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Abstract

Type 1 diabetes is a common chronic disease characterized by the body’s inability to regu-
late the blood glucose level, leading to severe health consequences if not handled manually.
Accurate blood glucose level predictions can enable better disease management and inform
subsequent treatment decisions. However, predicting future blood glucose levels is a complex
problem due to the inherent complexity and variability of the human body.
This thesis investigates using a Transformer model to outperform a state-of-the-art Convo-
lutional Recurrent Neural Network model by forecasting blood glucose levels on the same
dataset. The problem is structured, and the data is preprocessed as a multivariate multi-step
time series. A unique Layered Ensemble technique that Enhances the Training of the final
model is introduced. This technique manages missing data and counters potential issues from
other techniques by employing both a Long Short-Term Memory model and a Transformer
model together. The experimental results show that this novel ensemble technique reduces
the root mean squared error by approximately 14.28% when predicting the blood glucose
level 30 minutes in the future compared to the state-of-the-art model. This improvement
highlights the potential of this approach to assist diabetes patients with effective disease
management.
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Chapter 1

Introduction

This chapter begins by thoroughly explaining the underlying issue, highlighting its fascinat-
ing characteristics and the unique methods to resolve it. The motivation behind the creation
of this thesis is then discussed. The goals are next stated, which prepares the audience for
the presentation of the hypotheses. The distinctive contributions of this thesis are then
mentioned, and the chapter concludes with an overview of the thesis.

1.1 Introduction

Diabetes is a common chronic disease in which the body cannot produce insulin and thus can-
not control Blood Glucose Level (BGL). The only way to maintain the level is by measuring
and adjusting them by injecting insulin. If the person fails to keep the BGL consistent, the
person has an increased risk of complications such as blindness and nerve damage. Existing
technologies like CGM and Insulin Pumps are widely used by people with diabetes to help
them manage their disease. But even with these tools available, many people still calculate
their insulin doses mentally because the tools are still insufficient, which often leads to poor
calculations and unstable BGL because of all the factors that affect it. The combination of
the available technologies provides a simple solution to the problem because they fail to take
a holistic view of all the factors and determine how much insulin needs to be injected.
Researchers have improved their results on public and private datasets in the last ten years
by adopting Artificial Intelligence (AI) techniques instead of statistical models. However,
despite advanced methods like Recurrent Neural Network (RNN) and Long Short-Term
Memory (LSTM), the current state-of-the-art still does not provide reliable outcomes that
can be applied confidently. This limitation stems primarily from the inherent complexity
and variability of the human body. Specifically, the computation of insulin dosage is a
multifaceted problem due to the dynamic nature of human physiology, with many factors
influencing the BGL. These factors include diet, exercise, insulin sensitivity, stress, illness,
hormonal changes, and other medications. Additionally, when calculating these factors,
most have a delayed effect on the BGL, meaning they must be calculated with a time
dimension. This can be classified as a multivariate time series problem 1. This type of

1A multivariate time series problem is a type of data analysis challenge where multiple variables, each recorded
over time, interact with each other in complex, often nonlinear ways, and the goal is to predict or understand these
interactions.
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problem is considered complex due to the interactions between all the variables, and further,
it complicates the data preprocessing.

The most common models used in AI for time series analysis are LSTM models. Still, the
emergence of the Transformer model has shown promising results in many time series prob-
lems. Transformers offer a potential breakthrough in accurately predicting and managing
time series data due to their ability to model complex interactions and dependencies between
factors affecting a system over time. This thesis will use a Transformer-based approach to
forecast BGL for people with type 1 diabetes, leveraging the ability to capture the highly
dynamic dependencies and model complex interactions between the factors. One of the crit-
ical deliveries of this thesis is a novel ensemble method that uses two distinct models to
outperform the state-of-the-art model by 14.28%.

1.2 Motivation

One of the authors of this thesis is a type-1 diabetes patient, which is a crucial motivating
factor for this thesis. Managing diabetes is a challenging and lifelong task that requires
constant monitoring and careful management of BGLs. Poorly controlled diabetes can lead
to severe complications such as heart disease, kidney damage, nerve damage, and blindness.
By improving the accuracy of insulin dosing and helping patients maintain stable BGLs, this
approach could potentially improve the quality of life for millions of people with diabetes
worldwide.

Another motivation for this project is that Transformer architecture solves the issue of van-
ishing gradients from RNN and LSTM. Vanishing gradient is a problem in RNNs and LSTMs
where the gradient signal becomes too small, making it hard to learn long-term dependencies.
Transformers solve this by using self-attention mechanisms instead of recurrent connections
to capture long-term dependencies more effectively and avoid vanishing gradients. This is a
significant issue when predicting BGLs on longer timescales because when data points are
too far away, they will not affect the prediction. In diabetes management, some data points
like exercise will affect blood glucose for up to 28 hours [50, 4].

1.3 Field of research

This thesis focuses on AI-driven solutions for type 1 diabetes treatment and is positioned
at the interface of computational biology, AI, and health informatics. One of the critical
tasks in efficient diabetes care is predicting the BGL from multivariate time series data
using advanced Machine Learning (ML) techniques. Despite significant advancements made
with models like RNN and LSTM, the complexity of human physiology and the diversity
of variables affecting glucose metabolism make it difficult to forecast the BGL accurately.
The unique ensemble approach introduced in this thesis advances prediction accuracy by
ensembling a LSTM model and a Transformer model.

3



1.4 Thesis Definition

The primary goal of this thesis is to use a deep learning framework that utilizes the Transformer-
based technique [60] to predict future BGLs. To achieve this, the project is broken down
into the following goals.

1.4.1 Thesis goals

Goal 1: Prepare the OhioT1DM dataset for training as a multivariate multi-step time series.

Goal 2: Validate the results from the state-of-the-art by exectuting their code.

Goal 3: Utilize a Transformer model and use the preprocessed dataset to predict BGLs 30
minutes into the future with higher accuracy than the state-of-the-art model.

1.4.2 Hypotheses

Hypothesis 1: A Transformer model can outperform the state-of-the-art Convolutional
Recurrent Neural Network (CRNN) model proposed by J Freiburghaus et al. [19] by pre-
dicting BGLs 30 minutes into the future with lower Root Mean Squared Error (RMSE) on
the same dataset.

Hypothesis 2: Intelligent handling of missing BGL values, rather than zero-filling, could
boost model accuracy.

Hypothesis 3: Opting for a 24-hour input sequence instead of a two-hour sequence could
boost the Transformer model’s accuracy.

1.5 Contributions

This thesis proposes an advancement in algorithmic decision-making aids for diabetes man-
agement. The primary contribution lies in the conception of a novel ensemble technique
to impute missing values in a dataset, which is subsequently used by a Transformer-based
model designed for multi-step time series and used to forecast the BGL 30 minutes ahead.
To the best of the authors’ knowledge, this approach marks a novel contribution to BGL
prediction accuracy. The intricacy of the problem is emphasized by the necessity to forecast
a multivariate time series impacted by diverse factors such as insulin, physical activity, and
meal consumption, making this research challenging.
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1.6 Pre-Project

The group conducted a preliminary project to better understand the factors necessary for
utilizing AI to manage type-1 diabetes. The paper is only reviewed internally and is not
published. The project examines previous work in the field of diabetes management algo-
rithms, current datasets, and alternative data collection methods. One of the conclusions
drawn in the project is that present methodologies utilize too few data points, and even if
present solutions are forecasting with high accuracy, they do not predict far enough into the
future to be used in real-world applications. The project also reviews the models used and
their evaluation metrics. Lastly, a crucial part of the pre-project; acquiring access to the
OhioT1DM dataset.

1.7 Thesis Outline

The contents of this thesis are divided into the following chapters:

• Background provides a comprehensive overview of the main concepts in the thesis.
It explores AI and its applications, time series forecasting, Transformer architecture,
diabetes, the Blood Glucose Level Prediction Challenge (BGLPC), the preliminary
project, and critical factors such as missing values, data leakage, and ensemble models.

• State-of-the-Art provides an overview of the current state of research in BGL predic-
tion, highlighting recent advancements and identifying gaps for further investigation.

• Method describes the details of the methodology employed to obtain the results,
including preprocessing steps, subset division, and the introduction of the Layered
Ensemble with Enhanced Training (LEET) technique. In addition, it describes the
model architectures and performance metrics used in the thesis.

• Experiments and Results explains the experimental methodology and thesis find-
ings. It consists of preliminary experiments, experiments with Transformer models
(encoder-only and encoder-decoder), and experiments on various missing values ap-
proaches, including the LEET technique. The results demonstrate variations in model
performance and the impact of different techniques on the accuracy of predictions.

• Conclusion summarizes the research findings and provides suggestions for future re-
search directions and improvements.

5



Chapter 2

Background

This chapter explains critical concepts of AI and Diabetes to give readers some background
to what comes in the following chapters.

2.1 Artificial Intelligence

A neural network is a computational system that emulates the structure and function of
biological neurons in the brain [35]. The system comprises numerous interlinked processing
units, called artificial neurons or perceptrons, that collaborate to analyze and acquire knowl-
edge from complex data patterns. The basic unit of a neural network is a perceptron, which
receives numerous inputs and performs a weighted summation on them, subsequently apply-
ing an activation function to generate an output. Further explanation of activation functions
will be presented later in this chapter. The perceptron’s weights and biases are modified dur-
ing training to enhance the network’s efficacy on a specific task. This is achieved through
different methods, including backpropagation and gradient descent. Neural networks can
perform tasks like classification and regression by mapping input data to output predictions.
Utilizing a ML, algorithm proves advantageous in situations that entail the processing of
large volumes of data. This is due to its capacity to obtain and deduce characteristics from
the data, thereby removing the need for manual feature engineering. Neural networks can be
classified into feedforward, recurrent, and convolutional networks. Each category has unique
architectural and distinctive components, and selecting the right category depends on the
nature of the dataset and the task under consideration. Feedforward networks are commonly
employed for uncomplicated classification assignments, whereas recurrent networks are more
appropriate for tasks that entail sequential data, such as language processing. Neural net-
works have performed exceptionally on various tasks, such as image and natural language
processing, outperforming state-of-the-art statistical models. Ongoing research and develop-
ment efforts continue in the field as novel architectures and techniques are being suggested
to enhance the performance and capabilities of these systems.
Optimization and loss functions are crucial in ML and AI. Optimization functions, often
called optimizers, are mathematical functions that adjust model parameters to minimize the
result of a loss function [14]. They are vital to neural network learning as they guide the
model toward the most accurate predictions. One commonly used optimization function is
Gradient Descent, which iteratively adjusts parameters in a direction that minimizes the loss.
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On the other hand, loss functions, also known as cost functions, measure the discrepancy
between the model’s predictions and the actual values. The choice of loss function depends
on the specific problem at hand. For example, in regression problems, Mean Squared Error
(MSE) is commonly used, whereas in classification problems, Cross-Entropy loss is often
preferred. Mathematically, the model’s parameters can be defined as θ, the prediction of
the model as ŷ, and the true value as y. The loss function L would calculate the difference
between ŷ and y, then the optimizer would find the θ value that minimizes L as eq. (2.1)
show:

θ∗ = argmin
θ

L(y, ŷ(θ)) (2.1)

Activation functions [61] are also a fundamental element of a neural network and play an
essential role in deciding the output of a neuron. They introduce non-linearity into the model,
allowing it to learn complex patterns. They transform a neuron’s input into an output,
shaping its activation in response to its inputs. The most commonly used activation functions
include the Sigmoid, Tanh, and ReLU (Rectified Linear Unit). The Sigmoid function uses
the range between 0 and 1, which makes it practical for models that predict probabilities.
The Tanh function is like the Sigmoid function but maps its input into a range between
-1 and 1. The ReLU function, on the other hand, maps the negative inputs to zero while
it leaves the positive unchanged. This function is quite popular due to its efficiency but
can cause exploding gradients and suffer from a problem referred to as the “dying ReLU1."
The ELU activation function is a smooth, zero-centered function that avoids the vanishing
gradient and dying ReLU problems but is more computationally expensive than ReLU.
In AI, many different neural network architectures exist to solve various tasks, as mentioned
previously. RNN and LSTM are two much-used architectures that are used on sequential
data like time series, speech recognition, or Natural Language Processing (NLP) [64, 65].
RNNs can capture the temporal dependencies of sequential data, allowing them to learn
from the past and make predictions. It is highly effective at complex modeling patterns in
data, making them a powerful tool for machine learning and AI applications. One of the
shortcomings of RNNs is the problem of vanishing gradients, which is a phenomenon that
occurs in traditional RNNs when the gradients of the parameters during training become
very small, effectively preventing the network from learning. This happens because the
gradients are calculated based on the backpropagation of error through many time steps,
causing the gradients to become very small and the network to struggle to learn effectively.
This can lead to poor performance and slow convergence, especially for tasks that require the
network to capture long-term dependencies in sequential data. LSTM is a variation of RNN
that addresses the issue of vanishing gradients in traditional RNNs, allowing the network to
preserve long-term dependencies in sequential data better. It uses memory cells and gates
to control information flow and stability in the network, allowing it to effectively capture
long-term dependencies and make more accurate predictions.
When predicting time series, a variable’s historical data points are used to predict future
values. This problem is common in finance, weather forecasting, and medical analysis [6, 23,

1The Dying ReLU problem occurs when ReLU neurons in neural networks become perpetually inactive, reducing
the model’s capacity
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22]. In these cases, a model is trained on past data and then used to predict future values. To
do this effectively, the model needs to capture the underlying patterns and dependencies in
the data, such as seasonality, trend, and autocorrelation. Further, a multi-step multivariate
time series predicts multiple future steps using more than one related variable in the given
historical data. This is a more complex problem than single-step univariate time series
prediction because it requires the model to capture inter-dependencies between variables
and predict multiple future steps. Various models can be used to tackle this problem, such
as multi-output regression models, multi-step versions of Autoregressive Integrated Moving
Average (ARIMA), and multivariate LSTMs. In the case of LSTMs, the network can be
designed to handle multiple input variables and make predictions for various steps in the
future, effectively capturing the inter-dependencies between the variables. Additionally,
models such as Convolutional Neural Networks (CNNs) and Attention Mechanisms can also
be used to extract relevant features from the time series data.
The attention mechanisms have addressed the information and performance loss, which is a
powerful solution to these losses in Sequence to Sequence (Seq2Seq) models [58], particularly
when handling long input sequences. Seq2Seq is a RNN-based encoder-decoder model for
processing and generating variable-length sequences in tasks like translation and summa-
rization. The attention model allows the decoder to focus selectively on relevant portions of
the input data during output prediction by assigning weights to each encoder’s hidden state
[3]. This dynamic approach enhances the model’s ability to capture long-range dependen-
cies, improving performance across various applications. However, the attention mechanism
in Seq2Seq models is usually limited to the encoder’s hidden states, which means that the
model can only consider information from the input when generating the output and does
not consider any relationship between different parts of the output sequence itself.
Ashish Vaswani et al. [60] 2017 introduced the Transformer, a type of deep neural network
architecture that has revolutionized the field of NLP. This has since been applied to various
domains, including time series prediction. The architecture uses Attention Mechanisms to
dynamically weigh the importance of different elements in a sequence, making it well-suited
for sequential data such as time series. In the context of time series prediction, a Transformer
model can capture the dependencies between time steps and predict future values. The input
to the Transformer would be a set of historical time steps, and the target would be the future
values. The self-attention layers in the Transformer would allow the network to weigh the
importance of different time steps in the prediction, effectively capturing the dependencies
between the time steps. It is important to note that the Transformer architecture may not
always be the best choice for time series prediction on univariate data without seasonal
changes, as other models such as ARIMA, SARIMA, and LSTMs may be more appropriate
depending on the specific requirements of the task. However, the Transformer has shown
promising results in several time series prediction tasks and is an approach worth considering.
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2.2 Time Series Forecasting

Time series forecasting is a critical aspect of data analysis and predictive modeling, focusing
on using historical data and statistical techniques to predict future events or observations that
are influenced by time. In comparison, traditional prediction solutions ignore the temporal
aspect of the data. Time series forecasting aims to uncover the underlying patterns and
relationships within the data to generate precise predictions about future observations. This
approach is significant in various areas, such as finance, economics, meteorology, and sales
forecasting, as mentioned in the last section.
There are various time series forecasting methods, including univariate and multivariate
forecasting. Univariate time series forecasting considers past observations of a single variable
to make predictions. It is the simplest form of time series forecasting, as it only involves a
single variable, and it can be mathematically represented as follows:

Yt+1 = f(Yt, Yt−1, Yt−2, ..., Yt−p+1) (2.2)

Here, Yt represents the variable’s value at time t, f represents the forecasting model, and p

represents the number of previous time steps used as input to the model [51].

Multivariate time series forecasting involves predicting future values of multiple time series
simultaneously. In multivariate forecasting, the goal is to use the relationship between the
different variables to improve the accuracy of the forecasts. This type of forecasting can be
represented as:

Yt+1, Yt+2, ..., Yt+H = f(Xt, Xt−1, Xt−2, ..., Xt−p+1) (2.3)

Xt represents the additional variables for time step t, and Yt is the predicted value for the
target variable at time t. The function f considers both the past observations of the target
variable and the additional variables for each time step. The H represents the number of
time steps to forecast [51].
Multi-step forecasting refers to predicting future values of a time series for multiple time
steps ahead. It involves predicting values beyond the next time step and is a common task
in many real-world applications, such as sales forecasting, demand forecasting, and financial
forecasting.

Yt+1, Yt+2, ..., Yt+H = f(Yt, Yt−1, Yt−2, ..., Yt−p+1) (2.4)

Where Yt represents the target vector at time t, f represents the forecasting model, p repre-
sents the number of previous time steps used as input, and H represents the number of time
steps to forecast [51].
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2.3 Transformer Architecture

The Transformer model, as mentioned in section 2.1, has had a profound impact on deep
learning, specifically within NLP. Before the Transformer, recurrent models like RNNs,
LSTMs, and Gated Recurrent Unitss (GRUs) dominated sequence-based tasks. However,
their sequential nature posed challenges to parallel computation and managing long-term
dependencies.

Unlike these models, the Transformer’s innovative attention mechanisms and encoder-decoder
architecture handle long-range dependencies efficiently and enable parallel processing. Though
it has some limitations, such as high computational requirements and dependence on large
datasets, the benefits largely outweigh these drawbacks.

In this section, we’ll explore the architecture of the Transformer model, focusing on the
encoder-decoder framework and the attention mechanisms that are its core components. By
understanding these, we can comprehend the strengths of the Transformer model and its
impact on the field of NLP and other sequence-based tasks.

2.3.1 Encoder-Decoder Architecture

The encoder-decoder framework is a widely used approach in time series forecasting that
uses deep learning. It separates the model into two parts: the encoder and the decoder, as
shown in fig. 2.1. The encoder processes the historical time series data into a condensed
representation, which the decoder then uses to make future predictions.

When applied to multi-step time series forecasting, the encoder-decoder model architecture
combined with an attention mechanism incorporates temporal information into the model.
The encoder contains several identical sub-layers, each consisting of a self-attention mech-
anism and a feedforward neural network. Meanwhile, the decoder has multiple identical
sub-layers, each with a multi-head attention mechanism, a self-attention mechanism, and
a feedforward neural network. The multi-head attention mechanism allows the decoder to
focus on the representation generated by the encoder and make future predictions. In con-
trast, the self-attention mechanism helps the decoder consider the relationships between
future time steps.

The encoder unit in the Transformer architecture is designed to convert the input sequence
into a condensed and meaningful representation. It comprises identical sub-layers, including
a self-attention mechanism explained in section 2.3.2 and a feedforward neural network. The
feedforward neural network in the encoder further processes the representation from the
self-attention mechanism, using linear transformations with non-linear activation functions
to refine the representation and decrease its dimensionality. The output of the encoder unit
is a compact and informative representation of the input sequence, which the decoder unit
uses to generate forecasts. Using multiple sub-layers in the encoder enables the model to
capture hierarchical representations of the input, making it capable of modeling complex
dependencies in the data.
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Figure 2.1: Transformer Architecture (adopted from [60])

2.3.2 Attention Mechanisms

Self-attention is a mechanism that allows the network to weigh the importance of different el-
ements in the input sequence to predict a specific component. The idea behind self-attention
is to represent each sequence element as a vector and then compute a weighted sum of the
vectors based on their relationships to the current part. This allows the network to dy-
namically adjust the importance of each sequence component instead of relying solely on
their order in the sequence [60]. This innovative approach distinguishes transformers from
traditional RNN.
Multi-head attention extends the self-attention mechanism by using multiple parallel at-
tention mechanisms with separate linear projections to compute different representation
subspaces. The final representation of each element is then obtained by concatenating the
outputs of all attention heads and applying another linear prediction. This allows the network
to attend to multiple aspects of the input sequence in parallel, leading to better performance
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than a single self-attention mechanism [60].
Further, the Multi-head attention offers an advantage to the neural network as it captures
various and possibly complementary facets of the input sequence instead of a solitary, over-
arching representation. Moreover, it enhances the efficiency of capturing intricate patterns
and interconnections in sequential data, which has significantly contributed to the triumph
of the Transformer model in various NLP assignments. In general, self-attention and multi-
head attention mechanisms are potent tools that facilitate neural networks in capturing
intricate patterns and long-range dependencies in sequential data. These mechanisms have
significantly contributed to the advancement of natural language processing and the current
state-of-the-art.

2.4 Diabetes

This section explains the inner workings of diabetes, which should be understood to have
the insight necessary to work towards a solution to the problem.
A healthy human body constantly adjusts the BGL by mutual secretion of insulin and
glucagon hormones to maintain an optimal level between 70 - 130 (mg/dL). When carbohy-
drates are consumed, the digestive system breaks them into glucose, which then flows into
the bloodstream. As the glucose level in the blood rise, the body begins producing insulin,
which allows cells to turn glucose into energy or store them as glycogen2 in the body. When
this happens, the body trades the glucose for a different kind of energy, lowering the BGL.
On the other hand, doing a hard workout will cause the BGL to drop because the muscles
consume the energy stored. The body then produces glucagon, which turns glycogen back
into glucose and increases BGL. This is an ongoing tug-of-war that the body is employing
to maintain itself [7, 48].
Type 1 diabetes is an autoimmune condition in which the body’s immune system destroys
the cells in the pancreas that secrete the hormones insulin and glucagon. Without these
hormones, the body cannot regulate the BGL. As a result, after consuming carbs, the BGL
will increase until insulin is delivered through an injection. Alternately, if a person with
diabetes exercises and the body consumes all the glucose in the muscles, the blood glucose
level will plunge. The glucose level will continue to drop until carbs are ingested since
the body does not have the glucagon hormone to convert glycogen into glucose. If neither
situation is addressed immediately, it might result in major health issues like nerve damage
and even fatality [15].
At the time of writing, there is no cure for Type-1 diabetes, implying the patient’s glucose
level must be constantly monitored and regulated with medical equipment. Regular BGL
measurements are vital in diabetes care. Most patients in developed countries now have
access to CGM3. The patient must determine and administer insulin dosages based on the
meal’s carbohydrate content by comparing the BGL before and after meals. Most patients
in developed parts of the world have access to insulin pumps4 which makes the process of

2Glycogen is how the body stores short-term energy, and is stored in the liver and muscles
3A CGM is an invasive sensor that detects blood glucose levels by penetrating the skin. The sensor typically lasts

for 14 days
4An insulin pump is a medical device attached to the body that continuously provides insulin subcutaneously; an

insulin reservoir typically lasts four days.
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adjusting the BGL easier. The process of adjusting the BGL is continuous as circumstances
change. Physical activity, dietary changes, and other unforeseen factors, such as illness,
stress, and sleep patterns, can impact the BGL [28].

When calculating an insulin dose, some factors will increase or decrease the effectiveness of
the insulin. This effectiveness is called the "insulin sensitivity factor" or "correction factor."
And is an important basic indicator of how effectively the body reacts to insulin and is
determined by eq. (2.5). The "Insulin Daily Total" is the total number of units from bolus
and basal injections 5.

insulin sensitivity factor =
100

Insulin Daily total
(2.5)

A few algorithms are implemented directly into insulin pumps to control the BGL; some
are still being researched. The three main numerical algorithms that are used inside insulin
pumps are Model Predictive Control (MPC), Proportional-Integral-Derivative (PID), and
Fuzzy Logic (FL). MPC is an algorithm that anticipates future BGL values and changes
insulin supply accordingly. Based on real-time glucose measurements, PID adjusts baseline
insulin delivery to a target BGL (e.g., 126 mg/dL). The FL algorithm uses rules to mimic
clinical reasoning to handle uncertainty and imprecision, such as individual variability in
insulin sensitivity or dietary habits, to translate CGM sensor readings into insulin delivery
actions [1, 44]. These control algorithms are tuned so that the distinctive characteristics of
each algorithm dictate the aggressiveness of each system’s response to BGL variations [25].

The algorithms which are still being researched are RNN and LSTM.

Because of the delayed effect of insulin and nutrients, the algorithm must use a predictive
rather than a reactive approach to insulin control. The limitation of these algorithms is the
lack of data. Specifically, they do not get any data on activity, and meals are only registered
as a single number counting carbohydrates without the temporal information.

2.5 The Blood Glucose Level Prediction Challenge

The BGLPC [30] is a data science competition focusing on developing accurate BGL pre-
diction algorithms. The challenge’s objective is to foster research and development in the
field of diabetes management, as well as collaboration between researchers and healthcare
practitioners.

The challenge provides participants with a dataset containing sensor readings from sensors
collecting different readings from individuals with type 1 diabetes and demographic and
clinical characteristics. Among the sensor readings are the BGL, insulin injections, carbohy-
drate intake, and activity. The objective of the competition is to create a predictive model
that can accurately predict these individuals’ future BGL based on their previous glucose
readings and other clinical data using machine learning and statistical techniques.

5Bolus injections are made before meals, whilst basal injections are made in modest doses throughout the day

13



2.6 Preliminary Project

The pre-project, "Diabetes management in-depth", was completed to build knowledge about
the challenges of managing diabetes using algorithms, the existing approaches, and potential
refinements to these approaches. A key takeaway from the pre-project is which factors affect
the BGL and thus are essential to make predictions forward in time. Further, the existing
methods found in the literature on AI led to the challenge described in section 2.5 and
the OhioT1DM dataset used, an essential building block in this thesis. The pre-project
concludes that even if predictions are accurate, their short-range forecasts do not provide
any particular real-life use case. One reason there are only short-range predictions with
high accuracy may be that they use too few data components when creating models and
thus cannot achieve high accuracy on long-range forecasts. Lastly, the pre-project unveiled
that some features can significantly affect the BGL and might improve model predictions
on longer timeframes if included. The most important components are BGL, insulin, meals,
and activity. Additionally, the temporal aspect of all these components should be included.

2.7 GSR

One of the values contained in the OhioT1DM dataset used in this thesis is the Galvanic Skin
Response (GSR) value, which is a measurement of the skin’s conductance- or electrodermal-
activity. Multiple studies [56, 57, 52, 53] have shown that this value is highly correlated with
the BGL, with their results giving them a correlation coefficient6 (r) between 0.7 to 0.9. At
the same time, RE Bolinger et al. [5] finds that BGL and GSR (r) for two of the patients in
the OhioT1DM dataset’s is -0.02 and -0.10 which indicates a poor correlation.

2.8 Missing Values

Missing values in time series data refer to situations where data points are absent or not
recorded for certain periods. This can occur due to various reasons, such as equipment
malfunction, data entry errors, or data corruption [40]. This is a challenge when forecasting
future values in a time series dataset. The missing values can lead to biased or inaccurate
forecasts, as the model may not have enough information to capture underlying patterns or
trends. Additionally, missing values will cause issues in model training and evaluation, all
models require a value for each observation.
There are a few common strategies for handling missing values in time series data. The first
is omission, which means to remove the data point or the entire feature column. Another
method is imputation, which involves replacing missing values with a substitute value, such
as a constant or a value derived from other variables or a model [17]. One of these impu-
tation approaches is interpolation, where missing values are estimated using the values of
neighboring data points either linearly or as polynomials [54] as shown in fig. 2.2. Linear
interpolation assumes a straight line between two known data points.

6The correlation coefficient is a value that ranges from −1 to 1, i.e., −1 ≤ r ≤ 1 which measures the correlation
between two features x, and y
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The forward or backward filling can also be employed, where missing values are replaced
with either the preceding or following known value as shown in fig. 2.2, assuming that the
time series data is relatively stable [54].
Lastly, the method of extrapolation leverages the predictive power of models like linear
regression, MultiLayer Perceptron, or neural networks, to estimate missing values based on
the patterns and correlations identified in the existing data [49].

Figure 2.2: Different methods to handle missing values (adopted from [18])
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2.9 Data Leakage

In machine learning, data leakage occurs when information crosses over between the training
and test datasets, resulting in excessively high performance on the test set. The data leakage
occurs when there is an overlap between the two sets, causing the model to memorize the
training data and correctly output labels for test examples. This misleading evaluation
results in significantly lower performance on truly unseen data after deployment [27].
Another form of leakage can occur when information from the future is carried backward in
a time series. This can happen when using an imputation method like interpolation, and
the range of imputed values is spread between two batches. For example, consider a simple
time series dataset representing the BGL measured every 5 minutes as shown in table 2.1.

Table 2.1: Blood glucose levels every 5 minutes

Time BG Level
00:00 110
00:05 115
00:10 -
00:15 130
00:20 135

Suppose the data is divided into two batches for training and validation:

• Batch 1: 00:00, 00:05, and 00:10

• Batch 2: 00:15 and 00:20

In this case, the BG level for 00:10 is missing. If linear interpolation is used to estimate
the missing value for 00:10, it would be calculated as the midpoint between 00:05 and 00:15
(115 + 130) / 2 = 122.5. However, using this imputed value to train the model introduces
data leakage because the information from 00:15 (a future time point) estimates the value
for 00:10, which is part of the training data. The model may become biased and overfit, as
it has indirectly accessed information from the validation set (Batch 2) during training.
The most straightforward technique for minimizing data leakage risk is holding back an
evaluation subset during the model training. Holding back the subset, which is independent
of the training set, can be used to evaluate the model’s performance without incorporating
any information from this dataset into the model’s development. This helps ensure the
model is evaluated on unseen data, providing a more reliable estimate of its performance in
real-world scenarios.
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2.10 Ensamble Model

Ensemble modeling [36, 21] involves executing multiple related analytical models and merg-
ing the outcomes into a unified score or spread. This approach is used in predictive analytics
and data mining applications to enhance their evaluation metrics. There are three different
methods used; Bagging, Boosting, and Stacking. The Bagging method starts with splitting
the dataset into subsets, then homogeneously training one model per subset parallelly, and
finally combining the resulting models. The Boosting method is similar to Bagging but trains
the models sequentially instead of parallelly. Lastly, the Stacking method consists of two
layers of models, the Base Learner layer and the Meta Learner layer. The base models are
stacked parallelly like in the Bagging method, but unlike Bagging, the models are trained
heterogeneously before their output is combined into the meta-learner.
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Chapter 3

State-Of-The-Art

AI has become more prevalent in recent years and is theoretically very good at solving
many problems. In particular, data and algorithms have helped researchers grasp complex
mechanisms and develop more complex and interpretable algorithms, encouraging the clinical
application of the AI technology [55].
In recent years, the medical field has witnessed a surge in the application of machine learning
techniques, with numerous studies conducted on predicting the BGL. Researchers have long
employed statistical models to solve the complex time series problem of diabetes. One such
model is the ARIMA model [16], a forecasting technique that excels in dealing with linear
and regular data. However, the blood glucose data obtained from patients often exhibit
irregularities and non-linearity, making it difficult for such models to perform well.

3.1 Sequence Learning and Analysis

Deep learning is the most recent paradigm shift in computing. Using this tool in data-
driven tasks has shown remarkable usefulness in identifying complex patterns from all types
of datasets. Moreover, deep learning performs exceptionally in identifying patterns within
sequential data, wherein the temporal dynamics of the data hold significant importance in
information processing. Empirical evidence suggests that, in the realm of sequence data,
RNNs surpass both Deep Neural Networks (DNNs) [47] and CNNs [34] as the most effective
deep learning architectures. RNNs, equipped with their distinctive feedback loops, are adept
at capturing long-range dependencies and temporal patterns, proving that they can provide
a superior framework for tasks requiring analyzing time series data.
However, RNNs are not without their drawbacks. As the input sequence length increases,
the gradient vanishing problem emerges, leading to the loss of earlier information. To ad-
dress the vanishing gradient problem prevalent in RNNs, advanced model architectures such
as LSTM [24] and GRU [12] are much used. These variants incorporate specialized gating
mechanisms that facilitate the preservation of long-range dependencies, mitigating the van-
ishing gradient issue to a certain extent. However, the need to encode input data into a
fixed-length hidden state vector creates an information loss problem. When dealing with
long and complex sequences, the limited space cannot preserve all the essential information,
affecting the model’s prediction ability.
Elena Castilla et al. [8] examines many applications of time-series forecasting in several
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sectors. The authors demonstrate in their paper that the Spatiotemporal Transformer Neural
Network (STNN) model can recreate the phase space of a dynamic system. The proposed
STNN model outperforms the ARIMA and Support Vector Regression (SVR). Using many
high-dimensional short-term time-series datasets, they further examine the performance of
the STNN framework. They randomly select four target variables from each dataset to be
predicted. Each approach recorded the mean and standard deviation of its forecasts. As
demonstrated in table 3.1, the proposed STNN model outperforms ARIMA, SVR, RNN, and
other models across nearly all datasets regarding inference performance.
The results from this paper show that their transformer model outperforms a LSTM model,
a RNN model, and statistical analysis models nine out of 10 times. These findings underscore
the Transformer model’s potential in forecasting time series data like BGL.

Table 3.1: Results on different datasets (adopted from [8])

Haoyi Zhou et al. [67] investigate using a Transformer model for Long Sequence Time-
series Forecasting (LSTF) and propose solutions for some of the limitations faced. The first
limitation is that the quadratic dot-product calculation in the self-attention modules causes
the complexity and memory usage per layer to become O(L2). The second limitation is the
inability to scale because of a memory bottleneck of O(J ·L2) for larger time horizons when
stacking encoder and decoder layers. Lastly, the dynamic nature of a transformer’s decoding
makes inference very slow when predicting long outputs.
The authors create an efficient transformer-based model, which they call Informer. It ad-
dresses the limitations in the following ways: Using ProbSparse self-attention, which reduces
memory usage to time complexity to O(L logL). Using self-attention distilling1, to reduce
the Value vectors for each attention layer in a pyramid-like scheme that halves the following
layer inputs and optimizes the model for long input sequences. Their generative decoder

1Self-distillation in neural networks refines information from the deepest classifiers up to the shallower ones by
connecting the shallow classifiers at different levels to different attention modules. [66]
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predicts sequences of long output sequences simultaneously instead of one by one. This
simultaneous nature further optimizes the prediction speed.
They evaluate the proposed model with four extensive datasets and demonstrate that their
Informer Model outperforms the other types of models as shown in table 3.2 by at least 10%
and offers a fresh approach to the LSTF problem.

Table 3.2: Informer Model Results (adopted from [67].)

To summarize the findings from this section, it is clear that the Transformer-based Informer
and STNN models stand out. With the Informer model offering approximately 10% better
performance than the LSTM model and the STNN model surpassing traditional models 90%
of the time, it is evident that Transformer models hold considerable promise for enhancing
the precision of time series data predictions.

3.2 Advances in Glucose Forecasting

Many research papers [37, 33, 46, 20, 13, 2, 31, 45, 68, 9, 39] are available on blood glucose
prediction, including many different approaches to machine learning models for improving
the accuracy and thus, reliability of the predictions that the model produces.
J Freiburghaus et al. [19] propose a CRNN fig. 3.1 model for predicting the future BGL
of people with type 1 diabetes using four different features. The model is evaluated using
the metrics RMSE and Mean Absolute Error (MAE) on different time horizons. Their
methodology splits the dataset in two: 2018 and 2020. The 2018 set is used to create a
pre-trained model, and the 2020 set is split into the individual patients and used to fine-
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tune the pre-trained model for each of them. Their model prediction results are listed as
the best in the competition, as shown in table 3.3 below as Paper ID 5. The authors also
note that adding more features influencing the BGL, such as stress or illness, remains to be
researched. Reviewing their code unveils that missing values are solved with forward-filling
as mentioned in section 2.8. It also reveals that the basal insulin feature values are assigned
to one timestamp. In the real world, this value denotes the hourly rate, and when this dose is
unchanged for many hours, a discrepancy emerges between the preprocessed dataset and the
real world. Further, this discrepancy may negatively impact the model’s predictive accuracy
because of the missed data. Both of these discrepancies are areas that can be improved
upon.

Figure 3.1: Convolutional Recurrent Neural Network (adopted from [19])

Table 3.3: Blood Glucose Level Prediction Challenge Results (adopted from [59])

Mehrad Jaloli and Marzia Cescon [26] describe deep learning-based algorithms for forecasting
BGL in people with type 1 diabetes. They propose a model that uses a CNN and LSTM
units to predict the BGL for different time horizons using historical glucose measurements,
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meal information, and insulin injections. The model is evaluated on two datasets, Replace-
BG and DIAdvisor, and achieves excellent performance compared to other approaches on
the same datasets. Specifically, the model yielded RMSE values of 9.28 ± 1.31 (mg/dL) and
9.81 ± 0.91 (mg/dL) for the 30-minute horizon, 16.51 ± 2.19309 (mg/dL) and 18.32 ± 2.76
(mg/dL) for the 60-minute horizon, and 23.45 ± 3.18 (mg/dL) and 25.12 ± 4.65 (mg/dL)
for the 90-minute horizon on the Replace-BG and DIAdvisor datasets, respectively.
SM Lee et al. [37] propose a deep learning framework to forecast BGL in patients with
type-2 diabetes using a Transformer model. The framework utilizes the encoder part of the
Transformer to perform regression and classification under a unified framework. The model
is trained and evaluated on a dataset containing a week of data with the BGL, collected from
patients with type-2 diabetes. The authors face a class imbalance problem2 since the events
of hyperglycemia3 and hypoglycemia4 occur so seldom. They use a Generative Adversarial
Network (GAN) model to generate augmented glucose time series data to solve this.
Another problem they face is less data from type-2 diabetes patients. They overcome this
problem by using transfer learning5, using the type-1 diabetes dataset OhioT1D to create
a base model, then finetuning this model with their Type-2 data. As their results show
in table 3.4, their transformer model provides accurate prediction results for both their
Regression and Classification experiments, thus detecting hyperglycemia and hypoglycemia
in the patient data.

Table 3.4: Blood Glucose Level Prediction (adopted from [37])

Their approach proves a transformer model can predict BGL. Still, since their study only
relies on BGL when training the model and disregards other critical factors that influence
blood glucose, a comprehensive and accurate predictive model that includes these features
remains to be developed. The human body’s glucose regulatory system is complex and indi-
vidual variability in response to medication, diet, and activity, as mentioned in section 2.6.
Since the study is centered around type-2 diabetes, their approach can be further developed
to construct a transformer model for type-1 diabetes, which can predict exact numerical
values.
Tomas Koutny and Michael Mayo. [33] propose a new method for forecasting BGL that
are both easily understandable and have low complexity. This approach uses a rule-driven
model instead of a complex deep learning model. The researchers identify multiple patterns
of glucose fluctuations by extracting relevant features from the OhioT1DM dataset and
subsequently conduct experiments to predict patterns. As part of the evaluation process,

2The class imbalance problem refers to the unequal distribution of labels in a dataset, leading to biased learning
and poor performance of machine learning algorithms.

3Hyperglycemia is a condition where blood glucose levels are abnormally high
4Hypoglycemia refers to abnormally low blood glucose levels
5Transfer learning is a strategy in AI where a pre-trained model is fine-tuned to perform a related task, improving

efficiency.
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they use the Surveillance Error Grid (SEG)6 SEG to verify that they are inside the acceptable
relative error. Their model’s relative error is less than 30% in 96.3% of instances when
forecasting BGL on a 30-minute timeframe. The limitation of this study is that the relative
error was considered zero in cases where the BGL exceeded the predetermined upper or lower
limit. Given that AI models outperform simple rule-driven models, it means that there is
room for further research in using complex ML models.
Nemat et al. [46] employ deep learning models and ensembling to strengthen the management
of type 1 diabetes by predicting BGL at 30 and 60-minute intervals using the OhioT1DM
dataset. In the study, three distinct models are employed, namely linear regression, Vanilla
LSTM (VLSTM), and Bidirectional LSTM (BiLSTM) [20]. The three ensembling techniques
evaluate the models; Stacking, Multivariate, and Subsequence. Their model is evaluated with
a RMSE of 19.63 (mg/dL) and a MAE of 13.88 (mg/dL), showing that their ensemble model
outperforms the pre-existing models they compare to by RMSE 15.64% and MAE 17.91%.
Further, their stacking ensembling approach shows the highest level of performance among
their models. Their method uses two LSTM models. This show there is room for more
research on using advanced models such as the Transformer model in the ensembling.
Daniels et al. [13] employ a CRNN Multitask Learning (MTL) approach to develop indi-
vidualized models for type-1 diabetes patients using the OhioT1DM dataset. Their MTL
approach is a type of transfer learning that produces accurate models for each individual
in the dataset, despite using all the data simultaneously with patients in batches. This is
achieved by backpropagating the error in each batch that tunes the model weights to each
patient in specific layers, which is used to train shared layers in the model that are gener-
alized for all the patients. This method is used to tackle the problem of inter-individual
variability in the BGL predictions. The dataset is divided into two groups based on the
patient’s blood glucose variability to increase the generalized part of the model and its accu-
racy. The performance of their model is compared to a SVR model. The model is evaluated
on multiple forecast ranges between 30 and 120 minutes, where the 30-minute range was
the most accurate. Their MTL approach outperformed the other model with a RMSE of
(18.8±2.3) (mg/dL) and a MAE of (13.2±1.6) (mg/dL). These results indicate that the pa-
tient’s data is hard to train as a generalized model and opens the possibility of researching
models that can handle inter-individual variability. Mario Munoz-Organero. [45] develops
a physiological prediction model to assist individuals with type 1 diabetes. The author uses
the D1NAMO dataset comprised of actual patient data; in addition, they use the AIDA
simulator7 to generate additional data. Utilizing CGM data, carbohydrate digestion, and
insulin absorption processes as features, an LSTM model is employed to forecast BGL for
a time horizon ranging from 30 to 60 minutes forward in time. The prediction of BGL re-
sulted in RMSEs of 6.42 (mg/dL) and 11.35 (mg/dL) for the actual patient data at 30 and
60 minutes, respectively. In addition, the simulator-generated data yielded an RMSE of 3.45
(mg/dL) at the 30-minute mark.
Taiyu Zhu et al. [68] employ a Dilated Recurrent Neural Network (DRNN) [9] model ar-
chitecture to forecast BGL 30 minutes forward in time. Their motivation to develop the

6The Surveillance Error Grid labels the clinical risk an inaccurate blood glucose monitor holds [32].
7AIDA is an open-source software application that enables the dynamic simulation of plasma insulin and blood

glucose patterns, designed for pedagogical demonstrations, instruction, and self-learning purposes [38].
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DRNN is the challenges of vanishing gradients and inefficient parallelization that typical
RNNs encounter when processing extended sequences. In a DRNN with skip connections,
some layers are connected directly to layers that are not adjacent to them in time, allowing
the network to have access to information from past or future timesteps, thus affecting the
model’s network’s ability to capture long-term dependencies and reducing the vanishing gra-
dient problem that can arise in such models. They incorporate the hidden state preceding
the skip length rather than relying on the technique of reflecting the initial hidden state to
the RNN. The skip length is an important parameter in the DRNN; it refers to the number
of timesteps the network jumps over between two consecutive layers, which in their experi-
ment was set to (1,2,4). The study uses the OhioT1DM dataset to conduct a comparative
evaluation analysis of the model’s performance against the following models; autoregressive,
SVR, and CNN. The results in RMSEs for the autoregressive model, SVR, and traditional
neural networks, are 20.1, 21.7, and 22.9 (mg/dL), respectively. In contrast, the DRNN
model achieved a RMSE of 18.9 (mg/dL), indicating superior performance.
Kezhi Li et al. [39] propose a CRNN model as a deep learning approach for predicting BGL
30 and 60 minutes into the future in type-1 diabetes patients. The model uses a convolutional
layer incorporating a 1D Gaussian kernel filter and a RNN layer with LSTM cells to acquire
knowledge of long-term dependencies. The study utilizes data from 10 patients generated by
the UVA/Padova simulator8 and a clinical dataset of 10 patients. The experiment utilizes
both actual patient data and synthesized patient data. The outcomes of the experiments are
satisfactory for the 30-minute prediction horizon, as evidenced by the virtual patient data
recording RMSE of 9.38 (mg/dL) and Mean Absolute Relative Difference (MARD) of 5.50
(mg/dL), as well as the actual patient data recording RMSE of 21.07 (mg/dL) and MARD of
11.61 (mg/dL). Expanding on the last three papers mentioned, it’s plausible that leveraging
cutting-edge machine learning models like the Transformer, which is shown promising results
in sequential prediction tasks, could further refine the accuracy of predictions on the same
dataset.
To summarize the state-of-the-art in blood glucose prediction, there are many different mod-
els and datasets, but there is a lack of transformers utilized in the research and with the
dataset used in this thesis. In addition, as in the previous section about sequence learning
and analysis, there is room for more research using transformer models to predict BGL from
time series data. Table 3.5 summarizes the state-of-the-art results on BGL prediction found
in this section.

8The UVA/Padova Simulator [42] has received approval from the FDA and can be utilized as a replacement for
human subjects in pre-clinical trials aimed at assessing the efficacy of blood glucose control algorithms.
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Table 3.5: Results from the models

Authors Method Dataset RMSE 30 min
(mg/dL)

MAE
(mg/dL)

J Freiburghaus et al. CRNN OhioT1DM 17.45 11.22
Mehrad Jaloli
and
Marzia Cescon

CNN
and
LSTM

Replace-BG
DIAdvisor

9.28 ± 1.31
9.81 ± 0.91

5.63 ± 0.96
6.60 ± 0.76

Daniels et al. CRNN OhioT1DM 18.8 ± 2.3 13.2
Mario Munoz-Organero LSTM D1NAMO 6.42 -
Mario Munoz-Organero LSTM AIDA sim. 3.45 -

Taiyu Zhu et al. DRNN OhioT1DM 18.9 -

Li et al. CRNN UVA/Padova
sim. 21.07 -

Nemat et al. Ensemble
LSTM

OhioT1DM 19.63 13.88

3.3 Summary

In summary, the literature presented in this chapter highlights the noteworthy body of
research accomplished in recent years that focuses on time series forecasting, particularly
within the context of predicting BGL in individuals with diabetes. The growing interest in
diabetes management algorithms underscores the potential of this approach to make mean-
ingful contributions while simultaneously indicating the complexity and ongoing challenges
associated with such predictions.
The various methods and AI model architectures employed to tackle this complex problem
range from traditional time series analysis to advanced ML techniques. They leverage deep
learning models, such as RNNs and CNNs, to predict the BGL with high accuracy and
efficiency. They have also begun exploring ML approaches initially designed for natural-
language processing tasks, such as Seq2Seq models and Transformers. These techniques,
which excel compared to RNNs and CNNs at capturing context and dependencies in textual
data, show great potential for modeling the intricate temporal patterns intrinsic to the BGL,
which could further enhance prediction accuracy and advance the field.
In the current research on type-1 diabetes prediction models, there are still gaps in the
research on transformer models used to overcome the problems of traditional RNN models
like vanishing gradient and memory bottlenecks in long time-series datasets. As mentioned in
section 3.1, the Transformer-based model results are approximately 10% better than a LSTM
model when predicting a time series, which indicates there is potential to use a Transformer
model to improve the prediction of BGL.
Moreover, using additional critical features with their temporal information and further im-
proving on the data preprocessing technique could eliminate irrelevant or noisy data and thus
enhancing the accuracy and general applicability of the model’s predictions and ultimately
improving patient care in type-1 diabetes management.
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Chapter 4

Method

This chapter outlines the methodologies utilized in this thesis to forecast BGLs for type 1
diabetes patients. The aim is to use a Transformer model to outperform the state-of-the-art
model used in BGL forecasting. The chapter is divided into several sections, each describing
process aspects. The chapter will explain the components shown in fig. 4.1 in section 4.1
through section 4.3.
The section labeled “Dataset and preprocessing" (section 4.1) pertains to the OhioT1DM
dataset utilized in the experiments, as well as the preprocessing procedures implemented to
prepare the data for the model. The section clarifies the feature selection process, which is
based on the importance of the features when interpreting the BGL.
In section 4.2, the LEET technique is presented. This technique is specifically developed
to effectively manage missing values in the dataset and mitigate the potential leakage issue
which may arise when the interpolation imputation method is applied to the evaluation data.
The section labeled “Model Architecture" (section 4.3) presents a summary of the different
models employed in the research. It is subdivided into three subsections, namely 4.3.1
“Encoder Only Transformer Model," 4.3.2 “Informer Model," and 4.3.3 “LSTM Model," which
provide a comprehensive description of the individual models employed in the research.
“Performance Metrics" (section 4.4) provides a summary of the evaluation metrics utilized
for assessing the models’ performance, namely MSE, RMSE, and MAE.
This chapter thoroughly comprehends the methodologies and techniques employed in this
research, thus creating the groundwork for the subsequent chapters demonstrating the out-
comes and findings.

4.1 Dataset and preprocessing

The dataset [43] used in the experiments is the one mentioned in section 2.5 and is referred
to as the OhioT1DM dataset. The dataset is acquired under a Data Use Agreement between
Ohio University and the University of Agder. Due to its extensive use in research, this
dataset is excellent for confirming findings through comparative analysis. And because it
includes several individuals and has an appropriate resolution on the timesteps (5 minutes),
this diabetes dataset is substantially higher quality than others that can be found online.
Half of the data was initially released for the competition held in 2018, and the other half
was released for the next round held in 2020. The dataset contains eight weeks of data for
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Figure 4.1: Prediction Methods

12 patients with type 1 diabetes, and each patient’s data is split into training and testing
files with 20 data fields. All patients in the dataset used a CGM sensor, an insulin pump,
a fitness band that recorded physiological data, and a mobile app that the patients used to
register the rest of the data fields.
The most significant features are BGL, insulin, meals, and activity, as concluded in the pre-
project mentioned in section 2.6. Additionally, the features, heart rate, GSR, steps, and sleep
were included to give the model more data and, thus, the best circumstance for correctly
decoding the patients’ physiologies. Further, to get the best model from the dataset, it
must be interpreted correctly before preprocessing to get the correct timeline of events. As
noted in section 3.2, the researchers have made an error by using the basal insulin feature’s
value at a single timestep. The correct way to interpret this value is units per hour from
its timestamp to the next value’s timestamp, thus making the feature a continuous injection
throughout the day instead of a simultaneous one.
The following list contains the data points extracted and used in training. Figure 4.2 shows
some of the features from patient 559 in the dataset. Out of the 20 data fields the dataset
contains, 14 of them are chosen based on research done in the preliminary project explained
in section 2.6. It should be noted that two of the features in the figure, namely air_temp,
and skin_temp, were not used.
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Figure 4.2: Patient 559 training data (Adopted from [63])

• Blood Glucose Level (bg), which is recorded by a CGM sensor in 5-minute intervals.

• Fingerstick, which is a manual BGL measurement often used either when waiting for a
newly applied CGM sensor to complete calibration or to double-check the CGM value’s
correctness. This value is extracted to fill the BGL value gaps that occur when a CGM
sensor is calibrating.

• Insulin consists of two main types of injection doses: continuously delivered (basal)
and On-demand (bolus) insulin. The following list shows the sub-types with their
slight variations that must be accounted for differently.

1. Normal Bolus and Dual Normal are injected simultaneously at the timestamp.

2. Square is simultaneous at the timestamp only if the start value equals the stop
value, else it is administered throughout the time interval.

3. The Square Bolus is administered throughout a time interval.

4. Basal is the hourly rate of insulin injected between two timestamps and is often
varied throughout the day to adapt to the activity level throughout the day.

5. Temp Basal overrides the Basal with a temporary hourly rate between two times-
tamps.

• Meal is recorded as a value of how many grams of carbohydrates are consumed at that
time.

• Heart rate is registered in 5-minute intervals.
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• GSR value is registered once per minute.

• Steps are summarized in 5-minute intervals and registered at the timestamp.

• Exercise is registered with a timestamp, duration (in minutes), and an intensity value
between 1 and 10, assessing the patient’s activity.

• Sleep is registered with two timestamps and a value accounting for some patients’ sleep
quality.

The data is extracted from XML files and preprocessed, then saved as CSV files. It is
preprocessed so that all the features have a common time dimension into which they can
be inserted to create a multivariate time series. The preprocessing also adheres to the rules
from the BGLPC mentioned in section 2.5. The common time dimension for all the data is
created starting from the first BGL value and increases by five minutes for each new value
until the final value. Since there is a discrepancy in the features timestamp in the dataset
(ex., Meal: 10:11, Setps: 10:13), the timestamps are set to the previous 5-minute timestamp.
As mentioned in section 2.8, missing values, as shown in fig. 4.3, in a dataset that is used
for ML must be addressed. Since the BGL values are used as part of the model’s input
and output, introducing a new issue where the time step with a missing value also contains
essential data points like meals or insulin must be avoided. The omission method mentioned
in section 2.8 will not be used. As mentioned in section 2.4, the optimal range for BGL
is between 70 - 130 (mg/dL). Moreover, the patients in the dataset range between 39 -
477 (mg/dL). This means that zero-filling the missing BGL values will introduce an error
between 39 - 477 (mg/dL) for each missing value. To reduce this error, the data points from
finger stick are used to fill some of the gaps in BGL. This approach reduces the number of
missing values, but as fig. 4.4 shows, zero values are still present.

Figure 4.3: Missing Values Figure 4.4: Fingerstick and Zeros
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From this point, the preprocessing takes the two paths described below, where the data is
processed differently for the various models and experiments.

1. The first path is to split the dataset into three subsets, training, validation, and testing.
Zachary C. Lipton, David C. Kale, and Randall Wetzel [41] propose a method of adding
a new feature column to indicate a missing value in the timestep. This method is used
in combination with one of the three tactics below to handle the missing values:

Tactic 1: The missing values are kept at 0 in all the subsets (zero-filled).

Tactic 2: The missing values are imputed with linear interpolation only in the training
and validation subsets.

Tactic 3: The dataset is split into a training, validation, and testing subset. The
missing values are imputed with linear interpolation in all the subsets.

2. The second path is to split into two subsets, subset a and subset b, with their divisions
being 20% and 80%, respectively.

Subset a: Only the BGL feature column is kept, and all missing values are removed.
This subset is then used to train and test the first model in the LEET
technique explained in section 4.2.

Subset b: Uses the first model produced in the LEET method to impute all the missing
values. Subset b is further divided into three subsets for training, validation,
and testing.

The linear interpolation method used on the training data is the same as the leading paper
[19] from the challenge described previously. Using interpolation is against the challenge’s
rules because it can introduce data leakage, as mentioned in section 2.9, but it is mitigated
by not interpolating the testing subset. As fig. 4.5 shows, the graph is now continuous and
never toches zero.

Figure 4.5: Interpolated
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The following list is the key takeaways from the preprocessing

1. Read each patient’s XML files, first the training file, then the testing file separately.

2. Before adding any values, a time series starting from the first BGL value’s timestamp
and ending at the last BGL value’s timestamp is created, with a delta time of 5 minutes.
All feature values’ time steps are moved back to the prior whole 5-minute timestep.
Given the necessity of this adjustment of the values, it should be noted that this
procedure may introduce an error in the relation of one value to another of up to 5
minutes when moved.

3. BGL values are added to the data frame with the adjusted timestamp, as explained
in step 2.

4. Finger stick values are added only to the timestamps where the CGM values are
missing.

5. Meal values are added to their corresponding timestamp in the data frame.

6. Basis heart rate values are added to their corresponding timestamp in the data frame.

7. Basis GSR values are added to the data frame to their corresponding timestamps.

8. Basis steps values are added to their timestep in the data frame.

9. Bolus data’s four subcategories are handled as follows: Normal Bolus and Normal
Dual Bolus values are added to their timestamp directly. Square Bolus and Square
Dual Bolus values are divided by the number of 5-minute intervals between their start
and stop values and then added to the data frame.

10. Basal and Temp basal values are divided between their start value and the next basal
value start value, then added to the data frame.

11. Exercise is added to the data frame after first compressing the duration to the prior
5-minute step (e.g., if the duration is 52 minutes, the new duration is 50 minutes).
Secondly, the duration is divided by five to determine the number of time steps to
which the intensity value should be added.

12. Basis sleep values are set as "1" in all the timestamps between the start and stop
timestamps.

The dataset remains unshuffled primarily for two reasons. Firstly, the highest-performing
outcomes in the challenge are achieved using non-shuffled data, which clearly advocates for
maintaining the original sequence of the data. Secondly, because of the chronological order
of time series data is essential for capturing temporal dependencies and patterns within the
dataset.
Since time series data exhibits a temporal sequence, future observations often hinge on
historical data. Disrupting this chronological ordering through shuffling could potentially
compromise the model’s ability to generate accurate predictions. This is particularly perti-
nent in the context of Transformer models, whose performance is predicated on recognizing
and learning from sequential dependencies in the data.
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4.2 Layered Ensemble with Enhanced Training

As mentioned in chapter 3, Nemat et al. use an ensemble method that delivers superior
results when used. This thesis explores this method as a solution to impute the missing
BGL values. The proposed method combines the Bagging and Boosting ensemble methods
to form a custom technique named LEET. As fig. 4.6 shows, and explained in section 4.1,
the dataset is split into subsets a and b, where subset a contains 20% of the data and is
used to train and evaluate the LSTM Model. This model is then used to impute the missing
values in subset b, which then is used to train, validate, and test the Informer Model.

Figure 4.6: Layered Ensemble with Enhanced Training

The LEET method is used as an imputation method to solve the problem of missing values,
which causes the evaluation metrics to be subpar because the loss is calculated between a
predicted value of ex. 250 (mg/dL) and a missing value that is set to be 0 (mg/dL), which
will always be worse because the BGL will never go below a value of 35 (mg/dL) in a human.
Another problem that LEET solves is the leakage problem that the interpolation imputation
method can cause when used on the testing data, as explained in section 2.9, where future
values cause leakage.

4.3 Model Architecture

This section outlines the models used in this thesis, used either as disjunct models tested in a
head-to-head comparison or conjunct utilizing the LEET technique. The first two (Encoder-
Only Model and Informer Model) are Transformer models with some differences, but both
use multivariate-multistep to forecast a sequence. The last model (LSTM Model) is a less
complicated single-variate LSTM model that predicts the next value. These models are
detailed below in section 4.3.1 through section 4.3.3.

4.3.1 Encoder-Only Model

This model consists of a specified number of Transformer encoder blocks, each containing a
multi-head self-attention layer and a fully connected network. The model uses transformer
encoder blocks to encode the input time series data and then uses a fully connected network
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Multilayer Perceptron (MLP) to generate predictions. In the model, each block combines
several layers to process incoming data. This includes layer normalization, multi-head self-
attention, and a feed-forward network with 1D convolutional layers. The overall model
architecture is built by sequentially connecting the transformer encoder blocks, followed by
a global average pooling layer, dense layers, and a fully connected output layer.
The list below provides an overview of the main hyperparameters used in this model. Ta-
ble B.1 in appendix B lists the exact values for these parameters.

• Activation Function (activation): The activation function used in the model’s
neurons.

• Batch Size (batch_size): The number of training examples utilized in one iteration.

• Early Stopping (early_stopping): The percentage of neurons that are randomly
turned off during training to prevent overfitting.

• Number of Epochs (epochs): The number of complete passes through the entire
training dataset.

• Feed-Forward Network Dimension (ff_dim): The dimension of the feed-forward
network model.

• Prediction Horizon (horizon): This refers to the dimensionality of the output space
of each attention head in a Transformer model.

• Learning Rate (learning_rate): The size of the steps taken to reach a local mini-
mum of the loss function.

• Look-back Period (look_back): The length of the sequence to use as input to
predict the next time step.

• MLP Dropout Rate (MLP dropout): The dropout rate specifically for the MLPs
in the model.

• Number of MLP Units (MLP units): The number of neurons in the MLP.

• Number of Attention Heads (number of heads): This refers to the number of
parallel attention layers (or "heads") in the Transformer model.

• Number of Transformer Blocks (num_transformer_blocks): The number of
Transformer blocks in the model.

4.3.2 Informer Model

The Informer model implemented by Haoyi et al. [67] mentioned in section 3.1, is a further
development of the Transformer model that improves efficiency for long input sequences in
time-series. The Informer model’s high-level architecture consists of two primary compo-
nents: an encoder and a decoder. The encoder and decoder work seamlessly to process
extensive sequential inputs and generate associated outputs. As shown in fig. 4.7, the en-
coder sequentially processes the raw input data, compressing it into a more understandable
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format. This bundled output is then transmitted to the decoder’s multi-head attention head,
and lastly, a fully connected layer generates the final sequence output. The data is passed
from the encoder to the decoder. The encoder first processes the input data by refining
it into a more compact form before passing it to the decoder. The decoder generates the
output using the processed data, a start token, and a placeholder for the target sequence.
Including a start token allows the decoder to produce the output in one forward procedure,
significantly improving the more time-consuming dynamic decoding process. The model’s
performance is then evaluated by the loss function that employs MSE between the predicted
and target sequences, clearly measuring the model’s effectiveness.

Figure 4.7: High Level Informer model Architecture (adopted from [67])

The encoder first takes action, transforming long sequential inputs into a matrix repre-
sentation. Using a mechanism known as ProbSparse self-attention1, the encoder identifies
and focuses on the most relevant features within the data. To maintain effective control
over memory usage, the encoder uses an operation that progressively condenses the time
dimension of the input data. This operation occurs across different layers, with each succes-
sive layer halving the time dimension of its predecessor. Thus, the output from each layer
becomes the input for the next, creating the pyramid-like structure portrayed in fig. 4.7.
The culmination of this process is a robust self-attention feature map characterized by re-
duced redundancy. The outputs of all layers are then concatenated, forming the final hidden
representation of the encoder. A single stack inside the encoder is shown in fig. 4.8. It is
the primary stack taking the entire input sequence of data. The red layers called Attention
Block 1, 2, and 3 are dot-product matrices that take the output from the prior layer. As the

1ProbSparse self-attention [10] is a modification of the self-attention mechanism in Transformer models that makes
attention probabilistically sparse, allowing each token to attend to a fixed number of other tokens, thus reducing
computational complexity from quadratic to linear for longer sequences.

34



figure shows, each subsequent block is halved in size by applying self-attention distilling
explained in section 3.1 to the layer, which enables efficient handling of very long input se-
quences. Lastly, all the stacks’ feature maps are concatenated and returned as the encoder’s
output.

Figure 4.8: A single stack in the encoder (adopted from [67])

The decoder, also seen in fig. 4.7, uses the bundled output from the encoder. Using a
generative inference approach, the decoder can create long sequential outputs more efficiently
than traditional dynamic decoding. It receives a start token and a placeholder for the target
sequence as inputs. The start token is derived from an earlier slice of the input data, while
the placeholder is initialized to zero. Once the inputs are ready, the decoder employs masked
multi-head attention, as explained in section 2.3.2. This strategy safeguards each position
from attending to future positions, avoiding auto-regression. Finally, the output is predicted
by a fully connected layer.

4.3.3 LSTM Model

The objective of this model is to take a sequence of BGL values and predict the next value.
The LSTM model architecture, as shown in the general architecture in fig. 4.9, starts with
an input layer receiving a sequence of BGL values. Following this, there are two LSTM
layers, each with 50 neurons. The first LSTM layer is designed to return sequences, meaning
it passes its output to the next LSTM layer. The second LSTM layer does not return
sequences; instead, it directly passes its output to the following layer. The last layer in
this architecture is a Dense layer with one neuron, a fully connected layer that outputs the
prediction.

The LSTM model predicts BGL values one step (5 minutes) into the future using the previous
six steps (30 minutes). To train and test the LSTM model, test data from both the 2018
and 2020 datasets are used. All missing BGL values from the subset used are removed to
ensure the model’s integrity.
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Figure 4.9: Long Short-Term Memory Model Architecture

4.4 Performance metrics

This section presents an overview of the diverse range of error metrics proposed for evaluating
the performance of model predictions in regression models [11].
MSE eq. (4.1) is a widely used metric for evaluating regression models, as it measures the
average squared difference between predicted and actual values. For each prediction, it
computes the average of the squared errors, with more significant errors having a greater
impact due to the squaring operation.

MSE =
1

n

n∑
i=1

(yi − ŷi)
2 (4.1)

RMSE eq. (4.2) is the square root of the mean squared error. It provides an interpretable
measurement of the prediction error, described in the same units as the target variable,
i.e., BGL. It is advantageous because it is described in the same units as the original data,
allowing a more intuitive comprehension of model accuracy and prediction error magnitude.
As the equation below shows, n is the total number of observations, yi is the true value, ŷi
is the predicted value, and (...)2 indicates the square of the difference.

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (4.2)

MAE eq. (4.3) is a widely used metric for evaluating regression models, as it measures the
average of absolute differences between predicted and true values. The MAE is simple to
understand and works well for applications where reducing the model’s average error is the
main objective. As the equation below shows, n is the total number of observations, yi is
the true value, ŷi is the predicted value, and |...| indicates the absolute value.

36



MAE =
1

n

n∑
i=1

|yi − ŷi| (4.3)

RMSE and MAE are options for evaluating the difference between predicted and actual val-
ues because they provide an intuitive way to compare the performance of various models.
Additionally, the results from BGLPC in section 2.5 use these performance metrics to predict
BGL 30 minutes into the future. Thus, the results obtained in the present paper are likewise
exhibited utilizing identical metrics, thereby enabling their validation through comparative
analysis. The RMSE and MAE are helpful tools for assessing a model’s performance. They
are not sensitive to extreme outliers and can be very helpful when the errors are symmet-
rically and evenly distributed through the dataset. They are used to evaluate a regression
model’s performance and are often used in conjunction with each other.
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Chapter 5

Experiments and Results

This chapter presents the experiments that test all the hypotheses stated in section 1.4.2.
The experimental results are quantified using the performance metrics RMSE and MAE as
mentioned in section 4.4, and every experiment and its result is discussed in each section or
subsection. Some experiments and their results included in this chapter do not reflect the
final results. They are included merely to give further insight into what works best out of
multiple configurations and, thus, which direction forward is the most promising.
The experiments in this thesis are completed using Nvidia Tesla V100 32GB GPU, Python
3.8, and PyTorch 1.12. They are logged and plotted using the MLOps platform Weights
and Biases [62]. The code is written and tested using Apple’s M1 chip, which has GPU
acceleration enabled in PyTorch and TensorFlow via the Metal Performance Shaders Graph
(MPS).

5.1 Preliminary Experiments

This section will look at two preliminary experiments that do not test any of the hypotheses
but are conducted to verify and confirm insights. The first experiment validates the experi-
mental results from the paper leading the BGLPC mentioned in section 2.5, and the second
unveils statistical insights into the dataset.

5.1.1 Validation of Previous Results

This preliminary experiment examines and executes the leading contributor’s code to repro-
duce and validate their published results. As mentioned in chapter 3, they split the dataset
into two subsets. The first subset containing the 2018 data is further split into a train and
validation subset, which are used to train their proposed CRNN model. The second subset,
comprising the 2020 data, is further split into a train, validation, and test subset, which
are used to train and evaluate one fine-tuned model for each patient. Their score is then
calculated by the average of all the patients RMSE which in this experiment results in an
average RMSE of 17.45 (mg/dL) and MAE of 11.22 (mg/dL).
Discussion: The preprocessing on the 2020 subset has a concerning line of code that causes
data to leak from the train and validation sets into the test set, which should only contain
unseen data, as shown in listing 5.1. The snippet is pulled from the public code repository
[29]. The leakage problem invalidates their published result, and after fixing their issue and
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re-training the model, the new results have a RMSE of 18.49 (mg/dL) and a MAE of 12.11
(mg/dL), which is close to their published results but still remains on the top of the BGLPC
ranking.

Listing 5.1: Leakage code snippet from pre-processing

# Load 80% of the data

df_train = all_train_df[train_contrib_id]

...

# split ratio

split_idx = int(len(df_train) * 0.8)

df_val = df_train.iloc[split_idx+48:]

df_train = df_train.iloc[:split_idx]

...

df_test = all_test_df[test_contrib_id]

...

# Data leakage:

df_test = pd.concat([df_train.dropna().iloc[-12:], df_test], axis=0)

5.1.2 Analysis Experiment

In this preliminary experiment, the dataset is preprocessed similarly to the other contributors
in the BGLPC. The data is then used to train a model sequentially with one patient’s data
at a time to produce the best model for each patient. And finally, the results are analyzed.
This experiment is meant to ascertain if the order of training the patients matters and if
the generalized model gives different results from one patient to another. The model is
trained using the Transformer outlined in section 4.3.1. It is trained on one patient at a time
without shuffling, as described in section 3.2. K-Fold Cross-Validation ensures that the data
is reasonably distributed and that there are no clusters of biased data.

Figure 5.1: One-by-one
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Discussion: The resulting model is generalized for all the patients but reveals some unex-
plainable differences in the patients’ data as shown in fig. 5.1. The figure also shows the order
of training the patients, from “best" to “worst" or in the opposite order, does not affect the
model. These results conclusively tell us that some inherent discrepancies in the patients’
data make it challenging to make a generalized model for them.

5.2 Transformer models

In this section, two different approaches to the Transformer model are used to test hypoth-
esis 1, which states that “A Transformer model can outperform the state-of-the-art
CRNN model proposed by J Freiburghaus et al. [19] by predicting BGLs 30
minutes into the future with lower RMSE on the same dataset." The experimen-
tal results from the models in this section are compared to the state-of-the-art model as
described in section 3.2.

5.2.1 Experiment 1: Encoder-Only

This experiment tests hypothesis 1 by using a Transformer model with only the encoder,
as explained in section 4.3.1 to outperform the state-of-the-art model. The model is trained
on the 2018 subset, which is then fine-tuned on all the patients in the 2020 subset at once to
create a generalized model for all patients. This is similar to the approach mentioned in
section 3.2, except that they train one model for each patient in the 2020 subset. During
the experiments, adjusting the number of feedforward layers in the neural network slows the
training process substantially and results in a lower loss. Various activation functions are
tested but do not improve the model performance.

The Transformer model shows good results when evaluated on both the training and vali-
dation sets, with a RMSE values of 15 (mg/dL) and 11 (mg/dL), respectively, and a MAE
values of 9.5 (mg/dL) and 7.8 (mg/dL), respectively. The model’s efficacy drops when ap-
plied to the unseen test data, as seen by the lesser RMSE value of 27 (mg/dL) and MAE of
24.2 (mg/dL). A detailed graphical illustration of these findings can be found in fig. 5.2.

Discussion: Multiple factors can cause this experiment’s poor performance of the encoder-
only model. First, the model looks overfitted on the training and validation data, resulting
in poor generalization and a low score when evaluated with unseen test data. Another expla-
nation could be that the inherent complexity of BGL prediction is better suited for a CRNN
model, like the one from section 3.2, which combines convolutional layers for feature extrac-
tion and recurrent layers for temporal relationships. The encoder-only model, in contrast,
relies entirely on self-attention mechanisms, which may not be as effective at capturing the
time-series nature of BGL data. In addition, using only the encoder from the Transformer
model may limit its ability to learn complex patterns in the data since it does not have the
full sequence-to-sequence powers of a complete encoder-decoder Transformer model. This
conclusively shows that the Transformer model, which uses an encoder-only architecture,
underperforms compared to the state-of-the-art model. Thus, hypothesis 1 is rejected.
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Figure 5.2: Transformer Model With Only Encoder

5.2.2 Experiment 2: Encoder-Decoder

In this experiment, hypothesis 1 is tested by using the Informer model mentioned in sec-
tion 3.1, a transformer model with an encoder-decoder model architecture as explained in
section 4.3.2 to outperform the state-of-the-art model. This experiment contains multiple
runs and, thus, multiple models, where the main differences are how the missing values in
the dataset are handled. The first is where they are addressed by zero-filling, and in the
second, they are managed by linear interpolation. Further, numerous tests are completed to
optimize the model and its results. These tests included various varieties of features, hyper-
parameter tuning, and different data-splitting methods between the training, validation, and
testing sets. Figure 5.3 shows that the model trained with interpolated data outperforms
the model trained on non-interpolated data. The best result is obtained using interpolation,
which gives a RMSE of 14.76 (mg/dL) and a MAE of 11 (mg/dL), while the best results for
non-interpolated data produce a RMSE of 21.4 (mg/dL) and a MAE of 11.2 (mg/dL).
Discussion: The Informer is a great leap from previous implementations of transformer
models with their new ingenious methods to increase efficiency, giving the ability to test
different hyperparameters swiftly. A key component of this model is its decoder, which is
crucial for forecasting future values. It generates future steps auto-regressively, leveraging
its preceding outputs as context for upcoming predictions. The decoder’s attention mecha-
nism helps to focus on relevant parts of the input sequence, while the masked self-attention
preserves the data’s temporal sequence. When experimenting with the hyperparameters in
this model, no matter how they are tweaked, the default hyperparameters provide the best
results, indicating that they are highly optimized for this model. The Informer model also
performs better than the encoder-only from the previous experiment, no matter how the
dataset is preprocessed. Table A.1 in appendix A shows a concise overview of the results
from different tests. The results from the experiment conclusively show that the Informer
model underperforms the state-of-the-art model. Thus, hypothesis 1 is rejected.
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Figure 5.3: Informer Results

5.3 Missing Values

Hypothesis 2 states that: “Intelligent handling of missing BGL values, rather than
zero-filling, could boost model accuracy." This hypothesis is tested with three ex-
periments outlined in section 5.3.1 through section 5.3.4. The following experiments were
performed at different points over the project’s timeline. As a result, the outcomes are not di-
rectly comparable due to the modifications made to the underlying code at each stage. These
changes, critical to the iterative development and refinement process, introduced changes in
each experiment’s operating conditions, thus influencing the comparability of the results.

5.3.1 Experiment 3: Extra Column

In this experiment, hypothesis 2 is tested by training two different models. Their respective
performance metrics are compared to ascertain the superior model. The first model is trained
using the initial feature columns as discussed in section 4.1. The second model is trained
with an extra column named “missing_bg." The extra column contains a binary integer
value to indicate all the timesteps where there are missing values in the “BGL" column. The
resulting models from this experiment are evaluated with the performance metrics RMSE
and MAE. The model with the extra column “missing_bg" achieves a RMSE of 34 (mg/dL)
and a MAE of 25.6 (mg/dL). The model without the column achieves a RMSE of 43 (mg/dL)
and a MAE of 34.5 (mg/dL). The graphs in fig. 5.4 also show that the model trained with
the extra column is superior to that trained without the new column.
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Figure 5.4: Missing Values - Extra Column

Disscussion: Including the “missing_bg" column as an indicator for missing values provides
additional context about the dataset to the model, successfully turning missing values from
a challenge into a usable feature. The decrease in the RMSE metric results from the model’s
ability to understand patterns and dependencies related to the missing values, which leads
to more accurate predictions. This conclusively shows that intelligent handling of missing
values instead of zero-filling can boost the Encoder-Only model’s accuracy, thus confirming
hypothesis 2.

5.3.2 Experiment 4: Interpolation

In this experiment, hypothesis 2 is tested by training two different models. Their respective
performance metrics are compared to ascertain the superior model. Both these models use
the extra column from the prior experiment to enhance the result further. The first model
is trained using the zero-filled data, and the second is trained using interpolated data. The
models’ resulting validation RMSE are 19 and 12, respectively, as shown in fig. 5.5.
Discussion: The results show that the model trained on interpolated data is superior to that
trained on non-interpolated data. The experiment illustrated in the figure uses the Encoder-
only model. In addition, the same results are also reflected when using the Informer model
mentioned in section 5.2.2. This conclusively shows that intelligent handling of missing
values instead of zero-filling can boost the model’s accuracy, thus confirming hypothesis 2.

5.3.3 Experiment 5: Ensemble Method Part 1

This experiment is the first part of the LEET method mentioned in section 4.2, which uses
two distinct models to yield the best results. This experiment does not directly test any
of the hypotheses but is an experiment to evaluate the best-performing Model 1 out of two
options. The first option is using GSR, and the second is using BGL to predict BGL, and the
best one is used in the next experiment to construct the best-performing ensembled model.
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Figure 5.5: Missing Values - Interpolation

The model used in this experiment is detailed in section 4.3.3 and is utilized to handle the
missing values in the dataset. And as explained in section 4.2, the dataset is split into two
subsets, where subset a is used in this experiment to train the first of the two ensembled
models.
The first alternative of this experiment employs GSR to predict the BGL value in the
same timestep. The trained model yields the evaluation RMSE of 64 (mg/dL). Further, using
a simple statistical analysis as shown in fig. 5.6, reveals that the best correlation coefficient
between any of the patients’ GSR and BGL in the dataset is r = −0.12.

Figure 5.6: Correlation between BGL and GSR.
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The second alternative of this experiment employs prior values of the BGL feature to
predict the next BGL value. Using the prior six BGL values (30 minutes) gives the best
resulting model, which is evaluated to have a RMSE of 4.5 (mg/dL).
Discussion: As mentioned in section 2.7, GSR is an intriguing feature because of its high
correlation to BGL, but the RMSE of 64 (mg/dL) is an abysmal score. And further, the
correlation of r = −0.12 between GSR and BGL indicates a very poor correlation of the
features. This verifies the findings from the paper [5] mentioned in section 2.7 that the
OhioT1DM dataset has a very poor correlation between these values even in the patients
with the highest correlation. This low correlation paved the way to use BGL to predict the
next BGL value, which gives a far superior evaluation RMSE of 4.5 (mg/dL).

5.3.4 Experiment 6: Ensemble Method Part 2

This experiment is the second part of the ensemble technique. The LSTM model from the
prior experiment is combined with the Informer model to construct the LEET method and
test hypothesis 1 to outperform the state-of-the-art model. Additionally, this experiment
tests hypothesis 2 to outperform the prior imputation methods used for handling missing
values in this thesis. The Informer model is the same model used in experiment 2, which is
used to predict BGL values several steps into the future. The dataset is split into two subsets,
where subset b is used to train Model 2, as explained in section 4.2. Model 1 extrapolates the
missing values in subset b, which replaces all the zero-filled values. The newly preprocessed
subset b is then used to train the Informer model, which yields an RMSE of 15.85 (mg/dL)
when predicting 30 minutes into the future. Lastly, fig. 5.7 shows the training and validation
loss using a MSE loss function. This figure also shows that this model converges after very
few training epochs.

Figure 5.7: LEET Informer
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Discussion: The method in this experiment outperforms both the models and methods
in the prior experiments and the state-of-the-art model. In addition, this method does not
suffer from the data leakage problem that the interpolation method does, which means this
method can be used in a real-life scenario. Furthermore, as shown in fig. 5.7, the convergence
of the graphs is a sign that the model has stopped learning because it has been trained to
a solution that reduces the error as much as possible, given the model’s structure and the
available training data. This experiment conclusively shows that a Transformer model can
outperform the state-of-the-art CRNN model from [19] by predicting the BGL 30 minutes
into the future with lower RMSE on the same dataset also that intelligent handling of missing
values instead of zero-filling can boost the model’s accuracy, thus confirming both hypothesis
1 and hypothesis 2.

5.4 Experiment 6: Longer Input Sequence

Hypothesis 3 states that: “Opting for a 24-hour input sequence instead of a two-
hour sequence could boost the Transformer model’s accuracy." In this experiment,
the hypothesis is tested by training the Informer model with the input sequence lengths of
24 and 288 timesteps, representing two hours and 24 hours, respectively, to evaluate the
best-performing sequence length. When trained on the short and long sequences, the models
resulting RMSE is 15.8 (mg/dL) and 16.3(mg/dL), respectively, and MAE of 9.0 (mg/dL)
and 9.3 (mg/dL), respectively. Further, fig. 5.8 shows the training and validation loss using
a MSE loss function, these graphs show that short and long sequences are very similar, but
the short validation loss is slightly lower.

Figure 5.8: Short vs. Long Input Sequence
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Discussion: As mentioned in section 2.6, activity affects the BGL up to 24 hours into the
future by increasing the body’s insulin sensitivity. This extended timeframe of the activity’s
effect on the BGL is the reason for the hypothesis tested in this experiment. But even
though the model has all these extra timesteps with data, the accuracy does not improve.
This may be caused by the model’s ability to extract the activity information from a much
smaller input sequence in the form of insulin sensitivity. And additionally, the extra data
may be an unwanted introduction of noise which reduces the model’s ability to find trends
and correlations. This verifies the time frame used in state-of-the-art algorithms attempting
to solve the same problem. This conclusively shows that opting for a 24-hour input sequence
instead of a two-hour sequence does not boost the Transformer model’s accuracy, thus
rejecting hypothesis 3.

5.5 Summary

Table 5.1 lists the results achieved by the different experiments in this thesis, as well as some
of the best results from the BGLPC mentioned in section 2.5. The results are listed with
the evaluation metrics RMSE and MAE and “Decrease from 18.49," which is the result of
the state-of-the-art model after fixing the data leakage as explained in section 5.1.1.

Table 5.1: Comparison of Results

Method RMSE (mg/dL) MAE (mg/dL) % Decrease from 18.49
Informer with interpolation 14.76 11 20.23 %
LEET 15.85 9 14.28 %
SotA 17.45 11.22 -
SotA (fixed) 18.49 12.11 0 %
Informer 21.4 11.2 -15.75 %
Encoder-Only 27 24.2 -46.09 %
Missing value column 34 25.6 -84.11 %
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Chapter 6

Conclusions

This thesis presents a comprehensive investigation into applying Transformer-based mod-
els for predicting blood glucose levels in type 1 diabetes patients using the much-used
OhioT1DM dataset. Most significantly, we propose using a novel ensemble technique named
LEET which uses a LSTM model as its first stage and then uses a Transformer model as
its second stage. The task is highly complex due to the intricate nature of the human body,
characterized by its multivariate nature and the temporal dependencies inherent in the time
series data.
Section 1.4.1 introduces the three following goals. First, validate the result from the state-
of-the-art CRNN model from section 3.2. Second, preprocess the dataset for the transformer
model. Lastly, develop a transformer model that reaches higher accuracy than the state-of-
the-art model when predicting BGL 30 minutes into the future. When validating the state-
of-the-art model in the preliminary experiment, we found that they made a mistake when
preprocessing the basal column by using it as a dose instead of an hourly rate. Additionally,
we discovered an error in their code, causing data leakage and, thus, invalidating their
published result. The dataset’s features are preprocessed, so all features have a common
time dimension. This gives us a multivariate time series that resembles the real-world as
close as possible.
Several models are suggested and subsequently employed in our experiments to evaluate our
hypotheses and enhance the precision of model predictions. The OhioT1DM dataset, which
contains eight weeks of data for each of the 12 individuals with type 1 diabetes, is utilized for
these model training and evaluations. The accuracy of the Encoder-Only model is inferior to
the state-of-the-art model. Further, the Informer model’s accuracy outperforms the Encoder-
Only model but is still inferior to the state-of-the-art model. Lastly, the proposed LEET
technique produces a model with a RMSE of 15.85, which is 14.28% lower than the state-
of-the-art model. Additionally, this novel technique avoids data leakage. To our knowledge,
this represents the best results in a model trained using the OhioT1DM dataset mentioned
in 4.1 when predicting 30 minutes into the future.
Further, when using the linear interpolation imputation method on the dataset, the informer
model produces the highest accuracy in this thesis. However, this approach leads to data
leakage, rendering the model unsuitable for practical use. The LEET technique is the su-
perior method used in this thesis to handle missing values in the OhioT1DM time-series
dataset. Although, as initially hypothesized, an extended input sequence would yield higher
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accuracy, our experiment proves this is not the case, underscoring the importance of selecting
an optimal sequence length for time-series prediction tasks.
The quantity and quality limitations of the OhioT1D dataset may be two significant factors
that have negatively impacted the results presented in this thesis. These limitations indicate
the need for another dataset without these limitations.
The following list presents further validations and improvements that can be used as the
next steps to continue the research presented in this thesis:

• Further Exploration into Data Shuffling should be done using the Encoder-Only model
without shuffling. The reason to try this is due to the sequential nature of time-series
data. By retaining this sequentiality, prediction accuracy might be improved.

• The Encoder-Only Model can be utilized with LEET to improve the result further.
This could further validate the effectiveness of the LEET technique and give it broader
relevance with different models.

• The LEET Technique can be further investigated using a Transformer Model instead
of a LSTM model as the first stage in the technique. This modification could boost the
quality of the imputed values, thus, boosting the second model’s prediction accuracy
and, in the end, contributing to more precise BGL predictions.

• Experimentation with other datasets is highly recommended to validate and enhance
model performance. The limited size and the poor correlation between BGL and GSR in
OhioT1DM are good motivations for acquiring a bigger and better-correlated dataset.
If the first model in the LEET technique is improved, then this would most likely
enhance the second model’s efficiency and prediction results.

• Future investigations could explore methods for model explainability using techniques
such as SHAP or LIME. This is crucial for regulatory compliance and ethical consid-
erations in medical applications, as it ensures transparency, accountability, and trust-
worthiness in the models’ predictions.

• Extended Forecasting with LEET: The model’s impressive short-term prediction per-
formance encourages exploration into forecasting further into the future, such as 1 and
2 hours ahead. This could validate LEET effectiveness on longer horizons as well.
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Appendix A

Informer Experiment List

Table A.1: Informer Experiments

Experiment Descrip-
tion

Data Type Train Dis-
tribution

Validation
Distribu-
tion

Test Distri-
bution

Test
RMSE

Remove 4x basis columns
(note: 2018, train=0.9,
test=0.001)

Interpolated 90% 0.9% 0.1% 14.929

Combine Basal + Bolus
into insulin (note: 2018,
train=0.9, test=0.001)

Interpolated 90% 0.9% 0.1% 15.478

Remove missing_bg (91)
(note: 2018, train=0.9,
test=0.001)

Interpolated 90% 0.9% 0.1% 15.094

Interpolated 0.1% 15.27
batch size=8, seq_len, la-
bel_len = 24

Interpolated - - - 14.762

Transfer learn on (90)
with 2020 data, then train
Patient 540

Interpolated - - - 28.3

Transfer learn on (90)
with 2020 data:, then
train Patient 544

Interpolated - - - 25.23

Interpolated - 27.55
All pa-
tients_non_interpolated
(train = 0.7, val = 0.1,
test = 0.2)

Non-
Interpolated

70% 10% 20% 28.8

2018_2020, non-
interpolate train+test,
!scale, all features
(train=0.8, val=0.2,
test=0.001)

Non-
Interpolated

80% 20% 0.1% 9.241

2018_2020, non-
interpolate train+test,
!scale, all features
(train=0.8, val=0.1,
test=0.1)

Non-
Interpolated

80% 10% 10% 22.2

2018_2020, non-
interpolate train+test,
!scale, all features
(train=0.8, val=0.1,
test=0.2)

Non-
Interpolated

80% 10% 20% 36
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Appendix B

Encoder-Only Hyperparameters

Table B.1: Model Hyperparameters

Hyperparameter Value
activation relu
batch_size 512
dropout_rate 0.25
early_stopping 100
epochs 11000
ff_dim 8
head_size 8
horizon 6
learning_rate 0.0001
look_back 12
MLP dropout 0.4
MLP units 512
number of heads 8
num_transformer_blocks 4
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