Experiments with additional pre-training data are considered
future work. For other configurations less suited for SSL, the effect of increas-
ing data quantity is not as significant, particularly for smaller models. This also
means that the hyperparameter configuration can be more important than the



amount of pre-training data itself. Using the “wrong” configuration can severely
hinder SSL performance even with large amounts of data.

Larger models improve the SSL performance.
Based on the discussion above, larger models generally show higher SSL per-
formance than smaller models. Our experiments show exceptions to this, but
these might occur due to parameter choices. Using additional pre-training data,
smaller models can catch up with more extensive models regarding SSL per-
formance. However, throughout this entire study, we do not look at absolute
text classification performance. Instead, relative text classification performance
is considered. In summary, extensive models show higher SSL performance com-
pared to smaller models – particularly with a smaller volume of pre-training
data.

3.2 Conclusion

There is a growing interest in SSL research caused by limited labeled data in
many domains. However, the setup of SSL neural networks for text classifica-
tion is cumbersome, frequently based on trial and error, with little knowledge
on which setup is beneficial for SSL. Research has shown that SSL does not
always improve performance compared to supervised learning. We found that
the hyperparameter configuration significantly impacts SSL performance, and
the learning rate has the most impact. Hence, experimenting with different hy-
perparameter configurations can dramatically improve SSL performance. More
extensive models often improve SSL performance than smaller models, partic-
ularly with a smaller pre-training data quantity. However, as pre-training data
size increases, recurrent models generally reach a performance threshold. On the
other hand, smaller models can benefit from more pre-training data, especially
when hyperparameter configurations are tuned for SSL. Therefore, one should
generally experiment using different data volumes for all models. If aiming to
achieve the best possible absolute downstream performance, larger and more
sophisticated models should be used.

This article explored the impact of hyperparameters, including pre-training
data size and model size, on an SSL technique for a text classification task.
This exploration improves understanding of which parameters have the most
impact on SSL for text classification, making it more manageable to perform SSL
work for future NLP projects, particularly if time-restricted. This research also
advances the understanding of model size impact on SSL for text classification,
enabling a better experience of model selection for SSL designs. With this, we
enhance the knowledge of parameter relations, potentially lowering the training
time for SSL-based machine learning.
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