
Developing an in house vulnerability
scanner for detecting Template In-
jection, XSS, and DOM-XSS vulner-
abilities

MARIUS HAUGER, STIG JENSEN

SUPERVISOR
Nadia Saad Noori

University of Agder, 2023
Faculty of Engineering and Science
Department of Engineering and Sciences



Obligatorisk gruppeerklæring

Den enkelte student er selv ansvarlig for å sette seg inn i hva som er lovlige hjelpemidler, retningslinjer for
bruk av disse og regler om kildebruk. Erklæringen skal bevisstgjøre studentene på deres ansvar og hvilke
konsekvenser fusk kan medføre. Manglende erklæring fritar ikke studentene fra sitt ansvar.

1. Vi erklærer herved at vår besvarelse er vårt eget arbeid, og at vi ikke har
brukt andre kilder eller har mottatt annen hjelp enn det som er nevnt i
besvarelsen.

Ja

2. Vi erklærer videre at denne besvarelsen:

• Ikke har vært brukt til annen eksamen ved annen avdeling/univer-
sitet/høgskole innenlands eller utenlands.

• Ikke refererer til andres arbeid uten at det er oppgitt.

• Ikke refererer til eget tidligere arbeid uten at det er oppgitt.

• Har alle referansene oppgitt i litteraturlisten.

• Ikke er en kopi, duplikat eller avskrift av andres arbeid eller
besvarelse.

Ja

3. Vi er kjent med at brudd på ovennevnte er å betrakte som fusk og kan med-
føre annullering av eksamen og utestengelse fra universiteter og høgskoler i
Norge, jf. Universitets- og høgskoleloven §§4-7 og 4-8 og Forskrift om ek-
samen §§ 31.

Ja

4. Vi er kjent med at alle innleverte oppgaver kan bli plagiatkontrollert. Ja
5. Vi er kjent med at Universitetet i Agder vil behandle alle saker hvor det

forligger mistanke om fusk etter høgskolens retningslinjer for behandling av
saker om fusk.

Ja

6. Vi har satt oss inn i regler og retningslinjer i bruk av kilder og referanser
på biblioteket sine nettsider.

Ja

7. Vi har i flertall blitt enige om at innsatsen innad i gruppen er merkbart
forskjellig og ønsker dermed å vurderes individuelt. Ordinært vurderes alle
deltakere i prosjektet samlet.

Nei

Publiseringsavtale

Fullmakt til elektronisk publisering av oppgaven Forfatter(ne) har opphavsrett til oppgaven. Det betyr blant
annet enerett til å gjøre verket tilgjengelig for allmennheten (Åndsverkloven. §2).
Oppgaver som er unntatt offentlighet eller taushetsbelagt/konfidensiell vil ikke bli publisert.

Vi gir herved Universitetet i Agder en vederlagsfri rett til å gjøre oppgaven tilgjengelig
for elektronisk publisering:

Ja

Er oppgaven båndlagt (konfidensiell)? Nei
Er oppgaven unntatt offentlighet? Nei



Acknowledgements

We would like to express our heartfelt appreciation to our supervisors, Nadia and William,
for their invaluable guidance and support throughout our master’s thesis.

Both Nadia and William’s guidance and support have been vital to our academic growth
and the successful completion of our thesis. We are fortunate to have had the privilege
of working under their supervision. Our heartfelt appreciation goes out to them for their
invaluable assistance throughout this journey.

ii



Abstract

Web applications are becoming an essential part of today’s digital world. However, with the
increase in the usage of web applications, security threats have also become more prevalent.
Cyber attackers can exploit vulnerabilities in web applications to steal sensitive information
or take control of the system. To prevent these attacks, web application security must be
given due consideration.

Existing vulnerability scanners fail to detect Template Injection, XSS, and DOM-XSS vul-
nerabilities effectively. To bridge this gap in web application security, a customized in-house
scanner is needed to quickly and accurately identify these vulnerabilities, enhancing manual
security assessments of web applications.

This thesis focused on developing a modular and extensible vulnerability scanner to detect
Template Injection, XSS, and DOM-based XSS vulnerabilities in web applications. Test-
ing the scanner against other free and open-source solutions on the market showed that it
outperformed them on Template injection vulnerabilities and nearly all on XSS-type vulner-
abilities. While the scanner has limitations, focusing on specific injection vulnerabilities can
result in better performance.

iii



Contents

Acknowledgements ii

Abstract iii

List of Figures vii

List of Tables ix

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.4 Sub-objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.5 Report outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 State of the Art 4
2.1 Web application vulnerabilities . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Web application architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2.1 Client-side . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.2 Server-Side . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.3 Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 Client side template injection . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3.1 Template engines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.4 Cross site scripting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4.1 Common XSS Attack Vectors . . . . . . . . . . . . . . . . . . . . . . 8

2.5 DOM-Based XSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.6 Vulnerability scanning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.6.1 Types of scanning techniques . . . . . . . . . . . . . . . . . . . . . . 10
2.7 Current vulnerability scanners . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.7.1 OWASP ZAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.7.2 IronWASP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.7.3 Wapiti . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.7.4 Vega . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Work methodology 16
3.1 Objective planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 Literature review of existing research on the subject . . . . . . . . . . . . . . 16
3.3 Analysis of existing vulnerability scanners . . . . . . . . . . . . . . . . . . . 17
3.4 Analysis of vulnerabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.5 Design vulnerability scanner . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.6 Develop vulnerability scanner . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.7 Construct payloads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

iv



4 Method 19
4.1 Design specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.1.1 Functional Requirements Document (FRD) . . . . . . . . . . . . . . . 19
4.1.2 UML Class Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.2 Choice of technologies and tools . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2.1 Selenium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2.2 Requests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2.3 Beautiful Soup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2.4 tldextract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2.5 URLlib . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2.6 Git . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2.7 Pycharm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2.8 Python . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.3 Vulnerability scanner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.3.1 Development process . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.4 Webapp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.4.1 Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.5 Payload list creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.5.1 XSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.5.2 DOM-based XSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.5.3 Template injection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.6 Testing plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5 Design 29
5.1 UML Class diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.1.1 Scanner version 1.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.1.2 Scanner version 2.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.1.3 Final scanner version . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.2 UML Activity Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.2.1 Crawler version 1.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.2.2 Crawler version 2.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.2.3 Changes in v2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.2.4 Input-field scanner version 1.0 . . . . . . . . . . . . . . . . . . . . . . 35
5.2.5 Input-field scanner version 2.0 . . . . . . . . . . . . . . . . . . . . . . 36
5.2.6 Changes made in v2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.2.7 Payload sender . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.3 Changes made to the payload sender . . . . . . . . . . . . . . . . . . . . . . 40
5.4 Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.4.1 Webapp class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.4.2 Crawler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.4.3 Input finder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.4.4 Payload sender . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.4.5 Get payloads from JSON sorted by type and expected output . . . . 44

5.5 Limitations and constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6 Results 45
6.1 Scanner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.1.1 Dynamic scan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.1.2 Configuring the scanner . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.2 Running the scanners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.3 Scanning results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.4 Scanner functionality results . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.4.1 Template injection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47



6.4.2 XSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.4.3 DOM-XSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.5 Notes about the scanning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

7 Discussion 49
7.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
7.2 The scanner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

7.2.1 Crawler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
7.2.2 Input finder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
7.2.3 Payload sender . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

7.3 Testing applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
7.4 Testing bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
7.5 Future research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

8 Conclusion 53

A Functional Requirements Document (FRD) 54

B Webapp Class Source 58

C Crawler Source 61

D Input Finder Source 64

E Payload Sender Source 66

F Changelog 74
F.0.1 January 17th, 2023 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
F.0.2 January 20th, 2023 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
F.0.3 March 12th 2023 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
F.0.4 March 13th 2023 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
F.0.5 March 14th, 2023 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
F.0.6 March 16th, 2023. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
F.0.7 March 21st, 2023. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
F.0.8 March 22nd, 2023. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
F.0.9 March 27th, 2023. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
F.0.10 March 28th, 2023 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
F.0.11 April 18th 2023 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
F.0.12 April 25th 2023 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
F.0.13 May 2th 2023 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
F.0.14 May 22th 2023 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Bibliography 79



List of Figures

5.1 First version of the scanner . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.2 Second iteration of the scanner . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.3 Third and final version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.4 Crawler first iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.5 Crawler second iteration based on feedback . . . . . . . . . . . . . . . . . . . 34
5.6 First edition of input-field scanner with payload sender . . . . . . . . . . . . 35
5.7 Over arching flow of the Input-field scanner . . . . . . . . . . . . . . . . . . 36
5.8 Flow of the input field filtering function . . . . . . . . . . . . . . . . . . . . . 36
5.9 Over arching flow of the payload sender . . . . . . . . . . . . . . . . . . . . . 37
5.10 Flow of the createGET function . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.11 Flow of the seleniumSend function . . . . . . . . . . . . . . . . . . . . . . . 39
5.12 Flow of the function for sending payloads to forms . . . . . . . . . . . . . . . 39
5.13 Flow of the function for sending payloads to input fields . . . . . . . . . . . 40

vii



.



List of Tables

6.1 Scan results for all 5 scanners tested . . . . . . . . . . . . . . . . . . . . . . 46
6.2 Vulnerability detection percentage for the web-applications tested . . . . . . 46

ix



.



Acronyms

CSTI Client Side Template Injection. 5

DOM Document Object Model. 1

ERB Embedded Ruby. 7, 47

FN False Negative. 9, 10

FP False Positive. 9, 10, 48

RCE Remote Code Execution. 7

SSTI Server Side Template Injection. 47

TLD Top-level Domain. 21

TP True Positive. 9, 10, 48

XSS Cross site scripting. iv, 5–7

.



Chapter 1

Introduction

1.1 Background

In today’s digital age, the threat of exploited vulnerabilities is constantly increasing, and it
has become essential for security professionals to assess the security of systems regularly[6].
However, performing these assessments can be time-consuming and require a considerable
amount of resources to be done correctly. Consequently, conducting a system penetration
test has become an expensive service that not all businesses can afford[44].

To overcome this challenge, the RedTeam at Netsecurity has initiated an in-house project to
create a modular design vulnerability scanner that will increase the effectiveness of security
assessments. By developing an automated vulnerability scanner, it will reduce the reliance
on manual testing, which will save time and effort. Moreover, this scanner will be designed
to be flexible, allowing it to be easily adapted to different environments.

1.2 Problem statement

The existing vulnerability scanning solutions in the market fail to meet the requirements
for detecting Template Injection, XSS, and DOM-XSS vulnerabilities effectively. Tests con-
ducted on current vulnerability scanners have revealed inadequate performance in identi-
fying these specific vulnerabilities, leading to a significant gap in web application security
assessment[1][2]. Consequently, there is an urgent need to develop an in-house vulnerability
scanner that can be customized to efficiently and accurately detect Template Injection, XSS,
and DOM-XSS vulnerabilities. This scanner should be capable of quickly identifying these
simple types of vulnerabilities, thereby enabling more effective manual security assessments
of web applications.

1.3 Objective

The main objective of this thesis is to develop an in house vulnerability scanner for detecting
Template Injection, XSS, and DOM-XSS vulnerabilities. The scanner is designed to be a
modular and extensible tool that can be used by security professionals to increase the effec-
tiveness and efficiency of security assessments.

This scanner specifically aims to detect and report three types of web application vulnera-
bilities: Template Injection, Document Object Model (DOM)-based XSS, and XSS. These
vulnerabilities are some of the most commonly exploited, making it essential to detect and

1



patch them as soon as possible[12]. With this scanner, Netsecurity’s RedTeam will be bet-
ter equipped to proactively identify and address these vulnerabilities, enhancing its clients’
security posture.

1.4 Sub-objectives

To achieve the main objective, a set of sub-objectives were collaboratively defined with
Netsecurity. Each of these sub-objectives focuses on a distinct task, although some are
interconnected. These sub-objectives were included to shape the thesis according to Netse-
curity’s requirements and also to provide guidance on the development of the vulnerability
scanner.

• Conduct a literature review of existing vulnerability scanners and their capabilities to
identify strengths and weaknesses that can inform the design and development of the
proposed scanner.

• Design and develop a modular and extensible vulnerability scanner that can detect
Template Injection vulnerabilities in web applications. The scanner should be easy to
use and configurable, with the ability to run on different platforms.

• Compile a comprehensive payload library for each vulnerability type that the scanner
is designed to detect. The payload library will be used to test the scanner and evaluate
its effectiveness.

• Incorporate the ability to detect Cross-Site Scripting (XSS) vulnerabilities, including
both reflected and stored XSS, as well as DOM-based XSS, into the scanner’s function-
ality.

• Test the scanner’s effectiveness in detecting Template Injection, XSS, and DOM-based
XSS vulnerabilities, and compare the results to those of existing open-source scanners.

Overall, the objective of this thesis is to provide a reliable and efficient tool that can be
used by security professionals to identify vulnerabilities in web applications. The proposed
vulnerability scanner is intended to improve existing tools, focusing on detecting Template
Injection vulnerabilities, which are often overlooked by other scanners.

1.5 Report outline

The thesis’s outline is provided in the list below, along with a brief synopsis of each chapter.

2. State of the Art - This section provides an overview of the current state of vul-
nerability scanning, as well as an explanation of the technology and tools required to
understand the subsequent sections.

3. Work methodology - Describes the approach used for the thesis.

4. Method - This text provides a description and explanation of the required tools and
the process used for development.

5. Design - This section explains the current vulnerability scanner, including its functions
and components. It also includes UML diagrams and flowcharts.

6. Results - Contains the results of our vulnerability scanner as well as a comparison to
other open-source scanners.

7. Discussion - This discussion will cover the performance of testing applications, vul-
nerability scanner results, and the issue of testing bias.

2



8. Conclusion - This summarizes the findings of the thesis and evaluates how well they
align with the original goals.

3



Chapter 2

State of the Art

This chapter will provide an overview of the state of the art in web application vulnerability
detection, including existing techniques and tools, current trends, and challenges in the field.
We will also discuss the importance of vulnerability detection in web applications and its
impact on the security and reliability of web-based systems.

2.1 Web application vulnerabilities

Web applications are a critical component of various industries and services on the modern
internet. However, with the increasing reliance on these applications, reported vulnerabili-
ties have also increased significantly. While vulnerabilities such as SQL injection, cross-site
scripting (XSS), and buffer overflows have been long-standing concerns, variations such as
client-side template injection, DOM-based XSS, and server-side request forgery (SSRF) have
become more prevalent and pose new challenges to web application security[12].

To address these vulnerabilities, effective methods to detect and prevent them are needed
to ensure the security and reliability of web-based systems. Currently, many techniques and
tools are available for detecting vulnerabilities in web applications, including manual and
automated approaches[19]. Manual techniques like penetration testing and code reviews are
time-consuming and resource-intensive, but they provide detailed information about the ap-
plication’s security posture. On the other hand, automated techniques, such as vulnerability
scanners, are faster and more scalable, but they may lack the accuracy and depth of manual
[21].

Despite the availability of various techniques and tools, detecting vulnerabilities in web
applications remains a challenge due to the constantly evolving threat landscape[29]. At-
tackers are always looking for new ways to exploit vulnerabilities, and developers are always
introducing new features and functionalities into web applications, which can introduce new
vulnerabilities. To keep up with these challenges, researchers and practitioners are continu-
ously developing new approaches and tools for web application vulnerability detection[43].

2.2 Web application architecture

Web applications have become an integral part of modern-day computing. They enable users
to access web-based services and interact with web-based content through a web browser.
The architecture of a web application refers to the structure and design of the application,
including its components, interactions, and dependencies[47].

4



Web application architecture is typically divided into three main components: the client-side,
server-side, and database. The client-side of a web application is responsible for rendering
the user interface and providing the user with a means of interacting with the application.
This component is typically implemented using HTML, CSS, and JavaScript and executed in
the user’s browser. The client-side communicates with the server-side using HTTP requests
and responses[47].

2.2.1 Client-side

The client-side of a web application includes the user interface, which is usually implemented
using HTML, CSS, and JavaScript. The client-side code is executed on the user’s machine,
and it communicates with the server-side of the web application using HTTP requests and
responses[47].

2.2.2 Server-Side

The server-side of a web application includes the application logic and data processing. It
is responsible for receiving client-side requests, processing them, and returning appropriate
responses. Server-side applications are usually developed using programming languages such
as PHP, Java, Python, and .NET[47].

2.2.3 Database

Web applications often use a database to store and manage data. Databases are used to
store user information, transaction data, and application data. Popular databases include
MySQL, Oracle, and Microsoft SQL Server[47].

2.3 Client side template injection

Client Side Template Injection (CSTI) is a critical security vulnerability that can occur when
web applications use client-side templating engines to render HTML content based on user
input without adequate validation and sanitization. This type of vulnerability can have se-
rious consequences, including Cross site scripting (XSS) attacks, information disclosure, or
other types of malicious actions[3].

CSTI attacks involve injecting malicious code into web applications by exploiting vulnerabil-
ities in the templating engine or using specially crafted input that bypasses input validation
and sanitization checks. Once injected, the malicious code can execute in the context of the
victim’s browser, potentially leading to various types of attacks.

CSTI vulnerabilities are particularly challenging to prevent and detect, as client-side tem-
plating engines execute within the browser, making it easier for attackers to manipulate the
rendered HTML. To mitigate the risk of CSTI attacks, it is essential to use trusted templat-
ing engines and to avoid using user input in templates as much as possible[3].

2.3.1 Template engines

Template engines are a crucial part of web application development, allowing for the dy-
namic generation of content based on user input and other data sources. However, the
increased reliance on template engines has also resulted in several security vulnerabilities,
such as client-side template injection, if not adequately secured. These security concerns

5



pose a significant challenge for web developers and security professionals.

One of the critical functions of a template engine is to provide a framework for render-
ing web pages dynamically. This framework often includes placeholders or variables in the
template that are replaced with server or user input data. While this approach provides
flexibility and ease of use for developers, it also introduces potential security vulnerabilities.

For example, an attacker can exploit template engines’ vulnerabilities by injecting mali-
cious code into the web application by bypassing input validation and sanitization checks.
Once injected, the malicious code can execute in the context of the victim’s browser, poten-
tially leading to XSS attacks, information disclosure, or other types of malicious actions.

Furthermore, to ensure the secure use of template engines, developers should follow best
practices, such as using well-defined input validation and sanitization routines, avoiding user
input in templates, and keeping template files separate from executable code. By adhering
to these practices, developers can reduce the likelihood of introducing vulnerabilities to their
web [15].

AngularJS:

AngularJS is a JavaScript-based open-source front-end web application framework primarily
maintained by Google and by a community of individual developers and corporations. It
was released in 2010 as a means of making complex, single-page web applications easier to
build and maintain[35].

AngularJS extends HTML vocabulary for web applications by creating custom HTML ele-
ments and attributes that can be utilized in a declarative manner. This allows for a more
intuitive and less imperative way of developing web applications compared to traditional
JavaScript development.

One of the key features of AngularJS is its two-way data binding capability, which allows
for automatic synchronization of the model and view components. This results in a more
streamlined development process and reduced amount of boilerplate code.

AngularJS also provides a comprehensive set of reusable components and services, includ-
ing directives for manipulating the DOM, services for making HTTP requests, and pipes
for transforming data. These components and services can be easily shared across different
parts of an application, leading to a more modular and maintainable code-base[35].

In addition to its features, AngularJS also has a large and supportive community, with
many resources available for learning and problem-solving. Its popularity has led to integra-
tion with other popular front-end technologies such as TypeScript, allowing for type safety
and improved developer experience.

VueJS

Vue.js is an open-source JavaScript framework for building user interfaces and single-page
applications. It was created in 2014 by Evan You and has since gained a large following in
the web development community due to its simplicity, performance, and versatility.

Vue.js operates on a component-based architecture, where components are modular and
reusable pieces of UI that can be easily composed to create complex user interfaces. This

6



allows for a more modular and maintainable codebase compared to traditional JavaScript
development.

One of the key features of Vue.js is its reactivity system, which allows for automatic up-
dates to the UI when the underlying data changes[35]. This is achieved through a simple
and intuitive syntax for declaring reactive data, eliminating the need for manual DOM up-
dates and reducing the potential for bugs.

Vue.js also provides a set of powerful tools for managing state, including a centralized store
for managing shared data and a set of debugging tools for understanding the state of the
application. This makes it easier to develop and maintain large-scale applications.

In addition to its features, Vue.js has a strong community, with a wealth of resources and
plugins available for learning and problem-solving. Its popularity has led to integration with
other popular front-end technologies such as TypeScript and Vue CLI, allowing for type
safety and improved developer experience[35].

Embedded Ruby:

Embedded Ruby (ERB) is a templating system used in web development that allows de-
velopers to embed Ruby code into HTML or other text-based documents. ERB is a part of
the Ruby programming language and is often used in developing Ruby on Rails applications.

ERB provides an easy-to-use but powerful templating system for Ruby. Using ERB, ac-
tual Ruby code can be added to any plain text document to generate document information
details and flow control.

One of the key features of ERB is its ability to support variables and loops. Variables
can be defined in the Ruby code and referenced in the HTML markup. Loops, such as for
loops and while loops, can also be used to generate dynamic content.

Another useful feature of ERB is the ability to include partial templates, smaller templates
that can be reused in multiple locations throughout a project. This allows developers to
modularise their code and avoid duplication[7].

ERB utilises tags to define the rules of the program. The tags are similar to escape characters
in other templating engines like Angular. However, ERB has multiple tags with different
purposes[8].

If the application is poorly implemented, users can abuse these tag characters like in an
XSS payload. Because of ERB’s ability to execute ruby code, this can be used for Remote
Code Execution (RCE) on the server, leading to a severe vulnerability[46].

2.4 Cross site scripting

Cross site scripting (XSS) is a type of web vulnerability that allows an attacker to inject
malicious scripts into a web application, which are then executed in the context of other
users’ browsers. This type of attack occurs when a web application fails to properly validate
and sanitize user-supplied input before including it in dynamically generated web pages. As
a result, the injected scripts can be executed in the browser of other users who visit the
vulnerable web application, leading to a wide range of attacks such as theft of sensitive in-
formation, session hijacking, and defacement of web pages[25].

7



XSS vulnerabilities are categorized into three main types: Stored XSS, Reflected XSS, and
DOM-based XSS. In Stored XSS, the malicious script is stored on the target web applica-
tion’s server and is displayed to other users when they visit the affected page. Reflected
XSS occurs when the malicious script is reflected back to the user in the server’s response,
typically as part of a URL parameter or in a form submission. DOM-based XSS, on the other
hand, occurs when the injected script is executed directly within the Document Object Model
(DOM) of the web page, without involving the server[26].

2.4.1 Common XSS Attack Vectors

There are several common attack vectors used in XSS attacks, including:

• Script injection in input fields: Attackers can inject malicious scripts into input fields,
such as textboxes and forms, which are then rendered as part of the web page without
proper sanitization.

• URL parameter injection: Attackers can inject scripts into URLs as parameters, which
are then reflected back in the server’s response, potentially leading to script execution
in the user’s browser.

• Cross-Site Script Inclusion (XSSI): Attackers can include malicious scripts from an
external domain, which are then executed in the context of the vulnerable web appli-
cation.

• Cross-Site Request Forgery (CSRF) with XSS: Attackers can leverage XSS vulnerabil-
ities to execute unauthorized actions on behalf of a victim user, such as changing their
password or performing actions without their consent[25].

2.5 DOM-Based XSS

DOM-based Cross-Site Scripting (XSS) is a type of XSS vulnerability that poses a significant
threat to modern web applications. It is characterized by the injection of malicious code
into the DOM of a web page, which can then be executed by the user’s browser.

One of the most significant differences between DOM-based XSS and other types of XSS
vulnerabilities is that the malicious payload is not directly injected into the server-side re-
sponse. Instead, it is injected into the client-side JavaScript code and executed within the
context of the victim’s browser. This makes the vulnerability particularly challenging to de-
tect and mitigate since traditional server-side security measures are often ineffective against
it.

The root cause of DOM-based XSS vulnerabilities is the failure of the web application to
properly sanitize user input that is used to construct dynamic JavaScript code. This allows
an attacker to inject a payload that includes JavaScript code that is executed within the
victim’s browser context. The attacker can exploit the vulnerability in various ways, such as
by tricking the victim into clicking a link, submitting a form, or simply loading a web page
that contains the malicious payload.

Once the payload is executed, the attacker can perform a range of actions, such as stealing
sensitive user data, modifying the web page’s content, or redirecting the victim to a phishing
website. This type of attack can be particularly devastating since the malicious payload can
execute in the context of a trusted website, making it difficult for the user to detect that
they are under attack[26].

8



2.6 Vulnerability scanning

Vulnerability scanning is a critical component in ensuring the security of digital systems, as
it enables organizations to identify and address potential security risks before they can be
exploited by attackers. Automated vulnerability scanners are designed to detect vulnerabil-
ities in web applications, and any other digital system by analyzing various aspects of the
application’s functionality and behavior.

A vulnerability scan of a web application is a systematic assessment of the application’s
security posture. It involves the use of automated tools and techniques to identify vulnera-
bilities and weaknesses in the application, which could be exploited by attackers.

The process of a vulnerability scan typically involves the following steps:

• Discovery: The vulnerability scanner identifies the target web application and performs
a scan to identify the application’s assets, such as web pages, URLs, and parameters.

• Mapping: The vulnerability scanner maps the application’s structure and identifies
the relationships between the various components. This step involves analyzing the
application’s navigation flow and identifying the different modules and functions.

• Enumeration: The vulnerability scanner enumerates the application’s vulnerabilities
and weaknesses by sending various input parameters to the application and analyzing
the responses. This step involves using various techniques such as fuzzing, brute-forcing,
and injection attacks.

• Analysis: The vulnerability scanner analyzes the results of the enumeration phase and
categorizes the vulnerabilities based on their severity, impact, and likelihood of ex-
ploitation. This step involves identifying false positives and prioritizing vulnerabilities
based on their criticality.

• Reporting: The vulnerability scanner generates a report that summarizes the findings
of the scan, including the identified vulnerabilities, their severity, and recommendations
for remediation. The report is typically used by developers and security professionals
to fix the identified vulnerabilities and improve the application’s security posture.

A vulnerability scan of a web application typically focuses on identifying common web ap-
plication vulnerabilities such as cross-site scripting (XSS), SQL injection, and file inclusion
vulnerabilities. It also includes checks for misconfigurations, outdated software components,
and weak passwords.

The effectiveness of a vulnerability scanner is directly dependent on its ability to accurately
identify vulnerabilities in the web application. This entails minimizing both False Positive
(FP) and False Negative (FN). The scanner identifies false positives as vulnerabilities, but
in reality, they do not exist in the web application. False negatives, on the other hand,
are actual vulnerabilities that go undetected by the scanner. It is critical to reduce false
positives and negatives to ensure that the vulnerability scanner provides accurate results.

A True Positive (TP) is an actual vulnerability that is detected and reported by the scanner.
The TP rate is a crucial metric for evaluating the effectiveness of a vulnerability scanner,
as it measures the percentage of actual vulnerabilities that are correctly identified by the
scanner. A higher TP rate indicates that the scanner is more effective at identifying vulner-
abilities in the web application.

9



The performance of a web application vulnerability scanner can be evaluated using sta-
tistical performance metrics. Precision, Recall, and F-Measure are among the key metrics
used in addition to the number of TP, FP, and FN[1].

• Precision is the ratio of accurately detected vulnerabilities to the total number of de-
tected vulnerabilities and is represented as:

TP
TP+FP

• Recall, on the other hand, is the ratio of correctly detected vulnerabilities to the total
number of existing vulnerabilities, represented as:

TP
TP+FN

• Finally, F-Measure is the harmonic mean of Precision and Recall. This metric provides a
combined score that reflects the balance between Precision and Recall. It is represented
as:

2 ∗ Precision∗Recall
Precision+Recall

2.6.1 Types of scanning techniques

Consideration should be given to the type of scanning required for a web application vul-
nerability assessment. Various methods are available, and it is important to select the
appropriate one to obtain accurate results. The following assessment techniques coincide
with three scanning methods[18]:

• Black Box assessment: This method does not require an understanding of the appli-
cation’s internal workings and focuses on identifying vulnerabilities through external
testing.

• White Box assessment: This method requires comprehensive knowledge of the appli-
cation’s internal structure and focuses on identifying vulnerabilities through internal
testing.

• Gray Box assessment: This method integrates aspects of both black box and white box
scans and requires some understanding of the application’s internal workings.

In addition to the assessment techniques, there are several analysis methodologies. These
methodologies outline the process of conducting a scan and the specific components of the
software that are analyzed. These methods include dynamic, static, and hybrid analysis.
Although these terms are commonly utilized in malware research, they can be applied to
any form of software analysis[11][34].

• Dynamic Analysis: This method identifies vulnerabilities by interacting with the ap-
plication in real time, sending requests, and analyzing the responses.

• Static Analysis: This method identifies vulnerabilities by analyzing the application’s
source code or compiled binaries without executing the code.

• Hybrid Analysis: This method integrates elements of both dynamic and static scans to
provide a more comprehensive evaluation of the application’s security posture.

10



Each of the methods described has its advantages and disadvantages. The choice between
scanning and analysis method should be based on the specific requirements of the assessment
and the resources available. Similarly, the choice between a black box, white box, or gray box
assessment will depend on the knowledge available about the application’s internal workings.
It is essential to understand the strengths and limitations of each method to ensure that a
comprehensive and practical vulnerability assessment is performed[18].

Black box assessment

• Benefits:

– Analysts does not have access to credentials or access-tokens before testing.
– The scan is performed from the perspective of an attacker, providing a realistic

view of the security posture of the application.
– It serves to uncover any discrepancies or inconsistencies in the specifications.
– Both the developer and analyst are independent of each other.

• Disadvantages:

– The scan may not identify all vulnerabilities, as internal vulnerabilities only avail-
able to signed-in users will be undetected.

– Some sections of the back-end may not be tested at all.

White box assessment

• Benefits:

– The scan is performed with a detailed knowledge of the application’s internal
structure, which provides a more comprehensive view of the security posture.

– The scan can identify vulnerabilities that are not detectable through other meth-
ods.

– Given access to a user account within scope, it can test a larger part of the appli-
cation, detecting vulnerabilities only available to authenticated users.

• Disadvantages:

– Requires a well defined scope with the customer before conducting.1

– The scan may not be practical for large and complex applications.

Regarding gray box assessment, it offers a combination of the advantages and disadvantages
of both black and white box scans. It can be more valuable than only performing black
box testing, as it can identify back-end vulnerabilities that black box scans alone cannot.
However, gray box scans require a higher level of expertise compared to black box assess-
ments.[18].

Often web application penetration testing consists of a gray-box scan. The attacker is often
given access to sign-in information but conducts a test without using these credentials first.
This is in the context of web application testing, considered grey-box testing[20].

Dynamic vulnerability scanning of a web application is an active evaluation process to iden-
tify potential security weaknesses or vulnerabilities. The scan involves sending requests to

1All tests do need a well defined scope, however given access to a user account, the privileges of the account also
needs to be considered.

11



the application and analyzing the responses to gain insights into its security posture. The
goal is to uncover security risks by simulating user interactions and evaluating the applica-
tion’s responses in real-time.

For instance, the dynamic scanner may simulate a user submitting data into a web form and
evaluate the application’s input validation. If the validation process is not correctly imple-
mented, the scanner may identify it as a vulnerability, as the application could be susceptible
to attack.

Dynamic scanning can provide a more comprehensive evaluation of the application’s security
posture as it considers its actual behavior, including how it responds to different inputs and
conditions. However, it should be noted that dynamic scans may generate false positive
results and, therefore, should be used in conjunction with other scanning methods for a
complete security assessment[11].

Compared to dynamic scanning, static scanning of a web application involves analyzing its
source code or compiled binaries without executing the application. The static scan focuses
on the code itself, where it searches for known security weaknesses and coding practices that
could lead to vulnerabilities and other potential security risks.

Examining the code provides a deeper understanding of the application’s operation. How-
ever, the lack of consideration for the application’s actual behavior may result in missed
vulnerabilities. Static scanning is usually conducted in conjunction with dynamic scanning
to address this issue. It is known as hybrid scanning, giving a more comprehensive evaluation
of the application’s security posture[11][9].

Dynamic Scan:

• Benefits:

– The scan is performed in real-time and can identify vulnerabilities that are not
detectable through other methods.

– The scan provides a more realistic view of the security posture of the application,
as it interacts with the application in the same way as an attacker would.

• Disadvantages:

– The scan may not identify all vulnerabilities, as the internal structure of the ap-
plication is not taken into account.

– The scan may cause a performance impact on the application and the network.

Static Scan:

• Benefits:

– The scan is performed without executing the code and can identify vulnerabilities
that are not detectable through other methods.

– The scan can be performed faster and with less resources compared to dynamic
scans.

• Disadvantages:

– The scan may not identify all vulnerabilities, as it does not take into account the
runtime behavior of the application.

– The scan may generate false positive results, leading to a waste of time and re-
sources.

12



Hybrid Scan:

• Benefits:

– The scan provides a comprehensive view of the security posture of the application
by combining the benefits of both dynamic and static scans.

– The scan can identify vulnerabilities that are not detectable through other meth-
ods.

• Disadvantages:

– The scan requires a combination of resources and expertise, which may be difficult
or expensive to acquire.

– The scan may still not identify all vulnerabilities, as the internal structure of the
application is not fully known.

2.7 Current vulnerability scanners

The current market of web application vulnerability scanners is split between premium paid
solutions and free, open-source solutions. The paid solutions provide an up-to-date product,
often with more features than the free products. In contrast, the free scanners are rarely
updated and lack features. However, many organizations still opt for free, open-source solu-
tions due to budget constraints or a preference for open-source software. While free scanners
may have some limitations, they still offer a valuable service to organizations looking to scan
their web applications for vulnerabilities.

In addition, it is important to keep in mind that web application vulnerabilities are con-
stantly evolving, and a scanner that was effective last year may not be sufficient today.
Regular updates and maintenance of the scanner are crucial to ensure that it remains effec-
tive in identifying vulnerabilities in web applications.

There are reports indicating that these scanners do not provide enough support for specific
injection vulnerabilities, such as certain types of XSS[2]. Moreover, they fail to address
template injection vulnerabilities, which share many similarities with XSS. This highlights
a significant gap in the current market and an opportunity for improvement.

With this in mind, a further study of some available free vulnerability scanners has been
done. Four scanners have been chosen based on testing done in other reports[1].

2.7.1 OWASP ZAP

OWASP ZAP (Zed Attack Proxy) is a popular open-source vulnerability scanner for web
applications that was first released in 2010. It is designed to be easy to use, highly customiz-
able, and suitable for experienced and novice security testers.

ZAP uses a passive scanning approach, meaning it does not send malicious payloads to
the tested web application. Instead, it intercepts and analyzes the requests and responses
between the client and server, looking for potential vulnerabilities. This approach helps to
reduce the risk of accidentally triggering false positives or causing damage to the target
application.

ZAP includes a wide range of automated testing features, including the ability to detect com-
mon vulnerabilities such as SQL injection, cross-site scripting (XSS), and directory traversal.

13



It also includes several advanced testing features, such as the ability to test for authentica-
tion and session management vulnerabilities and perform active scanning of web applications.

One of the key features of ZAP is its high degree of customizability. For example, it in-
cludes a powerful scripting engine that allows security testers to write scripts to extend the
tool’s functionality or automate repetitive testing tasks. Additionally, ZAP includes a num-
ber of built-in plug-ins that can be used to customize the tool for specific testing scenarios.

ZAP also includes a suite of reporting and analysis tools that allow security testers to quickly
and easily analyze the results of their testing. In addition, it provides detailed reports on vul-
nerabilities found, along with suggested remediation steps and links to additional resources
for further learning[48].

2.7.2 IronWASP

IronWASP is a free, open-source vulnerability scanner for web applications first released in
2009. It is designed to be highly customizable and can be used to test a wide range of web
applications, including those with complex architectures and non-standard configurations.

One of the key features of IronWASP is its ability to detect both common and advanced
vulnerabilities, including SQL injection, cross-site scripting (XSS), file inclusion, and server-
side request forgery (SSRF). It also supports testing for vulnerabilities in APIs and mobile
applications, making it a versatile tool for testing the security of modern web-based appli-
cations.

IronWASP uses a combination of automated and manual testing techniques to identify vul-
nerabilities. It includes a variety of built-in testing modules that can be configured to test
for specific vulnerabilities or to perform general security testing. Additionally, it includes
a suite of manual testing tools that allow security testers to perform more in-depth testing
of web applications. One of the unique features of IronWASP is its support for customized
scripting. This allows security testers to create their own testing scripts and automate repet-
itive testing tasks, further increasing the efficiency of the testing process.

IronWASP also includes a number of reporting and analysis tools that allow security testers
to quickly and easily analyze the results of their testing. In addition, it provides detailed re-
ports on vulnerabilities found, along with suggestions for remediation and links to additional
resources for further learning[23].

2.7.3 Wapiti

Wapiti is a free and open-source vulnerability scanner designed for web applications. It was
developed in 2008 by Nicolas Surribas, and the source code is available on GitHub. The
name "Wapiti" comes from the Shoshone word for elk, known for its keen sense of smell
and ability to sniff out hidden things - similar to how the Wapiti vulnerability scanner is
designed to discover hidden vulnerabilities in web applications.

Wapiti uses a black-box testing methodology, meaning that it does not require access to the
source code of the web application being tested. Instead, it sends specially crafted HTTP
requests to the application and analyzes the responses to identify potential vulnerabilities.
This approach allows Wapiti to test web applications that are already deployed and run-
ning, making it a valuable tool for testing the security of publicly accessible web applications.

One of the key features of Wapiti is its ability to detect a wide range of vulnerabilities,

14



including SQL injection, cross-site scripting (XSS), file inclusion, command injection, and
more. It does this by using a variety of testing techniques, such as parameter brute-forcing,
error-based testing, and time-based testing.

Wapiti is also designed to be highly customizable, with a wide range of configuration options
that allow users to tailor the testing process to their specific needs. For example, users can
specify which types of vulnerabilities to test for, which HTTP methods to use, and how
many requests to send per second. This customization level can help users optimize the
testing process and minimize false positives[42].

2.7.4 Vega

Vega is a free and open-source vulnerability scanner for web applications that was first
released in 2011. It is designed to be a user-friendly and powerful tool for detecting vulner-
abilities in web applications.

One of the key features of Vega is its ability to perform both active and passive scanning of
web applications. Active scanning involves sending payloads to the web application being
tested to look for potential vulnerabilities. Passive scanning, on the other hand, involves
analyzing the requests and responses between the client and server to detect vulnerabilities
without sending any malicious payloads.

Vega supports a wide range of automated testing features, including the ability to detect
common vulnerabilities such as SQL injection, cross-site scripting (XSS), and file inclusion.
It also includes advanced testing features, such as the ability to test for authentication and
session management vulnerabilities.

In addition to its automated testing capabilities, Vega includes a suite of manual testing
tools that allow security testers to perform more in-depth testing of web applications. These
tools include intercepting and modifying requests and responses, analyzing cookies and ses-
sion data, and performing customized testing tasks.

One of the unique features of Vega is its support for collaborative testing. It includes a
built-in proxy server that allows multiple security testers to work on the same testing project
simultaneously and to share testing data and results.

Vega also includes a powerful reporting and analysis engine that allows security testers
to quickly and easily analyze the results of their testing. In addition, it provides detailed re-
ports on vulnerabilities found, along with suggested remediation steps and links to additional
resources for further learning[41].

15



Chapter 3

Work methodology

This section details the steps taken to accomplish the thesis project, outlining the prelim-
inary work structure and the planning and execution of various sections. Additionally, the
section incorporates the attack methodology for how the vulnerability scanner tests with
payloads.

The methodology and workflow were designed based on a sequential model, where each
stage needed to be completed before moving on to the next. Therefore, the predetermined
sections were structured as follows:

• Objective planning

• Literature review of existing research on the subject

• Analysis of existing vulnerability scanners

• Analysis of vulnerabilities?

• Design vulnerability scanner

• Develop vulnerability scanner

• Gather and research payloads

• User feedback?

3.1 Objective planning

During the planning phase of the thesis, the objectives were established with the aim of
aligning the project’s goals with the expectations of Netsecurity and the practical constraints
of the allotted time frame. It was acknowledged that discovering new vulnerabilities may
not be a guaranteed outcome, and thus all parties agreed to set realistic expectations for the
project.

3.2 Literature review of existing research on the subject

This section of the thesis was designed with the aim of conducting a comprehensive literature
review to gain a deeper understanding of the subject matter. It was recognized that this
research is essential, as it provides a solid foundation for the remaining sections of the thesis.
To this end, a thorough investigation of previous studies on web application exploits was un-
dertaken, focusing on relevant research papers. The process involved carefully analyzing and
evaluating the available literature in order to identify key concepts, theories, and findings.
The result was a well-researched and evidence-based review that served as an essential guide

16



for the subsequent thesis sections. The comprehensive and meticulous nature of the review
ensured that the research was sound and reliable, providing a solid basis for the development
of the thesis as a whole[27].

3.3 Analysis of existing vulnerability scanners

Several existing frameworks for vulnerability scanning already exist, but many of them fo-
cus on different types of attacks than those targeted by this thesis. However, it was still
valuable to study these frameworks to understand how they automated the scanning process
and applied techniques such as fuzzing to find vulnerabilities. By exploring these existing
frameworks, the development of a more effective and comprehensive vulnerability scanner
for template injection attacks, DOM-based XSS, and XSS can be informed and enhanced[4].

3.4 Analysis of vulnerabilities

To develop an effective vulnerability scanner, it is essential to understand the underlying
principles behind each of them. CSTI, for example, involves the injection of user input into
templates on the client side, which can lead to unintended code execution. On the other
hand, DOM-based XSS exploits vulnerabilities in the Document Object Model (DOM) of web
pages, allowing attackers to execute malicious scripts within the victim’s browser. Finally,
XSS is a well-known vulnerability that allows attackers to inject and execute their code on
web pages, which can lead to sensitive data theft or unauthorized access. By examining how
existing vulnerability scanners approach these types of vulnerabilities and how they can be
detected and mitigated, we can develop a more effective and specialized scanner to detect
these specific types of attacks. This involves exploring payload generation, pattern matching,
and vulnerability correlation techniques to identify and report on CSTI, DOM-based XSS,
and XSS vulnerabilities.

3.5 Design vulnerability scanner

The design phase of the vulnerability scanner was initiated by employing the Unified Mod-
eling Language diagram. This technique was chosen as it offered a clear and accurate rep-
resentation of the various components that would be integrated into the scanner before the
development stage commenced. By carefully planning and outlining the scanner’s features
and functionalities, we ensured that the development phase would progress seamlessly with-
out any significant roadblocks. Furthermore, using a well-structured and comprehensive
design plan enabled the team to allocate resources better and prioritize tasks. Ultimately,
the UML diagram was crucial for keeping the entire project on track and helped us achieve
our goals within the stipulated timeframe.

3.6 Develop vulnerability scanner

The section focused on developing and coding an automated vulnerability scanning frame-
work. The choice of programming language was Python due to its ease of use and extensive
scripting support. The development process took several months as it was essential to cre-
ate a solid foundation to build upon. Extensive research was conducted to identify existing
frameworks, and a thorough analysis of the available solutions was carried out to determine
the most suitable approach for achieving the project’s objectives. Throughout the develop-
ment process, various iterations were tested and refined until the final framework was robust,
reliable, and capable of detecting the targeted vulnerabilities, including client-side template
injection, DOM-based XSS, and XSS.

17



3.7 Construct payloads

Upon completing the design and development of the vulnerability scanner prototype, the
next step was creating a payload library to test for actual vulnerabilities. To achieve this,
a comprehensive payload library was composed for each type of vulnerability that would
be tested, including client-side template injection, DOM-based XSS, and XSS. The process
involved identifying the most commonly used attack vectors for each vulnerability type and
generating payloads to simulate these attacks. Ensuring that the payloads were thorough
and accurate to produce reliable results during testing was crucial. Creating the payload
library was an extensive process involving significant research and testing to ensure the
scanner could detect a wide range of vulnerabilities accurately.

18



Chapter 4

Method

4.1 Design specifications

To develop the scanner efficiently and systematically, the following tools have been used
to specify the design specifications. Functional Requirements Document (FRD) was chosen
because it provides a structured way to define and document the functional requirements of
the scanner. By using FRD, the team could define and prioritize the scanner’s features and
functionalities, which helped ensure that the scanner was developed in a user-driven manner
that aligned with the needs of the target users.

Unified Modeling Language (UML) was chosen because it provides a standard language
for visualizing, specifying, constructing, and documenting the artifacts of software systems.
By using UML, the team could model and design the scanner’s architecture, components,
and behavior in a structured and consistent way, which helped ensure that the scanner was
developed with high quality and maintainability.

In addition, the development process was driven by user feedback and testing to ensure
that the scanner met the needs of the target users. User-driven development was crucial to
ensuring that the scanner was user-friendly, effective, and easy to use for both technical and
non-technical users.

4.1.1 Functional Requirements Document (FRD)

A Functional Requirements Document (FRD) is a formal document that outlines the detailed
functionalities, features, and capabilities of a software system or application. It serves as a
blueprint for the development team, providing a comprehensive and organized description of
what the software is supposed to do, and how it is expected to perform. The FRD acts as
a reference for stakeholders, including developers, testers, and project managers, to ensure
that the software meets the requirements and expectations of the intended users.

4.1.2 UML Class Diagram

A UML (Unified Modeling Language) Class Diagram is a visual representation of the static
structure of a software system or application. It describes the classes, their attributes,
relationships, and behavior of the objects in the system. Class diagrams are commonly used
during the design and analysis phase of software development to model the structure and
organization of the software system or application.

• Classes: Represents the static structure of the software system or application, including
the classes or objects that exist in the system. Each class is depicted as a rectangle,
with the class name at the top, followed by its attributes and methods.

19



• Attributes: Describes the properties or characteristics of a class, which define the
state of the objects of that class. Attributes are depicted as name-value pairs, and may
include data types, visibility (public, private, protected), and multiplicity (cardinality).

• Methods: Represents the behavior or actions that can be performed by the objects
of a class. Methods are depicted as name-signature pairs, and may include input
parameters, return types, and visibility.

• Relationships: Depict the associations or connections between classes in the system.
Common types of relationships include:

– Association: Represents a generic relationship between classes, indicating that one
or more objects of a class are associated with one or more objects of another class.
Associations are depicted as lines connecting the classes, with optional labels to
indicate the nature of the association.

– Inheritance/Generalization: Represents an inheritance relationship between classes,
indicating that one class inherits attributes, methods, and behavior from another
class. Inheritance is depicted as a solid line with a triangular arrowhead pointing
towards the superclass.

– Composition/Aggregation: Represents a whole-part or container-contained rela-
tionship between classes, indicating that one class is composed of or aggregated by
another class. Composition is depicted as a filled diamond at the container class
end, connected to the contained class with a solid line.

• Multiplicity: Specifies the cardinality or number of instances that can be associated
with a class in a relationship. Multiplicity is depicted as numbers or ranges near
the ends of the association lines, indicating the minimum and maximum number of
instances allowed.

• Stereotypes: Represents additional annotations or tags that can be used to further
define the characteristics of a class or relationship. Stereotypes are depicted as labels
in guillemets (« ») above or below the class or relationship.

The UML Class Diagram serves as a visual representation of the structure and relationships
between classes in the software system or application. It helps in understanding the organi-
zation of objects and their interactions, and serves as a reference for developers during the
implementation phase. It can also be used for documentation, communication, and analysis
purposes.

4.2 Choice of technologies and tools

4.2.1 Selenium

The selenium library is a popular Python package for automating web browsers. It provides
a simple and consistent interface to control web browsers programmatically and perform ac-
tions such as filling out forms, clicking buttons, and navigating between pages. selenium can
test web applications, scrape website data, or interact with web-based services. It provides
an API to interact directly with most browser drivers, such as Firefox, Chrome, and Edge.
[17]

Selenium is distributed under the Apache License 2.0, a permissive open-source license al-
lowing for unrestricted use, modification, and distribution of the software, subject to certain
conditions. This license ensures that the code is available to the community for personal and
commercial use and encourages contributions and improvements to the project. Overall, the
selenium library is a powerful and flexible tool for automating web browsers in Python and

20



is widely used in various industries, such as software testing and web development.[38]

Selenium wire

Selenium Wire is a Python library that extends Selenium’s Python bindings to give you
access to the underlying requests made by Selenium WebDriver. This means that you can
intercept and modify HTTP requests and responses made by the browser, allowing you to
more effectively test web applications and automate tasks.

4.2.2 Requests

The requests library is a popular Python package for making HTTP requests to web servers.
It provides an easy-to-use interface for sending HTTP/1.1 requests with a variety of meth-
ods such as GET, POST, PUT, DELETE, etc. and handling the resulting responses. The
library is built on top of the urllib3 library and supports many advanced features like SS-
L/TLS verification, timeouts, authentication, session handling, and more.[32] requests is also
distributed under the Apache License 2.0.[38]

4.2.3 Beautiful Soup

Beautiful Soup is a Python package that is used for web scraping purposes. It allows the
parsing and manipulation of HTML and XML documents, providing an easy-to-use inter-
face for extracting data from web pages. Beautiful Soup is an open-source package released
under the MIT license, which means that it can be freely used and modified for personal
and commercial purposes.[33][40]

Beautiful Soup creates a parse tree from the input HTML or XML document. It then pro-
vides a variety of search methods for locating specific tags, attributes, or content within the
document. Beautiful Soup supports a wide range of search techniques, including searching
by tag name, attribute, text content, or CSS selector.

4.2.4 tldextract

The tldextract library is a Python package that allows the extraction of the Top-level Do-
main (TLD), subdomain, and domain name from a given URL. This library is distributed
under the BSD 3-Clause License, allowing unrestricted software use, modification, and dis-
tribution, subject to certain conditions that do not apply to this project.[24][39]

The library uses a combination of algorithms and a public domain list of TLDs to determine
the TLD of a given URL. It first separates the domain into its subdomains and top-level
domain, then checks the extracted TLD against a list of known TLDs to ensure that it is
valid. If the TLD is not found in the list, the library assumes that the TLD is a second-level
domain and continues to extract the domain name.

4.2.5 URLlib

urllib is a package that collects several modules for working with URLs, where this project
only uses urllib.parse. This module defines a standard interface to break Uniform Resource
Locator (URL) strings up into components (addressing scheme, network location, path etc.),

21



combine the parts back into a URL string, and convert a "relative URL" to an absolute URL
given a "base URL"[14].

4.2.6 Git

Git is a popular version control system developers use worldwide to manage source code,
collaborate on projects, and track changes over time. As a distributed system, Git allows
developers to work offline and synchronize their changes with a central repository when they
return online. This makes it a powerful tool for teams working on complex projects with
many contributors.

Git was the chosen version control system in this project due to its versatility and ability
to manage the different development branches. Additionally, Git’s robustness in managing
code changes ensured that no data was lost during development.

To facilitate collaboration and version control management, GitHub was the primary plat-
form for storing and sharing project repositories. This allowed the code and documentation
to be shared quickly.

Multiple repositories were created on GitHub to keep the project organized and segmented
into specific components. Each repository was dedicated to a specific component or fea-
ture, making it easy to work on individual parts of the project and manage their changes
effectively[22].

4.2.7 Pycharm

PyCharm is an integrated development environment (IDE) used for Python programming. It
provides developers with tools for writing and debugging code, managing project dependen-
cies, and integrating with version control systems like Git. PyCharm was used extensively
in our project as the primary IDE for development and testing. It offered a user-friendly
interface and a variety of valuable features, such as code completion, refactoring, and debug-
ging tools. Additionally, PyCharm’s integration with Git and GitHub allowed for efficient
collaboration among team members and streamlined the development process[30].

4.2.8 Python

Python is a high-level, interpreted programming language that is widely used for various
applications such as web development, data analysis, machine learning, and scientific com-
puting. Its simplicity, ease of use, and availability of a vast range of libraries make it a
popular choice among developers[31].

4.3 Vulnerability scanner

4.3.1 Development process

Crawler

To begin the development process, we first created a functional web crawler. This tool is
crucial for a vulnerability scanner to operate effectively. In traditional web applications,
there are multiple pages linked with hyperlinks under the same domain[37]. These pages
can have unique vulnerabilities that may not exist on other pages. Using a web crawler, the

22



scanner can locate and index all pages within the web application, allowing for comprehen-
sive vulnerability testing.

To start the development of the crawler, a list of requirements was created:

• Ability to find all hyperlinks on the page

• Not index duplicates

• Limit it to scanning a specified domain

To avoid unnecessary work, a search was conducted to find pre-existing solutions in the
form of open-source libraries or plugins for Python. Two options were evaluated: creating a
solution from scratch, using code from scrapingbee.com as a foundation, or utilizing Scrapy,
a Python framework for web crawling. Ultimately, the decision was made to modify the
crawler found on scrapingbee.com, as Scrapy was deemed overly complex for the current
project[5][13].

The necessary adjustments were made to ensure the scanner included the desired features.
A JSON configuration file was created to address the crawler going beyond the intended
domain. This file specified the domain, suffix and subdomain; specifying the subdomain is
optional. If any URLs were found that did not fit within the specified range, they were not
included in the list of pages to crawl.

JSON is preferred as a scope file over XML because of its concise syntax and personal pref-
erence. Furthermore, JSON files are easy to parse, making it the go-to choice for defining
the scope and payload library.

During its development, the crawler has remained almost identical to its earliest version,
with the only addition being the function to check the page source text for links based on a
regex pattern. This functionality was added after Netsecurity requested it.

Input field finder

To create the input finder, the plan was straightforward. First, the beautiful soup library
would be used to parse each page discovered by the crawler. This library creates a soup class,
allowing the user to loop over all input fields on the page. The next step would involve testing
the inputs by sending a dummy payload to the page. The page would then be rechecked for
instances of the dummy payload to verify if it gets reflected on the page. Lastly, the pages
with a reflection would be listed alongside the input fields for the payload sender to send
payloads to. As the input finder already has the code to send payloads, the payload sender
would be integrated into the input finder.
The initial plan for creating the input finder seemed straightforward, but it had to be revised
before any coding could transpire. For instance, there are 22 different input field types, with
most having completely different functions??. So it had a sorting system that indexed the
fields according to type. It also indexed buttons, as they are often hyperlinks with a prede-
fined payload. By changing the hyperlink payload, one can inject template and XSS payloads.

Secondly, sending payloads to the different input fields differed widely. Therefore one func-
tion per field type was planned. However, a complete rewrite was done before all five
functions were written. As a result, only payload-sending functions were written for but-
tons and text fields. Furthermore, the function for text fields utilised Selenium to send the
payloads, whereas the other used the requests session. The function for sending payloads
to buttons only supported sending GET requests, and this is mostly fine as it is rare to

23



use other methods with buttons. It functioned by altering the URL from the button, using
string manipulation to change the payload.

In the first iteration of developing the scanner, we drew from our combined experience in
manual web application penetration testing and consulted with experts at Netsecurity. We
did, however, have no previous knowledge of web development, leading to over-ambition
and misconceptions. This was prevalent in input detection, as hidden fields were treated as
typical input fields, not just a container for data that users cannot see or modify when a
form is submitted. They are also often required to be submitted together with the form,
and because the scanner only had support for one input at the time, this was impossible.
In addition, wanting to include selection fields like drop-down menus and checklists made
things complex. Because even though one can inject payloads to such inputs, having those
inputs on a web page is rare, the impact of not having them is insignificant. These and other
issues lead to the following limitations.

The first versions of the input finder had several limitations. One of the main issues was
that it could only send a payload to a single input field at a time and ignored the <form>
tag, which is standard when grouping inputs in HTML. This made it impossible to deter-
mine if two inputs needed to be submitted together. Additionally, the indexing system used
a dictionary for each input field type, resulting in four types: text, selection, hidden, and
interactive. However, the "interactive" type was never used and only served as a placeholder
for future development. This indexing method created a nested dictionary with three layers,
as the payloads were also added to a dictionary with the field name as the key. These lim-
itations persisted in the first two versions of the input field finder until a complete rewrite
was implemented for version three.

The main structure was kept in the input finder’s third version. The main changes were to
the indexing and the filtering. Instead of indexing the inputs in a dictionary like the previous
version, two new lists were created, one for inputs and one for forms. A new function was
created to index forms. This function creates a dictionary containing all the information
relevant to the form, action, method, enctype, and inputs. The inputs are a list of all the
inputs in the form filtered through the inputs filter.

The new input filter only included seven input types of the 22 available for standard HTML
web applications. The seven are text, textarea, search, email, tel, URL, and number. These
fields cover all input fields that accept text, and limited fields, like range and radio, are
filtered out. Reducing the number of indexed input types helps reduce a lot of complexity in
the payload sender. However, by keeping all text fields, it can still detect the most common
vulnerabilities. This is considered an acceptable compromise for the limited development
timeframe.

Payload-Sender

As previously mentioned, the payload sender was initially integrated into the first input
finder. However, in order to increase the flexibility of the scanner, it was decided that the
payload sender should be an independent component. Although none of the first version’s
payload sender was reused, the team implemented the lessons learned from the limitations
of the earlier version.

To ensure the scanner’s effective operation, a list of required functionalities prior to develop-
ment was created. From this list, it was determined that a new class was necessary to tie all
the components, namely the crawler, input finder, and payload sender, together in a more

24



structured manner. This new class was named Webapp and was responsible for managing
all the parts of the scanner and facilitating data flow among them. The development process
for the Webapp class is described in the section below.

The payload sender must be capable of:

• Need to be able to send payloads to HTML forms with required inputs.

• Modifying payloads to match the specific pattern requirements of different input fields,
such as email addresses

• Be able to check buttons on the page and send payloads to those.

• Check for different types of payload execution, not just alerts.

• Reporting the vulnerabilities found, along with the specific payloads that were used,
to assist with effective analysis and resolution.

In the initial stage of development, a mechanism was created to send payloads to the pages.
The requests library was chosen to have complete control over the HTTP requests sent from
the scanner. To simplify this process, support functions were developed - one for formatting
and creating the request data and another for generating a request header.

Next, a method for identifying payload execution was developed. It involved parsing the re-
sponse of the request using Beautiful Soup and searching for instances of the alert function
in the page’s script source. However, during testing, it was found to be an imperfect method
as it cannot detect DOM-XSS and often produces false positives.

Because of the limitation of payload execution detection, a different approach was needed.
Here different approaches were tested, all based on Selenium. The first method tested was
using selenium-requests, a library that extends the functionality of Selenium by adding sup-
port for sending web requests in a similar fashion to the requests library. The reasoning
for testing this first was that it avoided a lot of rewriting of the payload sender, as all that
changed were the lines where the web request was sent. However, limitations were discovered
with selenium-requests, such as a lack of documented support for POST requests and data
parameters, and it did not work as hoped.

Finally, Selenium was chosen as the tool for identifying vulnerabilities in a web application
motivated by its ability to mimic the functionality of a standard web browser, enabling the
detection of Document Object Model (DOM) based vulnerabilities. However, an extensive
rewrite of the payload sender was required for Selenium to work. Because Selenium does not
allow for sending requests directly but gives an API to interact with the web application like
a human would. In order to submit a form, one input field has to be selected at a time, and
the payload "typed" in by Selenium. This methodology imposes constraints on the tool’s
effectiveness, as it necessitates that each input field be visible to the simulated "user" in
order to be interacted with. Furthermore, when all fields are filled, one cannot just send
the request. Instead, one has to select the submit button. Automating this is challenging,
as web applications are not standardized to the extent that every app uses the same name,
location, or Xpath for the submission button. To solve this problem, a total of six try-except
statements are used. Even then, it is buggy and tends to click the first button it sees on the
page.

Development was halted at this point due to time limitations. Despite a few minor bugs, it
was deemed successful as it met all the requirements specified at the start of the development
process.

25



4.4 Webapp

The process of developing the webapp was relatively simple. Initially, the webapp received
input from the main function and passed it on to the crawler. Afterward, it checked each page
one by one using the input finder and payload sender, iterating over a list of URLs obtained
from the crawler. The only modification made during development was the addition of the
feature to iterate over the payloads in the payload library. This was achieved by utilizing
the JSON library in Python to extract all the payloads categorized as XSS, DOM-XSS, and
Template Injection. The webapp then tested for XSS first, followed by DOM-XSS, and lastly,
Template Injection while iterating over each category one at a time.

4.4.1 Flow

1. Ask the user to provide a URL to scan.

2. Prompt the user to confirm whether they want to expand the scope, and if they say
"y", automatically include the domain, subdomain, and suffix in the scope.

3. Send an HTTP request to the specified URL to crawl its pages.

4. Parse the HTML content of each page to identify any input fields.

5. Initialize Selenium and add the requests session to Selenium, transferring all cookies.

6. Find and test all buttons to check for redirection or changes in the href compared to
the URL.

7. Send payloads to all buttons using Selenium.

8. Send payloads to forms using Selenium.

9. Send payloads to single input fields outside of forms.

10. Check whether the payloads execute successfully. If the payload is triggered, indicate
that the page is vulnerable.

4.5 Payload list creation

Payload list creation is an essential part of a web application security assessment, specifi-
cally for detecting vulnerabilities such as Cross-Site Scripting (XSS), DOM-based XSS, and
Template Injection. The payload list is a collection of specially crafted input values that aim
to test the application’s input validation and sanitization routines, which can help identify
vulnerabilities.

4.5.1 XSS

XSS vulnerabilities, payloads are designed to inject JavaScript code that will execute in the
victim’s browser context. The payload list will include various types of scripts, including
those that execute alerts, redirect the victim to a malicious website, or execute arbitrary
code. Payloads can be categorized into different types, such as simple payloads, advanced
payloads, and edge-case payloads, based on their complexity[25].

26



4.5.2 DOM-based XSS

DOM-based XSS, the payload list will include inputs that can manipulate the Document
Object Model (DOM) to execute JavaScript code in the victim’s browser. Unlike stored and
reflected XSS, where the malicious code is executed on the server-side, in DOM-based XSS,
the code is executed entirely in the browser. The payloads can be designed to manipulate
various DOM elements, such as form fields, query strings, or window objects, to execute the
malicious code[26].

4.5.3 Template injection

Template Injection, the payload list will contain inputs that aim to inject malicious code
into the application’s templating engine. The payloads are designed to test the templating
engine’s functionality and discover vulnerabilities that could be exploited to inject malicious
code.

Payload Gathering

Gathering payloads for the vulnerability scanner was essential to effectively test web appli-
cations for vulnerabilities. Open-source repositories such as GitHub, GitLab, and Bitbucket
are excellent sources of payloads that can be used to test for specific vulnerabilities. For
example, extensive lists of payloads for client-side template injection (CSTI) can be found
in repositories such as PortSwigger’s Web Security Academy and OWASP’s Web Security
Testing Guide.

Similarly, repositories such as XSS Payloads and PayloadAllTheThings provide a wide vari-
ety of payloads that can be used to test for XSS and DOM-based XSS vulnerabilities.

The vulnerability scanner’s payload library was constructed from these open-source repos-
itories, as these payloads have been known to work effectively on web applications. Using
these payloads was crucial to the effectiveness of the vulnerability scanner in identifying and
remedying security issues in web applications.

To measure the effectiveness of the scanner in detecting client-side template injection at-
tacks, we will track the number of successful detections and the amount of time it takes
to detect and remediate the attack. We will also compare the performance of the scanner
against each of the template engines.

4.6 Testing plan

In order to test the vulnerability scanner, a testing plan will be implemented using vulnera-
ble web applications provided by PortSwigger and their Academy. The chosen applications
clearly demonstrate various types of vulnerabilities, and solutions are always provided.
All the scanners mentioned in the state of the Art chapter will be tested in the same labs.
To ensure accuracy, only one scanner will be run at a time on the web application. The lab
will be reset after each scanner is tested before the next one is run on the application.

The scanner will be run on a set of ten labs that cover different types of vulnerabilities.
These labs include:

• DOM XSS in AngularJS expression with angle brackets and double quotes HTML-
encoded: Link

• Basic server-side template injection: Link

27

https://portswigger.net/web-security/cross-site-scripting/dom-based/lab-angularjs-expression
https://portswigger.net/web-security/server-side-template-injection/exploiting/lab-server-side-template-injection-basic


• Stored DOM XSS: Link

• DOM XSS in document.write sink using source location.search inside a select element:
Link

• Reflected XSS into a JavaScript string with angle brackets HTML encoded: Link

• Reflected XSS into attribute with angle brackets HTML-encoded: Link

• Reflected XSS into HTML context with nothing encoded: Link

• Stored XSS into HTML context with nothing encoded: Link

• DOM XSS in document.write sink using source location.search: Link

• DOM XSS in innerHTML sink using source location.search: Link

The scanner’s intended functionality can be thoroughly tested by utilising these labs as
they cover Stored XSS, Reflected XSS, DOM XSS, and Template Injection. However, it
is necessary to note that the Template Injection used in these labs is server-side (SSTI).
Therefore, it cannot accurately say that it would detect a Client-side Template Injection
(CSTI) vulnerability; however, one of the labs uses Angular JS, a client-side framework[16].
Therefore, using angular gives some idea of the CSTI capabilities of the scanner.

28

https://portswigger.net/web-security/cross-site-scripting/dom-based/lab-dom-xss-stored
https://portswigger.net/web-security/cross-site-scripting/dom-based/lab-document-write-sink-inside-select-element
https://portswigger.net/web-security/cross-site-scripting/contexts/lab-javascript-string-angle-brackets-html-encoded
https://portswigger.net/web-security/cross-site-scripting/contexts/lab-attribute-angle-brackets-html-encoded
https://portswigger.net/web-security/cross-site-scripting/reflected/lab-html-context-nothing-encoded
https://portswigger.net/web-security/cross-site-scripting/stored/lab-html-context-nothing-encoded
https://portswigger.net/web-security/cross-site-scripting/dom-based/lab-document-write-sink
https://portswigger.net/web-security/cross-site-scripting/dom-based/lab-innerhtml-sink


Chapter 5

Design

5.1 UML Class diagrams

5.1.1 Scanner version 1.0

The buildup of the first version consisted of two classes connected by a main function. The
scanner only had a single instance of each class, using lists and dictionaries to index and
iterate through the web application’s pages.

Figure 5.1: First version of the scanner

29



5.1.2 Scanner version 2.0

The next version divided the payload sender and input finder into two classes. A class
was also created and planned to be used if a user signed in to the web app or added an
authentication cookie. However, the authentication feature was never developed and removed
in the next scanner version. The scanner still used only a single instance of each class, using
the same method for page iteration as the first version.

Figure 5.2: Second iteration of the scanner

30



5.1.3 Final scanner version

The final version of the scanner saw significant changes made to the payload sender and input
finder. While the crawler still operates on a single instance and adds each page crawled to
a list, the input finder and payload sender classes are now only used once per page. This
simplifies the indexing process, as only the inputs and forms of one page need to be stored
at any given time. Additionally, the payload sender class is now set up for each payload and
each page, further streamlining the process. Although authentication functionality has been
removed in this version, some unused functions from earlier versions remain.

31



Figure 5.3: Third and final version

32



5.2 UML Activity Diagrams

5.2.1 Crawler version 1.0

Figure 5.4: Crawler first iteration

33



5.2.2 Crawler version 2.0

Figure 5.5: Crawler second iteration based on feedback

5.2.3 Changes in v2

In the second iteration of the crawler, one additional feature was added. The crawler now
has the functionality to check through the page text to look for additional URLs which are
not noted with an anchor tag. This is done using a regex pattern. If any part of the text
matches the regex pattern, it is added to the list of URLs to scan. The pattern is imperfect
but should capture most URLs in the page text.

34



5.2.4 Input-field scanner version 1.0

Figure 5.6: First edition of input-field scanner with payload sender

35



5.2.5 Input-field scanner version 2.0

Figure 5.7: Over arching flow of the Input-field scanner

Figure 5.8: Flow of the input field filtering function

5.2.6 Changes made in v2

The changes done to the input-field scanner were extensive and is explained in section 4.3.1.
The flowcharts above represents the final version of the input-field scanner.

36



5.2.7 Payload sender

Figure 5.9: Over arching flow of the payload sender

37



Figure 5.10: Flow of the createGET function

38



Figure 5.11: Flow of the seleniumSend function

Figure 5.12: Flow of the function for sending payloads to forms

39



Figure 5.13: Flow of the function for sending payloads to input fields

(a) The flow of isAlertPresent function (b) The printVuln function

5.3 Changes made to the payload sender

In section 4.3.1 under Payload Sender, you can find an explanation of the changes made
to it. Flow charts for the payload sender were not consistently created during development
due to the drastic design changes made in the final stages of the scanner’s development. As
mentioned in section 4.3.1, various techniques for sending payloads were tested, including
the requests library, selenium requests, selenium wire, and using a proxy. The final version
of the payload sender uses standard functions from the Selenium library, while the driver
from Selenium wire is still utilized.

5.4 Components

5.4.1 Webapp class

The webapp class is responsible for coordinating the scanning process of the web application.
It receives the initial URL from the main function and passes it on to the crawler. Once the
crawler is executed, the inputfinder and payload sender are systematically run on each page

40



the crawler has discovered. If a vulnerability is detected, the webapp class will display the
vulnerable page and the type of vulnerability found.

• getPages(self): Uses a web crawler to visit pages on the website and add them to
the list of visited pages. Also identifies the sign-in page if there is one.

• getInputFields(self): Finds all input fields on each visited page and adds them to
a dictionary of inputs indexed by a key. Returns the class object.

• readPayloads(self): Reads a JSON file of payloads to be used in testing for vulner-
abilities.

• sendPayloads(self, page, i, payload, response, vulnerabilityType): Sends
payloads to each input field on a given page and checks the response for the given
vulnerability type (e.g. cross-site scripting). Returns True if the vulnerability is found,
False otherwise.

• checkPage(self): Runs the payload tests on all visited pages for each vulnerability
type, stopping once a vulnerability is found.

• run(self): Runs the main scan by calling getPages(), setting up a requests session,
calling getInputFields(), and calling checkPage().

• initDriver(self): Initializes a web driver (in this case, Firefox) and adds the cookies
of the session to it. It returns the web driver object.

5.4.2 Crawler

The vulnerability scanner starts by utilizing the web crawler. The web crawler will use the
inputs the user gives to initialize the first steps for the vulnerability scanner.

The Crawler class has several functions, which are:

• requestUrl(self, url): Sends an HTTP GET request to a URL and returns the
response text if the request is successful. If the request fails, it logs an error and returns
None.

• getLinkedUrls(self, html, url): Parses HTML and extracts all the links and in-
put forms. If a sign-in form is found, it sets the signinPage attribute of the class to the
current URL. It yields all the valid links (i.e., links that are in the scope and are not
mailto or tel links).

• crawl(self, url): Crawls a URL and adds all the linked URLs to the list of URLs
to visit.

• addUrlsToVisit(self, url): Adds a URL to the list of URLs to visit if it has not
already been visited or added.

• isInScope(self, url): Extracts the domain, subdomain, and suffix from the URL
and checks if the URL is in the same subdomain, domain, and suffix as the scope. If
the URL is in the scope, it returns True; otherwise, it returns False.

• run(self): Displays a message with the number of URLs to visit, and while the list
of URLs to visit is not empty, it removes the first URL from the list and crawls it. If
an error occurs while crawling the URL, it logs the error.

Global functions outside of class:

41



• readHeader(): Reads a JSON file that contains HTTP request headers and returns
the headers if the file exists. If the file is not found, it returns None.

• readScope(): Reads a JSON file that contains a scope for the crawler and returns the
scope if the file exists. If the file is not found, it returns None.

5.4.3 Input finder

The input finder expands upon the data that the web crawler has collected. The input finder
scans for all types of inputs in the pages that the web crawler has crawled.

The inputFinder class has the following functions:

• parsePage(): This function takes the page content as input and uses BeautifulSoup
library to parse the HTML code of the page. It then searches for all the forms and inputs
within the HTML code and filters out the unwanted inputs using the filterInputs
function. It returns a list of inputs that have been filtered.

• indexForms(): This function takes a single form as input and indexes its attributes
such as action, method, and inputs. It uses the filterInputs function to filter out
the unwanted inputs, and then appends the filtered inputs to the indexed form in the
class. The indexed form is then appended to the list of forms in the class.

• filterInputs(): This function takes an input field as input and checks if its type
attribute is valid. If the type attribute is valid, it creates a dictionary of the input field’s
name, type, and required attributes, and then returns the dictionary. If the input field
is of type "hidden" and has a "required" attribute, it also adds the input field’s value
to the dictionary.

• getPage(): This function sends a GET request to the URL provided in the constructor
and saves the response in the class variable "page". If an error occurs, it prints an error
message.

• run(): This function takes a session object as input and sets it as the session for the
class. It then gets the page content using the getPage function, parses the page using
the parsePage function, and returns the list of filtered inputs.

5.4.4 Payload sender

The payload sender uses the input fields found in the input finder and formats and sends
payloads accordingly. The payload sender systematically checks for one vulnerability type
at a time and is orchestrated by the webapp class. After sending a payload to a page, the
page is checked for payload execution. If the payload is triggered, information about the
vulnerable page is printed to the console.
The payload sender class has the following functions:

• getCookies(self) : Returns a dictionary of cookies from the session.

• noInputGet(self, anomalys) : Sends payloads using GET requests to each of the
anomalies in the anomalys list. If a payload triggers a vulnerability, information about
the vulnerability is printed to the console.

• sendPayloadForm(self, body, url, form) : Sends a payload using either a POST
or GET request, depending on the form’s method attribute. If a payload triggers a
vulnerability, information about the vulnerability is printed to the console.

42



• formatAction(self, action) : Takes an action URL and constructs a complete URL
using either the page URL or the base URL, depending on the format of the action
URL. Returns the complete URL.

• formPayload(self) : Sends payloads to each form on the page using sendPayloadForm().

• inputPayload(self) : Sends a payload to the input field on the page using sendPayloadForm().

• constructHead(self, url, body, enctype) : Constructs and returns a dictionary
of headers for a request, using information from the session and the form.

• createPOST(self, body, url, enctype=None) : Sends a POST request to a URL
with a body containing a comment field with the payload. Returns the response object.

• createGET(self, body, url) : Sends a GET request to a URL with a query string
containing the payload. If the expected response is an alert, checks for an alert and
prints information about the vulnerability if one is found. Otherwise, checks for an
increase in the count of a specified text string and prints information about the vul-
nerability if the count has increased.

• constructMFBody(self, form, method) : Constructs and returns a dictionary of
form input names and values for a multi-field request, using the form’s inputs and
the payload.

• constructBody(self) : Constructs and returns a dictionary containing a comment
field with the payload.

• seleniumSend(self, body) : Sends a request using Selenium and checks for a vul-
nerability using checkExecution().

• checkButtons(self): This function searches the HTML source for any buttons with
specific classes and calls testButtons on each one.

• initDriver(self): This function initializes a Firefox driver with specified options
and adds cookies from a previous session, if applicable.

• printVuln(self, url): This function prints information about a vulnerability found
in the HTML source.

• isAlertPresent(self): This function checks if an alert is present on the page and
dismisses it if so, calling printVuln on the current URL and returning True if an alert
is found.

• checkForPayload(self): This function loads the page and counts the instances of
the expected response in the page source, returning the count.

• run(self): This function runs the payload sender, calling checkForPayload, checkButtons,
formPayload, and inputPayload as appropriate.

Global functions outside of the class:

• readWordlist() : Reads and returns the contents of a file named "wordlist.txt" as a
list of payloads.

• checkExecution(response) : Takes a response object and checks if it contains a script
tag with the string "alert(1)". Returns True if it does, False otherwise.

43



5.4.5 Get payloads from JSON sorted by type and expected output

The scanner comes with an extensive payload library that can be used to test web apps for
vulnerabilities. The payloads are sorted according to the vulnerabilities they intend to attack.
The sorting of the payloads makes it much simpler to identify particular vulnerabilities and
target parts of the web application that might be more vulnerable to particular attacks. The
payloads’ ability to generate a specific reply when a web application is deemed insecure is
another crucial feature. It enables the scanner to find vulnerabilities quickly and give the
correct feedback.

5.5 Limitations and constraints

The web application vulnerability scanner has several limitations that can impact its effec-
tiveness. Firstly, when using the "Submit" selection, the scanner will only choose the first
button on the web page. This can be a significant limitation, as it may prevent the scanner
from submitting data if there is more than one button on the page. Additionally, the scanner
can only select inputs with a name, which may also impact its ability to test all fields in a
web application.

Another issue with the scanner is its lack of fuzzing capabilities. It does not send random
or unexpected data to check for vulnerabilities, and it also does not care about the tech-
nology being used in the web application. Instead, it tests until a vulnerability is found
or all payloads have been tested. While this approach may be effective in identifying some
vulnerabilities, it may not be sufficient in all cases.

When testing for Stored Cross-Site Scripting (XSS) vulnerabilities, the scanner can create a
lot of garbage content on a page. This is not a flaw in the scanner itself but rather a result
of how Stored XSS vulnerabilities work.

The scanner’s crawler is also limited in its ability to find links on a web page. It can only
find links in the page text that matches the REGEX pattern, which may miss some URLs
and is not perfect.

Additionally, the scanner’s use of the JSON file format can inhibit the use of Common Vul-
nerabilities and Exposures (CVE) Proof of Concepts (PoCs) directly. This is because the
JSON file format does not allow for multi-line payloads, which may limit the scanner’s ef-
fectiveness in testing for certain vulnerabilities[10].

Finally, the scanner may falsely identify vulnerabilities on pages with alerts, which can lead
to inaccurate results.

44



Chapter 6

Results

6.1 Scanner

6.1.1 Dynamic scan

The vulnerability scanner follows the principles of dynamic vulnerability scanning. This ap-
proach of a dynamic vulnerability scan leads to the steps needed by the vulnerability scanner
that this chapter will explain. As mentioned in Chapter 2(cite here later), a dynamic scan
involves sending a request to a web application and analyzing the responses that it gives.
The present system employs a dynamic scanning technique that involves testing on a live-
running web page using a standard web browser, namely Firefox. The selection of Firefox as
the browser is not based on any particular reason, and other commonly used browsers such
as Chrome, Edge, or Safari could have been used. It is noteworthy, however, that Selenium
offers more features and better support for Chrome and Firefox[36][17].

All the testing procedures are executed within the confines of the program-controlled browser,
simulating the actions of a typical web application user. The payloads are executed on a
platform identical to that in a standard Firefox instance, utilizing the same gecko driver
that commercial Firefox uses, thus rendering the scanning process as realistic as possible.
This characteristic is highly desirable as it enables the most accurate testing of client-side
vulnerabilities such as XSS and CSTI[25].

6.1.2 Configuring the scanner

Before running the scanner, there are two options that need to be configured. Additionally,
the scanner has a head.json file that can be modified to change the HTTP header for the
Crawler. This is commonly done to ensure that the user agent is identifiable. It is standard
practice for web crawlers to have an identifiable user agent[28].

The scanner will prompt for two inputs at the start of each run. The first input is the
webpage URL that needs to be scanned. The second input is a question about changing the
scope. If the answer is (y), the scanner will prompt the user for the domain, subdomain, and
suffix in that specific order. These details are saved in the scope.json file that the Crawler
will use. The Crawler will not attempt to connect to any pages outside of this scope limita-
tion. This is an essential measure to prevent the scanner from accessing pages without the
owner’s permission, which could result in legal action against the scanner user[45].

The user also has the option to edit the payloads.json file to their needs. However, further
source code editing will be required to add more payload classes, e.g., SQLi. For the currently
implemented classes (XSS, DOM-XSS, and CSTI), one only needs to add more payloads with
expected responses. It is worth noting that the payloads must adhere to the restrictions and

45



limitations of the JSON format[10].

6.2 Running the scanners

All the scanners ran with minimal setup; the only manual action required was to input a
URL into the scanner, and all tests will run automatically. However, it is worth noting that
running Our Scanner needs to be run twice because of a bug where the updated scope does
not save before the program terminates, making the Crawler fail on the first attempt.

The run-time for the scanners varied a lot, with Vega being the fastest and Wapiti3 being the
slowest by far. In our testing, the scanner’s speeds are here ranked from fastest to slowest:

1. Vega

2. Iron Wasp

3. Our Scanner

4. OWASP Zap

5. Wapiti3

6.3 Scanning results

Vulnerable apps Iron Wasp Wapiti3 OWASP Zap Vega Our Scanner
FP TP Misses FP TP Misses FP TP Misses FP TP Misses FP TP Misses

DOM XSS in AngularJS expression with
angle brackets and double quotes HTML-
encoded

0 0 1 3 0 1 5 1 0 0 0 1 0 1 0

Basic server-side template injection 0 0 1 3 0 1 5 0 1 0 0 1 0 1 0
Stored DOM XSS 0 0 1 3 0 1 5 1 0 0 0 1 0 1 0
DOM XSS in document.write sink using
source location.search inside a select ele-
ment

1 0 1 3 0 1 5 1 0 0 0 1 0 0 1

Reflected XSS into a JavaScript string
with angle brackets HTML encoded

0 1 0 3 0 1 5 1 0 0 1 0 0 1 0

Reflected XSS into attribute with angle
brackets HTML-encoded

0 1 0 3 1 0 5 1 0 0 1 0 0 0 1

Reflected XSS into HTML context with
nothing encoded

0 1 0 3 1 0 5 1 0 0 1 0 0 1 0

Stored XSS into HTML context with noth-
ing encoded

0 0 1 3 0 1 5 0 1 0 0 1 0 1 0

DOM XSS in document.write sink using
source location.search

0 0 1 3 0 1 5 1 0 0 0 1 0 1 0

DOM XSS in innerHTML sink using
source location.search

1 0 1 3 0 1 5 1 0 0 0 1 0 1 0

Table 6.1: Scan results for all 5 scanners tested

Scanner True Positives Found Vulnerabilities Missed
Iron Wasp 30% 70%
Wapiti3 20% 80%
OWASP Zap 80% 20%
Vega 30% 70%
Our Scanner 80% 20%

Table 6.2: Vulnerability detection percentage for the web-applications tested

46



6.4 Scanner functionality results

6.4.1 Template injection

IronWASP OWASP ZAP Vega Wapiti Our scanner
No functionality Limited functionality No functionality No functionality Good functionality

In the course of developing an in-house vulnerability scanner for web applications, a test was
conducted to assess the effectiveness of several open-source scanners in detecting template
injection vulnerabilities. The scanners evaluated in this test were IronWASP, OWASP ZAP,
Vega, Wapiti, and the in-house scanner.

The results of the test showed that IronWASP, Vega, and Wapiti did not demonstrate any
functionality for detecting template injection vulnerabilities, as they detected no vulnera-
bilities in the relevant labs, see table 6.1. OWASP ZAP demonstrated limited functionality
in detecting such vulnerabilities, being able to detect vulnerable versions of the templating
engine in use by the web-application. However, it did not identify a simple Server Side Tem-
plate Injection (SSTI) in the "Basic server-side template injection" lab as shown in table
6.1. Here the application was running a vulnerable Embedded Ruby (ERB) implementa-
tion. Zap was unable to identify the vulnerability. Therefore, it does not get marked as good
functionality for template injection.

In contrast, the in-house scanner demonstrated good functionality in detecting template
injection vulnerabilities. This suggests that the in-house scanner may be a more effective
tool for identifying this particular type of vulnerability in web applications than the open-
source scanners tested.

The in-house scanner developed in this study appears to be a promising option for detecting
template injection vulnerabilities, but further testing is needed to assess its effectiveness on
applications vulnerable to template injection.

6.4.2 XSS

IronWASP OWASP ZAP Vega Wapiti Our scanner
Limited functionality Limited functionality Limited functionality Limited functionality Limited functionality

As part of the development of an in-house vulnerability scanner for web applications, a
test was conducted to evaluate the effectiveness of several open-source scanners in detecting
cross-site scripting (XSS) vulnerabilities. The scanners evaluated in this test were Iron-
WASP, OWASP ZAP, Vega, Wapiti, and the in-house scanner.

The results of the test indicated that all of the scanners had limited functionality in de-
tecting XSS vulnerabilities. Specifically, IronWASP, OWASP ZAP, Vega, Wapiti, and the
in-house scanner all demonstrated limited functionality in detecting XSS vulnerabilities.

These findings suggest that additional development and testing may be necessary in or-
der to improve the effectiveness of the in-house scanner and the open-source scanners tested
in detecting XSS vulnerabilities. Further research into the development of more effective
techniques for detecting XSS vulnerabilities may be necessary to improve the overall effec-
tiveness of vulnerability scanners for web applications.

Overall, these results highlight the ongoing challenge of detecting XSS vulnerabilities in web

47



applications, and the need for ongoing research and development to improve the effectiveness
of vulnerability scanning tools.

6.4.3 DOM-XSS

IronWASP OWASP ZAP Vega Wapiti Our scanner
No functionality Good functionality No functionality No functionality Limited functionality

The test results indicated that IronWASP, Vega, and Wapiti did not exhibit any function-
ality in detecting DOM-based XSS vulnerabilities. As a result, these scanners detected no
vulnerabilities in the relevant labs, as illustrated in Table 6.1. On the other hand, our
in-house scanner demonstrated limited functionality in detecting such vulnerabilities, being
able to detect only one of the four apps that were vulnerable to DOM-based XSS in this test.

In contrast, OWASP ZAP demonstrated good functionality in detecting such vulnerabili-
ties, detecting all cases of DOM-based XSS vulnerabilities in our vulnerable apps. These
results suggest that our in-house scanner still has room for improvement to enhance its
ability to detect DOM-based XSS vulnerabilities.

6.5 Notes about the scanning

All the applications are based on the same framework and function and look almost identical.
Therefore the same False Positive (FP) has been identified by Wapiti3 and Zap. This hurts
the accuracy ratings of the scanners and is not necessarily a realistic figure. All pages have
only one vulnerability; therefore, the True Positive (TP) numbers and misses are always 1 or
0, giving the FP a comparatively high score. Unfortunately, this also skews the results when
comparing the scanners statistically from these few tests, making it wholly unrealistic and
more a test of the scanner’s functionality rather than performance. Because of this skew, it
has been decided not to include performance statistics in the report, as this would be unfair
and biased toward specific scanners.

Also worth mentioning is that Our Scanner was developed using these types of labs. There-
fore, its functions were developed to solve the more basic labs, and payloads to solve more
advanced labs were added to the payload list. Some of the payloads are taken from PortSwig-
ger, and might, therefore, be ideally suited to one or more of these labs. This gives a substan-
tial bias in the detection results, as mentioned making it unfair to compare the performance
statistics in the conclusion of this report.

48



Chapter 7

Discussion

In this section, we will cover the final version of the scanner. We will discuss the results of
the testing and its performance, along with previous research on vulnerability scanners that
are already available. We will also go over the limitations of the final version and explain
the reasons for the results. Finally, we will provide suggestions for further improvements to
the scanner.

7.1 Results

After testing the scanner against free, open-source scanners, it has become evident that there
is room for improvement in the market. Additionally, this highlights the continued need for
expertise in conducting thorough manual vulnerability analysis of web applications. While
there are several available scanners, including the one we developed, they are limited by cer-
tain web design features. For example, only one scanner was able to detect a vulnerability
within a select element input. In contrast, all scanners detected a reflected XSS vulnerability
in a search field on the page.

We discovered a need for improved functionality in detecting template injection vulnerabili-
ties. Our scanner was the only scanner to identify the two template injection vulnerabilities
tested correctly. Only one other scanner was able to detect one of the vulnerabilities. How-
ever, it only picked up on the page’s outdated and vulnerable library rather than the actual
vulnerability itself. These vulnerabilities were not difficult to detect and could be exploited
with simple one-line payloads that anyone could copy and paste. The fact that no other
scanners besides ours were able to detect these vulnerabilities highlights a significant gap in
the vulnerability scanner market, which we have helped to close with our scanner.

Our results coincide with other studies done on the subject of automatic vulnerability scan-
ners. It shows that the current detection level needs to be improved and that there is a
large room for improvement regarding different types of vulnerabilities. Other research also
displays these issues, getting similar rates of missed vulnerabilities and false positives[1][21].

7.2 The scanner

7.2.1 Crawler

To save time, we used a pre-existing crawler from scapingbee.com as the foundation for
our own. We made necessary adjustments, such as implementing support for a scope and
detecting URLs within page text, to meet our specific requirements.
The crawler developed for this project is a crucial component of the in-house vulnerability
scanner for web applications. It is responsible for identifying all the URLs that need to be

49



scanned and ensuring that only approved pages are scanned. The crawler uses Beautiful
Soup to extract all the URLs linked to anchor tags within an HTML page. This approach
has proven to be effective in identifying URLs that are approved for scanning. However, it
does have some limitations, mainly with the parsing methods used to extract URLs.

One of the primary limitations of the initial crawler was that it only extracted URLs from
anchor tags within a page. This meant that any URLs that were present in the text but
not hyperlinked were missed. To address this limitation, an additional feature was added to
the crawler in the second iteration. The crawler was modified to include the functionality
of searching the page text to identify URLs that are not noted with an anchor tag. This is
done using a regex pattern, and any URLs that match the pattern are added to the list of
URLs to scan.

While the regex pattern used in the crawler is not perfect, it should capture most URLs
present in the page text. This feature is expected to improve the overall effectiveness of the
crawler by identifying all URLs on the page, whether hyperlinked or not. However, it is
worth noting that this feature may also result in some false positives, which would cause an
error while scanning.

7.2.2 Input finder

The input finder was built from the ground up, using requests and beautiful soup for respec-
tively retrieving and parsing pages. Both libraries are the go-to for these tasks in Python,
as they are the most extensive and well-supported for their respective areas.

Its main purpose is to expand upon the data collected by the web crawler by scanning for
all types of inputs in the web pages crawled. The inputfinder consists of several functions
that work together to extract information about input fields in forms and filter them based
on their type and required attributes.

However, the input finder is limited by design to ignore some input fields. This is reflected in
the results, as it could not discover a vulnerability in a selection field element. The decision
to filter out field types like selection fields, radios and checkboxes is made primarily because
of time constraints. They would require more functionality added to the payload sender to
support all these types.

7.2.3 Payload sender

The payload sender was first built into the input finder and used the selenium library. Then,
to simplify the sender, a standalone class was created. This class was first intended to use
the requests library to send the payloads, as it gives complete control of the whole request,
from method to header and body. However, after implementing and testing this design, a
limitation from using the requests library was discovered. The requests library does not
support running java-script on the web application. The lack of java-script support is a
major issue, as it removes the functionalities to check for DOM-based XSS payloads, as
they are stored in the DOM and not in the pages java-script. This method was still func-
tional for normal XSS payloads, as you could look for alerts in the page java-script code.
However, it would not know if the code would be executed, leading to possible false positives.

To solve this challenge, different methods were tested. First, we tried using a proxy to
redirect all the traffic from the current page to a Selenium instance without success. Then

50



we attempted to use selenium-wire, which has its own proxy to intercept requests before
they were sent to the server. However, it was quickly discovered that this implementation
needed to be improved, as it did not allow sending POST requests with payloads. It was
clear that a different approach was required, so we ended up reverting to a system similar
to the first iteration of the payload sender. Finally, we decided to use Selenium again. This
was a hard decision, as we thought a lot of code needed to be rewritten. However, a lot
of our code could be easily reused, and the implementation of the new system went faster
than expected. The new implementation now uses an API-controlled browser with Mozilla’s
Gecko driver. This means it functions almost identically to any Firefox browser, enabling
it to run javascript, which was the main reason for changing from Requests to Selenium.
There are still limitations; we would ultimately like complete control of the requests sent.
However, as of now, this functionality is not available for Selenium.

7.3 Testing applications

During the development of the vulnerability scanner, the team faced several challenges and
made important decisions that shaped the project’s direction. For example, one of the initial
ideas was to develop vulnerable web applications to test for template injection vulnerabil-
ities. This approach would require web applications that use different template engines,
which would enable testing the scanner’s effectiveness against various scenarios.

However, the development of these vulnerable web applications was canceled early in the
project for several reasons. Firstly, the team needed to gain experience in web development,
and learning the necessary skills would require considerable time and resources. Secondly,
there are other options for web application testing that already exist, such as using pre-
existing vulnerable web applications or using testing platforms like PortSwigger labs.

7.4 Testing bias

The issue of testing bias is an important consideration in the evaluation of our in-house vul-
nerability scanner. The scanner was thoroughly tested against PortSwigger labs throughout
the development process to ensure its functionality. We chose these labs because they offered
a wide range of vulnerabilities, were free, and available on demand. In addition, to test the
payload execution detection, we added lab solution payloads to the list of payloads. This
likely contributed to the scanner’s improved performance compared to the other scanners
tested. However, it’s worth noting that most of the labs utilized during final testing were
not part of the testing during the development process.

While our scanner has demonstrated promising results in detecting vulnerabilities in web
applications, it is essential to recognize that there may be limitations to its performance
when testing against different environments or scenarios. Thus, the scanner’s effectiveness
in detecting vulnerabilities in real-world scenarios needs to be further evaluated and tested
to determine its overall reliability.

7.5 Future research

The first step for future research on the scanner is to improve on the limitations and con-
straints of the current version, mentioned in 5.5.

• Enhanced Form Submission: Future research can focus on developing algorithms that
intelligently identify and interact with multiple buttons, allowing the scanner to submit
data even in scenarios where multiple buttons are present. Furthermore, expanding the

51



capability to select inputs without a name attribute can improve the coverage of field
testing within web applications.

• Advanced Fuzzing Techniques: Incorporating advanced fuzzing capabilities into the
scanner can significantly enhance its ability to detect vulnerabilities. Research efforts
can explore the integration of fuzzing techniques that send random or unexpected data
to the application, testing for potential vulnerabilities beyond the limited payload set.

• Intelligent Crawler Enhancements: Advanced crawling algorithms that employ ad-
vanced text analysis and link extraction techniques can be developed to identify URLs
more accurately, thereby enhancing the coverage of the vulnerability scan. In addition,
exploring alternative approaches, such as leveraging machine learning algorithms for
link identification, can further improve the crawler’s efficiency.

Further, one area of future research is developing a more extensive payload library. Cur-
rently, the vulnerability scanner can detect common web application vulnerabilities, but a
more extensive payload library would increase the likelihood of detecting more advanced
vulnerabilities.
Another potential area for future research is the addition of functionality to check the page
technology used by the web application. By identifying outdated or vulnerable versions of
back-end and front-end frameworks and libraries, the scanner could alert to potential vul-
nerabilities associated with these outdated or vulnerable technologies.

Expanding the functionality of the payload sender to support all types of input fields could
also be an area of further research. Currently, the payload sender is limited to text type
fields and buttons. It is possible to have vulnerabilities in selection type fields as well.

Finally, re-designing the payload-sending system to have more control over the request at-
tributes sent to the web application is another area that could be explored in future research.
This could potentially allow for more effective testing of input validation vulnerabilities, as
well as provide greater flexibility in customizing requests. In order to do this, however, a
more advanced library than Selenium is needed.

52



Chapter 8

Conclusion

This thesis has addressed the need for a vulnerability scanner to detect Template Injection,
XSS, and DOM-based XSS vulnerabilities in web applications. This thesis aimed to develop
a modular and extensible vulnerability scanner that Netsecurity’s RedTeam can use to in-
crease the efficiency and accuracy of security assessments.

Based on the results from testing the scanner against other free and open-source solutions
on the market, it can be concluded that it helps close the vulnerability scanner market gap.
The results show that the in-house scanner out performed all available scanners on Template
injection vulnerabilities while beating nearly all on XSS-type vulnerabilities.

While the scanner has limitations, it has been proven that technology can be improved
even under strict time constraints. Additionally, focusing on specific injection vulnerabilities
rather than attempting to detect all vulnerability types can result in better performance in
certain areas. Although creating a particular scanner, or scanner function for each vulnera-
bility type may require more time and resources, it can significantly enhance accuracy and
detection rates.

To better understand the implications of these results, future studies could address the prac-
tical applications and benefits of using modular and specialized vulnerability scanners in
real-world scenarios. This could include testing the scanner on a larger scale, and in various
environments, to determine its effectiveness in identifying and addressing vulnerabilities in
different web applications. Additionally, conducting comparative studies on the use of dif-
ferent vulnerability scanners, including commercial and open-source solutions, can provide
a better understanding of the strengths and weaknesses of each approach.

Further research could also explore the potential impact of incorporating machine learning
algorithms into vulnerability scanners. This could enhance the accuracy and efficiency of
the scanner by automatically detecting and classifying new types of vulnerabilities as they
emerge. Additionally, investigating ways to integrate vulnerability scanning with other se-
curity tools and systems, such as intrusion detection and prevention systems, can help to
provide a more comprehensive security solution for web applications.

In conclusion, this thesis has demonstrated the feasibility and benefits of developing a spe-
cialized vulnerability scanner for detecting Template Injection, XSS, and DOM-based XSS
vulnerabilities in web applications. The results indicate that a modular and specialized ap-
proach to vulnerability scanning can improve detection rates and accuracy, and help to close
the gap in the vulnerability scanner market. Future studies can build on these findings by
exploring the practical applications and benefits of this approach in real-world scenarios,
and by investigating ways to further enhance the accuracy and efficiency of vulnerability
scanning.

53



Appendix A

Functional Requirements Document
(FRD)

54



Introduction 

This Functional Requirements Document aims to develop a vulnerability scanner that will detect 

vulnerabilities in web apps, specifically the client-side template injection vulnerability. In 

addition, this app can also crawl the domain to establish if there are any other pages in the web 

app that could be vulnerable. The scanner is being developed for Netsecurity's red team and will 

prompt the user for input if and when it finds sign-in fields. The scanner will be developed using 

Python and rely on the BeautifulSoup, Selenium, and Requests libraries. 

Assumptions and Constraints 

The following assumptions and constraints have been identified for the development of the 

vulnerability scanner: 

• The scanner will only be able to detect vulnerabilities in web applications that are 

vulnerable to client-side template injection. 

• The scanner can give the user the oppertunity to sign in manually. This could also be 

done automatically by the app.  

• The scanner will be developed using Python and the BeautifulSoup, Selenium, and 

Requests libraries. 

• The scanner will stay within the given domain. Even if it finds a link when crawling that 

is outside the given domain, it will not follow it. Its limited to the given scope, not only 

domain. Defined in the config field. In the config the user can set a header, and scope. 

The scope cannot limit directories(page directories).  

• The scanner's user interface will change values within the code itself for now. 

• Stig Jensen and Marius Hauger will develop the scanner, and no other individuals will be 

involved in the development. 

Quality Assurance and Testing 

The following quality assurance and testing processes will be implemented for the vulnerability 

scanner: 

• Development meetings with Netsecurity's red team to demonstrate the current status of 

the scanner and receive feedback on its effectiveness and usability. 

• Continuous testing under the development phase to identify and address any issues or 

bugs as they arise. 

• Development of test cases for the scanner will include testing against web applications 

with different levels of complexity and different vulnerability types. 

Stakeholders 

The following are the stakeholders involved in the development and implementation of the 

vulnerability scanner: 

• Netsecurity Red Team: The primary users of the vulnerability scanner, who will use it to 

identify and report vulnerabilities in web applications. 

• Stig Jensen and Marius Hauger: These two individuals are responsible for the 

development of the vulnerability scanner and will be responsible for ensuring that the 

scanner meets technical requirements and industry standards. 

• Netsecurity Red Team Customers: Customers who purchase services from the 

Netsecurity Red Team may be interested in the scanner's capabilities and effectiveness in 

identifying vulnerabilities in their own systems and applications. 

Technical Requirements 

The following are the technical requirements for the vulnerability scanner: 

• Programming Language: The scanner will be developed using Python. 

55



• Libraries: The scanner will rely on the following libraries: 

o BeautifulSoup: A Python library for web scraping and parsing HTML and XML 

documents. 

o Selenium: A suite of tools for automating web browsers. The scanner will use the 

Selenium WebDriver API to interact with web pages and detect vulnerabilities. 

o Selenium WebDriver: A component of Selenium that provides a programming 

interface to control web browsers. The scanner will use the WebDriver API to 

crawl web pages and detect vulnerabilities. 

o Requests: A Python library for making HTTP requests. The scanner will use the 

Requests library to send HTTP requests to web pages and receive responses. 

• System Requirements: The scanner should be compatible with the latest stable version of 

Python and the libraries listed above. The minimum system requirements for running the 

scanner will depend on the size and complexity of the web application being scanned. 

 

Deployment 

The deployment process for the vulnerability scanner will involve the following steps: 

• Installation: The scanner will be installed as a Python module on the Netsecurity Red 

Team's systems. 

• System Requirements: The system requirements for running the scanner will depend on 

the size and complexity of the web application being scanned. 

• Configuration: The scanner will be configured to scan the specific domain and web 

application(s) as specified by the Netsecurity Red Team. 

Maintenance and Support 

The following information will be provided to ensure that the vulnerability scanner can be easily 

maintained and supported: 

• Troubleshooting: Information on how to troubleshoot any issues that may arise when 

using the scanner will be provided. 

• Updates: Information on how to update the scanner to the latest version will be provided. 

Technical Support: THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF 

ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE 

WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE 

AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT 

HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, 

WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 

OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 

DEALINGS IN THE SOFTWARE. 

Risk Assessment and Management 

The following risks have been identified for the development and implementation of the 

vulnerability scanner: 

• Technical Risks: The scanner may not be able to detect all vulnerabilities in web 

applications or may produce false positives. To mitigate this risk, the scanner will be 

tested against a variety of web applications with different levels of complexity and 

different template engines. 

• Project Risks: There may be delays in development or unexpected issues that arise 

during development that could impact the completion of the project by the deadline. To 

56



mitigate this risk, regular development meetings will be held with Netsecurity's red team 

to ensure that the project is on track and that any issues are addressed in a timely manner. 

• Security Risks: The scanner may be vulnerable to attacks or could be used maliciously if 

it falls into the wrong hands. To mitigate this risk, the scanner will only be installed on 

secure systems within the Netsecurity Red Team's network, and access to the scanner will 

be restricted to authorized users. 

Conclusion 

The development of the vulnerability scanner will provide the Netsecurity Red Team with a 

valuable tool for identifying and reporting vulnerabilities in web applications. The scanner will 

be developed using Python and rely on the BeautifulSoup, Selenium, and Requests libraries to 

detect vulnerabilities. Quality assurance and testing processes will be implemented to ensure the 

scanner is effective and easy to use. The scanner will be installed on the Netsecurity Red Team's 

systems and will be configured to scan the specific domain and web application(s) as specified 

by the red team. Information on troubleshooting, updates, and technical support will be provided 

to ensure the scanner can be easily maintained and supported. Finally, risk assessments and 

management strategies will be implemented to mitigate potential risks to the project's success. 

 
 

57



Appendix B

Webapp Class Source

import requests
import json
from selenium.webdriver.firefox.options import Options
from seleniumwire import webdriver
import crawler
import inputFinder
import payloadSender

class webApp:
def __init__(self, url):

self.url = url
self.pages = [""]
self.signinPage = None
self.signedIn = False
self.inputs = {}
self.session = None
self.driver = None
self.vulnFound = False

def getPages(self):
application = crawler.Crawler(urls=[self.url])
application.run()
if application.signinPage:

self.signinPage = application.signinPage
else:

self.signinPage = None
self.pages = application.visitedUrls
self.pages = list(set(self.pages))
return self

def getInputFields(self):
inputField = {}
K = 0 # Indexing key for inputField
for page in self.pages:

inputField = {}
s = inputFinder.inputFinder(page).run(self.session)
inputField['url'] = page
inputField['inputs'] = s.inputs
self.inputs[K] = inputField
K += 1

return self

def readPayloads(self):
with open('payloads.json') as f:

58



data = json.load(f)
return data

def sendPayloads(self, page, i, payload, response, vulnerabilityType):
if not i.forms and not i.inputs:

p = payloadSender.payLoadSender(page, None, None, ...
self.session, i.page, payload, response, ...
vulnerabilityType, self.driver)

p.run()
self.vulnFound = p.vulnFound
return self.vulnFound
# No forms or inputs on page, might just remove page from list ...

in later editions
elif not i.inputs:

p = payloadSender.payLoadSender(page, None, i.forms, ...
self.session, i.page, payload, response, ...
vulnerabilityType, self.driver)

p.run()
self.vulnFound = p.vulnFound
return self.vulnFound

elif not i.forms:
p = payloadSender.payLoadSender(page, i.inputs, None, ...

self.session, i.page, payload, response, ...
vulnerabilityType, self.driver)

# Create logic to handle just inputs
pass

else:
p = payloadSender.payLoadSender(page, i.inputs, i.forms, ...

self.session, i.page, payload, response, ...
vulnerabilityType, self.driver)

pass
def checkPage(self):

inputField = {}
data = self.readPayloads()
self.driver = self.initDriver()
for page in self.pages:

sendingPayloads = True
while sendingPayloads:

i = inputFinder.inputFinder(page).run(self.session)
print("\n\n" + "-" * 50)
print(f"Checking page: {page} for XSS vulnerabilities")
print("-" * 50 + "\n\n")
for payload in data['XSS']:

if self.sendPayloads(page, i, payload['payload'], ...
payload['response'], vulnerabilityType='XSS'):
break

if self.vulnFound:
break

print("\n\n" + "-" * 50)
print(f"Checking page: {page} for DOM-XSS vulnerabilities")
print("-" * 50 + "\n\n")
for payload in data['DOM_XSS']:

if self.sendPayloads(page, i, payload['payload'], ...
payload['response'], vulnerabilityType='DOM_XSS'):
break

if self.vulnFound:
break

print("\n\n" + "-" * 50)
print(f"Checking page: {page} for CSTI vulnerabilities")
print("-" * 50 + "\n\n")
for payload in data['CSTI']:

59



if self.sendPayloads(page, i, payload['payload'], ...
payload['response'], vulnerabilityType='CSTI'):
break

if self.vulnFound:
break

sendingPayloads = False
print("Done")

def run(self):
self.getPages()
sess = requests.session()
sess.get(self.url)
self.session = sess
self.getInputFields()
self.checkPage()

def initDriver(self):
options = Options()
options.headless = False
driver = webdriver.Firefox(

options=options,
seleniumwire_options={'verify_ssl': False}

)
if self.session is not None:

driver.get(self.url)
driver.delete_all_cookies()
for cookie in self.session.cookies:

driver.add_cookie({'name': cookie.name, 'value': ...
cookie.value})

driver.refresh()
return driver

60



Appendix C

Crawler Source

import requests # Importing the requests module to make HTTP ...
requests

import tldextract # Importing the tldextract module to extract ...
the domain and subdomain from a URL

import logging # Importing the logging module for error ...
handling

from bs4 import BeautifulSoup # Importing BeautifulSoup for parsing HTML

class Crawler:
def __init__(self, urls=[], scope=None, headers=None):

# Initializing a Crawler instance with a list of urls to visit, a ...
scope for the crawler, and headers for HTTP

# requests
self.scope = scope
self.headers = headers
self.visited_urls = []
self.urls_to_visit = urls
self.signinPage = None

def request_url(self, url):
# Sending an HTTP GET request to a URL and returning the response ...

text if successful
try:

response = requests.get(url, headers=self.headers)
response.raise_for_status() # Raising an exception for ...

non-200 status codes
except requests.exceptions.RequestException as e:

print(f"An error occurred while making the request: {e}")
return None

except Exception as e:
print(f"An unexpected error occurred: {e}")
return None

return response.text

def get_linked_urls(self, html, url):
# Parsing HTML and extracting all the links and input forms
soup = BeautifulSoup(html, 'html.parser')
signinForm = ['password', 'username', 'login', 'signin', 'email']
# List of input types to identify sign in forms
soup.find_all('input') # Finding all the input tags in the HTML
for form in soup.find_all('input'):

if form.get('type') in signinForm: # Checking if the input ...
tag is a sign-in form
print("Sign in form found")
self.signinPage = url

61



break
for link in soup.find_all('a'): # Finding all the anchor ...

tags in the HTML
href = link.get('href')
if href[0] == "/":

if self.scope['subdomain'] == "None":
href = f"https://www.{self.scope['domain']}.
{self.scope['suffix']}{href}"

else:
href = ...

f"https://{self.scope['subdomain']}.{self.scope['domain']}.
{self.scope['suffix']}{href}"

if href and self.isInScope(href) and "@" not in href:
yield href # Yielding the valid links

def crawl(self, url):
# Crawling a URL and adding all the linked URLs to the list of ...

URLs to visit
html = self.request_url(url)
for url in self.get_linked_urls(html, url):

self.add_url_to_visit(url)

def add_url_to_visit(self, url):
# Adding a URL to the list of URLs to visit if it hasn't already ...

been visited or added
if url not in self.visited_urls and url not in self.urls_to_visit:

self.urls_to_visit.append(url)

def isInScope(self, url):
# Extracts the domain, subdomain, and suffix from the URL
parsedUrl = tldextract.extract(url)
if self.scope['subdomain'] == "None":

# Checks if the URL is in the same domain, and suffix as the scope
if (parsedUrl.domain == self.scope['domain']) and ...

(parsedUrl.subdomain == "www") and (
parsedUrl.suffix == self.scope['suffix']):

return True
else:

# Checks if the URL is in the same subdomain, domain, and ...
suffix as the scope

if (parsedUrl.domain == self.scope['domain']) and ...
(parsedUrl.subdomain == self.scope['subdomain']) and (

parsedUrl.suffix == self.scope['suffix']):
return True

# Returns False if the URL is not in the scope
return False

def run(self):
# Displays a message with the number of URLs to visit
print(f'Running crawler with {len(self.urls_to_visit)} urls to ...

visit...')
while self.urls_to_visit:

# Removes the first URL from the list and crawls it
url = self.urls_to_visit.pop(0)
print(f'Crawling: {url} ({len(self.urls_to_visit)} urls to ...

visit)')
try:

self.crawl(url)
# Logs an error if crawling the URL fails
except Exception:

logging.exception(f'Failed to crawl: {url}')

62



# Adds the URL to the list of visited URLs
finally:

self.visited_urls.append(url)

63



Appendix D

Input Finder Source

import requests
from bs4 import BeautifulSoup

class inputFinder:
VALID_FIELDS = ['text', 'textarea', 'search', 'email', 'tel', 'url', ...

'number']

def __init__(self, url, session=None, cookies=None):
self.url = url
self.session = session
self.cookies = cookies
self.inputs = []
self.forms = []
self.formInputFilter = []
self.page = None

def parsePage(self, page):
pageInputs = []
soup = BeautifulSoup(page.text, 'html.parser')
for form in soup.find_all('form'):

if form.get('enctype') != 'multipart/form-data':
self.indexForms(form)

for inputField in soup.find_all('input'):
if inputField not in self.formInputFilter:

self.filterInputs(inputField)
if self.filterInputs(inputField) is not None:

pageInputs.append(self.filterInputs(inputField))
return pageInputs

def indexForms(self, form):
formsDict = {'action': form.get('action'), 'method': ...

form.get('method'), 'enctype': form.get('enctype'),
'inputs': []}

for textarea in form.find_all('textarea'):
if textarea.get('name') is not None:

if not textarea.get('type'):
textarea['type'] = 'textarea'

self.formInputFilter.append(textarea)
formsDict['inputs'].append(self.filterInputs(textarea))

for inputField in form.find_all('input'):
if inputField.get('name') is not None:

self.formInputFilter.append(inputField)
formsDict['inputs'].append(self.filterInputs(inputField))

self.forms.append(formsDict)

64



def filterInputs(self, inputField):
inputsDict = {'name': '', 'type': '', 'required': '', 'request': ...

['GET', 'POST']}
if inputField.get('type') in self.VALID_FIELDS:

inputsDict['name'] = inputField.get('name')
inputsDict['type'] = inputField.get('type')
if inputField.get('required') is not None:

inputsDict['required'] = True
if inputField.get('pattern') is not None:

inputsDict['pattern'] = inputField.get('pattern')
return inputsDict

if inputField.get('type') == 'hidden' and ...
inputField.get('required') is not None:
inputsDict['name'] = inputField.get('name')
inputsDict['type'] = inputField.get('type')
inputsDict['required'] = True
inputsDict['value'] = inputField.get('value')
return inputsDict

def getPage(self):
try:

page = self.session.get(self.url)
self.page = page
return page

except requests.exceptions.RequestException as e:
print("An error occurred:", e)

def run(self, session):
self.session = session
page = self.getPage()
self.inputs = self.parsePage(page)
return self

65



Appendix E

Payload Sender Source

import bs4
import requests
import random
import string
import re
import json
import urllib.parse
from bs4 import BeautifulSoup
from selenium.webdriver import Keys
from selenium.common.exceptions import *
from selenium.webdriver.firefox.options import Options
from seleniumwire import webdriver
from selenium.webdriver.common.by import By
import time

def readWordlist():
payloads = []
wordlist = open("wordlist.txt", "r")
for line in wordlist:

payloads.append(line.strip())
return payloads

def checkExecution(response):
# This needs to change, however I need to do the payload parsing logic ...

first.
soup = bs4.BeautifulSoup(response.content, 'html.parser')
alert_script = soup.find('script', string=lambda text: text is not ...

None and 'alert(1)' in text.lower())
if alert_script is not None:

return True
else:

return False

class payLoadSender:
def __init__(self, url, inputs, forms, session, soup, payload, ...

expectedResponse, vulnerabilityType, driver):
self.inputs = inputs
self.driver = driver
self.forms = forms
self.weaponized = False
self.session = session
self.url = url
self.host = urllib.parse.urlparse(url).netloc

66



self.pageUrl = ""
self.payload = payload
self.cookie = self.getCookies()
self.source = soup
self.expectedResponse = expectedResponse
self.vulnerabilityType = vulnerabilityType
self.textCount = 0
self.vulnFound = False
self.xpath = None

def getCookies(self):
return self.session.cookies.get_dict()

def noInputGet(self, anomalys):
for anomaly in anomalys:

url = anomaly.split('=')[0]
payload = urllib.parse.quote(self.payload)
print(url + "=" + payload)
response = self.session.get(url + "=" + payload)
if response:

if checkExecution(response):
print("\n\n" + "-" * 50)
print(f"Vulnerability on: {anomaly}")
print(f"Type: {self.vulnerabilityType}, Payload: ...

{self.payload}")
print(f"Action: {url}")
print(f"Method: GET")

def sendPayloadForm(self, body, url, form):
response = None
if form['method'] == 'POST':

try:
response = self.createPOST(body, url, form['enctype'])

except requests.exceptions.RequestException as e:
print(e)

elif form['method'] == 'GET':
try:

response = self.createGET(body, url)
except requests.exceptions.RequestException as e:

print(e)
if response:

if checkExecution(response):
print("\n\n" + "-" * 50)
print(f"Vulnerability on: {self.url}")
print(f"Type: {self.vulnerabilityType}, Payload: ...

{self.payload}")
print(f"Action: {form['action']}")
print(f"Method: {form['method']}")

if response.url != url:
response = self.session.get(self.url)

if response.status_code == 200:
if checkExecution(response):

print("\n\n" + "-" * 50)
print(f"Vulnerability on: {self.url}")
print(f"Type: {self.vulnerabilityType}, Payload: ...

{self.payload}")
print(f"Action: {form['action']}")
print(f"Method: {form['method']}")

def formatAction(self, action):
if action[0] == '/':

67



url = self.pageUrl + action
else:

url = self.url
return url

def formPayload(self):
if self.forms is not None:

for form in self.forms:
body = self.constructMFBody(form, form['method'])
self.seleniumSend(body)

def inputPayload(self):
body = self.constructBody()
self.seleniumSend(body)

def constructHead(self, url, body, enctype):
cookie = []
for key, value in self.cookie.items():

cookie.append(f"{key}={value}")
head = {'Host': self.host,

'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64)',
'Accept-Language': 'en-US,en;q=0.5',
'Accept-Encoding': 'gzip, deflate',
'Content-Type': enctype,
'Content-Length': str(len(body)),
'Origin': self.pageUrl,
'Connection': 'close',
'Referer': self.url,
'Cookie': f", ".join(cookie)}

return head

def createPOST(self, body, url, enctype=None):
body['comment'] = self.payload
if url[0] == '/':

url = "https://" + self.host + url
if enctype is not None:

if enctype == 'application/json':
head = {'Content-Type': enctype}
body = json.dumps(body)
response = self.session.post(url, data=body, headers=head)
return response

elif enctype == 'application/x-www-form-urlencoded':
body = urllib.parse.urlencode(body)
head = self.constructHead(url, body, enctype)
response = self.session.post(url, data=body, headers=head)
return response

else:
print(f"Content type {enctype} is not supported!")
pass

else:
pass

def createGET(self, body, url):
if url[0] == '/':

url = "https://" + self.host + url
body = urllib.parse.urlencode(body)
url = url + '?' + body #Changed from url + "?" + body to url + "=" ...

+ body
try:

self.driver.get(url)
self.driver.implicitly_wait(3)

68



if self.expectedResponse == 'alert':
if self.isAlertPresent():

self.printVuln(url)
else:

count = self.driver.page_source.count(self.expectedResponse)
if count > self.textCount:

self.printVuln(url)
self.textCount = count

except UnexpectedAlertPresentException:
self.printVuln(url)

def constructMFBody(self, form, method):
multiFieldRequest = {}
for formInput in form['inputs']:

payload = None
if formInput['type'] == None:

payload = self.payload
if formInput['type'] == 'email':

random_string = ...
''.join(random.choices(string.ascii_letters + ...
string.digits, k=5))

payload = f"{random_string}@{random_string}.{'com'}"
if 'pattern' in formInput:

if not re.match(formInput['pattern'], payload):
# payload does not match pattern
raise ValueError("Payload does not match pattern" ...

+ formInput['pattern'])
elif formInput['type'] == 'tel' and formInput['pattern']:

payload = random.randint(10000000, 99999999)
if not re.match(formInput['pattern'], payload):

# payload does not match pattern
raise ValueError("Payload does not match pattern" + ...

formInput['pattern'])
elif formInput['type'] == 'url' or 'pattern' in formInput and ...

'http' in formInput['pattern']:
payload = "http://www." + self.payload + ".com"
if not re.match(formInput['pattern'], payload):

# payload does not match pattern
raise ValueError("Payload does not match pattern" + ...

formInput['pattern'])
if payload is not None:

multiFieldRequest[formInput['name']] = payload
elif formInput['type'] == 'hidden':

pass
else:

multiFieldRequest[formInput['name']] = self.payload
return multiFieldRequest

def constructBody(self):
inputDict = {}
payload = None
for htmlInput in self.inputs:

if htmlInput['type'] is None:
payload = self.payload

if htmlInput['type'] == 'email':
random_string = ...

''.join(random.choices(string.ascii_letters + ...
string.digits, k=5))

payload = f"{random_string}@{random_string}.{'com'}"
if 'pattern' in htmlInput:

if not re.match(htmlInput['pattern'], payload):

69



# payload does not match pattern
raise ValueError("Payload does not match pattern" ...

+ htmlInput['pattern'])
elif htmlInput['type'] == 'tel' and htmlInput['pattern']:

payload = random.randint(10000000, 99999999)
if not re.match(htmlInput['pattern'], payload):

# payload does not match pattern
raise ValueError("Payload does not match pattern" + ...

htmlInput['pattern'])
elif htmlInput['type'] == 'url' or 'pattern' in htmlInput and ...

'http' in htmlInput['pattern']:
payload = "http://www." + self.payload + ".com"
if not re.match(htmlInput['pattern'], payload):

# payload does not match pattern
raise ValueError("Payload does not match pattern" + ...

htmlInput['pattern'])
if payload is not None:

inputDict[htmlInput['name']] = payload
else:

inputDict[htmlInput['name']] = self.payload
print(inputDict)
return inputDict

def testButtons(self, button):
if button['href'] is not None:

if button['href'][0] == '/':
url = "https://" + self.host + button['href']
response = requests.get(url)
if response.url != url:

url = response.url
parsedURL = urllib.parse.urlparse(url)
queryString = parsedURL.query
body = {queryString.split('=')[0]: self.payload}
url = url.split('?')[0]
self.createGET(body, url)

def checkButtons(self):
buttonClasses = ['button',

'button is-loading',
'button is-text',
'button is-white',
'button is-black',
'button is-light',
'button is-dark',
'button is-primary',
'button is-link',
'button is-info',
'button is-success',
'button is-warning',
'button is-danger',
'button is-normal',
'button is-medium',
'button is-large',
'button is-fullwidth',
'button is-static',
'button is-rounded']

soup = BeautifulSoup(self.source.content, 'html.parser')
for buttonClass in buttonClasses:

button_links = soup.find_all('a', {'class': buttonClass})
for button in button_links:

70



self.testButtons(button)
pass

def initDriver(self):
options = Options()
options.headless = False
driver = webdriver.Firefox(

options=options,
seleniumwire_options={'verify_ssl': False}

)
if self.session is not None:

driver.get(self.url)
driver.delete_all_cookies()
for cookie in self.session.cookies:

driver.add_cookie({'name': cookie.name, 'value': ...
cookie.value})

driver.refresh()
return driver

def seleniumSend(self, mfRequest):
try:

self.driver.get(self.url)
for key, value in mfRequest.items():

try:
self.driver.find_element(By.NAME, key).send_keys(value)

except:
print(self.driver.exception)
pass

try:
self.driver.send_keys(Keys.ENTER)

except:
try:

self.driver.find_element(By.NAME, 'submit').click()
except:

try:
self.driver.find_element(By.CSS_SELECTOR, ...

'[class*="button" i]').click()
except:

try:
self.driver.find_element(By.CLASS_NAME, ...

"button").click()
except:

if self.xpath is not None:
try:

self.driver.find_element(By.XPATH, ...
self.xpath).click()

except:
print("Could not submit form!")
print("Please attempt to enter the ...

Xpath of the submit button")
xpath = input("Xpath: ")
self.xpath = xpath
self.driver.find_element(By.XPATH, ...

xpath).click()
self.driver.implicitly_wait(5)
if self.driver.current_url != self.url:

if 'twitter' in self.driver.current_url:
print("TWITTER DETECTED!")
print("LAB Solved! Killing session...")
self.driver.close()
exit()

71



else:
if self.expectedResponse == 'alert':

if self.isAlertPresent():
self.printVuln(self.driver.current_url)

else:
try:

self.driver.get(self.url)
if self.isAlertPresent():

self.printVuln(self.driver.current_url)
except:

try:
if self.isAlertPresent():

self.printVuln(self.driver.current_url)
except:

print(self.driver.exception)
else:

count = ...
self.driver.page_source.count(self.expectedResponse)

if count != self.textCount:
self.printVuln(self.driver.current_url)
self.textCount = count

else:
self.driver.get(self.url)
count = ...

self.driver.page_source.count(self.expectedResponse)
if count != self.textCount:

self.printVuln(self.driver.current_url)
self.textCount = count

if self.isAlertPresent():
self.printVuln(self.driver.current_url)

except UnexpectedAlertPresentException:
self.printVuln(self.url)

def printVuln(self, url):
print("\n\n" + "-" * 50)
print(f"Vulnerability on: {self.url}")
print(f"Type: {self.vulnerabilityType}, Payload: {self.payload}")
print(f"Please investigate: {url}")
print("-" * 50 + "\n\n")
self.vulnFound = True

def isAlertPresent(self):
self.driver.implicitly_wait(2)
time.sleep(1)
try:

alert = self.driver.switch_to.alert
alert.dismiss()
self.printVuln(self.driver.current_url)
return True

except NoAlertPresentException:
return False

def checkForPayload(self):
self.driver.get(self.url)
self.driver.implicitly_wait(3)
response = self.driver.page_source
count = response.count(self.expectedResponse)
return count

def run(self):

72



self.textCount = 0 # Used to check instances of payload in ...
response, resets when a new page is loaded

if self.expectedResponse != 'alert': # Check if expected response ...
is an alert
self.textCount = self.checkForPayload() # Count instances of ...

expected payload in response
self.checkButtons()
if self.forms is not None:

self.formPayload()
if self.inputs is not None:

self.inputPayload()

73



Appendix F

Changelog

F.0.1 January 17th, 2023

The development of the scanner commenced on January 17th, 2023, when the initial commit
for the "Full repository for Master thesis 2023" was pushed to a GitHub repository explicitly
created for the master thesis project. At this stage, the team conducted preliminary research
into the Selenium API for the headless browser, as well as testing the Selenium standalone
Docker and successfully opening a web page using the Selenium Firefox module with a basic
Python script (../Testing/Selenium1.py).

Additionally, on this day, the team began compiling a list of "Useful links" on the GitHub
repository. The progress and updates were documented through comments on GitHub, stat-
ing the creation of the master thesis repository, the initial research into Selenium API, the
successful testing of Selenium standalone Docker, and the ability to open web pages using
the Selenium Firefox module with a Python script.

F.0.2 January 20th, 2023

On this particular day, the team attempted to utilize the "alert" feature of Selenium in the
project. This involved a series of testing scripts and a final script named AlertTesting.py,
which aimed to determine the feasibility of incorporating this feature into the vulnerability
scanner.

Two commits were made to GitHub on this day. The first commit included a "sample"
code that utilized the Selenium library to interact with alerts. In contrast, the second com-
mit was customized to align with the specific requirements and scope of the project.

Comment from GitHub:
"Created a working alert checker using Selenium using an except condition if the driver fails
to switch to alert. One thing to note is that this might fail if the site has not yet finished
loading. A solution would be to add a timeout feature. I also tried to check this alert using
‘expected conditions‘ with the ‘alertIsPresent()‘ function with no success, as it never failed
and didn’t stop running. "

F.0.3 March 12th 2023

On March 12th, 2023, the team initiated the second iteration of the client-side template
injection (CSTI) module, following the initial presentation of the vulnerability scanner to
Netsecurity. In order to streamline the development process and focus on implementing the
CSTI module, a new GitHub repository was explicitly created for this purpose. The entire
codebase of the vulnerability scanner, including the existing features and the new CSTI
module, was uploaded to this new GitHub repository.

74



The decision to create a new GitHub repository for the second iteration of the CSTI module
was driven by the need to separate the CSTI module’s development from the scanner’s initial
version. This allowed for a clear separation of changes and updates made during the second
iteration from the previous version, making it easier to track and manage the development
progress of the CSTI module.

F.0.4 March 13th 2023

A list of "requirements" was made to make the second iteration of the vulnerability scanner
much better.

The list:

• What does an input field need to be tested?

– Page (URL)
– Input field type
– Input field name

• What does an input field need to be tested?

– text, textarea, search, email, tel, URL, number, range, date, month, week, time,
datetime-local, color

• From w3schools: Note: Only form elements with a name attribute will have their values
passed when submitting a form. Do we then want to ignore all input fields without a
name attribute?

Further pseudo code and code for the "inputfinder.py" was developed this day.

The pseudo-code:

• Inputs: URL, Session, Cookies (URL required, session and cookies optional)

• Check if the URL is valid

• Check if session and cookies are provided

• If session and cookies are provided, do an init with Selenium and requests to apply
session

• If session and cookies are not provided, do an init with Selenium and requests to create
a new session

• Send a request to the URL and store the response in a variable

• Parse response with BeautifulSoup

• Find all input fields

• Filter input fields by type and name

• Store input fields in a nested dictionary

• Dictionary 1: URL

• Dictionary 2: Input field type, name (URL:inputType:”, inputName:”...)

• Return the dictionary

75



Creating the pseudo-code was to "brainstorm" how it should work and give a clear direction
when we started developing.

We also decided to change the layout of how the vulnerability scanner would function. This
resulted in segregating certain parts of the code to become a modular design that could be
called from the main. These where at this point webapp.py and inputFinder.py

F.0.5 March 14th, 2023

During the development phase, several important updates were made to the payloadSender.py
script to enhance the functionality of the web application vulnerability scanner. Firstly, a
simple POST functionality was added, enabling the scanner to send HTTP POST requests
to web applications for vulnerability testing.

In addition, methods were implemented to input a dictionary to filter out methods that
were not applicable to the selected field. This logic was incorporated to improve the effi-
ciency and effectiveness of the scanner by skipping unnecessary methods that do not work
for the specific field being tested.

Furthermore, a limited GET functionality was added to the payloadSender.py script, allow-
ing the scanner to send HTTP GET requests to web applications for vulnerability testing,
albeit with limitations.

A separate file was added to aid in testing and implementing short scripts, and the README
file was updated to reflect the changes in the scanner’s functionality. Additionally, a "check-
Response" feature was added, which prints "yaba daba doo" when a reflection is found. This
visual indication was designed to alert developers quickly when a reflection vulnerability is
detected during testing.

These updates to the payloadSender.py script played a crucial role in enhancing the ca-
pabilities of the web application vulnerability scanner. The addition of POST and GET
functionalities, filtering of unnecessary methods, and immediate feedback on reflection vul-
nerabilities through the "checkResponse" feature aimed to improve the accuracy and ef-
ficiency of the scanner in detecting web application vulnerabilities. These enhancements
were a significant step towards achieving the project’s goals and advancing the vulnerability
scanner’s capabilities.

F.0.6 March 16th, 2023.

The inputFinder.py function progressed significantly, transitioning from a pseudo code to a
more complete and functional component of the vulnerability scanner.

The inputFinder class, implemented in Python, is designed to locate and parse input fields,
such as form fields, from a web page. This class utilizes the BeautifulSoup library, a popular
Python library for parsing HTML and XML documents, to achieve this functionality.

The inputFinder class takes a URL as an input parameter and optionally accepts a ses-
sion and cookies for making HTTP requests with authentication. This class aims to scan
web pages for potential security vulnerabilities associated with input fields to identify and
mitigate such vulnerabilities as part of the overall vulnerability scanning process.

The development of the inputFinder class represents a significant step in advancing the
vulnerability scanner, as it provides a functional and comprehensive solution for identifying

76



and parsing input fields in web pages. Integrating this class into the vulnerability scanner
contributes to the overall effectiveness and accuracy of the scanning process, enhancing the
scanner’s ability to identify potential vulnerabilities related to input fields and strengthen
the security of web applications.

F.0.7 March 21st, 2023.

New logic was added to the code to handle Form GET requests and perform pattern checks
for special input fields such as email and URL. This indicates that the code’s functionality
was enhanced to include handling GET requests and implementing pattern checks for spe-
cific input field types.

Implementing this logic involves checking the input field type, such as email or URL, and
applying specific processing or validation rules accordingly. For example, for email fields, the
logic may involve checking if the input value provided by the user is in a valid email format.
Similarly, the logic may involve validating if the input value is in a valid URL format for
URL fields.

Adding logic for Form GET requests and pattern checks for special input fields like email and
URL can significantly improve the accuracy and effectiveness of the vulnerability scanner
in correctly identifying and processing input fields. This enhancement can result in more
reliable results and better detection capabilities for identifying vulnerabilities, ultimately
contributing to the overall effectiveness of the vulnerability scanning process.

F.0.8 March 22nd, 2023.

On March 22nd, the development to add POST functionality to the vulnerability scanner was
initiated. This entailed implementing the capability to send POST requests to web pages as
part of the scanning process. However, it was observed that the POST functionality was not
functioning as expected and did not yield the intended results. Despite this setback, it was
considered a promising starting point for further development of the POST functionality.
The groundwork had been laid out, focusing on debugging and resolving the issues to make
it functional.

F.0.9 March 27th, 2023.

On March 27th, the issues with the non-working POST functionality in the vulnerability
scanner were resolved, and the POST functionality was completed. This involved identi-
fying and fixing coding errors, misconfigurations, or any other issues hindering the POST
functionality’s proper functioning. This included thorough code debugging, validating the
correctness of data payloads being sent in the POST requests, ensuring the proper handling
of responses from the web pages, and other related tasks.

With the POST functionality successfully implemented, the vulnerability scanner gained
the ability to send payloads or Form data as part of POST requests to the targeted web ap-
plication during the scanning process. This enabled the scanner to simulate data submission
to web forms or other input fields and test for vulnerabilities related to input validation,
data handling, and other security issues.

Completing the POST functionality significantly enhanced the vulnerability scanner’s ca-
pabilities, allowing it to conduct more comprehensive and accurate scans of the targeted
web application, as it could now send payloads or Form data to the application in a sim-
ilar manner to how an actual user interacts with web forms. This improvement increased

77



the scanner’s effectiveness in identifying potential vulnerabilities and improved its overall
scanning capabilities.

F.0.10 March 28th, 2023

Functionality for printing vulnerability identification was added with the printVuln() func-
tion. A new function for sending GET requests was created.

F.0.11 April 18th 2023

The first rewrite of the payload sender from the requests library to Selenium was committed.
It still reqiures some work, and the constructBody function must be rewritten to work with
Selenium.

F.0.12 April 25th 2023

Switched to Selenium for payload sending and execution detection. Integrated Selenium
library for improved payload sending and execution detection. Implemented logic to read
the payload JSON file, enabling easier customization and management of payloads. Intro-
duced functionality to check for non-Alert type payloads, enhancing payload diversity and
flexibility.

F.0.13 May 2th 2023

Conducted extensive code cleanup, removed unused code and resources from the project.
Eliminated redundant functions, variables, and dependencies. Introduced functionality to
check for non-Alert type payloads, enhancing payload diversity and flexibility.

F.0.14 May 22th 2023

Implemented a short sleep timer in the alert detection to allow the JavaScript on the page
to run before checking for an alert, this improved detection performance.

78



Bibliography

[1] Muzun Althunayyan et al. “Evaluation of black-box web application security scanners in
detecting injection vulnerabilities.” In: Electronics 11.13 (2022), p. 2049.

[2] Nuno Antunes and Marco Vieira. “Benchmarking vulnerability detection tools for web ser-
vices.” In: 2010 IEEE International Conference on Web Services. IEEE. 2010, pp. 203–210.

[3] Artur Avetisyan. “Understanding Template Injection Vulnerabilities.” In: (2022). https://
www.paloaltonetworks.com/blog/prisma-cloud/template-injection-vulnerabilities/
retrieved 05.01.2023.

[4] Yohan Suryanto Azwar Al Anhar. “Evaluation of Web Application Vulnerability Scanner for
Modern Web Application.” In: (2021). https://ieeexplore.ieee.org/document/9497831
retrieved 05.05.2023.

[5] Ari Bajo. “Web crawling with Python.” In: (2023). https://www.scrapingbee.com/blog/
crawling-python/ retrieved 20.01.2023.

[6] Jim Boehm. “Cybersecurity trends: Looking over the horizon.” In: (2022). https://www.
mckinsey.com/capabilities/risk- and- resilience/our- insights/cybersecurity/
cybersecurity-trends-looking-over-the-horizon retrieved 05.01.2023.

[7] Gregory T Brown. Ruby Best Practices: Increase Your Productivity-Write Better Code. "
O’Reilly Media, Inc.", 2009.

[8] “class ERB.” In: (). https://ruby- doc.org/3.2.2/stdlibs/erb/ERB.html retrieved
25.04.2023.

[9] Roddy Correa et al. “Hybrid Security Assessment Methodology for Web Applications.” In:
Computer Modeling in Engineering & Sciences 126.1 (2021), pp. 89–124.

[10] Douglas Crockford and Chip Morningstar. Standard ECMA-404 The JSON Data In-terchange
Syntax. 2017.

[11] Anusha Damodaran et al. “A comparison of static, dynamic, and hybrid analysis for malware
detection.” In: Journal of Computer Virology and Hacking Techniques 13 (2017), pp. 1–12.

[12] Lior Ben Dayan. “OWASP Top 10 vulnerabilities 2022: what we learned.” In: (2023). https:
//vulcan.io/blog/owasp-top-10-vulnerabilities-2022-what-we-learned/ retrieved
05.01.2023.

[13] Scrapy developers. “Scrapy at a glance.” In: (2023). https://docs.scrapy.org/en/latest/
intro/overview.html retrieved 20.01.2023.

[14] Python Software Foundation. “urllib.parse — Parse URLs into components.” In: (2023).
https://docs.python.org/3/library/urllib.parse.html#module- urllib.parse
retrieved 25.04.2023.

[15] Fullstakcpython.com. “Template Engines.” In: (2022). https://www.fullstackpython.com/
template-engines.html retrieved 05.01.2023.

[16] Google. “AngularJS — Superheroic JavaScript MVW Framework.” In: (2021). https : / /
angularjs.org/ retrieved 29.04.2023.

[17] Jason Huggins. “selenium 4.8.2.” In: (18.02.2023). https://pypi.org/project/selenium/
retrieved 01.03.2023.

79

https://www.paloaltonetworks.com/blog/prisma-cloud/template-injection-vulnerabilities/
https://www.paloaltonetworks.com/blog/prisma-cloud/template-injection-vulnerabilities/
https://ieeexplore.ieee.org/document/9497831
https://www.scrapingbee.com/blog/crawling-python/
https://www.scrapingbee.com/blog/crawling-python/
https://www.mckinsey.com/capabilities/risk-and-resilience/our-insights/cybersecurity/cybersecurity-trends-looking-over-the-horizon
https://www.mckinsey.com/capabilities/risk-and-resilience/our-insights/cybersecurity/cybersecurity-trends-looking-over-the-horizon
https://www.mckinsey.com/capabilities/risk-and-resilience/our-insights/cybersecurity/cybersecurity-trends-looking-over-the-horizon
https://ruby-doc.org/3.2.2/stdlibs/erb/ERB.html
https://vulcan.io/blog/owasp-top-10-vulnerabilities-2022-what-we-learned/
https://vulcan.io/blog/owasp-top-10-vulnerabilities-2022-what-we-learned/
https://docs.scrapy.org/en/latest/intro/overview.html
https://docs.scrapy.org/en/latest/intro/overview.html
https://docs.python.org/3/library/urllib.parse.html#module-urllib.parse
https://www.fullstackpython.com/template-engines.html
https://www.fullstackpython.com/template-engines.html
https://angularjs.org/
https://angularjs.org/
https://pypi.org/project/selenium/


[18] Taraq Hussain and Satyaveer Singh. “A comparative study of software testing techniques
viz. white box testing black box testing and grey box testing.” In: IJAPRR), ISSN (2015),
pp. 2350–1294.

[19] GORAN JEVTIC. “17 Best Vulnerability Assessment Scanning Tools.” In: (2020). https://
phoenixnap.com/blog/vulnerability-assessment-scanning-tools retrieved 05.01.2023.

[20] JR Johnson. “White Box vs. Black Box Web Application Penetration Testing.” In: (2020).
https://www.triaxiomsecurity.com/white- box- vs- black- box- web- application-
penetration-testing/ retrieved 29.04.2023.

[21] Kyle Johnson. “Pros and cons of manual vs. automated penetration testing.” In: (2022).
https://www.techtarget.com/searchsecurity/feature/Pros-and-cons-of-manual-vs-
automated-penetration-testing retrieved 05.01.2023.

[22] kinsta. “What Is GitHub? A Beginner’s Introduction to GitHub.” In: (2022). https://kinsta.
com/knowledgebase/what-is-github/ retrieved 05.01.2023.

[23] Lavakumar Kuppan. “IronWASP - Open Source Advanced Web Security Testing Platform.”
In: (2015). http://blog.ironwasp.org/ retrieved 05.01.2023.

[24] John Kurkowski. “tldextract 3.4.0.” In: (4.10.2022). https://pypi.org/project/tldextract/
retrieved 01.03.2023.

[25] Jim Manico et al. “Cross Site Scripting (XSS).” In: (2022). https : / / owasp . org / www -
community/attacks/xss/ retrieved 27.04.2023.

[26] OWASP. “DOM Based XSS.” In: (2022). https://owasp.org/www-community/attacks/
DOM_Based_XSS retrieved 05.01.2023.

[27] Marco Pautasso. “Ten Simple Rules for Writing a Literature Review.” In: (2013). https:
//www.ncbi.nlm.nih.gov/pmc/articles/PMC3715443/ retrieved 05.05.2023.

[28] Kien Pham, Aécio Santos, and Juliana Freire. “Understanding website behavior based on user
agent.” In: Proceedings of the 39th International ACM SIGIR conference on Research and
Development in Information Retrieval. 2016, pp. 1053–1056.

[29] ProtectOnce. “What is Web Application Security Testing Why Its Hard to Do Well.” In:
(2021). https://protectonce.com/what-is-web-application-security-testing-why-
its-hard-to-do-well/ retrieved 05.01.2023.

[30] PyCharm. “The Python IDE for Professional Developers.” In: (2023). https://www.jetbrains.
com/pycharm/ retrieved 05.01.2023.

[31] Python. “TWhat is Python? Executive Summary.” In: (2023). https://www.python.org/
doc/essays/blurb/ retrieved 05.01.2023.

[32] Kenneth Reitz. “requests 2.28.2.” In: (12.01.2023). https://pypi.org/project/requests/
retrieved 01.03.2023.

[33] Leonard Richardson. “beautifulsoup4 4.11.2.” In: (3.01.2023). https://pypi.org/project/
beautifulsoup4/ retrieved 01.03.2023.

[34] Kevin A Roundy and Barton P Miller. “Hybrid analysis and control of malware.” In: Re-
cent Advances in Intrusion Detection: 13th International Symposium, RAID 2010, Ottawa,
Ontario, Canada, September 15-17, 2010. Proceedings 13. Springer. 2010, pp. 317–338.

[35] Elar Saks. “JavaScript Frameworks: Angular vs React vs Vue.” In: (2019).

[36] selenium.dev. “The Selenium Browser Automation Project.” In: (2023). https://www.selenium.
dev/documentation/ retrieved 03.04.2023.

[37] V Solovei, Olga Olshevska, and Y Bortsova. “The difference between developing single page
application and traditional web application based on mechatronics robot laboratory onaft
application.” In: Automation of technological and business processes 10.1 (2018).

[38] spdx.org. “Apache License 2.0.” In: (2018). https://spdx.org/licenses/Apache-2.0.html
retrieved 01.03.2023.

80

https://phoenixnap.com/blog/vulnerability-assessment-scanning-tools
https://phoenixnap.com/blog/vulnerability-assessment-scanning-tools
https://www.triaxiomsecurity.com/white-box-vs-black-box-web-application-penetration-testing/
https://www.triaxiomsecurity.com/white-box-vs-black-box-web-application-penetration-testing/
https://www.techtarget.com/searchsecurity/feature/Pros-and-cons-of-manual-vs-automated-penetration-testing
https://www.techtarget.com/searchsecurity/feature/Pros-and-cons-of-manual-vs-automated-penetration-testing
https://kinsta.com/knowledgebase/what-is-github/
https://kinsta.com/knowledgebase/what-is-github/
http://blog.ironwasp.org/
https://pypi.org/project/tldextract/
https://owasp.org/www-community/attacks/xss/
https://owasp.org/www-community/attacks/xss/
https://owasp.org/www-community/attacks/DOM_Based_XSS
https://owasp.org/www-community/attacks/DOM_Based_XSS
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3715443/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3715443/
https://protectonce.com/what-is-web-application-security-testing-why-its-hard-to-do-well/
https://protectonce.com/what-is-web-application-security-testing-why-its-hard-to-do-well/
https://www.jetbrains.com/pycharm/
https://www.jetbrains.com/pycharm/
https://www.python.org/doc/essays/blurb/
https://www.python.org/doc/essays/blurb/
https://pypi.org/project/requests/
https://pypi.org/project/beautifulsoup4/
https://pypi.org/project/beautifulsoup4/
https://www.selenium.dev/documentation/
https://www.selenium.dev/documentation/
https://spdx.org/licenses/Apache-2.0.html


[39] spdx.org. “BSD 3-Clause "New" or "Revised" License.” In: (2018). https://spdx.org/
licenses/BSD-3-Clause.html retrieved 01.03.2023.

[40] spdx.org. “MIT License.” In: (2018). https://spdx.org/licenses/MIT.html retrieved
01.03.2023.

[41] Subgraph. “Vega helps you find and fix cross-site scripting (XSS), SQL injection, and more.”
In: (2023). https://subgraph.com/vega/ retrieved 05.01.2023.

[42] Nicolas Surribas. “Wapiti The web-application vulnerability scanner.” In: (2023). https://
wapiti-scanner.github.io/ retrieved 05.01.2023.

[43] Agnes Talalaev. “Website Hacking Statistics You Should Know in 2022.” In: (2021). https:
//patchstack.com/articles/website-hacking-statistics/ retrieved 05.01.2023.

[44] Andriy Varusha. “What Can You Expect To Pay For Penetration Testing?” In: (2022). https:
//bsg.tech/blog/what-can-you-expect-to-pay-for-penetration-testing/ retrieved
05.01.2023.

[45] Andrew Whitaker and Daniel P Newman. Penetration Testing and Network Defense: Pene-
tration Testing _1. Cisco Press, 2005.

[46] Scott White and Geoff Walton. “Ruby ERB Template Injection.” In: (2017). https://www.
trustedsec.com/blog/rubyerb-template-injection/ retrieved 25.04.2023.

[47] William. “Web Application Architecture: The Latest Guide 2022.” In: (2022). https://www.
clickittech.com/devops/web- application- architecture/#h- what- is- a- 3- tier-
architecture retrieved 05.05.2023.

[48] OWASP ZAP. “ZAP.” In: (2023). https://www.zaproxy.org/docs/ retrieved 05.01.2023.

81

https://spdx.org/licenses/BSD-3-Clause.html
https://spdx.org/licenses/BSD-3-Clause.html
https://spdx.org/licenses/MIT.html
https://subgraph.com/vega/
https://wapiti-scanner.github.io/
https://wapiti-scanner.github.io/
https://patchstack.com/articles/website-hacking-statistics/
https://patchstack.com/articles/website-hacking-statistics/
https://bsg.tech/blog/what-can-you-expect-to-pay-for-penetration-testing/
https://bsg.tech/blog/what-can-you-expect-to-pay-for-penetration-testing/
https://www.trustedsec.com/blog/rubyerb-template-injection/
https://www.trustedsec.com/blog/rubyerb-template-injection/
https://www.clickittech.com/devops/web-application-architecture/#h-what-is-a-3-tier-architecture
https://www.clickittech.com/devops/web-application-architecture/#h-what-is-a-3-tier-architecture
https://www.clickittech.com/devops/web-application-architecture/#h-what-is-a-3-tier-architecture
https://www.zaproxy.org/docs/

	Acknowledgements
	Abstract
	List of Figures
	List of Tables
	Introduction
	Background
	Problem statement
	Objective
	Sub-objectives
	Report outline

	State of the Art
	Web application vulnerabilities
	Web application architecture
	Client-side
	Server-Side
	Database

	Client side template injection
	Template engines

	xss
	Common XSS Attack Vectors

	DOM-Based XSS
	Vulnerability scanning
	Types of scanning techniques

	Current vulnerability scanners
	OWASP ZAP
	IronWASP
	Wapiti
	Vega


	Work methodology
	Objective planning
	Literature review of existing research on the subject
	Analysis of existing vulnerability scanners
	Analysis of vulnerabilities
	Design vulnerability scanner
	Develop vulnerability scanner
	Construct payloads

	Method
	Design specifications
	Functional Requirements Document (FRD)
	UML Class Diagram

	Choice of technologies and tools
	Selenium
	Requests
	Beautiful Soup
	tldextract
	URLlib
	Git
	Pycharm
	Python

	Vulnerability scanner
	Development process

	Webapp
	Flow

	Payload list creation
	XSS
	DOM-based XSS
	Template injection

	Testing plan

	Design
	UML Class diagrams
	Scanner version 1.0
	Scanner version 2.0
	Final scanner version

	UML Activity Diagrams
	Crawler version 1.0
	Crawler version 2.0
	Changes in v2
	Input-field scanner version 1.0
	Input-field scanner version 2.0
	Changes made in v2
	Payload sender

	Changes made to the payload sender
	Components
	Webapp class
	Crawler
	Input finder
	Payload sender
	Get payloads from JSON sorted by type and expected output

	Limitations and constraints

	Results
	Scanner
	Dynamic scan
	Configuring the scanner

	Running the scanners
	Scanning results
	Scanner functionality results
	Template injection
	XSS
	DOM-XSS

	Notes about the scanning

	Discussion
	Results
	The scanner
	Crawler
	Input finder
	Payload sender

	Testing applications
	Testing bias
	Future research

	Conclusion
	Functional Requirements Document (FRD)
	Webapp Class Source
	Crawler Source
	Input Finder Source
	Payload Sender Source
	Changelog
	January 17th, 2023
	January 20th, 2023
	March 12th 2023
	March 13th 2023
	March 14th, 2023
	March 16th, 2023.
	March 21st, 2023.
	March 22nd, 2023.
	March 27th, 2023.
	March 28th, 2023
	April 18th 2023
	April 25th 2023
	May 2th 2023
	May 22th 2023


	Bibliography

