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Abstract

The Transformer deep learning model has recently proven its superiority in tasks like natural
language processing and computer vision, as tools like ChatGPT and DALL-E have become
widespread and helps humans complete tasks faster with high accuracy. This comes from the
ability of Transformer models to comprehend sequential data by weighing the importance
of each token in sequences through an attention mechanism and being trained on massive
amounts of data. As researchers seek to apply Transformer models to other disciplines, the
sequential nature of reinforcement learning tasks becomes an interesting study area. De-
spite the demonstrated superiority of transformer-based models in various domains, their
adoption within reinforcement learning paradigms, particularly within game-based learning
environments, has yet to become widespread. In particular, reinforcement learning problems
where an intelligent agent learns how to act in a video game are interesting, as they can help
simulate real-life scenarios and therefore make autonomous systems less expensive and safer
to train. Real-Time Strategy games are complex video games where players must develop a
strategy in real-time to gain an advantage over other players, and reaching game objectives
often involve performing a specific sequence of actions, making them an excellent area of
study for reinforcement learning combined with Transformers.

This thesis explores, evaluates and improves Transformer models applied in Real-Time Strat-
egy Game environments with a particular focus on limited data and computational power
resources. To this end, DeepRTS [7] is chosen as the reinforcement learning environment for
its high performance and simplified game mechanics, but also to enrich its relatively small
research domain. This work implements several sub-environments in DeepRTS with various
objectives and levels of complexity to give agents a diverse range of tasks and to compare
deep learning algorithms. The authors of this thesis also contributed to the DeepRTS project
by fixing source code issues to improve performance. As there is no publicly available dataset
for DeepRTS to train a Transformer model on, this thesis proposes a novel model, namely
the Genetic Algorithm Decision Transformer, a new implementation for data generation in
reinforcement learning environments by leveraging the autoregressive Decision Transformer
[19] model for action prediction. The novelty lies in using the genetic algorithm to select the
best data samples from a pool to train a Decision Transformer agent. Results are compared
against a Double Deep Q-learning agent and a standard Decision Transformer agent, the lat-
ter being trained using different datasets, and results show its dependency on high-quality
data. Genetic Algorithm Decision Transformer improves the aforementioned algorithms by
generating its own dataset with high-quality data samples while using the same underlying
Decision Transformer model. Results show that Genetic Algorithm Decision Transformer
outperforms its counterpart Decision Transformer algorithm by a magnitude of up to 3.3
times the reward (see table 5.6). However, improvements to data collection could improve
the model further.
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Chapter 1

Introduction

The Transformer model has accelerated Artificial Intelligence (AI) research in a big way.
Since the model was introduced in 2017 by Google Brain [81], as an attention-based model
handling sequential data and outperforming the previous state-of-the-art, Transformers have
become a de facto model for natural language processing (NLP) and computer vision. Mod-
els like Generative Pre-trained Transformer (GPT) iterations have become state-of-the-art
when it comes to tasks like text generation and question/answering [60] [62] [16] [54]. Trans-
formers consider sequential data of any type, and while GPT considers sequential text data,
researchers have also applied it to sequential image data in various Reinforcement Learning
(RL) environments [19] [39] [68] [50] [86].

RL considers an environment with observations, actions, and rewards and an agent that is
iteratively trained to act in an environment according to a certain policy. RL algorithms
like Q-learning handle data as independent of each other, predicting the best action for each
given observation based on previous experience using a value estimation function. However,
standard RL algorithms do not encode sequential information for observations. To enable
this, the experience can also be collected and stored sequentially as labeled data, which can
turn RL into a sequence modeling problem similar to NLP, predicting the next token given
a sequence of data. This means RL can benefit from using large-scale datasets and state-
of-the-art Transformer models by using data generated by human players or policy-driven
agents to learn the best actions given an input sequence.

Large datasets are easily accessible for popular RL environments with popular research en-
vironments such as the D4RL dataset [28] for OpenAI Gym environments or Atari datasets
[10] for a wide range of Atari games. However, this data dependency makes it difficult to
apply Transformers to RL environments without high-quality datasets. One solution to this
problem is to generate data from random agents, or recording play by humans or pretrained
agents. However, random data has poor quality due to noise, and is generally unable to gen-
erate data sequences with high total reward similar to a policy-driven player. In addition,
recording human data and data from pretrained agents is inefficient as it requires human
resources and computational power.

This thesis explores how Transformers can be used in a limited RL environment, even with-
out large high quality datasets. To this end, the Decision Transformer (DT) model proposed
by Chen et al. [19] was chosen for its ability to learn even from suboptimal data. DT
predicts the following action from a sequence of observations, rewards-to-go and actions us-
ing an autoregressive attention mechanism. The RL environment chosen for this work is
DeepRTS, a real-time strategy (RTS) RL environment for deep learning [7]. DeepRTS is
a new environment for RL and has not been extensively used in research, but [65] and [9]
have trained RL agents with different algorithms to play DeepRTS. However, there is no
publically available dataset for DeepRTS.

1



This thesis proposes Genetic Algorithm Decision Transformer (GADT), a novel implemen-
tation of DT by Chen et al. [19] that does not rely on a static dataset for training. GADT
generates its own data by using the epsilon-greedy strategy to explore the environment and
selecting the best sequences based on reward through the genetic algorithm to generate high-
quality training data. This data is then fed into a standard DT model to learn from gathered
experience. As the model improves, the dataset increases in size. To evaluate the perfor-
mance of GADT, this work also use the standard DT algorithm and implement a Q-learning
algorithm for various tasks in DeepRTS. DT algorithm was trained on random and data from
a Q-learning agent to see how it performs with varying data quality. Experiments shows that
GADT on average outperforms DT and Q-learning algorithms on tasks in DeepRTS, and
the DT architecture is scalable as it can only improve with higher-quality data.

1.1 Motivation

RL can create a virtual environment that an agent can learn to interact in according to
a policy. Hence, we can compare the process to human learning, similar to how a baby
would learn to take its first steps; The baby observes their environment through its cogni-
tive senses and chooses actions to attempt walking. Starting from zero experience, it learns
from trial-and-error to find the best actions to maintain balance and speed when walking.
This learning process is interesting to analyze and simulate through virtual environments,
because of the gradual improvement as experience in an environment increases, how the
walking objective is achieved and what issues are faced when exploring new environments.
Furthermore, by simulating these scenarios in RL environments we can explore how to de-
sign environments and provide signals to agents to optimize behaviour and speed of learning.

Applications of RL can be simulations of real-world environments. Having a virtual model of
a real-world environment means we can train an agent to act in it without building physical
prototypes and extensive testing in the real world. Therefore, the nature of RL agents
allows them to keep learning in real-world environments, as it is exposed to new states while
recording their rewards and actions. This makes RL an interesting and important area of AI
research. Furthermore, the performance improvements that transformers bring in tasks like
NLP and time-series prediction make it interesting to apply it to RL, an area where there is
significantly less research in regards to transformers. Because of the limited research available
in this regard, this thesis will be a contribution to the research of a new deep learning method
in a new environment. However, state-of-the-art Transformer models like GPT, LLaMA are
trained over multiple weeks using large clusters of enterprise-level hardware and terabytes of
data [45] [78]. For RL, Models like IRIS [50], AlphaStar [3] and DreamerV3 are also trained
on expensive hardware and over long periods of time, where DreamerV3 citing up to 16 GPU
days for Atari benchmarks [33, p. 18]. This thesis will provide research on proving decent
performance for Transformers using cheaper hardware and limited resources. This thesis also
considers the RTS game DeepRTS. RTS games are complex environments for RL because
it involves strategic planning, multiple controllable units, and players. The terminal state
of the game is not pre-defined, and players must react to opposing players’ actions. Still,
the DeepRTS has a small discrete actions space and a configurable environment, making it
simple to define experiments and custom learning environments and tasks.

1.2 Thesis Outline

The main goal of this thesis is to evaluate and improve the performance of Transformer mod-
els in a RTS game environment, namely DeepRTS. Transformer algorithms will be compared
to Q-learning algorithms to measure improvements.
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1.2.1 Goals

• Goal 1: Research and present the state-of-the-art in RL methods combined with
transformers

• Goal 2: Research and present the state-of-the-art for Real-time strategy games in RL,
and compare them to DeepRTS

• Goal 3: Train a Deep Q-learning agent to play DeepRTS

• Goal 4: Train a Decision Transformer agent to play DeepRTS

• Goal 5: Evaluate the performance of the Decision Transformer and Genetic Algorithm
Decision Transformer agent and compare with other RL algorithms

• Goal 6: Present how Genetic Algorithm Decision Transformer improves data collection
and improve on Decision Transformer performance

• Goal 7: Evaluate DeepRTS as an RL environment and propose changes to improve
use in RL research

1.2.2 Hypotheses

• A Decision Transformer agent will outperform a Deep Q-learning agent in terms of
total reward in DeepRTS

• A Decision Transformer agent will learn the best sequences of actions from a dataset
with mixed policies for action generation, and outperform a Deep Q-learning agent in
terms of cumulative reward in DeepRTS

• Training a Decision Transformer using only randomly generated actions will outperform
a random agent in terms of reward

• Gathering game data using the Genetic Algorithm and using the epsilon-greedy strategy
will improve on Decision Transformer and allow an agent to explore the environment
and avoid dependencies on labeled data

• Decision Transformer will be dependent on sequence length for performance during
training

1.2.3 Document Outline

The following thesis will start by introducing required background knowledge in Chapter 2,
presenting neural networks, the Transformer model and RL. The RL environment DeepRTS
is also presented in this chapter before Chapter 3, where the state-of-the-art RL environ-
ments are showcased, offering a comparative analysis and an introduction to the history of
Transformers in the RL domain. This chapter also presents state-of-the-art Transformer
models in general and models applied to RL problems. Chapter 4 presents the implemen-
tation and methods of this thesis, presenting various tasks in DeepRTS that RL agents are
tasked to explore and act in, various datasets that were used to train DT agents and the
details of the novel implementation GADT. The results of these are presented in Chapter 5,
followed by a discussion of the outcome and what has been learned from the experiments.
Finally, Chapter 6 concludes the thesis with a summary and reflection on the findings.
1

1We have used many tools to support our writing in this such as Grammarly and ChatGPT. All the writing in
this thesis is still our own, but the tools have given us grammar checks, suggestions, and inspiration.
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Chapter 2

Background

This chapter presents the research domains for this thesis, namely AI, RL and RTS games.
First, the transformer architecture is explained, starting from the basics of artificial neural
networks and building up to the attention mechanism of a transformer. The chapter then
introduces GPT, the most prominent implementation of a transformer, which is used in
this thesis through the DT algorithm. Furthermore, the domain of RL and standard RL
algorithms are presented. RTS games and DeepRTS is also introduced as the RL environment
for this thesis.

2.1 Artificial Neural Networks

Artificial neural networks (ANNs) are machine learning algorithms inspired by the structure
and function of biological neurons in the human brain. ANNs are composed of interconnected
neurons organized into layers that process and analyze data to generate an output. Each
neuron represent a feature of a given data sample. Each neuron has a "bias" value, and a
number of "weight" values. The number of weights in a neuron is equal to the number of
connections going into the neuron. In the figure 2.1 a simple ANN is shown. Interconnected
neurons between layers indicates that a neuron in the first layer says something about the
connected neuron in the second layer. Outputs often produce predictions to classify a data
sample by the output of many interconnected neurons.

Figure 2.1: ANN vizualized.

2.1.1 Forward pass

In an ANN a "forward pass" is the action of calculating the output given a certain input.
Each neuron in an ANN receives input from one or more other neurons and applies a math-
ematical function to the input to produce an output. The outputs from one layer of neurons
become inputs to the next layer, and this process continues until the final layer produces the
desired output.
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Given an input into a layer, the outputs zj of the layer is calculated by the following formula.

zj =
m∑
i=1

wjixi + bj, for j = 1, . . . , n

n = Number neurons in layer
m = Number of elements in input sent into layer
x = Inputs into layer
w = Weights of the neuron
b = Bias value of the neuron

2.1.2 Backpropagation

Backpropagation is a widely used algorithm for training ANNs. The goal of backpropagation
is to adjust the weights of the connections between neurons in an ANN so that the output
produced by the network is as close as possible to the desired output [63].
Backpropagation works by calculating the difference of output of the output layer against
the wanted result, this difference is called the loss. Now using this loss the weights and
biases in a given layer can be updated with the following function:

wij = wij − η
∂L
∂wij

, for i = 1, . . . , n and j = 1, . . . ,m

bi = bi − η
∂L
∂bi

, for i = 1, . . . , n

η = Learning rate
L = Loss

The Mean Squared Error (MSE) is a popular loss function, which works by squaring the
difference between the true value and the predicted value, (truth − prediction)2. This has
the effect of placing more emphasis on larger errors, making the model adjust its weights to
minimize the loss to make predictions closer to match the truth. In other words, the MSE
penalizes larger deviations from the desired outcome. The full formula for MSE is:

MSE =
1

n

n∑
i=1

(yi − ŷi)
2

ŷi = Prediction
yi = Truth
n = Number of datapoints

This formula will update the weights and biases of the last layer. Then it can be used again
to update the previous layer and so on. It is called backpropagation because the weights
calculations and updates moves backwards in the neural network for each neuron.

2.2 The Transformer

The Transformer architecture has became very popular lately with the release of large lan-
guage model’s (LLM) such as GPT [37], and LLaMA [38]. This architecture was initially
published in 2017 by the name "Attention Is All You Need" [80], where the authors present a
method of forming dynamic connections between the inputs using the attention mechanism.
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2.2.1 Attention

The attention mechanism is a technique used in deep learning that enables the model to fo-
cus on specific parts of the input data when making predictions. The idea behind attention
is to allow the model to dynamically weight the importance of different parts of the input. A
simple illustration of this can be seen in Figure 2.2a, where the attention mechanism calcu-
lates that there is a strong connection between the word "it" and the words "animal", "too",
"tired". This can be understood as when the model is creating a sentence, if the previous
words are "animal" there is a high chance the word "it" will be used. This mechanism is
akin to human perception, where humans can understand a sentence or image by focusing
on certain features.

(a) Attention mechanism visualized. [75] (b) Attention mechanism vs simple ANN weights. [67]

Figure 2.2: Attention visualized.

The attention mechanism starts by sending the input x = (x0, x1, x2, ..., xT ) through three
different ANNs as shown in figure 2.1. The output dimension of these ANNs is usually called
n_embed and can vary in size. These three outputs are called Key (K), Value (V), Query
(Q). The formula [80] to calculate the attention of an input can be seen below.

Attention(Q,K, V ) = softmax
(
QKT

√
dk

)
V, where

softmax(xi) =
exp(xi)∑N
j=1 exp(xj)

dk = K ∈ Rdk

It is important to note that attention scores differ from simple ANN weights of as they
depend on the input. This is shown in figure 2.2b.

2.2.2 Architecture

In the original paper [80], the Transformer model consists of an encoder and a decoder,
each of which is composed of multiple layers. The encoder processes the input sequence and
creates a contextualized representation of each token in the sequence. The decoder generates
the output sequence based on the contextualized representation and a previously generated
output.
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Figure 2.3: The Transformer architecure. Encoder on the left, Decoder on the right. [80]

Each layer in the Transformer model consists of an attention mechanism followed by a feed-
forward neural network. The attention mechanism allows the model to weigh the importance
of different parts of the input sequence, while the feed-forward neural network applies a non-
linear transformation to the input. This architecture differs from recurrent neural networks
and long short-term memory [35] by encoding information about all the tokens in a given
input sequence, rather than concatenating the previous input to the next.

The Transformer architecture has achieved state-of-the-art performance on a wide range
of NLP problems including machine translation, language modeling and question-answering.
With the introduction of the original Transformer model by Vaswani et al. [80] outperformed
previous state-of-the-art models like MoE [69], ConvS2S [29] and GNMT [85] [80, p. 8].
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2.3 Generative Pre-trained Transformer (GPT)

GPT is a LLM created by OpenAI [17] that is based on the Transformer model. The biggest
change from the transformer model to GPT is the removal of the encoder, this means GPT
uses only a decoder, this can be seen in figure 2.4.

Figure 2.4: Left: GPT1 model. Right: GPT2 model. [1]

The model is called Generative pre-trained transformer because it is first trained on simply
predicting the next word in a dataset. This is called pre-training, after this, the model is
fine-tuned using supervised fine-tuning where the wanted output for a given input is known.
The pre-training works by maximizing the sum of the log likelihood of the next wanted word
xt, given previous words xt−k, ..., xt−1. This can be written as follows.

L(x) =
T∑
t=1

logP (xt|xt−k, ..., xt−1)

2.3.1 GPT-2

GPT-2 is the successor of GPT [61]. GPT-2 as seen in figure 2.4 can take a larger input.
It also is much bigger with 48 layers compared to 12, and lastly moved the layer normal-
ization layers around when compared to GPT. GPT-2 is also the backbone of the Decision
Transformer model, which will be explained in section 3.3.2.

2.4 Reinforcement Learning

RL considers an agent acting in an environment, and how the state of the environment
changes based on the agent’s actions. The purpose of RL is to provide a framework for an
agent to learn the optimal behaviour in an environment, starting from zero experience and
learning by trial and error. The optimal behaviour is encoded in a reward function, which
acts as a scale of how close the agent is to the optimum given its actions. Hence, the goal of
the agent is to maximize this reward function by exploring the environment and learning a
policy for which actions gives the highest reward for a given state.

2.4.1 Markov Decision Process

RL can be described as a Markov Decision Process (MPD), presenting the process as an
environment E, an agent A and a tuple (S,A, P,R) [59]:
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• S: A finite set of states for an environment

• A: A finite set of discrete or continuous actions an agent can perform in an environment

• P : P (st+1 = s′|st, at), a function describing the probability of transition from states s
to s′ given an action a at timestep t.

• R: R(s, a, s′), a reward function which outputs the reward for transitioning between
state s and s′ given action a and states s, s′.

Figure 2.5: The feedback loop in an MDP, where an agent acts in an environment and collects data
to learn the best actions for a given state [64].

To approximate an optimal policy, the agent has to perform actions that maximize the reward
function. The agent can pick an action a ∈ A every timestep t, where the action can be
responsible for changing the environment. The agent can then record the state transitions
and rewards from each action, and use this data to learn which actions get the highest
reward. Based on the observed data, the agent can learn to approximate an optimal policy
π by learning to predict rewards for (a, s) pairs, using a function Q(s, a). Different methods
exist to define this function, such as value iteration [11], policy iteration [12] and Q-learning.
The latter is explained in section 2.4.3.

2.4.2 Offline & Online learning

There are two main categories of learning methods in RL: offline and online learning. In
offline learning, the agent learns from a fixed dataset of state transitions and rewards. This
method is suitable when there is a dataset available for a given environment, and the agent
can learn from this data without directly interacting with the environment. This principle
can turn RL into a supervised training process, where a ANN learns to predict an action
given observations and rewards.

In contrast, online learning involves the agent interacting with the environment and learning
from its own experience. In this approach, the agent learns and updates its policy based on
the real-time feedback it receives from the environment. Online learning is often preferred
as it allows the agent to adapt to changes in the environment. In this way, agents can also
learn from their own mistakes and explore different actions by using exploration to discover
new and better policies. This is normally done with the epsilon-greedy strategy, which alters
between selecting actions from a policy π and using randomness, where e decreases over time
to reduce randomness:

a =

{
π(a|s), if rand() < ϵ

randint(0, |A|), otherwise
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2.4.3 Q-learning

Q-learning is an algorithm used to find an optimal policy in a RL environment where a
reward function exists. The Q in Q-learning stands for "Quality", and the objective is to
find the quality of each possible future action and choose the one with the highest quality.
The Q-learning algorithm starts by making a table with Q[s, α] values. This means for
a given state s and a given action α, what is the Q value. At the start, this table will
be empty so the agent must explore the environment by making random actions using the
epsilon-greedy strategy. The Q values in the table are calculated using the formula in figure
2.6. The Q-values in the table are updated over-time, and as the randomness decreases, the
Q-values get more accurate, in finding the highest reward path.

Figure 2.6: Bellman equation. The equation for updating Q[s, α] in the table. [70]

2.4.4 Deep Q networks (DQN)

In Deep Q networks (DQN) the idea is to combine ANN’s with Q-learning to learn the
optimal strategy. In this algorithm, instead of using a table with Q-values, an ANN is used
where the input is the s and the outputs are Q[s, αi], for i = 0, ..., n where n is the number
of actions. Then the action which has the highest Q value can be chosen. The network is
trained by using "experience replay", in which a table of previous experiences is created, the
table entries are as shown below.

(st, st+1, at, rt)

This table can now be used to train the ANN with more efficiency by batching multiple
entries. The model can now use the following loss function to update its weights.

L = (Q∗(st, at)−Q(st, at))
2

Q∗(st, at) = r + γmax
a′

Q(st+1, a
′)

2.4.5 Double Deep Q-Network (DDQN)

Double Deep Q-Network (DDQN) improves on DQN 2.4.4 by using two ANN’s. The reason
for this change can be explained by looking at the loss function of DQN.

L = (Q∗(st, at)−Q(st, at))
2

Q∗(st, at) = r + γmax
a′

Q(st+1, a
′)

In this loss function Q∗(st, at) always takes the maxa′ Q(st+1, a
′) such that the network will

always overestimate the next Q value. This problem builds upon itself as the network will
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not use the overestimated Q value in future predictions where it will again overestimate Q
values.
DDQN uses two ANN’s, called "target" and "online". Where the online model is used for
predicting the Q value, and the target model is used to predict the next action. The target
model copies its weights from the online model every n steps. The loss function is now as
follows.

L = (Q∗(st, at)−Qonline(st, at))
2

Q∗(st, at) = r + γQtarget(st+1, argmax
at+1

Qonline(st+1, at+1))

Now the max Q value is not always taken as the Qtarget network may possibly have higher
Q values for other actions, but it gives the Q value for the predicted action of the online
model.

2.5 Real-Time Strategy Games

A Real-Time Strategy (RTS) game is a game environment where the players can act simulta-
neously. Because of the even playing field, RTS games require players to react to each other’s
actions and constantly try to capitalize on other players’ mistakes. This means these games
require strategic planning, which is why RTS games like Starcraft, Warcraft and DeepRTS
are themed around military combat [13] [14] [7]. The RTS game genre is vastly popular
worldwide, with games like DOTA 2 and League of Legends having millions of players every
day [72] [58].

Figure 2.7 shows the RTS game Starcraft, presenting most of the important elements of an
RTS game; multiple controllable units with different abilities, buildings that require resources
to complete, and the battlefield where players move their units to attack their opponent.

Figure 2.7: The user interface for the RTS game Starcraft [27].
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2.5.1 DeepRTS

DeepRTS is a RTS game made specifically for RL research [7]. While it can be played by
human players in a graphical user interface, the main purpose of the game is high performance
while running the game without graphics with RL agents performing the actions. As such,
the game can up to output 7 million timesteps per second during simulation. Figure 2.8 shows
some of the different maps of DeepRTS, containing two units, one for each player. The game
can be played by multiple players, and each player starts with 1 movable unit. Units can
move simultaneously with each other, and the goal of the game is to defeat the other player
by attacking it and destroying all its units and buildings. Units can also gather the resources
lumber, stone and gold, which can in turn be used to fund buildings. By building buildings
the player can create more movable units, and the player can toggle control of these units
to perform different tasks.

Figure 2.8: Different maps available in DeepRTS [5].
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Chapter 3

State of the Art

This chapter presents the state-of-the-art within the domains of this thesis, namely RTS
Environments for RL, and using Transformer models for RL.

3.1 Real-time Strategy Game Environments

RTS games challenge the player’s ability to plan and strategize to get the upper hand of the
opponent by exploiting their mistakes or miscalculations. This makes RTS games an inter-
esting area of research in AI, to study how AI deals with strategy and long-term planning.
Exploring RTS games can be done using RL. However, few RTS RL environments exist [8],
and most of them are interfaces for high-resolution games that do not have high enough per-
formance to be used in AI research. In addition, most popular RTS games are closed source,
which makes it difficult to extract data and interact with the game through scripting. These
games also include complex game logic, making RTS game development a difficult task. This
section presents existing RTS environments for RL and how they compare to DeepRTS.

3.1.1 MicroRTS

Figure 3.1: MicroRTS UI [36].

MicroRTS is an RTS game
made for AI research. Like
DeepRTS, the game’s purpose
is high performance, stripping
away complex game logic and
high-resolution graphics, en-
suring researchers can focus on
AI [53]. The game is made us-
ing Java, but can also be in-
teracted with through Python
using the OpenAI Gym API
[36]. There is also an an-
nual AI competition for Mi-
croRTS, where entrants sub-
mit their bots to play against
each other in a tournament
to find the best-performing AI
model [52].
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3.1.2 StarCraft II Learning Environment

StarCraft II Learning Environment (SC2LE) is a collaboration between StarCraft II devel-
opers Blizzard Entertainment and researchers at Google DeepMind to expose StarCraft II as
a learning environment for AI research [25]. SC2LE targets various programming languages
such as C++ through the CommandCenter project [21] and Python through PySC2. The
Starcraft II base game has high resolution graphics, which in SC2LE gets encoded as feature
layers to reduce observation space complexity. The large action space with approximately
108 combinations [83]. Testing by Vinals et al. and Andersen et al. has shown that SC2LE
environment manages between 60 and 144 frames per second (FPS) [83] [7] during training.
Taking these factors into account, makes StarCraft II a complex environment for RL re-
search. Figure 3.2 shows an example of both human and machine-interpretable observations
of the SC2LE through PySC2.

Figure 3.2: Example observations of the PySC2 environment. Left side is a simplified graphical
rendering of StarCraft II, while the right side shows the feature layers used as input for AI algorithms
[83].

3.1.3 TorchCraft

TorchCraft is an API between the StarCraft I game and the scientific computing framework
Torch [74] [23]. TorchCraft extracts and receives StarCraft I data through a ZeroMQ (ZMQ)
connection, enabling manipulation of StarCraft I through any programming language that
supports the ZMQ protocol. TorchCraft has been used in RL research for years [57] [22],
but as of July 2022 the project has been archived and is not in active development [2]. Lin
et al. have also created StarData, which is a dataset with 65546 replays of StarCraft I for
the purpose of AI research [49].

3.1.4 DeepRTS

The basics of DeepRTS is explained in section 2.5.1. Comparing DeepRTS to the state-
of-the-art shows that DeepRTS outperforms other environments with its high performance.
Table 3.1 shows performance across the previously stated RTS environments, where DeepRTS
outperforms them all. In addition, DeepRTS has a fairly simplified action and observation
space, with 16 discrete actions for simple unit movement and attacking, and 2 actions for
targeting and issuing commands to units. DeepRTS is fully playable with just 16 actions, as
including targeting and commanding units would increase the number of actions by 2∗m∗n,
where m and n is the maps width and height respectively. Furthermore, DeepRTS is in active
development and the authors of this thesis were able to contribute to the project, as explained
in section 4.1.4. While the DeepRTS game cannot compare to environments like StarCraft
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II in terms of complex game logic, DeepRTS enables efficient computation and training of
RL agents, and may perhaps be used as a pretraining tool before moving to more complex
environments.

Environment Frames per second
MicroRTS 11 500
PySC2 144
TorchCraft 2 500
DeepRTS 7 000 000

Table 3.1: Maximum frames per second for MicroRTS, PySC2, TorchCraft and DeepRTS [7].

3.2 Machine Learning in Video Games

The realm of gaming offers a challenging arena for Machine Learning (ML) researchers to
test and compare their algorithms against human players. This provides a valuable means of
evaluating the intelligence of ML algorithms, particularly within specific game environments.
Over the past 25 years, ML has made remarkable advancements, progressively surpassing
human capabilities in increasingly complex game scenarios.

3.2.1 Chess & DeepBlue

Chess, a well-known turn-based strategy game in the western world, serves as an exemplary
domain for exploring the potential of ML. The game involves two players, each starting with
16 pieces that follow specific movement rules.

Figure 3.3: Chess [20]

With an estimated space complexity of approximately 10124 [71], chess boasts an astronomical
number of possible game variations. To put this into perspective, a rough estimate of the
number of atoms in the observable universe is 1080 [51]. Consequently, the game cannot be
solved through brute force methods due to the immense computational requirements needed
to evaluate all possible paths.
Various algorithms have been employed in attempts to defeat the world’s top chess players.
Notably, the first instance of a chess world champion losing to a computer occurred in 1997
during the historic match between IBM’s Deep Blue and Garry Kasparov [18]. Deep Blue
used a combination of hard-coded moves as well as an evaluation function to choose it’s
next move. The evaluation function tried to evaluate a certain game state based on hard-
coded rules combined with weights which could be changed to adjust the value of the game
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state. These weights were analyzed with automatic tools to fine-tune the evaluation function.
This can be seen as a something similar to backpropagation in ANN’s. Because Deep Blue
used alot of hard-coded rules combined with a tree search algorithm aswell as a evaluation
function, this meant that Deep Blue required alot of computation. To scale this up to the
game Go (see next section) would be very hard, if not impossible.

3.2.2 Go & AlphaGo

Go is a turn-based strategy game which is often compared to chess, as its popularity in the
east rivals the popularity of chess in the west. The space complexity of Go is a whooping
10360 possible game variations [71]. Because of this huge number, the method of hand-tuning
and hard-coding rules would prove to be impossible for the game of Go.

Figure 3.4: A game of Go [30]

In October 2015 for the first time ever, a computer won 5-0 against a professional player
without any handicap [71]. AlphaGo (created by DeepMind) using an ANN algorithm with
RL with a self play mechanism as well as learning from professional games. In 15 March
2016 AlphaGo won 4-1 against one of the best players in the world [31]. Making Go "solved"
by AI in the sense that AI can match and be superior to the best humans in the Go domain.

3.2.3 Starcraft II & AlphaStar

After AlphaGo’s success, DeepMind went after the RTS genre, more specifically StarCraft II
(see section 3.1.2). DeepMind recognized StarCraft II as an environment that requires the
management of multiple agents in real time, making it a potential representation of com-
plex real-world problems. AlphaStar [82] is an advanced ML system created by DeepMind
designed to play StarCraft II.

On December 19th [3] AlphaStar was the first computer to beat a professional StarCraft II
player, the result was 5-0 in favor of AlphaStar against Team Liquid’s Grzegorz "MaNa"
Komincz which at the time was one of the best players in the world.
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Figure 3.5: AlphaStar vs "TLO" [76]

AlphaStar had multiple handicaps to make for competitive/realistic games, such as an
APM(actions per minute) limiter. A camera view limiter which only lets certain parts
of the map be viewed by the agent at a given time,similarly to a human. Aswell as a 200ms
request delay from choosen output of the action to the action being issued in the game.

3.3 Transformers in Reinforcement Learning

Transformer models have become the state-of-the-art when it comes to NLP, showing its
scalability by learning from large datasets. Researchers seek to explore its performance in
RL, by modeling environments as sequential data. Transformers have been experimented
with in RL with different algorithms. In figure 3.6 the history of transformers in RL can be
seen.

Figure 3.6: Architectures using transformers. [48]

This figure shows four different ideas implemented using transformers in RL, these ideas will
be explained in the upcoming subsections.

3.3.1 Representation learning

In representation learning a model is used to create a representation of the observation. The
idea is that the model can "understand" something about the environment such that it can
pick what information is most necessary to keep in the representation. As seen in figure 3.6,
this is most notably used by AlphaStar (see section 3.2.3).
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AlphaStar

AlphaStar uses transformers as one of the many ML algorithms inside it’s model. The full
AlphaStar model can be seen in figure 3.7. In this model MLP’s (Multilayer perceptrons) are
used to connect between the different modules. But the core of the model is a Deep LSTM
[35] (Long Short Term Memory) which takes input from: an Resnet [34] which encodes
the visual information, a Transformer which encodes unit information, and an MLP which
encodes information about units selected, and other simple values.

Figure 3.7: AlphaStar model. [82]

The transformer in this model is used to encode all Enitie data. Entitie data is the infor-
mation about a unit. In StarCraft a unit can be used to attack enemy units, harvesting
resourses and building, because of this a unit has alot of information which must be pro-
cessed. This transformer takes in the following entitie data(for each entitie up to a maximum
of 512 entities):

• Unit Type

• Owner

• Status

• Display type

• Cooldowns

• Attributes

• Unit atributtes

• Cargo

• Building status

• Resource status

• Order status

• Buff status

Because of the huge amount of data, a huge model is used containing a total of 139 million
weights [82]. Given this huge amount of weights, the model requires a lot of training.
AlphaStar solved this by creating the "League". The League is a system where agents with
different variables such as APM for example, or agents which trained on different human
player’s data can play against each other. The League can be seen in figure 3.8. On the left
an agent learns from some human data, then the agent plays against another agent chosen
by an algorithm. Both agents now can learn from playing against each other which will then
update their weights using RL and new agents will be created. The League also "Freezes"
agents (in blue), this is to keep diversity in the League. After a certain amount of iterations,
a model can be chosen by choosing the one which beats most of the other players in the
League.
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Figure 3.8: The AlphaStar League. [4]

3.3.2 Sequential decision-making

A RL environment can be thought of as a sequence by rewriting it as:

τ = (s1, a1, r1, s2, a2, r2, ..., sT , aT , RT )

This sequence can now be used to train a transformer, to predict what state, action or reward
and in the next step. However, this will not be able to predict the best actions that result
in higher rewards.

Decision Transformer

DT [19] solves sequence-modeling problems by conditioning a transformer model on returns-
to-go. In DT the sequence is rewritten as:

τ = (R̂1, s1, a1, R̂2, s2, a2, ..., R̂T , sT , aT ), where

R̂t =
T∑
i=t

ri

R̂t is called the Return-to-go where this value is the sum of all future rewards. Because
this value requires to know how the episode ends, this can only be trained offline. However,
this rewrite now connects the return-to-go to which actions should be taken, such that when
evaluating the model, if the initial return-to-go value is very high, the model has trained to
know what actions come after that. It also means that a sequence with high return-to-go at
the start is valuable information as it signifies being a sequence of actions that end in a high
return at the end of the sequence.

Training a DT model requires a dataset, as it is learning offline and not directly in the RL
environment. This dataset should contain good and bad samples, in order to model different
target reward values. The target reward value is used during evaluation, and decides what
reward value the agent should try to approximate, which makes it a parameter for how
optimal an agent is performing.
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Q-learning Decision Transformer

A limitation of DT is that it needs good data samples to model its behaviour on. This
means DT will perform poorly using only random data, but improve if the dataset includes
sequences that produce higher rewards, as it needs to learn explicitly from these. Yamagata
et al. [86] attempts to tackle this problem with Q-learning DT (QDT), using conservative
Q-learning (CQL) [44] to learn to estimate the lower bound of the reward function. The
framework augments a offline dataset by relabeling return-to-go values with on a values from
a learned reward function through CQL. Essentially, this algorithm re-estimates the value
of each action in a dataset, which improves the data quality. Results for QDT and DT
are shown in table 3.3. Comparing QDT to DT shows small improvements for some RL
environments, but not enough to consider it an overall improvement over DT.

3.3.3 World Model learning

In world model learning, an agent tries to learn how an environment changes in order to
create a model of the environment. The purpose of this model is to create a simplified ver-
sion of the environment that an agent can learn from in place of the actual environment.
This can benefit environments where observations are presented as RGB-images to reduce
the dimensionality and features of the input [41].

Model learning normally has two different parts; a model that predicts the next state, and
model that predicts the reward by doing an action in that state. By doing this the second
model can predict a reward for every action, and the highest reward can be chosen. This
idea is famously used in the Dreamer [33] algorithm, which learns a world model and then
learns by simulating the environment using imagination.

IRIS

Existing world models like Dreamer are sample inefficient, needing millions of game data
observations and taking days of computation time to train a state-of-the-art model [50] [33].
Improving sample efficiency is important to the progress of reinforcement learning as it can
drastically reduce training time and computational power required to train agents. This
problem is explored by Micheli et al. [50] with the IRIS model. The model is composed of
a discrete autoencoder and a Transformer. The discrete autoencoder [79] converts an input
image to-and-from tokens with discrete values, an encoder E : Rh×w×3 → {1, ..., N}K and
decoder D : {1, ..., N}K → Rh×w×3. This mechanism is trained on collected images from
a given environment. The transformer learns environment dynamics by taking a sequence
of tokens and actions (x0, a0, x1, a1, ..., xt, at) to model the probabilty of transition, reward
and episode termination. During each iteration, the next frame and action are added to the
sequence to autoregressively predict the probability distributions. The action and reward
predictions are based on the DreamerV2 [32] actor-critic model, where the objective is to
predict the reward for a given action and observations tokens.

IRIS improves on Dreamer by shortening training time by limiting data gathering. Dreamer
was trained on 200 million frames per environment [50], while IRIS trains using the Atari 100k
benchmark which only allow agents to do 100k actions per training iteration. Experiments
show that IRIS outperforms humans in 10 out of 26 Atari games, and on average outperforms
algorithms like SimPLe [40], CURL [46], DrQ [43] and SPR [66], and DreamerV3 in some
cases as shown in table 3.2. This shows that IRIS performs well even with limited datasets.
However, IRIS authors report 3.5 days of training per environment with 8 GPU’s [50, p. 21],
making the model costly to run on lesser hardware.
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Environment [10] Algorithms
IRIS [50] DreamerV3 [33]

Alien 420 959
Assault 1524 706
Asterix 854 932

BattleZone 13074 12250
Boxing 70 78

Breakout 84 31
Frostbite 259 909
Gopher 2236 3730

KungFuMaster 21760 21420
MsPacman 999 1327

Pong 15 18
Qbert 746 3405

RoadRunner 9615 15565
Seaquest 661 618

Table 3.2: Results as gathered reward for IRIS [50] and DreamerV3 [33] in a range of Atari games.
Best results for an environment are marked in bold.

3.3.4 Generalist agents

The idea of generalist agents follows the NLP domain and its success with GPT, where
huge amounts of data are used to create a LLM(Large language model). In RL the idea
is the same, where learning on a large dataset creates a general agent that only requires
small amount of fine-tuning to succeed in a specific environment. A good example of this is
Algorithm Distillation [47].

Algorithm Distillation

In Algorithm Distillation (AD) the idea as the name specifies, is to distill one or more
algorithms into one model. This can be done by generating a large dataset of one or more
RL algorithms containing:

D = {(s1, a1, r1, s2, a2, r2, ..., sT , aT , RT ), ...}

Now a Transformer can learn on this dataset using the loss function L(θ) below [47]. This
loss function trains the transformer based on what action is most probable to come next
based on what it has seen in the training set.

L(θ) = −
N∑

n=1

T−1∑
t=1

logPθ(A = a
(n)
t |h(n)

t−1, o
(n)
t )

3.3.5 Comparison of Deep Reinforcement Learning Algorithms

Table 3.3 compares DT, QDT, IRIS and DreamerV3 in Atari and MuJoCo [77] environments.
To summarize, DT performs better than QDT in MuJoCo with continuous actions, and
outperforming IRIS in Atari where there are discrete actions. However, as DT is reliant on
good data, one could argue that a lot of time was put into building high quality datasets
with sequences that produce high rewards. As Yamate et al. [86] reports, the authors of
QDT did not have access to the same dataset as DT, but the Q-learning integration does
not seem to improve on the DT model substantially. DT performs similarly to DreamerV3
in Atari tasks, however, as shown in table 3.2, DreamerV3 performs well in a wide range of
Atari tasks. DT was only evaluated on four Atari environments, which could be attributed
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to the fact that each environment requires its own dataset, and data gathering is time-
consuming. For this reason, DreamerV3 is considered a state-of-the-art model in RL, as it
outperforms algorithms like SimPLe, CURL, DrQ and SPR in a wide range of environments
[33]. However, DreamerV3 is not based on the Transformer architecture.

Environment Algorithms
DT [19] QDT [86] IRIS [50] DreamerV3 [33]

Breakout [10] 76.9 +- 27.3 - 83.7 31
Qbert [10] 2215.8 +- 1523.7 - 745.7 3405
Pong [10] 17.1 +- 2.9 - 14.6 18

Seaquest [10] 1129.3 +- 189.0 - 661.3 618
Hopper [77] 107.6 +- 1.8 66.5 +- 6.3 - -

HalfCheetah [77] 86.8 +- 1.3 42.4 +- 0.5 - -
Walker [77] 108.1 +- 0.2 67.1 +- 3.2 - -

Table 3.3: Average rewards for different Transformer based algorithms, comparing the highest
reported result for each environment. Best averages for a given environment are presented in bold.
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Chapter 4

Methods

The computer engineering and RL research done in this master’s thesis consists of the fol-
lowing:

• Development of RL framework to interact with DeepRTS

• Development of 4 RL environments in DeepRTS

• Development and testing of reward functions in DeepRTS

• Development, training and evaluation of intelligent agents, wherein:

– DDQN Agent
– DT Agent
– GADT Agent

• Building 12 different datasets for training DT Agents

This work is necessary to fully evaluate Transformer models and expand the research base
of the DeepRTS RL environment. As this is a comparative study and DeepRTS has little
existing research, this work requires multiple intelligent agents to be trained in multiple en-
vironments for them to be comparable.

This chapter presents details of the work done to test the hypotheses in section 1.2.2 and
achieve the goals as stated in section 1.2.1. This includes an overview of the project, a
description of the DeepRTS RL environments, and their configurations wherein. Then,
reward functions and OpenAI gym implementations developed to act in RL environments,
before describing work to create labeled data to train Transformer models. Finally, the novel
implementation GADT is introduced along with DT and DDQN agents.

4.0.1 Overview

Figure 4.1 shows an overview of how an agent acts in the DeepRTS environment, with the DT
agent as an example. Agents are reliant on signals to base their actions on, being observations
of the current and past game states and rewards for a given action. Observations in DeepRTS
are encoded as a state matrix, rewards as floating-point numbers, and actions as integers.
This game information is exposed through an OpenAI Gym [15] interface. For a given
timestep t, the DT agent observes past game information and predicts the next action. This
is an autoregressive process where the agent uses its own predictions to make subsequent
predictions. However, the DT agent has been trained using a static dataset in advance.
For a DDQN agent, the process is similar, apart from not using sequential information and
selecting actions
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Figure 4.1: Overview of the DeepRTS DT implementation, showing how an agent predicts its
actions.

4.1 DeepRTS

DeepRTS is a real-time strategy game made in C++, for the purpose of high-performance
RL [7]. DeepRTS is also exposed to Python using PyBind11, a library that binds C++ types
to Python, enabling Python development for C++ projects [84]. Because the Python code
is compiled using a C++ compiler, DeepRTS runs with high performance in C++, while
popular Deep Learning frameworks like Pytorch and Tensorflow can process data from Deep-
RTS in Python. As shown in section 3.1.4, DeepRTS can output up to 7 000 000 frames per
second in-game simulation, which outperforms similar RTS environments like MicroRTS and
TorchCraft. Furthermore, the goal of this thesis is to expand RL research using DeepRTS,
as there are only a handful of projects using it [9], [65].

Agents in DeepRTS are trained iteratively in episodes, which are isolated simulations of an
environment limited by a number of in-game ticks. When an episode has ended, metrics like
cumulative reward, number of actions and optimizer loss can be gathered and analyzed to
see if agents learn from their experiences.

4.1.1 Observation space

DeepRTS encodes game data into a 3-D matrix for the purpose of deep-learning [7, p. 5].
This matrix is rendered and changed every tick and is used as the observation input for deep-
learning algorithms presented in this thesis. Figure 4.2 illustrates the observation matrix and
its layers. For all experiments in this thesis each environment uses the same map with map-
size 10x10, but the implementation allows changing this map to any map that is available
in DeepRTS.
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Figure 4.2: 3-D matrix with DeepRTS game data, expanded on [7] in accordance with the DeepRTS
source code [6]. mXn is the size of the map.

4.1.2 Action Space

DeepRTS has a discrete action space A:

A = {
PreviousUnit ,NextUnit ,MoveLeft ,MoveRight ,MoveUp,MoveDown,
MoveUpLeft ,MoveUpRight ,MoveDownLeft ,MoveDownRight ,Attack ,
Harvest ,Build0 ,Build1 ,Build2 ,NoAction

}

Every 10 frames each player selects an action a ∈ A, because players in DeepRTS is limited
by a tick timer that ensures it takes 5-10 ticks for an action to be performed [7, p. 4]. To
reduce complexity, the Simple1v1 and Medium1v1 environments uses a subset action space
A1 = {MoveLeft ,MoveRight ,MoveUp,MoveDown,Attack ,NoAction}, A1 ⊂ A, while Har-
vest uses the full action space A.

This work omits using left-click and right-click actions, to reduce the complexity of the
learning environment. Right-click targets a tile for a selected unit to walk to, but this
means that the agent needs to wait for the unit to reach its goal before selecting a new
action. Having these two actions would drastically increase the number of actions, as it
would depend on the map size.

4.1.3 Game Logic

Based on the action space description, this section will present how an agent can use actions
to interact with the game environment.

25



Controlling Units

T = {PreviousUnit,NextUnit } , T ⊂ A toggles control of the players units. Moveable
units must first be targeted using one of these actions before they can be controlled man-
ually with movement controls. However, a unit may move and retaliate automatically if
attacked by an opposing unit.

Since all buildings are unmoveable, the player cannot use movement controls when targeting
a building. Instead, Town Hall and Barracks may be targeted using t ∈ T and be used to
construct units. The Farm unit does not construct any units but contributes to the player’s
food production metric, which controls how many moveable units a player can have.

Constructing Units

The subset B = {Build0, Build1, Build2 } , B ⊂ A contains the actions that build units and
buildings. The actions construct units based on which unit is already selected:

• Town Hall selected:

– Build0: Constructs a Peasant

• Peasant selected:

– Build0: Construct Town Hall

– Build1: Construct Farm

– Build2: Construct Barrack

• Barrack selected:

– Build0: Construct Footman

Figure 4.3 shows a map where players have built different units, in this case, barracks (3x3),
footmen (1x1), and farms (1x1).

Figure 4.3: An example map screenshot showing different units in DeepRTS.
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4.1.4 Improvements and Fixes

During testing, several bugs were found and fixed to improve RL development. Firstly, sev-
eral uninitialized integer variables in the DeepRTS source code made it impossible to build
multiple units. Each costs a certain amount of resources (gold, stone, or lumber), and when
building a unit the cost is subtracted from the player’s available resource pool. These costs
must be initialized to some value in the source code, however, each unit’s stone cost vari-
able was not initialized, leading to the player’s stone resource pool being subtracted by an
undefined value, which leads to having an undefined value of stone resources. This leads to
unexpected behaviour such as not being able to build units that cost stone. This was fixed
by properly initializing the stone cost of each unit to its intended value [26].

Another issue was caused by uninitialized values in the state array in DeepRTS, which
encodes game data as explained in section 4.1.1. The state array used during training caused
the calculated Q-values and action predictions to be undefined, making learning impossible
because the agent learned to predict undefined values. This issue was solved by initializing
all values in the state array at the start of each game to -1, as this value is never used to
represent the game state and works as a neutral value.

Figure 4.4: The game state array in a Python debugger. Note the min and max values, showing
that the array contains undefined values.

4.1.5 Environments

This work includes the development of DeepRTS environments to train agents for specific
tasks. Four different environments were created and evaluated for two primary reasons.
The first reason pertains to speed, where a simpler environment with a smaller action space
and reduced randomness was utilized. This allowed models to achieve noticeable results
with minimal training time, facilitating the evaluation of numerous models within a short
duration. Subsequently, the second reason involved scalability. The environments were
scaled up to include larger action spaces and increased randomness, enabling the assessment
of model performance in handling higher levels of randomness and expanded action spaces.
This thesis presents the following four environments in DeepRTS:

• Player-versus-player (PVP) environments

– Simple1v1
– Random1v1
– Full1v1

• Harvest

The three PVP environments consist of two players, where an RL agents controls one of them.
PVP environments are designed for agents to learn how to attack and find the shortest path to

27



an enemy to defeat it. The next environment is Harvest, which is a single-player environment.
Both Harvest and Full1v1 focus on rewarding resource gathering and constructing buildings,
being an essential part of any DeepRTS game. Player0 is controlled by an RL agent.

Max Episode Lengths

Each episode in an environment is ended when one player defeats the other player, or when
the number of game ticks reaches a certain limit. For Simple1v1 and Random1v1, the max-
imum episode length is 500 ticks. This is because tasks are relatively easy and specific, and
testing shows that an agent can defeat the enemy in as low as 90-100 ticks. However, a
higher max game tick count allows the agent to explore the observation space further to
learn from previously unexplored observations.

The max length for Harvest Full1v1 is 2000 ticks. Tasks in these environments are more com-
plex and have multiple steps to complete, which means the agent requires more exploration
as it is allowed to use the entire action space with access to more game mechanics.

Simple1v1

Simple1v1 consists of two players, where one can move freely and the other cannot initiate
actions. Hence, the RL agent controls the moveable player Player0, and the goal is to
defeat the other player Player1 by attacking it repeatedly. Since Player1 cannot move,
this essentially turns the game into a fully visible maze, where the RL agent must move to
the correct tile using the shortest path to win the game. However, Player1 may respond
to attacks and move if the Player0 stops its attacks. This makes it important to attack
repeatedly, as this will result in reaching a terminal state, where the player who attacks
repeatedly first wins.

Random1v1

Random1v1 is similar to Simple1v1, where the difference is that the RL agent plays against
a random player. The environment also changes in that it has a moving target, and the
agent must learn how to find the target and defeat it. Since actions happen in real-time and
the players move at the same speed, the agent must find a way to corner the enemy and take
advantage of the randomness of the opponent.

Full1v1

Players in Full1v1 are able to use the entire action space A (see section 4.1.2), which enables
players to construct buildings and units and toggle unit control. Each player starts with the
same amount of resources, 5000 credits each of gold, lumber, and stone. This makes this
environment more complex, as it simulates a full RTS game. Players can play more defensive
by constructing units to gain an advantage.

Harvest

The Harvest environment centers around maximizing the number of harvested resources
in a game. The environment is populated by a single player that is controlled by an RL
agent. Each moveable unit can carry a total of 10 resources. The unit must then offload the
resources in a Town Hall building, so it can gather more resources. The optimal strategy is
then to build a Town Hall, build as many units as possible, and harvest different resources
simultaneously.
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4.2 Reward functions

The output of a reward function provides a measure of the fitness of an agent’s action in an
environment. The goal of an agent is to maximize this function and hence, it is essential
to how an agent learns behaviour in an environment. By learning to maximize the reward
function, the agent learns to perform optimally in an environment.

Reward functions can be designed to match the goal in each environment. Reward functions
in PVP environments must reward defeating the opposing player as quickly as possible,
while the Harvest environment focuses on maximizing gathered resources. Some rewards are
given every tick, while others are given once each time a specific event occurs, such as when
building a unit or attacking.

4.2.1 PVP Rewards

PVP rewards are centered around maximizing speed and efficiency, defeating the opposite
player in as few game ticks as possible. To do this, the agent has to walk toward the enemy
and attack it when it is one tile away from it. Figure 4.5 shows the first graphical frame of a
DeepRTS game. The players always start in the same position and may walk freely to any
tile that is not a building or a resource, eg. trees or gold. The goal of the PVP environments
is then to find the shortest path to the enemy and attack it when close.

Figure 4.5: The first frame of a DeepRTS game.

Algorithm 1 shows the reward function for Simple1v1 and Random1v1. The function checks
the game state every tick, and outputs penalties of -1 most of the time, as the rewards are
sparse and handed out when certain game events occur. The first condition is to check if
the agent has won the game, which is done by repeatedly attacking the opponent. Here,
the reward of 10000 is discounted by the number of current game ticks. This ensures that
this reward is higher towards the start of the game and decreases as the game goes on, in
an attempt to provide the agent with information about the importance of speed, as it will
receive more reward if fewer game ticks have passed when initiating attacks on the enemy.
Because the victory event can only occur once per episode by doing enough damage to the
enemy, the reward value for this event is the highest. On the contrary to victory, the check
that the agent has been defeated will penalize the agent higher later on in a game rather
than earlier. This is to penalize the agent more if it does not find the shortest path and does
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not win the game. However, if it does find the shortest path and still loses the game the
penalty is lowered, as it completed the shortest path objective. Finally, the agents receive a
reward when it is attacking the enemy, also discounted by game ticks. This event can occur
multiple times during an episode, which is why the reward value is lower.

Algorithm 1 Simple1v1 and Random1v1 PVP reward function
1: if player0_won then
2: return 10000/ticks
3: if player0_defeat then
4: return -0.001*ticks
5: if player0_did_damage then
6: return 1000/ticks
7: return -1

The reward values are chosen to weigh the fitness of an action relative to each other. Values
are also chosen with respect to the maximum episode length for the environments. Because
rewards are sparse and handed out only during certain events, the -1 penalty per tick provides
information to the agent that it needs to minimize how many actions it uses and how many
episode ticks it uses, to ensure it receives as few penalties as possible.
Full1v1 expands on Algorithm 1 by also including rewards for constructing units. The reward
function for Full1v1 is shown in Algorithm 2. Rewarding construction is done by comparing
the player state between episode ticks, to see if the number of units has increased. Some
buildings and units are more important than others, based on their game features. The Farm
building increases movable unit capacity but is not as important as it does not produce any
units by itself. Instead, the reward for building Town Hall and Barrack buildings is higher
because their purpose is to construct movable units. The most valuable unit is the Footman
which deals the most damage per attack, and constructing such a unit is also rewarded
greatly. can Finally, the player receives a reward based on the PVP reward function as
shown in Algorithm 1.

Algorithm 2 Full1v1 reward function
1: player = player0ticks
2: previous_player = player0ticks−1

3: if player.num_farm > previous_player.num_farm then
4: reward += 20
5: if player.num_town_hall > previous_player.num_town_hall then
6: reward += 50
7: if player.num_peasant > previous_player.num_peasant then
8: reward += 50
9: if player.num_barrack > previous_player.num_barrack then

10: reward += 100
11: if player.num_footman > previous_player.num_footman then
12: reward += 100
13: reward += simple_pvp_reward() ▷ see Algorithm 1
14: return reward

4.2.2 Harvest Reward

The reward function for the Harvest environment is shown in Algorithm 3. The function
rewards harvesting and building units that increase harvesting capacity. This is done by
comparing the player state between game ticks, to see if the number of gathered resources
has increased. This environment allows for multiple units, and the reward function is de-
signed to fit this as a sum of multiple rewards for different events. Because rewards and
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penalties are less sparse because there are more actions and game mechanics enabled, re-
wards are not discounted by game ticks or constant negative penalties.

To provide the agent with penalties while no reward events are occurring, a penalty based
on current episode ticks is given every tick. This penalty increases over time, and the agent
can counteract this by gathering resources continuously. The next penalty condition is pe-
nalizing the agent if the current targeted unit is a building. This is to penalize the agent
for not moving units around, and also because buildings cannot harvest resources. Due to
DeepRTS’s targeting system, up to one unit or building can be targeted to use its abilities.
After a player has targeted a building such as a Town Hall, the player can build units using
actions. However, the player can not move other units around when targeting a building,
which is crucial to resource gathering.

Next, the agent is rewarded equally per resource gathered per tick. In an ideal scenario, the
agent can order its units to gather a type of resource each, which will maximize rewards for
harvesting. Next, the agent is rewarded if it builds a Town Hall or a Farm. Town Halls are
rewarded more than Farms as it lets the agent construct movable units.

Algorithm 3 Harvest reward function
1: player = player0ticks
2: previous_player = player0ticks−1

3: reward = -ticks/max_episode_ticks
4: if player.targeted_unit.is_building == False then
5: reward -= 1
6: if player.stone > previous_player.stone then
7: reward += 10
8: if player.gold > previous_player.gold then
9: reward += 10

10: if player.lumber > previous_player.lumber then
11: reward += 10
12: if player.num_town_hall > previous_player.num_town_hall then
13: reward += 20
14: if player.num_farm > previous_player.num_farm then
15: reward += 1
16: if player.num_peasant > previous_player.num_peasant then
17: reward += 10
18: return reward

4.3 Implementation

In figure 4.6 an overview of the code implementation can be seen. The main.py file has the
responsibility of connecting a gym and an agent depending on what is chosen, this happens
by using a config.json file.

4.3.1 Gym implementation

Environments are implemented as Gyms using the OpenAI Gym library for Python. Each
gym environment inherits from a generic custom Gym class, which is shown in listing 1. The
Simple1v1 child class contains environment-specific configurations, such as the action space,
game configuration, and reward function. The function step defines what happens every
game tick, where the agent and optional second player perform actions and calculates reward
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Figure 4.6: Overview of implementation.

based on the agent’s actions per tick. This pattern is used to implement all environments
from section 4.1.5, and specifications for each environment can be found in the appendices.

32



Listing 1 Generic Gym Inteface, and the Simple1v1 class. Some code was omitted for simplicity.

1 from DeepRTS import Engine, Constants
2 import gym
3 class CustomGym(gym.Env):
4 def __init__(self, max_episode_steps, shape, game_map, config):
5 self.max_episode_steps = max_episode_steps
6 self.elapsed_steps = None
7

8 self.game: Engine.Game = Engine.Game(game_map, config)
9 self.player0: Engine.Player = self.game.add_player()

10 self.game.start()
11 self.previousPlayer0 = PlayerState(self.player0)
12

13 class Simple1v1Gym(CustomGym):
14 def __init__(self, max_episode_steps, shape):
15 engineConfig: Engine.Config = Engine.Config().defaults()
16 engineConfig.set_auto_attack(True)
17

18 self.action_space = [3, 4, 5, 6, 11, 16] # move and attack simple
19

20 super().__init__(max_episode_steps, shape, MAP, engineConfig) #init CustomGym
21

22 self.player1: Engine.Player = self.game.add_player()
23

24 def step(self, actionIndex):
25 self.elapsed_steps += 1
26 self.action = actionIndex
27

28 self.player0.do_action(self.action_space[actionIndex])
29 self.player1.do_action(16) # do nothing
30 self.game.update()
31

32 reward = pvp_reward()
33

34 #return obs, reward, is_done, max_steps_reached, info
35 terminal = self.game.is_terminal()
36 return self._get_obs(), reward, terminal, False, self._get_info()

Gym environments enable a simple formulation of the training loop, where an agent interacts
with the environment through the Gym interface to learn policies. A simplified version of
the DDQN training loop is shown in listing 2.
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Listing 2 Generic Agent Training loop using Gym. Some code has been omitted for simplicity.

1 for e in range(epochs):
2 observation, info = gym.reset()
3 ticks = 0
4 done = False
5 truncated = False
6 while not done and not truncated:
7 ticks += 1
8

9 actionIndex, q_values = agent.act(observation)
10

11 next_observation, reward, done, truncated, info = gym.step(actionIndex)
12

13 game_finished = done or truncated
14 agent.cache(observation, next_observation, actionIndex, reward, game_finished)
15

16 # Learn
17 q, loss = agent.learn()
18

19 observation = next_observation
20 gym.close()

Environment Wrappers

OpenAI Gym provides various wrappers to alter output data during training [55]. For this
work, the following wrappers are used:

• Skip Frame (n = 10): Each tick skip n frames, output last observation

• Time Limit: output a "game over" signal if the running environment has reached n
number of ticks

• DDQN only:

– Frame Stack (n = 3): Each tick take n observations and concatenate them
– Transform Observation: For each value in observation, perform the following trans-

formation to normalize the observation: x/20

4.3.2 Agent implementation

The agent implementation in this work specifically for DT utilizes the DT model from the
Transformers library by Hugging Face [24]. This implementation is based on the original DT
paper [19] with a small difference. In the original DT paper a minGPT by Karpathy [42] is
used, while the huggingface implementation uses GPT2 [62].

4.4 Datasets

Unlike online RL where an agent learns to estimate rewards from direct experience in the
environment, DT learns offline using game data D, with n number of games with m > 0
timesteps:

D = {G1, G2, ...Gn }

Gn = { (s1, a1, t1, r1), (s2, a2, t2, r2), ...(sm, am, tm, rm) }
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This data is generated using various policies for picking actions, namely random and using
a trained DDQN agent to make actions. Each game is generated using the same policy, to
make the following datasets:

• Random: 100% games with randomly generated actions

• Pretrained: 100% games with actions generated by a trained DDQN agent

• Mix: 50% Random games and 50% DDQN games

These datasets were used to explore if DT can learn the best sequence of actions from a mix
of good and subpar actions. Because of the different reward functions and action spaces of
the environments presented in section 4.1.5, each environment requires three datasets for a
total of 12 different datasets. Furthermore, each dataset contains 1000 games.

4.5 Baseline

The DDQN agent is an online RL agent and does not rely on a static dataset. For this work,
the DDQN agent is used as a baseline and basis for pretrained DT datasets, trained in each
of the four environments.

4.5.1 Double Deep Q-Network

The DDQN agent used the epsilon-greedy strategy [73] to alternate between exploration and
exploitation in the environment. The agent collects experience in a replay buffer with a
max size, and samples mini-batches of replays to learn q-values for each action in the action
space. The architecture for the DDQN model is shown in figure 4.7. The last output is a
vector where N is the length of the given action space, see section 4.1.2.

Figure 4.7: The architecture for the DDQN model used in this work

4.6 Transformers

Two Transformer algorithms are used to train agents to play DeepRTS in this work; DT
and GADT. GADT is a novel implementation improving on the existing DT. All algorithms
and models are implemented in Pytorch, the machine learning framework for Python [56].
Furthermore, hyperparameters applied to the different models are important for the repro-
duction of results and can be found in appendix A.3.
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4.6.1 Decision Transformer

The architecture of the decision transformer can be seen in figure 4.8.

Figure 4.8: DT architecture [19]

DT learns DeepRTS through offline RL, using various static datasets and evaluating per-
formance after training. This thesis explores how DT manages to learn using datasets with
varying degrees of data quality, as presented in section 4.4.

DT as described by Chen et al. [19] samples mini-batches of sequence length K with rewards-
to-go, states, timesteps, and actions. The agent accepts 4 sequences with length batch_size,
one for each token states, actions, timesteps, and rewards.

Listing 3 DT Training loop. Some code has been omitted for simplicity.

1 for e in range(epochs):
2 agent.net.train()
3 for game in dataLoader:
4 batches = get_batches(game, batch_size=batch_size)
5 for i in range(len(batches[0])):
6 observations = batches[0][i]
7 actions = batches[1][i]
8 timesteps = batches[2][i]
9 rewards = batches[3][i]

10

11 loss, q = agent.train(observations, actions, timesteps, rewards)
12

13 agent.net.eval()
14 # after training, evaluate (code omitted)
15

Before the sequence is forwarded into the GPT-model, rewards-to-go are calculated. The loss
function as described by Chen et al. [19] is used, where loss = mean(( ˆactions− actions)2).
Adding state and reward prediction loss calculation was also tested, however, this did not
result in improved performance.

4.6.2 Genetic Algorithm Decision Transformer

Using the model from DT, this thesis proposes changes to DT by implementing elements
of online RL and data generation, called Genetic Algorithm DT (GADT). While DT, as
presented by Chen et al. [19] learns from a static dataset, GADT does not rely on a predefined
dataset or pretrained models as it generates data itself and learns from it. Algorithm 4 shows
the implementation of GADT. Games are generated and the best games are picked based on
total cumulative reward in each game iteration. The DT itself acts as the mutator from GA,
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as it generates new games based on high-quality data. This is done in an effort to improve
the quality of data that the DT model is exposed to in order to find the sequences of actions
that result in high rewards. In addition, this technique removes the dataset dependency of
the DT model.
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Algorithm 4 GADT

1 epsilon_rate , epochs , dt_epochs , max_best_data = int
2 max_best_data_decrease_factor , epsilon_action_decrease_rate = float
3 best_data = []
4 for e in range(epochs):
5 generated_data = []
6
7 """
8 Generate data
9 """

10 DecisionTransformer.eval()
11 epsilon = 1 - (min(e*epsilon_rate , epochs)/epochs)
12
13 for epi in range(episodes):
14 target_return = 100 # max return value
15 R, s, a, t, done = [target_return], [gym.reset()], [], [1], False
16
17 while not done:
18 # epsilon -greedy strategy
19 if random.random () < epsilon or e == 0:
20 action = randomAction ()
21 else:
22 a_preds = DecisionTransformer(R, s, a, t)[-1]
23 action = argmax(a_preds)
24
25 # decrease randomness
26 epsilon *= epsilon_action_decrease_rate
27
28 next_s , r, done , info = gym.step(actionIndex)
29
30 # update sequences
31 R = R + [R[-1] - r]
32 s, a, t = s + [new_s], a + [action], t + [t[-1] + 1]
33
34 generated_data = generated_data + [[R, s, a, t]] # save game data
35
36
37 """
38 Genetic algorithm
39 """
40 # sort all games based on total reward , in descending order
41 best_data.sort(key=getSumOfGame , reverse=True)
42 # get total reward
43 old_reward_records = [getSumOfGame(game) for game in best_data]
44
45 best_data = best_data + generated_data
46 best_data.sort(key=getSumOfGame , reverse=True)
47
48 # get only max_best_data number of games , ignore others
49 best_data = best_data [0: max_best_data]
50 new_reward_records = [getSumOfGame(game) for game in best_data]
51
52 # the model hasnt produced any better game
53 if old_reward_records == new_reward_records:
54 max_best_data = int(max_best_data * max_best_data_decrease_factor)
55
56 if max_best_data < 2:
57 exit() # the model cant learn much more
58 else:
59 best_data = best_data [0: max_best_data] # deacrease best_data size
60
61 """
62 Train agent
63 """
64 DecisionTransformer.train()
65 dataset = Dataset(best_data)
66 for _ in dt_epochs:
67 for (R, s, a, t) in dataset: # dims: (batch_size , K, dim)
68 a_preds = DecisionTransformer(R, s, a, t)
69 loss = mean(( a_preds - a)**2) # MSE
70 optimizer.zero_grad (); loss.backward (); optimizer.step()
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Chapter 5

Results & Discussion

To evaluate DeepRTS and the implemented models, we present experiments for the four
DeepRTS environments. This chapter presents the results for experiments using random,
DDQN, DT and GADT agents in the DeepRTS environments Simple1v1, Random1v1, Full1v1
and Harvest.

To train and evaluate agents a NVIDIA A100 GPU with 8 GB VRAM and a NVIDIA
RTX 3080 10GB VRAM GPU was used. Table 5.3 shows the results for DT using various
datasets, and table 5.6 shows the best results for Random, DDQN, DT and GADT agents.
Furthermore, evaluation metrics were gathered from 1000 episodes across three seeds with
each model, taking the average reward and deviation as a metric for performance.

5.1 Results

5.1.1 Experiment 0: Baselines

To be able to compare DT and GADT and generate datasets, we train Random and DDQN
agents in all DeepRTS environments. The random agent uses a random policy to generate
actions, and is meant to show the lower bound of the reward function as acting randomly
in an environment will generally produce sub-optimal behaviour. The DDQN agent is vital
as it can learn to approximate optimal behaviour in an environment, and hence produce
data with high reward and good action sequences. By training a DDQN agent we achieve a
baseline model that also can be used to generate datasets for training DT and GADT.

Random

Table 5.1 shows results for a Random agent in the four DeepRTS environments. Tasks in
DeepRTS are complex and rewards are sparse, meaning agents must complete sequences of
tasks to gain reward. Because of this, the random agent has bad performance and its purpose
is to show the lower bound of the reward function.

Environment Random
Simple1v1 -47.93 ± 0.136
Random1v1 -40.29 ± 0.498
Full1v1 18.17 ± 1.658
Harvest -147.1 ± 1.884

Table 5.1: Average reward and deviation for the random agent, evaluated for 1000 episodes across
three seeds.
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Double Deep Q-learning Network agent

The DDQN agent is used as a baseline for performance in our four DeepRTS environments.
It also serves as a way to generate high-quality data, that can be extracted as a static dataset
to train the DT agent on. Its goal is to be better than the random agent by producing data
with a higher total reward. As shown in table 5.2, DDQN outperforms the random agent
in 3 of four environments. In the Harvest environment DDQN is worse than random, which
might be attributed to a reward function that is difficult to learn or model overfitting.

Environment DDQN
Simple1v1 28.89 ± 1.758
Random1v1 54.37 ± 1.236
Full1v1 28.01 ± 0.902
Harvest -295.6 ± 13.98

Table 5.2: Average reward and deviation for the DDQN agent, evaluated for 1000 episodes across
three seeds.

5.1.2 Experiment 1: Training DT on various data

DT was trained using Random, Pretrained, and Mixed datasets as explained in section 4.4,
three datasets for each of the four environments presented in section 4.1.5. The motivation
for this experiment is to see if DT learns the optimal actions from various datasets. The
results for DT in terms of reward are shown in table 5.3. DT performs best using pretrained
data in Simple1v1 and Random1v1, benefiting from replays from a pretrained DDQN agent.
When it comes to Full1v1 the DT model performed best after training on random data,
which could indicate that the pretrained DDQN has been overfitted, or has not explored the
environment enough to find optimal behaviour.

Dataset Environment DT

Random

Simple1v1 -50
Random1v1 -44.65 ± 0.416

Full1v1 73.53 ± 1.679
Harvest -142.0 ± 2.657

Mixed

Simple1v1 29.29 ± 12.04
Random1v1 51.06 ± 0.892

Full1v1 -35.28 ± 2.096
Harvest -44.01 ± 61.26

Pretrained

Simple1v1 46.12 ± 0.227
Random1v1 64.04 ± 0.688

Full1v1 -2.781 ± 4.634
Harvest -71.57 ± 37.29

Table 5.3: Highest average reward and deviation for DT in DeepRTS, using three different datasets.
Models were evaluated for 1000 epochs across three seeds. The highest reward for a given environ-
ment is marked with bold.
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5.1.3 Experiment 2: Improving results by increasing sequence length

Training DT on Simple1v1 using the random dataset resulted in subpar performance with
low sequence lengths. Sequence lengths define how many tokens the DT model takes as input
to the neural network to make action predictions. Increasing sequence lengths also increases
memory consumption, but this means the neural network has more information about a
game when making predictions. By increasing the sequence length, we saw improvements in
learning from random data, as random game data had longer game lengths. Having longer
sequence lengths means the model has more context of observation, action, and reward-to-go
to base its predictions on. The improvements are shown in figures 5.1 and 5.2, where the
reward plot shows increases from an average of -48.5 to -35 when increasing sequence lengths.

(a) Loss for low sequence length (b) Loss for increased sequence length

Figure 5.1: Losses for training DT in Simple1v1 using Random dataset with various sequence
lengths.

(a) Reward plot with low sequence length (b) Reward plot with increased sequence length

Figure 5.2: Reward for training DT in Simple1v1 using Random dataset with various sequence
lengths.

5.1.4 Experiment 3: GADT

In the figures below, plots for the different environments using GADT can be seen. The
oscillation in the reward plots is the reset of the epsilon value after the model has trained.
This makes it so the model starts making random actions, as this value decreases again the
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model makes most of the actions and the rewards go up. All except for Random1v1 reward
plots (see figure 5.4) increase over epochs, the reason for this will be discussed in section
5.2.1.

The loss plots in all environments seem to decrease rather rapidly and then slowly stagnate
at close to zero. This means the model learns to predict the following action given an return-
to-go value. The loss plots have different epoch numbers when compared to the reward plots
because the loss data is recorded when the agent is offline learning. While the reward data
is the reward for each epoch during the generation/training loop explained in section 4.6.2.

(a) Moving average of 100 previous total reward per epoch (b) Moving average of 100 previous total loss per epoch

Figure 5.3: Simple1v1 plots

(a) Moving average of 100 previous total reward per epoch (b) Moving average of 100 previous total loss per epoch

Figure 5.4: Random1v1 plots
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(a) Moving average of 100 previous total reward per epoch (b) Moving average of 100 previous total loss per epoch

Figure 5.5: Full1v1 plots

(a) Moving average of 100 previous total reward per epoch (b) Moving average of 100 previous total loss per epoch

Figure 5.6: Harvest plots

5.1.5 Win rate in PVP environments

To compare our results to existing research, we look at work from Şahin and Yücesoy [65],
which also evaluates multiple agents in DeepRTS. To this end, we present win rates in Sim-
ple1v1, Random1v1 and Full1v1 environments. The win rate is evaluated by running 1000
episodes across three seeds, and recording how many times the agent defeated the oppo-
site player. However, the values for our models and [65], as we use different environments.
There can be many differences in configurations, such as different action spaces, observation
spaces and reward functions. Nonetheless, The average win rate for DDQN, DT and GADT
combined is slightly higher than the combined win rate of [65] by 0.15%.
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Agent Win Rate Averages across experiments
DDQN Simple1v1 (Ours) 0.7

0.56

DDQN Random1v1 (Ours) 0.78
DDQN Full1v1 (Ours) 0.13
DT Simple1v1 (Ours) 0.82

DT Random1v1 (Ours) 0.94
DT Full1v1 (Ours) 0.28

GADT Simple1v1 (Ours) 0.83
GADT Random1v1 (Ours) 0.27

GADT Full1v1 (Ours) 0.32
PPO [65] 0.29

0.545

Sunrise [65] 0.65
Curl [65] 0.86

Rainbow [65] 0.71
Rule-based Offensive [65] 0.46
Rule-based Defensive [65] 0.3

Table 5.4: Win rate for our own models versus [65], across different environments. Results are not
directly comparable, as different environments with different objectives were used.

5.1.6 Harvest rate

Since Harvest does not have a PVP aspect, the best measure for performance is resources
harvested. Table 5.5 shows results for harvest rates for DDQN, DT and GADT. The rate
shows the average number of resources that is gathered per episode using the given model.
To compare results, we looked at work from [9], which performs experiments where the
objective is to gather as many resources as possible. However, the reported results are not
enough to compare to our work, as the authors only report average rewards and not resources
gathered. Furthermore, their experiments were done using different limits in episode length.

Agent Harvest Rate
DDQN 1.2 ± 0.14

DT 19.53 ± 8.048
GADT 71.99 ± 6.402

Table 5.5: Harvest rate for DDQN, DT and GADT. Results were gathered from 1000 episodes across
three seeds. Highest value is marked in bold.

5.1.7 Summary

Table 5.6 summarizes the performance of all agents in DeepRTS. Results show that DT
outperforms random and DDQN agents in all four environments. While the data that DT
is trained on comes from random and DDQN agents, it still increases the average reward
substantially compared to them, which shows its ability to learn the best sequences from a
dataset of both sub-optimal and high-quality data.

For our novel implementation GADT, it outperforms all agents in three of four environments.
Even without a static dataset, it is able to build its own dataset and learn from it. However,
GADT performs worse tha both DDQN and DT in Random1v1, and possible reasons for
this are discussed in section 5.2.1.
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Environment Random DDQN DT GADT (Ours)
Simple1v1 -47.93 ± 0.136 28.89 ± 1.758 46.12 ± 0.227 63.20 ± 0.852
Random1v1 -40.29 ± 0.498 54.37 ± 1.236 64.04 ± 0.688 -2.296 ± 0.886

Full1v1 18.17 ± 1.658 28.01 ± 0.902 73.53 ± 1.679 123.3 ± 3.377
Harvest -147.1 ± 1.884 -295.6 ± 13.98 -44.01 ± 61.26 280.5 ± 63.24
Averages -54.29 -46.08 34.92 116.2

Table 5.6: Highest reward in each of the four environments, regardless of dataset. Best results are
marked in bold.

5.2 Discussion

From the presented results we see that both DT and GADT perform well in DeepRTS. This
chapter is a discussion of the results shown in the previous section, including rationales for
the results and possibilities for future work.

5.2.1 Genetic Algorithm Decision Transformer results

GADT shows good results on Simple1v1, Full1v1 and Harvest, while showing subpar results
in Random1v1. The reason for this can be explained by understanding the genetic algorithm
part of GADT, when the games that DT will learn on are being chosen, only the games with
the highest total reward are used in the dataset. This creates a bias such that games where
the enemy agent has made mistakes (and therefore given our agent a better reward) are
chosen to train on. This makes the model learn what to do when the random agent does
something bad, but the model will not learn what to do in other situations. This could
be potentially solved by feeding poor data to the agent or by simply training on a bigger
percentage of the data generated.

5.2.2 Data Dependency

DT as presented by Chen et al. [19] uses predefined datasets for RL environments like the
Atari benchmark [10] and D4RL [28]. For DeepRTS we must rely on randomly generated data
and data from pretrained RL agents, as human replay data would be too time consuming to
record. However, we used this fact to implement GADT, which does not rely on any dataset
before training starts, as it generates and improves the data by exploring the environment.
This data dependency is both a blessing and a curse, depending on if existing datasets are
available.

5.2.3 Decision Transformer scalability

DT has great scalability potential, but this also means a lot of data is required. Data also
needs to show good examples of gameplay for the model to learn how to play optimally. DT
cannot stitch multiple sequences together to learn from both, and requires exact data samples
that achieves the desired reward. This means it performs worse with smaller datasets where
the observation space has been less explored. This is shown with DT trained on just random
data, where it the data quality is not enough to achieve optimal behaviour. Had there been
more data in the random dataset, the chance that the dataset contains a sequence with high
reward would increase, which the DT model can learn from. With our proposal of GADT,
we can train agents using smaller datasets which saves resources and computing power.

5.2.4 Using DeepRTS for reinforcement learning research

DeepRTS is a high-performance RL environment that is customizable and easily accessible
through Python bindings. As explained in section 3.1.4 DeepRTS outperforms state-of-the-
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art RTS environments like MicroRTS, which seemed impressive and a perfect fit for this
thesis. However, the environment has not been extensively tested for RL research, and
several bugs caused unexpected behaviour during agent training. After fixing these issues
as explained in section 4.1.4, we found DeepRTS to provide everything we needed for this
thesis. High FPS in headless mode made it easy and fast to test reward functions, game
mechanics, and how models reacted to changes in hyperparameters. In addition, we could
create our own tasks and environments in DeepRTS due to its configurability, which meant
we could train agents to learn specific parts of the game.

5.2.5 Hypothesis Review

Looking back at our hypotheses proposed in section 1.2.2, we can now evaluate them based
on the results obtained from our experiments.

• Hypothesis 1: A DT agent will outperform a DDQN agent in terms of total reward
in DeepRTS
Our results in Table 5.6 confirm this hypothesis. DT consistently outperforms both
random and DDQN agents in all four environments. The average total rewards achieved
by DT are substantially higher compared to the other agents.

• Hypothesis 2: A DT agent will learn the best sequences of actions from a dataset
with mixed policies for action generation, and outperform a DQN agent in terms of
cumulative reward in DeepRTS
According to table 5.3 DT learns best from good pretrained data and as (mentioned in
the hypothesis above), will outperform DDQN.

• Hypothesis 3: Training a DT using only randomly generated actions will outperform
a random agent in terms of reward
This can be checked by comparing table 5.3 and table 5.6. It seems that although DT
will consistently outperform a random agent in all four environments by training with
random data, the improvement is negligible.

• Hypothesis 4: Gathering game data using the Genetic Algorithm and using the
epsilon-greedy strategy will improve on Decision Transformer and allow an agent to
explore the environment and avoid dependencies on labeled data
According to table 5.3, GADT managed to outperform three out of the four environ-
ments, when compared to DT and DDQN.

• Hypothesis 5: Decision Transformer will be dependent on sequence length for per-
formance during training
In figure 5.2 the reward is almost doubled in all epochs by just using a higher sequence
length as input to DT, this was highly expected, as the higher the sequence length, the
more information the DT has action per prediction.

Overall, our hypotheses were largely confirmed positively by the experimental results. DT
demonstrated its superiority over random and DDQN agents, while GADT showcased promis-
ing performance, outperforming other agents in most environments. However, DT struggles
to learn from sub-optimal data, which was not predicted.

5.3 Future work

As we near the conclusion of our research, we present proposals to further improve agent
performance, data quality and our DeepRTS environments.
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5.3.1 Data quality

A lot of improvements could be made to the data used to train DT. Data was generated
randomly and through a pretrained DDQN agent, and the DT model would improve a lot if
the pretrained agent performed better in terms of reward. This would mean that the data
that DT trains on contains games where the cumulative reward is higher, and therefore learn
which actions result in the highest reward. Improving the pretrained agent boils down to
improving its neural network and tuning hyperparameters, or changing the action space to
make learning easier.

5.3.2 Data gathering

Another improvement is to increase dataset sizes. DT and other Transformer models require
labeled data to learn specific policies, and DeepRTS does not have publicly available datasets
for the game and as such, a lot of time was spent on generating and improving data to in turn
improve the supervised training of the Transformer models. Furthermore, as a contribution
to the DeepRTS research environment the data used in this work is made available open-
source, see appendix A.1. We invite fellow AI researchers and gamers to contribute to data
gathering by playing the game and training RL agents to play DeepRTS and recording games
as labeled data, as this would greatly improve the corpus of data for this RL environment.

5.3.3 Increasing Action Space

DeepRTS supports more complex actions like selecting and issuing commands to units
through left and right-clicking map tiles. These actions were omitted in this work, to keep
the action space limited to single actions that affect the environment directly. However, us-
ing left and right-click actions could make the environment more interactive, as it allows for
an agent to issue automatic commands like attacking a specific unit or harvesting a specific
resource.

Macro actions

Implementing command actions could be done by introducing macro actions, where an action
in the action space performs a sequence of actions. For example, a macro action "Build
peasant" could be done by performing the following actions in order:

1. Select Town Hall (build Town Hall if not built)

2. Build Peasant

3. Select Peasant unit

Using the current DeepRTS framework, this sequence is more difficult to do as it requires
sequential action-making, where the agent has to either select the correct tile for the Town
Hall or cycle through each unit until it has targeted the Town Hall. Then, the agent has to
select the correct build action, before selecting the peasant unit.

The agent could also cancel macro actions at any time with an empty action (see section
4.1.2. Otherwise, the macro actions would run until completed.

5.3.4 Multi-Agent

DeepRTS has the possibility of adding as many players as wanted into an environment. For
future work, agents with different decision algorithms could be tested against each other.
This would be interesting as it is ultimately a PVP match of two algorithms, to see which is
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superior. The agents could be trained by playing against each other, or by playing against a
copy of themselves to improve. As the agent is playing against a similarly intelligent agent,
this experiment would be much harder for any agent than the environments we have intro-
duced, and could make the agent learn how to strategize and react to the opposing player’s
actions.

A League system as explained in 3.3.1 which was implemented in AlphaStar could be imple-
mented in DeepRTS to train agents against each other. While we have implemented agents
using different algorithms for decision-making, we trained them using the same player in-
stance in each environment. In PVP environments, the agent is trained by always control-
ling player0, and is not able to play as player1 unless trained to control this player. This
is because players have different spawn positions at the start of an episode, and is visually
distinguishable when using image data instead of the state representation.

5.3.5 Combining Agents

Our agents can play specific parts of DeepRTS well, but needs improvements in Full1v1.
This environment is more complex because the agent has to learn two policies; constructing
units at the start of the game and defeating the enemy after. This policy is difficult to learn,
as rewards change based on which timestep the game is currently in. To solve this, we could
train agents on specific parts within each game, for instance, having one agent focusing on
military expansion at the start of the game, and an agent focusing on defeating the enemy
towards the end of the game. In practice this could be done by training two neural networks,
each using separate reward functions, and limiting which timesteps each network is used to
predict actions.
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Chapter 6

Conclusions

In conclusion, this thesis has presented a comprehensive exploration and evaluation of Trans-
former models applied in Real-Time Strategy game environments. The thesis utilized Deep-
RTS as the reinforcement learning environment and implemented various sub-environments
with different objectives and complexity levels to facilitate training speed and enable the
comparison of deep learning algorithms.

In general, the experimental results aligned with the proposed hypotheses, validating the
effectiveness of Transformer models, particularly Decision Transformer, in RTS game en-
vironments. The study also introduced the Genetic Algorithm Decision Transformer as
a novel approach to data generation in reinforcement learning environments. These find-
ings contribute to advancing the application of Transformer models in real-world scenarios,
specifically in the context of reinforcement learning and game-based learning environments.
Further research in this area holds promise for developing intelligent agents capable of learn-
ing and strategizing in complex real-time environments.
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Appendix A

Appendices

A.1 Implementation

The implementation for Mastering DeepRTS with Transformers is available publically and
open-source at https://github.com/lixado/Age-of-transformers. This also includes download
links to datasets that were used for training the DT models.

A.2 DeepRTS Configurations

DeepRTS Game mechanics can be adjusted through various configurations. Simple1v1 &
Random1v1 uses the default configurations as shown in table A.1, but Full1v1 and Harvest
has some alterations.

Option Value
Spawn with Town Hall False
Enable Build Instantly True
Enable Auto Harvesting True
Enable Auto Attack True
Food Limit 100
Enable Farm True
Enable Barrack False
Enable Footman True
Enable Archer False
Gold 1500
Lumber 750
Stone 0
Max Episode Steps 50

Table A.1: Default DeepRTS config. Each environment uses these by default, unless specified
otherwise.
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A.2.1 Full1v1

Option Value
Enable Auto Harvesting False
Enable Barrack True
Gold 5000
Lumber 5000
Stone 5000
Max Episode Steps 200

Table A.2: Config for Full1v1. Any options that are not specified is set to default, as shown in table
A.1.

A.2.2 Harvest

Option Value
Enable Auto Harvesting False
Enable Footman False
Gold 5000
Lumber 5000
Stone 5000
Max Episode Steps 200

Table A.3: Config for Harvest. Any options that are not specified are set to default, as shown in
table A.1.

A.3 Training Configuration

A.3.1 DDQN

Hyperparameter Value
Exploration Rate ϵ 1
Exploration Rate Decay 0.99999
Exploration Rate Minimum 0.001
Replay Buffer Size N 100 000
Batch Size 512
Discount Parameter γ 0.9
Learning Rate 0.00025
Burnin 10 000
Learn Every x Step 3
Sync Networks Every x Step 10 000

Table A.4: Default hyperparameters for DDQN.

Simple1v1

Simple1v1 uses the default parameters as shown in table A.4.

Random1v1

Random1v1 uses the default parameters as shown in table A.4, with the only alteration
being the exploration rate decay = 0.99998.
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Full1v1

Full1v1 uses the default parameters as shown in table A.4, with the only alteration being
the exploration rate decay = 0.999997.

Harvest

Harvest uses the default parameters as shown in table A.4, with the only alteration being
the exploration rate decay = 0.9999991.

A.3.2 Vanilla DT

Hyperparameter Value
normalize false
epochs 100
batchSize 2048
learning_rate 0.00025
TargetReturn 10

Table A.5: Default hyperparameters for Vanilla DT trained on a dataset.

Simple1v1

Simple1v1 uses the default parameters as shown in table A.5.

Random1v1

Random1v1 uses the default parameters as shown in table A.5.

Full1v1

Full1v1 uses the default parameters as shown in table A.5.

Harvest

Harvest uses the default parameters as shown in table A.5.

A.3.3 GADT

Hyperparameter Value
normalize false
stepsMax 50
batchSize 2048
exploration_rate 1
exploration_rate_decay 0.999
exploration_rate_min 0.001
learning_rate 0.00025
DTDataMaxSize 100
DTTrainEpochs 50
DTEpisodesGenerate 300
DTEpsilonRate 3
TargetReturn 10,000

Table A.6: Default hyperparameters for GADT.
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Simple1v1

Simple1v1 uses the default parameters as shown in table A.6.

Random1v1

Random1v1 uses the default parameters as shown in table A.6.

Full1v1

Full1v1 uses the default parameters as shown in table A.6, with the only alteration being
the stepsMax = 200.

Harvest

Harvest uses the default parameters as shown in table A.6, with the only alteration being
the stepsMax = 200.
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