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Summary 
 

This thesis represents the culmination of the Msc civil engineering course at the University of Agder. 

This thesis aims to attempt to define a framework for implementing digital twins in an investment 

cost/energy consumption optimization process. The methodology applied is a complex software 

hierarchy. The original dataset rests on randomly generated values of thermal transmittance, which 

are analysed in IDA ICE simulations, and compared to existing materials identified in the Norsk 

Prisbok for cost estimation. The results are optimized using a combination of Artificial Neural 

Networks and a multi-objective optimization algorithm, the elitist non-dominated sorting algorithm 

NSGA-II. 

 

The research question this thesis attempts to answer is: 

 

How can digital twins be implemented to reduce energy-consumption and costs in buildings? 

 

This thesis concludes that “A digital twin may be implemented to translate energy consumption and 

cost-optimization into an easily interpreted result that serves as a foundation for efficient decision-

making.” This conclusion is based on the functionality of the various steps in the framework: 

Accuracy of ANN models, NSGA-II performance and visual presentation. 

 

The thesis presents a functional framework with a high degree of automation. Furthermore, applying 

said framework to a case study identified a potential energy consumption reduction of 35 % and a 

reduction in investment costs by 5 %. 
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1 Introduction  
 

We are currently experiencing the fourth industrial revolution, the digitalization era, where digital 

tools have become an increasingly integrated part in all aspects of our everyday life [1]. In the 

Architecture, Engineering and Construction (AEC) industry, this is referred to as Construction 4.0 [2]. 

Reflective of this era is the adaption and development of new technology. However, the AEC industry 

is notoriously sluggish at adapting to new technologies [3].  

 

Despite this, the later decade has seen an increased adaption of emerging technology. The 

construction industry appears to be embracing the benefits that these technologies may provide [4]. 

Examples may include Digital Twins (DT) for efficient decision-making and building performance 

optimization [2], and Artificial Intelligence (AI) for its ability to analyse and process large quantities of 

data efficiently and allow for accurate predictions and optimization purposes [5].  

 

With the emergence of artificial intelligence, so has the application and development of 

methodologies such as genetic algorithms [5]. These algorithms are well known for identifying 

optimal design parameters and minimising trade-offs between seemingly contradictory objectives 

[6]. Such objectives may be contextualised with the increased focus on resource efficiency and green 

technologies in the AEC. Given that financial barriers may serve as a deterring source for sustainable 

building design [7].  

 

One may argue that reducing investment costs may serve as an incentive for future investment. 

Reducing these costs will likely increase sustainability in the construction and operational phases. 

One may further argue that as the level of digital tools increases, so would the knowledge and 

expertise required to operate them. In conjunction with new fields of interest in the AEC, it seems 

safe to presume that future digital construction models will become more complex. Artificial 

intelligence may help automate processes and outsource human interaction. In such a context, one 

may consider artificial intelligence a tool allowing practitioners to catch up to the development and 

allow for efficient decision-making by non-experts. 

 

This thesis proposes a cost and energy consumption optimization framework using machine learning 

regression predictive models combined with multi-objective optimization genetic algorithms. The 

goal is to optimize the tradeoff between investment cost and energy consumption. 

 

The chosen case is a classroom at Tvedestrand Videregående Skole, which undergoes building 

performance simulations in terms of energy consumption based on various values of thermal 

transmittance. The same design parameters are used to perform a cost analysis. Both the simulation 

and cost analysis is based on the same decision variables. 

 

The goal is to create a framework which implements digital twin and visualization in a BIM 

environment based on multi-objective optimisation. A visual model may help stakeholders identify 

influential parameters intuitively, not depending on numbers or code. It is worth stressing that such a 

framework is not limited to the chosen application area. It may be expanded to cover other areas 

where building performance may be measured by two objectives which share decision variables. 
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2 Societal Impacts 
 

It is common knowledge that we are experiencing climate change, and its consequences are evident. 

The Paris Agreement in 2015 formulated a legally binding international treaty and entered into force 

in November 2016.  The goal is to limit global warming. In order to reach the goal of limiting global 

warming to 1,5 degrees compared to the pre-industrial era, greenhouse gas emissions must peak by 

2025 and be reduced by 43% by 2030 [8]. We are currently at a critical stage to reach this goal. 

 

In the context of AEC, it has been found that the building sector is responsible for over 40% of energy 

consumption and 32% of resource consumption worldwide [9]. Additionally, heating needs account 

for 40-60% of energy use in cold climates such as Norway [10]. Considering that the energy 

production sector is currently one of the most environmentally damaging sectors in the world [11]. It 

becomes apparent that energy performance optimization will become increasingly important to keep 

shifting the AEC in a sustainable direction.  

 

Although energy efficiency is essential in sustainable building design, the concept of costs cannot be 

ignored [12]. Achieving a high degree of cost-efficiency in buildings whilst maintaining a high degree 

of energy efficiency will likely be an essential incentive for achieving sustainable and performance-

based building design. In such a context, it is natural to consider multi-objective optimization, 

reducing costs and energy consumption based on the same decision variables. The use of new 

technologies, such as artificial intelligence, may be a means towards this end. 

 

From a historical perspective, the degree of energy efficiency has increased in the later years. It has 

improved annually by approximately 1.9 %. However, to reach the energy efficiency target, this 

amount needs to average 3.2 % [13]. This is addressed in the UN sustainability goal 7∙3, “Double the 

improvement in energy efficiency”. In this context, it is also natural to consider the value and benefits 

of sharing technology advancement with others. Promoting access to energy-efficient and cost-

effective design research will likely advance the benefits and results on a broader scale.  This is 

directly linked to the UN sustainability goal 7∙A.  “Promote access to research, technology and 

investments in clean energy”.  [14] 

 

 

 

 

 

 

 

 

This thesis influences these two goals regarding societal impact. Applying artificial intelligence and 

digital twins may allow for effective decision-making for increasing energy efficiency in both design 

and potential retrofitting stages. The application of such a technology may have a large societal 

impact in years to come, especially since such a framework is not exclusively limited to the theme of 

this thesis. 

Figure 2.2 UN Sustainability Target 7∙3 [14]. Figure 2.1 UN Sustainability Target 7∙A [14]. 
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3 Theoretical Background 
 

The theoretical background of this thesis is based on a literature review, attempting to identify 

relevant papers and provide the necessary background for the theme in question. Many of these 

papers are bibliometric studies which include current research status and present relevant case 

studies. 

 

 

3.1 Building Information Modelling (BIM) 

 
In the context of digitalization in the AEC industry, BIM is essential. BIM allows for efficient 

collaboration among stakeholders in AEC and is applied in all parts of building life-cycle and building 

life-cycle management [2]. The term BIM arose in the early 90s [2]  and started emerging in AEC in 

the early 2000s [15]. It has gained increased traction in the last decades. BIM is considered to be 

widely adopted in AEC post-2010 [2].  

 

The use of BIM and BIM processes has revolutionized the AEC industry. It has been found that 

benefits include 61% reduced errors and emissions, 20-30% reduced construction costs, 17% faster 

approval cycles, 35% reduced rework, and 20% reduced project duration [16]. 

 

As the industry develops, new areas of research and technology emerge, and consequently, so do the 

scope and application of BIM. This highlights the need for digital tools combined with BIM. This holds 

especially true for Building Energy Modelling (BEM) [17].  

 

There are, however, fields in which BIM is currently lacking or not fully adapted. Examples include 

areas such as risk management and incorporation of IoT (Internet of Things) in areas such as 

construction performance and progress monitoring [18] or energy efficiency and environmental 

optimization design [6]. In recent years there has been an increased discussion on the limitations of 

BIM [19]. 

 

 

3.2 Digital Twin 

 

Digital Twin (DT) is a concept that has been developed to overcome some of the shortcomings of 

BIM. Digital Twins first arose in the aerospace industry in the 1960s with two simulators to mirror 

space conditions to prepare flight training for the National Aeronautics and Space Administration 

(NASA)’s Apollo 13 Program [20]. The term “Digital Twin” first arose in Michael W. Grieve's Product 

Life-Cycle Management model (PLM) in 2002 [21].  

 

Digital Twins is primarily applied for engineered products, production lines or production machines 

[16]. Recently, it has gained increased traction in AEC and is now considered an integrated part of 

Construction 4.0 [2].  
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However, its application in the AEC industry is still in its infancy, as illustrated by a bibliometric study 

by Naderi & Shojaei [21]. The figure below displays the frequency of annual digital twin-related 

publications in the AEC field.  

 

 
Figure 3.1 Digital Twin related publications in AEC [21]. 

 

As may be expected from such a new field of research, there is still a lacking consensus on the 

definition of a digital twin. A study by Camposano et al. investigated different metaphors for 

understanding digital twins. Their study was performed using semi-structured interviews with project 

managers and C-level executives in the Finnish AEC industry. Camposano et al. found that from a 

practitioner's point of view, a digital twin was considered a complete replica of an asset that may 

substitute for its physical counterpart [15]. However, its definitions vary by application. For example, 

Camposano et al. found that the digital twin was defined as a: life-cycle representation, visualisation 

tool or cyber-physical system [15].  

 

Yitmen, Alizadehsalehi et al. published a paper introducing subforms of digital twins, hybrid twins 

and cognitive twins [22]. According to Yitmen, Alizadehsalehi et al., Cognitive computing is a 

machine's ability to mimic the human ability to think, sense and make decisions in any given situation 

[22]. Based on this definition, It may as such be considered that cognitive computing is closely 

connected to Artificial Intelligence (AI).  

 

Their study identified a broad range of applications for digital twins: Real-time data presentation by 

presenting real-time physical entity data. Analytics, for analyzing stored data to provide helpful 

insight. Simulations to run various data. Visualization, by overlaying real life and live 3D BIM models, 

automation, by a bi-directional dataflow that may influence the behaviour of the physical asset. 

Predictions to predict future behaviour based on analytics and historical data.     

 

Yitmen, Alizadehsalehi et al. argues that a digital twin contains three components in a practical loop, 

a physical entity, a digital entity and a data link [22]. Further, there are two methodologies for 

mapping information to the digital models, inspection data and simulations or predictions and 
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optimization. Inspection may include IoT integration, predictions and optimization achieved by 

learning data.  

 

A cognitive twin, according to Yitmen, Alizadehsalehi et al., is a digital twin with the ability to detect 

anomalies and learn with the power to improve measures of its state and function [22]. Further, 

cognitive digital twins apply optimization to aid decision-making for the physical twin. In such a 

context, it is challenging to differentiate the two. However, Yitman, Alizadehsalehi et al. argue that a 

cognitive digital twin is an evolution of the digital twin framework and allows for visualization in a 

dynamic process that allows the physical assets to be modified [22].  

 

Another definition arose from a bibliometric study conducted by Nour El-Din et al., which defined 

Digital Twins as “the connection between technologies in the form of a digitized model of a physical 

asset, transmitting data in at least one direction, and monitoring the physical asset in real-time” [20]. 

Yet another definition from Deng et al. argues that Digital Twin is an evolution of BIM, BIM level 5, 

“Which provides seamless interaction between the virtual and real-world environment” [2].  

 

Camposano et al. argues that a digital twin is a “complex software ecosystem that emerges from the 

increased expectations that AEC/FM stakeholders place upon BIM and other related technology” 

[15]. Yet another definition was proposed by Zhao et al., who argue that Digital Twin is “a realistic 

digital representation that combines data describing the physical assets, processes and system in a 

digital format” [23]. 

 

In terms of the development of digital twins. A bibliometric study by Deng et al. describes the 

evolution of Digital Twin from BIM in the built environment [2]. Their study defines five generations 

of BIM, where digital twins are at the pinnacle, defined as 5D BIM. 

 

Generation 1 BIM constitutes design, construction and scheduling. Generation 2 combines BIM with 

simulations for facility management purposes, including operations, estimations and sim-based 

predictions. Generation 3 consists of real-time visualizations, associating BIM with sensory 

information technology such as IoT devices. Generation 4 combines BIM and AI for decision-making 

and data-based prediction purposes. And finally, 5D BIM is based on automatic feedback from the 

environment and allows for automatic decision-making based on optimized results, typically 

achieved through AI and Machine Learning algorithms. In other words, a digital twin is considered a 

level of maturity where AI is an integral part of BIM concepts and purpose [2]. 

 

Furthermore, the border between BIM and digital twins appears blurred [21]. On the one hand, the 

digital representation of a model in a 3D environment, even with implemented tools such as the 

Internet-of-Things (IoT) for observational purposes, still is a digital 3D model. On the other hand, 

incorporating this information makes it arguably more advanced.   

 

The lack of a standard definition poses a problem in the industry, as pointed out by Camposano et al. 

[15]. Establishing a common definition may help reduce the hype and practical implications of the 

concept as a “buzzword” and help the industry understand what is economically and technically 

feasible from a practitioner's point of view. To illustrate, “Digital Twin” was ranked among the top 10 

strategic technology trends in 2017, 2018 and 2019 [15]. Its market value is expected to reach 73,5 
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billion USD by 2027 [20]. Furthermore, it has reached the pinnacle of the so-called “hype circle 

curve” of emerging technology [15]. 

 

It is worth noting that the research on Digital Twin is by and by large published in a limited amount of 

journals, where automation of construction is overrepresented. Naderi et al. found automation in 

construction to be the primary core journal on Digital Twin research [21]. Furthermore, the research 

field of Digital Twin currently suffers from a severe degree of “inward-looking”, with co-citations 

limited to its own domain of research. Indicating that the knowledge and implementation of Digital 

Twin in AEC is isolated from other relevant fields of research from other domains and disciplines [21]. 

These findings also correspond with the findings of Darko et al. [5] and Maureira et al. [24] in the 

application of artificial intelligence in AEC. 

 

In this context, it is appropriate to introduce a contemporary international project, SPHERE (Service 

Platform to Host and Share residential data) is an EU-funded 4-year horizon project. The project aims 

to provide citizens, AEC stakeholders, administrators, and urban developers with an integrated ICT 

(Information Communication Technology) for better evaluation and assessment of energy 

performance at the start of the construction process [16]. SPHERE integrates digital twin in the 

construction and maintenance phases, provides a collaborative platform between stakeholders, and 

enables efficient data interoperability between digital twins with BIM software tools.  

 

SPHERE aims to reduce 15 % of energy demand in the residential building's operational phase, 25 % 

reduction in construction time, and 25 % reduction in GHG emissions in the construction and 

operational phases [16]. It is argued that the SPHERE platform, with its digital twin implementation, 

will improve the building's energy performance from the initial stages of the construction project, 

allowing different stakeholders to use this technology [16]. It may be considered an effort to 

establish a framework and application of digital twin technology on a large scale with numerous 

stakeholders involved. In such a context, the SPHERE project may serve as an incentive to adapt 

further and implement digital twin technology.  

 

Despite different definitions, there appears to be a consensus that a digital twin framework consists 

of 3 parts. The physical twin, the digital twin and the decision-making process. One may consider 

interconnectivity displayed in the figure below: 

 

 

 
Figure 3.2 Digital Twin Framework. 
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The physical twin represents the actual physical building, providing the basic semantic data in a BIM 

environment and potential real-time data utilizing IoT devices. The digital twin compiles this 

information, providing a framework for fault prediction, performance predictions and 

simulations/optimization. These two form the base for decision-making, which may be applied to the 

physical model. 

 

Per this thesis, a digital twin is “a digital asset representing a physical construct with third-party 

information flow”. This information serves as a baseline for data analysis and aids decision-making 

using AI applications. 

 

As such, it is not considered a cognitive model as described by Yitmen, Alizadehsalehi et al., as it does 

not allow for constant modification of the physical assets' behaviour. Also, it does not correspond 

with Deng et al.’s definition of a generation 5 BIM or Nour el-din et al., as it does not have seamless 

interaction between virtual and real-world environments. Rather it represents the information 

required to do so. Further, it differs from Zhao et al., as it does not describe the processes or system 

of a physical asset. And finally, It differs from a digital model by the definition of receiving semantic 

information from a third party and visualizing it.  

 

One could argue that one key benefit of digital twins is that it allows for efficient decision-making 

based on semantic data. This may be accomplished either by human decision-making or by 

implementing artificial intelligence. 

 

 

3.3 Artificial Intelligence in AEC 
 

Artificial intelligence has been around since the 1950s, whilst its application to the AEC has been an 

area of research since the 1970s [5]. The area has experienced a growing interest since the early 

2000s, as can be identified in the following figure: 

 

 
Figure 3.3 Trend of research publications on artificial intelligence in AEC [5]. 
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This figure originates from a study by Darko, Chan et al. [5]. Their study conducted a mapping of 

research publications through a bibliometric analysis. The figure shows a decline in research in 2019. 

This is due to the date of the study itself, which was completed in May 2019.  

The study identified that some of the leading research areas had been optimization, machine 

learning, genetic algorithms, and construction management. The most common application of 

artificial intelligence in AEC was found to be genetic algorithm optimizations [5]. 

 

In their bibliographic study, Darko, Chen et al. identified a list of the relative influence of existing 

research on artificial intelligence in AEC based on a co-occurrence keyword analysis. The findings 

reflected that the top four categories were: Optimization, Genetic Algorithm, Neural Networks, and 

Simulation [5].  

 

By the list of relative influence on a scale from 1-100, the study identified areas in which artificial 

intelligence is under-represented, indicating a need for additional research. Some key examples are 

Life cycle costs (89), Energy (87), and Energy Efficiency (58). Additionally, the study identified that 

there had been limited research on the application of machine learning for optimization in these 

fields [5]. These are the fields that are the focus of this thesis. 

 

A bibliometric study conducted by Zhang, Chan et al. found that two main topics were predominantly 

covered in recent BIM and AI research literature [4]. Firstly, the application of artificial intelligence by 

means such as facility management, fault detection, safety management, diagnosis etc. Secondly, the 

AI techniques covered in AEC, such as machine learning, artificial neural networks and genetic 

algorithms for optimization [4]. In terms of application, they found that AI may be integrated with 

BIM and provide benefits in the whole life cycle of projects [4]. Examples follow below: 

 

 

 
Figure 3.4 Zhang, Chan et al. - AI in AEC - Planning and Design Phase. 

 

 

Design collaboration may benefit from AI by extending functionality, and algorithms may be 

developed to propose alternative designs or optimize designs based on multiple objectives. 
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Changelogs within the BIM model may monitor design performance. This allows project managers to 

assess the design performance of given teams and provide predictive means to improve the 

modelling process. Highway alignment design may benefit from AI integrated with BIM using 

Machine Learning methodology to predict pavement performance.  

 

 

 
Figure 3.5 Zhang, Chan et al. - AI in AEC - Construction Phase. 

 

Automated construction is a field that is used for repetitive tasks and working in hostile 

environments. Some tasks that may be automated are brick assembly, welding, material dispatching 

and routine fabricating. AI may assist in optimizing construction management by site planning, 

minimizing moving distance for workers, simulating interference by workers during construction, 

safety hazards, automated assistance in construction scheduling and choice and placement of cranes, 

to name a few. Like construction management, life cycle costs may be achieved by optimising 

different variables, such as cost-optimal maintenance and replacement of building components, 

design schemes and building process. In particular, a sub-form of machine learning supervised 

learning may be applied to predict costs from the BIM model, depending on the level of detail 

included. 

 

 
Figure 3.6 Zhang, Chan et al. - AI in AEC - Operational and Maintenance Phase. 

AI in the operational and maintenance phase covers localization utilizing machine learning by 

comparing images or augmented reality with 3D models (digital twins). The same process may 
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enhance fire safety by recognising and developing dynamic evacuation plans depending on location. 

Building maintenance may be achieved by gathering real-time data forming a basis for predictive 

means by comparing datasets and performance. Structural health monitoring works similarly, where 

dynamic monitoring may help identify the structure's health using machine learning algorithms.  

 

 

 
Figure 3.7 Zhang, Chan et al. - AI in AEC - Automatic Modelling. 

 

In the case of automatic modelling. Artificial intelligence may be applied to compare real-life 

measurements with the original model, forming a basis for an accurate digital twin and optimizing 

this information flow and comparing in-situ geometric data with the digital twin. Another application 

is reducing data loss in the IFC interpretation caused by misclassification. For example, lacking data 

from the BIM model may be interpreted or predicted using AI techniques. Machine learning 

algorithms may be applied to automatically identify and classify objects, increasing the semantic 

integrity of the model. Furthermore, given the generic nature of traditional geometric design, an 

algorithm may produce suggestions to the modeller in the early phases of the project. Zhang, Chan et 

al. argue that this will increase productivity significantly [4]. 

 

 
 

Figure 3.8 Zhang, Chan et al.- AI in AEC - Sustainable Development. 
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Artificial intelligence and BIM play an essential role in the sustainable development of the AEC 

industry. AI may be applied to assess building environmental performance compared to relevant 

certifications such as LEED or BREAAM etc. In terms of energy management and energy efficiency, AI 

may be applied for energy management, provide energy-saving suggestions (both in the operational 

and design phases), and reduce energy consumption by optimizing design for envelope or internal 

illumination. 

 

A similar bibliometric study to Zhang, Chan et al., by Pan & Zhang identified that there had been a 

shift in research areas of AI combined with BIM [25]. From the years prior to 2017, the research was 

mainly placed at BIM as a tool, with areas focused on architectural design, information theory, 

semantics, ontology and interoperability. Between 2017 and 2018, the focus of research shifted to 

decision-making, life cycle, structural design and sustainable development. Whilst recent studies 

have focused on automation, machine learning, optimization, and risk assessment, to name a few 

[25]. This indicates that the focus of research on BIM-AI has shifted from theoretical BIM-focused 

studies to the practical application of artificial intelligence.  

 

Pan & Zhang argue that AI is an ideal data-retrieval and analysis solution when combined with BIM in 

all life cycles [25]. In their study, they identify examples in 3 steps of the life cycle: The planning and 

design phase, the construction phase and the operation/maintenance phase. 

 

BIM facilitates planning and design in large parts. BIM as a tool helps reduce costs, duration and 

workflow. Integrating AI with BIM has the potential for more efficient design through optimized 

information exchange between project stakeholders. Further applications may be automated design 

and drafting, code compliance, and validation of design standards. 

 

During the construction phase, BIM provides benefits such as reducing rework, errors and conflicts 

on site. Further benefits may be progress monitoring for hazard detection, optimizing 4D BIM for 

construction schedules and logistics or implementing robotics to replace workers and worker 

exposure to hazardous environments. The application of AI may assist in predicting risk issues and 

allow for prevention measures by using tools such as Augmented Reality (AR), Unmanned Area 

Vehicles (UAV) and Internet-of-Things (IoT), to name a few.  

 

The operation and maintenance phase accounts for approximately 60% of the total project budget 

[25]. BIM in itself is still insufficient for the operation and maintenance of buildings, according to Pan 

& Zhang [25]. It is causing error-prone decision-making by facility managers. AI may help in the 

operation phase through the applications of IoT and data mining for operational monitoring or 

visualizing building performance. This will allow for more efficient decision-making, risk/error 

detection and adjusting day-to-day services efficiently, economically, and reliably.  

 

Although the level of application of BIM and AI is increasing, there is still a reduced level of adoption 

from the industry. The reasons for this are diverse but likely include high costs, trust, talent shortage, 

internet connectivity and project uniqueness [25].  
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One should keep in mind that AI method development is complex. As such, it is essential to establish 

the value of applying AI as a methodology, reduce the implementation costs, to further the interest 

in artificial intelligence as a field.  

 

 

3.4 Visual Programming 

 

Another area of research which has received increased interest over the last few years is the 

combination of BIM and visual programming/parametric modelling in the AEC [26]. Programming has 

a large variety of application areas, also within the field of AEC. However, it has been found that 

professionals in the AEC generally have limited to no programming experience [27].   

 

Visual language is commonly defined as “a formal language with visual syntax and semantics” [27]. 

Combining this with programming, a Visual Programming Language (VPL) may be interpreted as a 

tool to make a program based on well-defined syntax and semantics through visual aids. In the 

construction industry, visual programming language is primarily used to generate geometric and 

semantic data or to check existing models [27]. One of the benefits of visual programming is that it is 

easier to understand and interpret than regular coding, which allows non-experts to write and create 

advanced programs. 

 

Visual programming interfaces are usually divided into two components: the canvas and the library, 

as illustrated in the figure below. The canvas, displayed on the right, is used for the workflow, 

illustrating the processes and their order. The library, displayed on the left, contains standardized 

functions, such as geometric functions, math operators, scripts, and export/import processes, 

amongst other things. 

 

 
Figure 3.9 Visual Programming Interface. 
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A typical way of working with visual programming is illustrated in the figure below. This workflow is 

inspired by design research methodology, initially a way of structuring a research process [28]. The 

process may be described as identifying the purpose and the problem to be solved and separating it 

into subgoals and increments of processes. Once the goal is defined, one can design a solution. When 

applying this solution, one can evaluate its function and success.  

 

 

 
Figure 3.10 Visual Programming Workflow. 

 

For semantic data, this may be achieved by previewing the data as a list generated by the node (in 

this case, the range function), as illustrated in the following figure: 

 

 

 
Figure 3.11 Visual Programming data preview. 

 

 

AEC's most common visual programming tools are Dynamo for Revit and Grasshopper for Rhinoceros 

3D [27]. The program functions by placing operators displayed as boxes from the library and 

connecting them by wires. The dataflow functions as inputs on the left of the box and output on the 

right. The library may also be expanded by textual programming tools such as C+ or Python scripts to 

expand its functionality further [28].   

 

The application of VPL is not problem-free, however. It is generally considered that debugging or 

maintaining a VPL script is impractical for anyone other than the programmer himself. As the 
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program becomes increasingly complex, it may cause high latency and be hard to interpret for others 

than the author [29]. As illustrated by the visual program in the figure below:  

 

 
Figure 3.12 Example – Complicated Visual Program [27]. 

 

The software providers have attempted to reduce this risk and challenge by allowing for the creation 

of functional units, which is a simplified presentation of a given function, respectively called “node” 

for Dynamo and “cluster” for grasshopper. 

 

An example of semantic data which may be imported is third-party information complied in Excel. 

When this data is combined with the integrated VPL in BIM software, it allows for visualization of this 

data. Depending on dataflow and potential incorporation with IoT, this visualization may also be real-

time. There have been conducted several studies integrating BIM and VPL. A selection of case studies 

is introduced below: 

 

Notably, the work by Hosamo, Tingstveit et al. visualize predicted mean vote (PMV), representing the 

mean value of thermal comfort reported by a given population in a BIM environment [6]. Another 

study by Hosamo, Hosamo et al. streamed an optimal solution for energy and thermal comfort 

optimization solution through a multi-objective optimization algorithm back to BIM [30]. Desogus, 

Quaquero et al. streamed real-time semantic data collected from IoT devices into a Digital Twin [31]. 

 

It would appear, however, that this field is underutilized, given its significant benefits and integration 

in conjunction with Digital Twins. This thesis will stream the degree of optimization for costs and 

energy efficiency and may be considered an innovative application of visual programming. 

 

 

3.5 Machine Learning  

 

For this thesis, Artificial Intelligence is defined as the ability of a computer to imitate human-like 

decision-making. In this context, Machine Learning is defined as the ability of a computer to make 

human-like decision-making based on experience. Machine Learning may, as such, be considered to 

be a field of study that allows a computer the ability to learn without giving explicit information on 
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how to do so. Generally, we separate machine learning into three categories: Supervised learning, 

Unsupervised learning, and Reinforcement learning [32]. The focus of this thesis lies in supervised 

learning. 

 

Supervised learning is mapping inputs to an output, where the goal is inferring a function from the 

information [4]. Neural networks, like Artificial Neural Networks (ANN), are a part of this category 

which learns sample patterns by tuning neural parameters. It has been widely successful in 

approaching non-linear problems in the AEC industry [5]. One of its key applications is optimization, 

for example, architectural design [33] and structural engineering [5].  It is worth noting that ANN is 

not an optimization tool in itself but is used for classification or regression analysis of semantic data 

which may then be optimized using a variety of methodologies. 

 

Artificial neural networks is a network where each neuron layer is interactively connected with one 

input layer and one output layer [4]. We separate between 3 layers: the input layer, which is the 

input parameters, one or more hidden layers, which interpret inbound information and the output 

layer. ANN is also versatile, as it can be used for classification and regression tasks and handle 

complex non-linear problems [4].  

 

The process may be illustrated in the figure below. In this setting, one may consider that by providing 

the input and the output value, the machine learning process infers a connection or correlation 

between them in one or more steps. The input layer serves as the starting point, listing all variables 

connected to the network. So, an artificial neural network equals nodes (Neurons) and Network (the 

connection between them).  

 

 

 

 
Figure 3.13 Neural Network. 
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Each parameter in the original input is connected to all neurons in the following layer. The neurons in 

this layer (in this case, the first hidden layer) apply a mathematical evaluation of the input variables 

and an added bias to the layer itself to define whether or not to provide an output. The bias may be 

described as how “hard” it is to activate the neurons of the following layer.  

 

Each neuron has several inputs: the nodes' input and the bias value. This is then transformed using 

various mathematical functions, for example, the sigmoid function, the step function, the rectified 

linear unit (Relu) function or the Levenberg-Marquart function [34, 35]. These functions will not be 

further described in this thesis. However, one may consider it a mathematical function treating 

inputs to define whether the node is “activated” by assigning a value between 0 and 1. This value is 

then treated similarly with weights in the following layers. As information flows one way from the 

input layer to the output layer, weights are applied to the connections, which are usually random. 

Once the data has passed through the model, the model then evaluates and sends information back 

by adjusting these weights. This process is known as backward propagation. A complete run back to 

the inputs is called an epoch. 

 

A simplified illustration is shown in the figure below, depicting connected variables (𝑥𝑛), weights 

(𝑤𝑛), bias (𝑏), and activation function, 𝑓(𝑥): 

 

 

 

 

 

A neuron calculates the weights of the inputs combined with its values with an added bias. 

 

 

One may consider inputs: 

 

𝑥1, 𝑥2, 𝑥3 … 𝑥𝑛  

Figure 3.14 Neural Node. 
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With corresponding weights 

 

𝑤1, 𝑤2, 𝑤3 … . 𝑤𝑛 

 

With an added bias 

 

𝑏 

 

And activation function  

 

𝑓(𝑥) 

 

The output of a neuron may be described as:  

 

𝑦 = 𝑓(𝑤1𝑥1 + 𝑤2𝑥2 + 𝑤3𝑥3 + 𝑏) 
Equation 3.1 Artificial Neural Network Equation. 

 
 
For practical purposes in the creation of an Artificial Neural network, one may define five parameters 

mentioned below: 

 

1. Bias 

2. Weight of network connections 

3. Activation function 

4. Number of Neurons per layer 

5. Number of Layers 

 

Artificial neural networks have several benefits: They can create their own features (combination of 

nodes), and given their flexibility, they can model complex non-linear hypotheses, and it is also very 

accurate. One of the drawbacks is that it requires a significant amount of training data, and the 

function it creates is very complex. Interpreting and its weights are complicated, as the value of the 

input transmitted to different neurons and producing output is not intuitively discernible [32]. 

 

We separate training, validation, and testing data in the context of artificial neural networks, which 

are separate datasets from the original data pool. The training data, as the name might suggest, is 

used to train the model itself to create a fitting function. It identifies a correlation between a large 

dataset and the given output. The validation data is a set of data that are then used to validate the 

models' accuracy and tune the model's hyperparameters to fit the validation dataset. The test 

dataset is applied to test the model adjusted by the validation set on a new dataset.  

 

In terms of the performance of a machine learning model, we apply two terms, overfitting and 

underfitting. An overfitted model may be described as a model that works well on the training data 

but poorly on the validation data. In practical terms, this may be considered a model that is overly 

accurate on the testing data and cannot generalize to other datasets. An underfitted model, 

however, is a model that does poorly on both training data and the validation model. Which, briefly 
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explained, may be considered to be a poor model. An example of overfitting and underfitting is 

identified in the figures displayed below: [36] 

 

 

 

  

 

 

 

 

 

 

 

 

 

A common way of estimating the error of a machine learning model is the mean square error (MSE) 

and the correlation coefficient value (𝑟) [37]. In essence, the mean square error is the mean distance 

between the forecast and the actual value from the regression line squared, the lower the mean 

square error, the more accurate the prediction model.  One may consider the graph below for 

illustrative purposes. Where the distance error is depicted for each value plot outside the generated 

regression model. In this context, the optimization of the ANN training process is worth mentioning.   

 

The Levenberg-Marquardt algorithm is a variation of the newtons method, where the goal is to 

minimize functions where the sums of squares of nonlinear functions. This makes it suitable for ANN 

networks, where the performance index is based on MSE [38, pp. 12-19].  

 

 

Figure 3.15 Overfitted Model  [36]. Figure 3.16 Underfitted Model [36]. 

Figure 3.17 Regression plot with errors [37]. 
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If one considers the regression plot with errors in the figure, the MSE is the mean value of this 

distance squared.  

 

The formula for mean square error may be described as: 

 

𝑀𝑆𝐸 =  
1

𝑛
∑(𝑦𝑖 − �̂�𝑖)2

𝑛

𝑖

 

Equation 3.2 Mean Square Error. 

Where: 

𝑦𝑖  – Actual value 

�̂�𝑖  – Predicted value 

𝑛 – Number of errors 

𝑖 – increments  

 

A more intuitive value for evaluating the model's accuracy is the 𝑟 value (the Pearson correlation 

coefficient). The 𝑟 value ranges between +1 and -1. A  value of + 1 describes a perfectly positive 

correlation, - 1  is a perfectly negative correlation. A value of 0 describes no correlation between data 

points.  

 

The equation of 𝑟 may be described as: 

 

 

𝑟 =
𝑛 ∗ (∑(𝑋, 𝑌) − (∑(𝑋) ∗ ∑(𝑌)))

√(𝑛 ∗ ∑(𝑋2) − ∑(𝑋)2) ∗ (𝑛 ∗ ∑(𝑌2) − ∑(𝑌)2)
 

Equation 3.3 Correlation coefficient. 

Where: 

𝑟 – Correlation coefficient 

𝑛 – Number of observations   

 

 

In the context of the practical application of machine learning and artificial intelligence, it is 

appropriate to introduce the new OpenAI tool, ChatGPT 3.5, which may be found on the OpenAI 

webpage [39]. ChatGPT is developed using reinforcement learning provided by human feedback, 

where potential answers are ranked or a lack of follow-up questions, indicating that the answer is 

satisfactory. The tool functions as a chatbox, where one is given an output from an input question.  

 

In terms of application, ChatGPT has been found as a powerful tool in the context of creating scripts 

[40]. However, the tool has weaknesses identified and stated on the OpenAI webpage [39]. For 

example, occasionally, ChatGPT provides plausible but incorrect answers, and it is sensitive to tweaks 

on input or even the same question. Given the nature of these weaknesses, it is essential to quality-

check the answers.  
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3.6 Energy Performance 

 

Energy performance is a field of research that has gained increased interest in the last few years. A 

bibliometric study by Azima & Seyis, published in 2023, aimed to investigate the current state of 

energy performance research in the AEC industry [41]. The findings reflect that the number of 

publications in the last decade has increased drastically, as can be identified in the following figure: 

 

 
Figure 3.18 Number of publications on energy performance between 1991 and 2023 [41]. 

 

Interestingly, however, through the co-keyword analysis of the study, Azima & Seyis found very 

limited research had been performed on energy performance combined with artificial intelligence 

and information technology [41]. This is the focus of this thesis.  

 

Energy performance in itself is a highly dynamic and complex subject. For the purpose of this thesis, 

we focus on the energy heat loss of envelopes and argue that this accounts for a large part of the 

energy consumption of a building.  

 

The thermal performance of a building is arguably the most crucial parameter for energy demand 

calculations as it is directly influenced by its environment, and particularly the U-Value (thermal 

transmittance) is important [42]. The U-value is defined in ISO 7345 as “the steady-state heat flow 

divided by the area of a system and the temperature difference between the surroundings on each 

side” [43]. The methodology for the theoretical calculation of the U-value is provided in ISO 6946 

[44].  

 

For this thesis, we limit ourselves to the simplified calculation methodology for thermally 

homogenous layers. The simplified calculation methodology for thermal transmittance is defined in 

the following equation: 
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𝑈 =
1

𝑅𝑡𝑜𝑡
 

Equation 3.4 Thermal Transmittance. 

Where: 

𝑈 – thermal transmittance [W/(m2∙K)]  

𝑅𝑡𝑜𝑡 – total thermal resistance [(m2∙K)/W] 

For homogenous layers, the thermal resistance is defined in the following equation: 

 

𝑅 =
𝑑

𝜆
 

Equation 3.5 Thermal Resistance. 

 

 

Where: 

𝑑 – thickness of the material component [m] 

𝜆 – the design thermal conductivity of the material [W/(m∙K)] 

 

 

Thermal conductivity (𝜆) is calculated through ISO 10456 or gathered through tabulated data. 

According to the standard, thermal resistance should be calculated to at least three decimal places. 

 

The total thermal transmittance for a building component of homogenous layers is calculated by: 

 

 

𝑅𝑡𝑜𝑡 = 𝑅𝑠𝑖 + 𝑅𝑠𝑒 + 𝑅1 + 𝑅2 … 𝑅𝑛 
Equation 3.6 Total Thermal Transmittance. 

Where: 

𝑅𝑡𝑜𝑡 – total thermal transmittance [(m2∙K)/W] 

𝑅1, 𝑅2 … 𝑅𝑛 – refer to the design thermal resistance in the respective layer [(m2∙K)/W] 

𝑅𝑠𝑖  and 𝑅𝑠𝑒 – internal and external surface resistance [(m2∙K)/W] 

 

 

Surface resistance is a measurement intending to account for airflow in contact with a surface. 

According to the standard, there are predefined values which may be applied. We separate 

horizontal and vertical airflow values.  

 
Table 3.1 Surface Resistance [44]. 

Surface Resistance  (m2K)/W 

 

Direction of Airflow 

Upwards Horizontal Downwards 

𝑅𝑠𝑖  0,10 0,13 0,17 

𝑅𝑠𝑒 0,04 0,04 0,4 

Surface resistance is a value calculated by the following equation: 
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𝑅𝑠 =
1

ℎ𝑐 + ℎ𝑟
 

Equation 3.7 Surface Resistance. 

 

Where: 

𝑅𝑠 – is the surface resistance [(m2∙K)/W] 

ℎ𝑐 – is the convective coefficient [W/(m2∙K)] 

ℎ𝑟 – is the radiative coefficient [W/(m2∙K)] 

 

And 

 

ℎ𝑟 = ɛ ∙ ℎ𝑟0 
Equation 3.8 Radiative Coefficient. 

ℎ𝑟0 = 4𝜎 ∙ 𝑇𝑚𝑛
4 

Equation 3.9 Radiative Coefficient for a black-body surface. 

 

Where: 

ℎ𝑟 – is the radiative coefficient [W/(m2∙K)] 

ɛ – is the hemispherical emissivity of the surface 

ℎ𝑟0 – is the radiative coefficient for a black-body surface [W/(m2∙K)] 

𝜎 – is the Stefan-Boltzmann constant: 5,67 𝑥 10−8 [W/(m2∙K4)] 

𝑇𝑚𝑛 – is the mean thermodynamic temperature of the surface and its surroundings [K] 

 

 

The values in Table 3.1 Surface Resistance  are recommended as design values for plane surfaces in 

lack of the information described in the formulas above and are calculated under presumption for 

internal surfaces: ɛ = 0,9 and ℎ𝑟0 evaluated at 20°, and for external surfaces ɛ = 0,9 ℎ𝑟0 evaluated 

at 10°.  

 

Material science is an integrated part of energy-efficient design. For interpretation purposes, one 

may consider that a low value of heat transfer (thermal conductivity) equals an energy-efficient 

material with good insulation properties, which is valuable for energy-efficient design. Materials 

considered to have suitable thermal insulation parameters are, for example, extruded polystyrene 

(EPS) with a thermal conductivity of 0,031 W/mK [45], or ultrafine glass wool with a thermal 

conductivity of 0,027 W/mK [46]. Currently, the material with arguably the best insulation 

performance is aerogel. Silica and organic aerogel have been found to have a thermal conductivity of 

approximately 0,003 to 0,012 W/mK [47]. 

 

Energy efficiency requirements for Norway are described in Byggteknisk Forskrift TEK 10   

[48].  The most recent version of Byggteknisk Forskrift is TEK 17. However, energy-efficiency 

requirements are not covered in this version. 
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For example, school buildings have a maximum energy consumption requirement of 110 [kWh/m²] 

per year [48]. Furthermore, there have been defined energy measures that are category-specific 

functional requirements. There are no specific energy measures described for school buildings, 

however for comparison purposes, one may consider the following energy measures requirements 

for small houses and residential blocks:  

 
Table 3.2 Energy Measures per TEK10, reworked from [48]. 

Energy Measures 

Category Small House Residential Block 

U-Value External Wall [W/(m²K)] ≤ 0,18 ≤ 0,18 

U-Value Roof [W/(m²K)] ≤ 0,18 ≤ 0,13 

U-Value Floor [W/(m²K)] ≤ 0,10 ≤ 0,10 

U-Value Windows and Doors [W/(m²K)] ≤ 0,8 ≤ 0,8 

Fraction window door of heated Internal Floor Area (IFA) [-] ≤ 25% ≤ 25% 

Annual average temperature efficiency for heat recovery in 

ventilation systems 
≥ 80% ≥ 80% 

Specific fan effect in ventilation systems [Kw/(m3/s] ≤ 1,5 ≤ 1,5 

Air leakage figures per hour at 50 Pa pressure difference ≤ 0,6 ≤ 0,6 

Normalized thermal bridges, where m² defined as Internal 

Floor Area (IFA) [W/(m²K)] 
≤ 0,05 ≤ 0,07 

 

 

The minimum value for energy efficiency is further described in § 14-3 (1a). 

 
Table 3.3 Minimum level for energy efficiency per TEK10, reworked from [48]. 

Minimum Value for Energy Efficiency 

U-Value External Wall [W/(m²K)] ≤ 0,22 

U-Value Roof [W/(m²K)] ≤ 0,18 

U-Value Floor [W/(m²K)] ≤ 0,18 

U-Value Window and Door (including frame) [W/(m²K)] ≤ 1,2 

Air leakage figures per hour at 50 Pa pressure difference ≤ 1,5 

 

 

Various floor area definitions (such as IFA) used for these requirements and values are described in 

the EN 15221 standard. Facility Management Part 6: Area and Space Management Measures in 

Facility Management [49].  

 

It is worth noting that the unit for U-value and thermal transmittance is defined in degree Kelvin. This 

value is generally considered applicable for scientific purposes and not necessarily everyday use, 

which is usually degrees Celsius. However, since the difference between one kelvin and one Celsius is 

the same, one may use the two units interchangeably.  
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3.7 Life Cycle Costs 

 

Life cycle cost is a standardized methodology to calculate construction's economic implications. 

Although many studies on energy consumption do not cover costs, they cannot be ignored in the 

context of sustainable building design [12]. There are numerous standards on the subject, but for this 

thesis, we limit ourselves to the European Standard for assessing the economic performance of 

buildings in terms of sustainability, the NS-EN 16627:2015 standard [50]. The standard specifies 

calculation methods based on Life Cycle Costs (LCC). The standard may be applied for various 

purposes: budgeting, tendering, estimating life cycle costs and waste streams, and specific economic 

analysis.  

 

The standard process may be illustrated in the figure below. The following paragraphs will cover the 

separate steps displayed in the flowchart.  

 

 

 

 

The overall purpose of using the NS-EN 16627:2015 standard may be argued to quantify economic 

performance.  

 

The first step in identifying the purpose includes establishing the analysis's objectives, criteria, scope, 

and extent.  

 

The specification of the object of the assessment, scenario development and quantification of the 

object steps refers to the process of identifying parameters and analysis requirements as well as 

confirming the project and asset requirements and options for analysis. These steps include 

Figure 3.19 NS-EN 16626:2015 Flowchart, inspired by [50]. 
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identifying the period of analysis and methodology for economic assessment and identifying the 

need for potentially additional analysis (such as risk and sensitivity analysis). Identify project and 

asset requirements. And finally, identifying what options to be included in the analysis and which 

items to consider. 

 

Selection of economic data. Covers assembly of costs and performance data and finalizes parameters 

for analysis. This step includes actions such as assembling costs and time-based asset performance to 

be used in the analysis, verifying values of financial parameters and analysis period. Also, potential 

risk strategy and uncertainty analysis is covered in this step. 

 

Calculation. Include the calculations and the economic analysis and its results. Actions covered in this 

step are performing the economic evaluation, potentially the detailed risk and uncertainty analysis, 

and sensitivity analysis. 

 

Communication. This step covers reporting and interpretation. Actions in this step are the 

interpretation of results and presenting them in the required format and preparing a final report. 

 

The final step is verification, which covers the interpretation and reporting verification of the results. 

 

 

3.8 Building Performance Optimization 
 

Building performance is a highly dynamic concept and challenging to define. One may consider 

performance to be the building's ability to perform its task or intention, the degree of control of its 

delivery process or its success as a presentation [51]. The optimization process may be argued to be 

the selection of the best solutions from a range of alternatives for a given design problem according 

to the set criteria [52].  

 

Building energy performance is a field that has gained increased interest in the later years. The 

earliest work was published in 1976 and has increased drastically in the last decade [51]. This is likely 

due to the emergence of evaluation systems worldwide, such as BREEAM (UK), LEED (USA), CASBEE 

(Japan), GreenStar (Australia), HQE (France) and DGNB (Germany) [51].  

 

It is important to remember that optimizing variables does not equal optimizing the solution. For 

example, reducing energy usage is not enough to optimize the design, as the design must also cover 

other criteria [6]. This becomes increasingly important in instances with arguably contradictory goals, 

like the relationship between environmental and economic criteria [53]. In other words, sustainable 

building design may be argued to seek a balance between controlling negative environmental 

impacts, such as energy consumption and reducing the degree of non-renewable energy sources and 

their implementation costs [51]. This is an example of multi-objective design criteria.  

 

Currently, building performance optimization is generally done in the design phase. However, studies 

have shown that it can be equally successful in later life stages [52]. For example, Hosamo, Hosamo 
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et al. study on HVAC optimization [30] or Hosamo, Tingstvedt et al. study on model predictive control 

strategies [6].  

 

A recent bibliometric study by Li, Liu et al. reviewed performance-oriented architectural design and 

optimization in the context of sustainability [51]. An apparent problem of energy optimization is its 

complexity. Li, Liu et al.'s study found that most current energy efficiency and optimization research 

suffered severe limitations [51]. For instance, simplified virtual buildings accounted for 86% of the 

current research on sustainable building design [51]. Due to its complex nature, there is no guarantee 

that simulations can simulate perfect solutions. The difference between a building's performance 

and its simulated performance is called the “performance gap”.  

 

There is also the concern of optimization and the different roles in sustainable design. According to 

the bibliometric study conducted, Li, Liu et al. found that engineers and computer technicians were 

currently leading the research development of sustainable building design [51]. The lack of inclusion 

of architects comes with a severe disadvantage, as there is little doubt that aesthetically pleasing 

design combined with optimization would serve as a driving force for sustainable development.  

 

These objectives may be considered to be a multi-objective design criterion. Furthermore, the 

emerging concept of green buildings and green building design has shifted the framework. Architects 

and engineers no longer have clear boundaries. This highlights the need for cross-disciplinary 

collaboration and the necessity of allowing non-experts to make well-informed decisions. 

 

Li, Liu et al. argue that the primary obstacle to achieving performance-oriented design and 

optimization in sustainability is the lack of middle-ware solutions [51]. For this thesis, visual 

programming is intended to serve as the middle-ware gap between the contradicting goals of lowest 

cost and energy consumption these in terms of envelope constructional design.  

 

Another study by Attia, Hamdy et al. argues that the most significant challenge to building 

performance optimization is the lack of resources, appropriate tools, and the ability to define the 

problem sufficiently [52]. For example, defining the desired combination of objectives like lowest 

LCC, highest comfort or energy consumption [52]. Attia, Hamdy et al. further argues that future tools 

within optimization should include real-time solutions integrated within a BIM model, couple 

simulation with optimization, and connect real physical components to optimization models for 

better cost information [52].  

 

 

3.9 Genetic Algorithms 

 

According to Amos, Chana et al. application of Genetic Algorithms (GA) for optimization purposes has 

received the most attention in the AEC [5]. It has repeatedly been found to be one of the most 

successful tools in optimization [54].  

 

A genetic algorithm is a form of an evolutionary algorithm that seeks to imitate Darwins' evolutionary 

theory of “survival of the fittest” but with numbers. The algorithm was first developed by Holland in 
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1975 and highlighted that there must be a sorting mechanism that selects the fittest members of one 

generation to pass to the next [54].  

 

Genetic algorithms may be divided into single-objective and multi-objective genetic algorithms 

(MOGA). The differences should be apparent. Multi-objective optimisation aims to find an acceptable 

trade-off that satisfies the objectives and plots this on an optimal curve between the two objectives. 

Solutions on this curve have the characteristic that none of the objectives may be improved without 

affecting the other. This curve is called the Pareto Front [39].  

 

One of the drawbacks of genetic algorithms, in general, is that they cannot preserve population 

variety [30]. The non-dominated sorting genetic algorithm was developed in 1994 to address this 

concern (NSGA). However, its complexity the optimization purposes are not sufficiently improved 

compared to GA. Therefore, the elitist non-dominated sorting genetic algorithm (NSGA-II) was 

proposed. The NSGA-II algorithm retains the superior individuals from the parent generation and 

children. Allowing for additional non-dominated solutions [6].  

 

Drawing parallels to Darwin’s evolutionary theory, genetic algorithms rely on three fundamental 

concepts: crossover, mutation and selection.  

 

A genetic algorithm may be considered to include the steps illustrated in the figure below: 

 

 

 

 

Generation zero consists of a random number of solutions with a defined upper and lower boundary 

for each variable. Generation zero then goes through selection based on Darwin’s three operators: 

selection, mutation and cross-overs. Better solutions are chosen from the mating pool for the next 

generation [54]. There are several techniques in which this may be achieved, for example, roulette 

wheel selection, rank selection and tournament selection [54].  

 

Tournament selection, as the name suggests, is the concept of selecting a random number of 

individuals from a population and letting them compete with each other. Generally, there are two 

against two, resulting in the fittest being able to continue the process and being selected for 

crossover and mutation [54]. This selection process filters how many individuals remain before 

crossovers to the next generation and may be considered the selection process, “winners” are 

assigned a higher rank. 

Figure 3.20 Genetic Algorithm. 
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We separate between types of crossovers and the crossover rate. The crossover rate reflects how 

many genes are transported to the next generation, whilst the crossover type reflects how the 

children are created. There are several cross-over types: single-point, double-point, and 

intermediate. A brief illustration of these types is illustrated below. Parents are displayed on the left, 

whilst children are displayed on the right: 

 

 

 

 

As may be interpreted from the figures, the single-point crossover is performed by replacing values 

from a single point to the new generation. Double-point crossover is similar, only with two points. 

Intermediate Crossover is more complicated, as it is calculated by the formula displayed below: 

 

𝐶ℎ𝑖𝑙𝑑 = 𝑃𝑎𝑟𝑒𝑛𝑡1 + 𝑅𝑎𝑛𝑑 ∗ 𝑅𝑎𝑡𝑖𝑜(𝑃𝑎𝑟𝑒𝑛𝑡2 − 𝑃𝑎𝑟𝑒𝑛𝑡1) 
Equation 3.10 Intermediate Crossover 

 
 
The child of this crossover is performed by taking the value of parent one and adding a random 

number between 0 and 1, multiplied by a ratio (usually 1) times the value difference of parent two 

with parent one. In a practical context, the different values of the decision variables serve as genes 

(chromosomes). 

 

In the crossover process, mutation also occurs, which serves as a means to create new solutions by 

creating genes not included in parent generations and passing them on to the children. 

 

After the crossover and mutation process combined with the previous generation and superior 

individuals from the parent generation, we have additional solutions. These solutions go through a 

sorting process, where NSGA-II separates itself from other forms of genetic algorithms. Based on two 

different criteria, crowding distance and rank. Consider the figure below: 

 

Figure 3.22 Single-Point Crossover. Figure 3.21 Double-Point Crossover. 

Figure 3.23 Intermediate Crossover. 
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Figure 3.24 Pareto front. 

 
The point closest to the intersecting axis (point 0,0) reflects the lowest value of objective one and 

objective two. This point is thus more optimal compared to the other points. Such a point is 

automatically selected by rank. The closer to optimal, the higher the rank. In the figure above, one 

may consider the red points closer to the intersecting axis than the circles. Thus, the red points are 

selected. 

 

Secondly, in the cases where two values with the same rank (solutions marked with red). The 

selection of the winner is based on the relative crowding distance. This process is repeated per 

generation. As the selection process is completed, a higher degree of optimization will occur each 

generation [12]. 

 

The algorithm repeats itself until specific criteria are met. Examples include a max number of 

generations, convergence, time limit, or spread in Pareto solutions. 

 

Genetic algorithms may be considered an iterative tool for evolving solutions into new and better 

solutions. This process is repeated per generation until the least adaptive individuals are eliminated 

[54].  

 

This process is not without challenges, however. According to a study published by An, Li et al., 

uncertainties connected to genetic algorithms are divided into five subcategories [55]:  

 

• Unclear on selection representations of chromosome operators, as the selection significantly 

influences the efficiency. 

 

• Varying length with population size, small population size may cause the genetic algorithms 

to converge towards a sub-optimal solution, causing a situation where it is required with 

larger population sizes, but this again causes more computing efforts. 

 

• The selection operators implicitly entail the probability that chromosomes of the latter 

generations have better fitness. This may cause loss of valuable information with 

chromosomes with lower fitness, lowering diversity and possibly converging prematurely. 

Furthermore, the choice of selector operator rests on user subjectivity. 
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• Possible derivatives of the first operation, the derivation of chromosomes, depending on the 

cross-over operator. This operator may influence the results. Several cross-over options exist, 

like geometrical, arithmetic, random, single-point, double-point and intermediate cross-over.  

 

• Unimplicated determination principles for mutation operators. The determination of 

mutation will have a significant influence on chromosome health. A lower mutation may 

cause premature convergence, whilst a higher mutation may result in the probability of 

destroying good chromosomes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



[Master’s Thesis 2023] 

31 

 

4 Research Question 
 

The research question formulated for this thesis is: 

 

How can digital twins be implemented to reduce energy consumption and costs in buildings? 

 

Answered by the following sub-questions:  

 

• How effective are ANN models in predicting building energy performance indicators (e.g., U-

value/kWh, U-value/costs), and what are the practical implications of using these models in 

terms of energy efficiency and cost savings for school buildings? 

 

• How to use NSGA-II to reduce energy consumption and costs? 

 

• How to use visual programming to stream results to BIM? 
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5 Case 
 

This chapter will describe and explain the case for this thesis, the starting point from which to answer 

the research question and the problem area. It is built on a digital model of a physical asset for 

simulation purposes, serving as the digital twin.  

 

 

5.1 Tvedestrand Videregående Skole 

 

The case chosen for this study is Tvedestrand Videregående Skole, a high school in Tvedestrand, 

Norway. The building was erected in 2020. There was a clear focus on reducing carbon emissions in 

the design and construction phases [56].  It holds room for 690 students, 420 employees and has a 

gross area of 14 500 m2 [57]. 

 

 

 
Figure 5.1 Tvedestrand Videregående Skole - Entrance. 

 

The school was built to achieve the futurebuilt plus-house certification. It is worth noting that the 

definition and methodology for plus-house per futurebuilt was updated by Version 2.2 19.09.22, 

published after the construction of Tvedestrand Videregående Skole was completed. 
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Figure 5.2 Tvedestrand Videregående Skole - Entrance Area. 

 

There were numerous efforts put in place to achieve the certification. For instance, of the 8 420 m2 

of the gross roof area, 4050 m2 is covered by solar panels [58]. Construction of the asphalt road 

achieved a 37% reduced carbon footprint than its concrete alternative, and concrete stairways were 

replaced with wooden alternatives. In total, the building achieved a 78 % carbon footprint emission 

reduction compared to its reference building. Making it one of the most environmental-friendly 

schools in Norway [56]. 
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5.2 Classroom 3006 

 

The case for this thesis is limited to classroom 3006, located on the third floor of the building. The 

location is illustrated by the two figures below, which are gathered from the floorplan available in the 

Revit Model included in Appendix A – TVGS.rvt  

 
 

 
 

 

 

 

 

 

Figure 5.3 Tvedestrand Videregående Skole - Room 3006 Floorplan. 

 

The pictures that follow display the classroom. Firstly, its entrance and following perspectives are 

noted by symbols. 
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Figure 5.6 Room 3006 - Perspective A. 

   

Figure 5.5 Perspective Overview. 

Figure 5.4 Tvedestrand Videregående Skole - Room 3006 
Entrance. 
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Figure 5.7 Room 3006 - Perspective B. 

 
 
 

 
Figure 5.8 Room 3006 - Perspective C. 
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The particular case was chosen on the following basis: 

 

- Basic walls covering three sides. The final side is an external wall.  

- Concrete bearing for the elevator shaft is connected to the room's southwest corner. 

- Two exit doors with windows attached. 

- Windows cover a significant fraction of the external wall. 

 

A room containing these different construction elements allows for a more extensive range of 

calculations: Standard internal walls, external walls and a concrete-bearing elevator shaft. Once 

including doors, roof, floor and windows, we have six material-specific variables that may be 

analysed and optimized. 
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6 Methodology 
 
This thesis is designed to include new technological advancements within digitalization and 

optimisation in AEC. It seeks to cover energy performance calculations, machine-learning models, 

multi-objective optimization and digital twin. As such, it covers a wide range of software solutions. In 

this chapter, the strategy and choice of methodology will follow. Firstly, the literature review part of 

this thesis intends to cover the necessary theoretical background and identify relevant case studies 

presented in the results. The formatting process of this thesis will follow, and finally, a description 

and workflow of the various software solutions that are applied in answering the research question. 

 

 

6.1 Literature review 

 

This chapter will cover the methodology for collecting the literature for this thesis. The literature 

review is performed to establish a sufficient theoretical background and case studies related to the 

research question. This thesis selects a two-pronged approach consisting of two different search 

strategies, a search module (or module search) and a supporting search.  

 

A search module (or module search) intends to cover the theme in broader terms. The first ten 

articles of a literature search were all selected and then abstract-reviewed for relevance. Detected 

keywords not connected to the AEC industry caused the article to be discarded. Geographically 

limited case studies were ignored, leaving a large part of bibliometric studies. These articles were all 

full-text reviewed and form the basis of the different fields of research presented in this thesis.  

 

The primary motivation behind a search module is to find several sources for each respective term or 

theme, as this ensures a higher degree of academic accuracy. The chosen methodology allows for 

more accurate coverage of the theme in question. Furthermore, the different themes occasionally 

overlap each other. For example, Artificial Intelligence in AEC and Machine Learning in AEC cover the 

same theme. The hits from both searches may help identify overlapping or relevant articles not 

initially detected in a singular search module.  

 

A supporting search is a specific search intended to expand on relevant terms identified in the search 

module, such as the definition of artificial intelligence and the digital revolution. Articles were 

selected within the first ten hits of each search based on keywords in the heading. Followingly, 

articles were reviewed for keywords connected to the search term. Selected articles were not full-

text reviewed. Instead, relevant information was extracted from the introduction, results or 

conclusion.  

 

The relevant case studies were collected through these searches. In general, one could argue that a 

supporting search holds lower academic value than a module search due to its higher degree of 

specification and limited selection of articles. Furthermore, support searches do not require a full-

text review to be applicable. A simplified illustration of the literature review methodology is 

illustrated below: 
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This thesis is intended to be an expansion of previous work within the field of using machine learning 

in combination with genetic algorithms for optimization purposes. Therefore, the thesis holds three 

articles as a foundation. These articles identified keywords relevant to the research question, serving 

as terms for module searches. Supporting searches were placed on specific key terms and themes, 

such as definitions like IoT, ANN, NSGA, and Genetic Algorithms.  

  

The three initial articles serving as a foundation are based on previous work published by Hosamo et 

al. Namely, “Digital Twin of HVAC System for multi-objective optimization of energy consumption and 

thermal comfort based on BIM framework with ANN-MOGA” by Hosamo, Nielsen et al. [30]. “Multi-

objective optimization of building energy consumption and thermal comfort based on integrated BIM 

framework with machine learning – NSGAA II” by Hosamo, Tingstveit et al. [6]. “Digital Twin 

Framework for automated fault source detection and prediction for comfort performance evaluation 

of existing non-residential Norwegian buildings” by Hosamo, Nielsen et al. [59].  

 

A fourth article was selected as the foundation of the other aspects of this thesis, cost analysis, namely 

“Minimizing delivered energy and life cycle cost using Graphical script: An office building retrofitting 

case” by Rabani, Madessa et al. [10]. An illustration depicting the module searches and the amount of 

articles extracted that were full-text reviewed from each search module is depicted in the following 

figure: 

Figure 6.1 Litterature Review, A two pronged approach. 
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Criteria for the selection of articles were defined as follows: 

 

• Available in the Oria Database. 

• Published between 2012 and 2023. 

• Written in English. 

• Peer-reviewed articles. 

• Within the first ten hits from the search results. 

 

 

Criteria for rejection were defined as follows: 

 

• Articles containing keywords not associated with civil engineering. 

• Geographically limited case studies, this holds true for all search modules but not supporting 

searches. 

 

 

The choice of using the Oria Database in favour of other search engines, such as Google Scholar, was 

made for two reasons. Firstly: Functionality, using the Oria database, one can save searches for use in 

the search log, find relevant information for citations and also supply an intuitive user interface to 

exclude terms from searches. Secondly: Validity, using the Oria database, enables a direct search to 

interpret and choose relevant articles swiftly and accurately. The search engine is also precise to the 

point where one can add terms to limit search hits more efficiently, ensuring the search results are 

relevant for their intended purpose. Although Google Scholar arguably has the largest number of 

articles, it may be considered inappropriate as an academic search engine because it cannot provide 

sufficient replicability [21]. 

 

A detailed search log with keywords, search strategy (module searches/supporting searches) and 

motivation is included in this thesis in Appendix B –  Logbook for literature search.pdf  

 

Figure 6.2 Literature Review Methodology. 



[Master’s Thesis 2023] 

41 

 

As of the time of writing this thesis, machine learning and numerical optimization using genetic 

algorithms is not an integrated part of the Msc course in civil engineering at the University of Agder. 

In an attempt to overcome this weakness, the chapter on Machine Learning and Genetic Algorithms 

leans heavily on external sources and courses from other universities.  

 

For Machine Learning, the lecture material from the class “Introduction to Artificial Intelligence and 

Machine Learning for Engineers” was taught at UCLA (University of California, Los Angeles) by 

Mathieu Bauchy in 2018 [34]. The “Learning from Data – Introductory Machine Learning Course” also 

from UCLA, presented by Yaser Abu-Mostafa in 2012 [60]. The course “CS229 -Machine Learning” 

from Stanford presented by Andrew Ng in 2018 [32]. And finally, the course “Introduction to Deep 

Learning” by the Technical University of Munich (TUM) in 2020 presented by Matthias Niessner [61].  

 

Whereas the chapter on Genetic Algorithms is supported by the course “Selected Topics in Decision 

Modelling” by Biswajit Mahanty, taught at the Indian Institute of Technology in 2018 [62]. Followed 

by the “Practical Genetic Algorithms in Python and Matlab”, presented by S. Mostafa Kalami Heris, 

phd for the Yarpiz Project [63]. These courses are available online and may be identified using a 

search engine. 

 

In the lack of supporting literature for these courses, popular sciences were also applied for relevant 

terms identified in the courses or articles relevant to the theme. These were applied for illustrations 

and figures, while the respective courses covered the theoretical background. The identification of 

these sources is not included in the logbook. 

 

“Grey sources”, such as the relevant standards, were identified through keywords in the respective 

articles. They are also not represented in the search log, as they are clearly referenced in the relevant 

chapters.  

 

 

6.2 Formatting 

 

Unless specified otherwise, the figures and tables in this thesis are created by the author. Specific 

figures that strongly resemble the original source are referenced in the figure text. Most figures for 

illustration purposes are created using Microsoft Visio [64]. Pictures of the chosen case were 

gathered using the camera of an iPhone SE. For illustrations or pictures needing editing, GIMP 

version 2.10.32 was applied [65]. The necessary proficiency for this software was already obtained by 

the start of this thesis.  

 

 

6.3 Strategy and Software Hierarchy 

 

The overall strategy for this thesis is to include different digitalization tools to illustrate different 

functionality and application areas. The goal is to implement these tools for building performance 

optimization and stream the results in a digital twin. The process and software hierarchy is illustrated 

in the figure that follows: 
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At the time of writing this thesis, there was only a limited amount of knowledge of Revit, Excel, 

Matlab and Dynamo. There was no previous experience with the application of IDA ICE. At all levels, 

it was necessary with third-party sources to gain the experience and knowledge required to achieve 

sufficient proficiency within the various software. Sources that were applied were: The IDA ICE 

getting started document available at Equa.se [66]. Tutorial videos are available at LinkedIn Learning 

[67]. For Matlab, online Machine Learning Courses were applied, in particular, “Introduction to 

Artificial Intelligence and Machine Learning for Engineers” by Mathieu Bauchy in 2018 [34] and 

tutorials and machine learning descriptions are available at the Mathworks website [35]. For code 

troubleshooting during the scripting process, the AI bot ChatGPT was applied [39].  

 

Figure 6.3 Software Hierarchy. 
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The simulations are based on three available decision variables from the chosen case: Internal Walls, 

External Walls and Windows. The motivation for this choice was made in order to quantify as much 

of the room as possible. Other categories and variables were excluded due to challenges in 

determining a suitable methodology and challenges related to operating the IDA ICE software.  

 

 

6.4 Visual Programming 

 

Visual programs in this thesis are created in Dynamo and applied in two main areas, one for 

generating random variables serving as inputs for the IDA ICE simulation software and cost 

estimation, in addition to serving as a visualization tool for Revit, the digital twin.  

 

 

6.4.1 Generation of Random Variables 

 

For this thesis, the input for the machine learning model was the analysis of 100 combinations of 

randomly generated numbers based on inputs created in Dynamo. This number was chosen to 

establish a sufficient dataset for adequate accuracy for the neural networks, which will be described 

in later chapters.  

 

The code is displayed below: 

 

 

 
Figure 6.4 Random Number Generator. 

 

The program may be explained as follows; it rests on five inputs. INPUT (Min Value) and INPUT (Max 

Value) reflect the domain of the numbers we wish to generate. INPUT (Start Column) and INPUT 

(Start row) refer to the Excel sheet for which the numbers are exported and the File Path for the 
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Excel sheet file. It is worth noting that visual programming works differently than the regular 

numbering we are usually accustomed to. The initial value for this form of programming is 0 and not 

1. So start Column 0, and Start Row 0, translates to A1 in the Excel sheet. 

 

Number as an input to Math.Randomlist describes the number of times the seed is repeated. The 

input for seed is the specific function, in this case, Math.Rand, which creates a random value 

between 0 and 1. The String is located above the Math.Randomlist function creates a name for the 

Excel sheet from which the data is to be exported.  

 

The output from Math.Randomlist creates a list which is initially horizontally exported to Excel. For 

convenience, this is flipped to a vertical list through the List.Transpose function. It is worth stressing 

the importance of booleans in this case. OverWrite is set to false by default. Should this value be 

changed to true, it would cause the list to be randomized each time the script is applied, which is set 

to automatic by default. The completed visual program is included in Appendix C – Random Number 

Generator.dyn.  

 

The function is repeated for each variable we wish to include in future simulations. This thesis is 

based on three categories illustrated in the table below: 

 
Table 6.1 Range of thermal transmittance for each category. 

Category Min U-value [W/(m²K)] Max U-value [W/(m²K)] 

External Wall 0,12  0,22 

Window 0,7 1,6 

Internal Wall 0,22 0,42 

 

 

The decision variables' range is based on technical requirements in the Norwegian Byggteknisk 

Forskrift 10, §14-2 “krav til energieffektivitet” [48]. And the materialist available at Norsk Prisbok 

[68]. 

 

Internal walls are not covered in heat loss calculation, as there is presumed no heat transfer between 

two heated zones. As such, the original literature does not cover the range of values for internal 

walls. The values of internal walls were calculated from a lower limit, set as a composition satisfying 

the minimal soundproofing requirement of a school building in Norway of 48 dB noise reduction, 

which composition provided in the 524.325 manual in Byggforskserien [69], to a construction with a 

maximum width of 200 mm.  

 

The composition of the two alternatives is displayed in the table below. The total value for the 

thermal transmittance of each alternative is summarized in the final row.  These values were 

calculated using IDA ICE, using the predefined material constants in the material library.  
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Table 6.2 Alternative Compositions of Internal Wall. 

 

 

The list of randomly generated numbers is included in Appendix D – Datasheet.xlsx under the 

“Variables for analysis” sheet. 

 

 

6.4.2 Visualization of Digital Twin 

 

The process of creating a visual program for Digital Twin illustrative purposes in Autodesk Revit is 

separated into several different steps: 

 

1. Create a digital model of the case room in Revit. 

2. Define each component as a solid in Dynamo. 

3. Export these components from Dynamo to display in Revit. 

4. Import optimization degree from Excel. 

5. Visualize components with a colour range depicting the degree of optimization. 

 
The visual program to achieve the digital twin rests on several different inputs. Each input goes 
through midway processes and modifications. As such, it may be considered complex. To cover all 
levels of the process in writing is deemed impractical. Instead, a rough illustration of the program is 
displayed below. Further information about the program may be identified from the included file in 
Appendix E –  Digital Twin Script.dyn 

Alternative 1 

Material Thickness [mm] λ [W/mK] 

Gypsum (x2) 25 0,22 

Insulation 150 0,036 

Gypsum (x2) 25 0,22 

U-Value[W/(m²K] 0,22 

Alternative 2 

Material Thickness [mm] λ [W/mK] 

Gypsum (x2) 25 0,22 

Insulation 70 0,036 

Gypsum (x2) 25 0,22 

U-Value[W/(m²K] 0,42 
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In order to avoid repetitive tasks, a custom node for optimization degree was created. The 
functionality of this node is to return a colour between green and red reflective of the optimization 
degree in the range between 0 and 1, where 1 illustrates red (large degree of change), and 0 
illustrates green (low degree of change). An illustration of the node is shown in the figure below. The 
node is also exported to a separate file in Appendix F – Coloring.dyf. The finalized model is included in 
Appendix G – Digital Twin.rvt 
 
 

 

Figure 6.5 Visual Program - Visualization. 

Figure 6.6 Custom Dynamo Node - Degree of Optimization. 
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6.5 IDA ICE 

 
IDA ICE is applied in this thesis to establish values for energy consumption by running simulations 

based on variables established with a random number generator. Three decision variables are chosen 

for simulation purposes Internal Walls, External Walls, and Windows.  

 

The process of using IDA ICE in this thesis may be described in the figure below. The various steps will 

be covered in later chapters. 

 

 
Figure 6.7 IDA ICE Modelling Process. 

 
In the context of this thesis, IDA ICE serves as the baseline for simulation purposes to determine 

energy consumption. The simulations here are based on the particular case, with randomly 

generated thermal transmittance values created by visual programming.  

 

The model validation process, adjustments and simulations conducted in this thesis is self-taught. At 

the start of this thesis, there was no previous knowledge of the use of IDA ICE. However, online 

support material proved helpful, particularly the “IDA ICE 4: Getting Started” document available at 

the Equa.se website [66]. The relevant simulation result, in this case, is the value of kWh/m2. The 

relevant theoretical background is covered in Chapter 3.6. 
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6.5.1 Model Validation 

 

All simulations in IDA ICE are done on an IDA ICE project file with the file extension IDM. For future 

reference, IDM will be applied to describing a particular file. Tvedestrand Videregående Skole has 

undergone a similar simulation in the past. The simulations were conducted by erichsenhorgen by 

commission of Aust-Agder Fylkeskommune. An IDM file with a readily imported IFC model and 

attached climate data was provided. Project-specific data, such as vacation hours or material 

compositions, was entered from the report by Erichsenhorgen. This report is not open for 

republishing. As such, it will not be covered in depth. 

 

IFC and Revit files are described interchangeably in this thesis. One may consider the following: The 

software Revit applied the IFC file for IDA ICE modelling purposes.  

 

In order to perform a simulation in IDA ICE, one needs to establish a “zone”, which describes the area 

one wishes to simulate. By using the default function in IDA ICE for the definition of the zone for 

classroom 3006, it was evident that the model was not sufficiently accurate, as displayed in the figure 

that follows below:  

 

 

 
Figure 6.8 Original IDA ICE Model. 

 

 

In preparation for the modelling process, an excursion to Tvedestrand Videregående Skole was 

conducted with permission granted by the acting principal. The excursion aimed to establish a 

sufficient background for the case chapter, gain illustrative pictures for this thesis and also aid in 

formulating a suitable methodology.  

 

By comparing the generated model to visual observations, it was clear that essential parameters 

were missing from the model, particularly the southernmost windows, the north-eastern door, the 

eastern door, and the side-panel windows next to the doors.  
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In order to address this, the digital model was compared with the IFC file imported Revit. The 

geometry of this Revit file used as inputs are illustrated in the figures below: 

 

 
Figure 6.9 Window Geometry External wall. 

 

 
Figure 6.10 Door Geometry. 

As described per methodology in the previous chapter. The simulation methodology does not include 

internal windows and doors. As such, the side panels for classroom 3006 were removed. Doors are 

considered the same as defined walls unless the zone is connected to another zone. As such, the 

doors remained on the model.  

 

Furthermore, the mapping and material composition of windows and doors from the IFC file is not 

translated correctly to the IDA ICE model. They needed to be redefined by extracting information 

from the IFC file for the virgin analysis or by including material composition and material parameters 

included in the report by Erichsenhorgen.  

 

By default, IDA ICE does not calculate energy performance to internal walls unless it is specified as an 

external zone. In the IDM file, the façade wall and roof are defined as external, which means, 

theoretically, no heat loss to the internal walls or the floor construction.  
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In the southern part of the room, visual observations identified an elevator shaft of pure concrete, 

highlighted in the figure below: 

 

These walls are considered static and unalterable for optimization purposes. By extracting 

information from Revit, these walls were identified with a thickness of 0.25 m. By applying the 

concrete material already defined in the model, the following thermal transmittance value is defined: 

 
Table 6.3 IDA ICE - Elevator shaft. 

Elevator shaft 

Concrete 0,25 [m] 

U-Value 3,154 [W/(m2K)] 

 

 

Once all data was exported and edited, the validated model is displayed in the following figure and is 

also included in Appendix H – IDA ICE SIM.idm 

 

 

 

Figure 6.12 Validated IDA ICE model. 

Figure 6.11 Elevator Shaft. 
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6.5.2 Presumptions  

 

The IDA ICE software requires input on other variables for the respective room, mainly information 

about the occupants, lighting, HVAC system and usage patterns to perform an accurate analysis. 

 

Since the case room chosen in this study is not included in the original IDM file, this data was not 

readily available. However, the previous simulations conducted by Erichsenhorgen also included a 

classroom. Data from this report was plotted in IDA ICE. Furthermore, material specifications for 

doors and windows were considered similar, except for thermal transmittance values for simulation 

purposes. Other data were calculated from the occupants and square meters ratio by provided 

presumptions included in the original simulation report by Erichsenhorgen. As described earlier, this 

report is not open for republishing. As such, it will not be covered other than the constants chosen 

for these calculations.  

 

The tables below list the room specifications serving as data for simulations: 

 
Table 6.4 IDA ICE - General Data Specifications. 

General Data 

Climate Kristiansand 

Location Kristiansand/Kjevik 

Room occupancy  Monday-Friday 08:00-16:00  

Internal Heating load Laptop 30 W per occupant 

Digital board 200 W 

Lighting Period Monday-Friday 07:30-15:30 

Digital Board Operating time Monday-Friday 08:00-15:30 

Equipment Operating time Monday-Friday 08:00-15:30 

Vacation Period Weeks: 26-32 and 52 

 

Table 6.5 IDA ICE - Window Specifications. 

Window Specifications 

Solar Heat Gain Coefficient  0,34 [-] 

Solar Transmittance  0,29 [-] 

Visibility Transmittance 0,63 [-] 

Internal Emissivity 0,837 [-] 

External Emissivity 0,837 [-] 

Fraction Frame/Window 0,10 [-] 

Opening None 

Azimuth degree 48,38 
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Table 6.6 IDA ICE - Vacation Period. 

Vacation Period 

26 June – 14 August Summer Holidays 

25 December – 1 January Christmas Holidays 

 

 
Table 6.7 IDA ICE - Air Handling Unit Specifications. 

Air Handling Unit Specifications 

Central Air Handling Unit Variable Air Volume, temperature and CO2 

monitoring 

Supply Air 20 [m3/hm2] 

Set point Heat 21 oC 

Set point Cooling 24 oC 

External Shading None 

Opening of Windows None 

Loss factor for thermal bridges 3,3349 oC 

Leak area -Central Air Heating Unit 0,00209 [m2] 

Operating Time Monday-Friday 08:00-16:00  

 

 

By using the presumptions described earlier in this chapter, the final room specifications plotted into 

IDA ICE are repeated in the table below:  

 
Table 6.8 IDA ICE - Data input. 

IDA ICE Data Input 

Room size 80,85 [m2] 

Occupants 30 [No.] 

Ceiling Height 2,9 [m] 

Occupants 0,371 [No./ m2] 

Supply Air 5,55 [l/s.m2] 

Lights 4 [W/m2] 

Digital Board 200 [W] 

Laptop 30 [W/No.] 

 

 

6.5.3 Virgin Analysis 

 

The Virgin analysis is intended to form a basis for comparison for the model and verify approximate 

values from previous simulations in similar conditions. However, there is contradicting information 

when comparing the Revit IFC file and IDA ICE.  

 

From the Revit model, the following semantic data were extracted: 
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Table 6.9 Revit - External Wall Composition. 

External Wall composition 

Tiles  8 [mm] 

Air  36 [mm] 

Insulation  200 [mm] 

Plasterboard  22 [mm] 

 

 

By comparing this value to the default component composition already defined in IDA ICE, we have: 

 
Table 6.10 IDA ICE - External Wall Composition. 

YV-Bindingsverkvegg 

Render  0,01 [m] 

Light Insulation 0,23 [m] 

Gypsum 0,01 [m] 

U-Value  0,1511 [W/(m2K)] 

 

 

There are discrepancies between the Revit Model and the IDA ICE model information. 

Although one could argue that the Revit file contains more detailed information than IDA ICE, there is 

a challenge in using this data for simulation purposes. Namely, the lack of material information, 

specifically values such as density and thermal conductivity, are missing. Using the Revit model data 

is therefore considered impractical, and the data in the IDM material library was applied and 

considered valid. The values are displayed in the following tables: 

 

 
Table 6.11 IDA ICE - Internal Wall Composition. 

Internal Wall composition 

Gypsum 0,026 [m]  

Air in vert.air gap 0,032 [m] 

Light Insulation 0,030 [m] 

Air in vert.air gap 0,032 [m] 

Gypsum  0,026 [m] 

Total U-Value  0,6187 [W/(m2K)] 

 

 
Table 6.12 IDA ICE - Window specification. 

Window Specifications 

Solar Heat Gain Coefficient  0,34 [-] 

Solar Transmittance  0,29 [-] 

Visibility Transmittance 0,63 [-] 

Internal Emissivity 0,87 [-] 
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External Emissivity 0,87 [-] 

Fraction Frame/Window 0,10 [-] 

Opening None 

Azimuth degree 48,38 o 

U-Value Frame  2,0 [W/(m2K)] 

U-Value Glazing  0,6 [W/(m2K)] 

U-Value Total 0,74 [W/(m2K)] 

 

 

The windows are not all fixed and include the opportunity to open them. However, establishing an 

estimate of how much a window will be opened is difficult and prone to error. As such, it is presumed 

that the windows are permanently closed.   

 

For the floor and the roof, the following definitions were applied: 

 
Table 6.13 IDA ICE - Floor Composition. 

Floor Composition 

Floor Coating  0,005 [m] 

L/W Concrete 0,02 [m] 

Concrete 0,15 [m] 

Total U-Value  2,385 [W/(m2K)] 

 

 
Table 6.14 IDA ICE - Roof Composition. 

Roof Composition 

Light Insulation 0,35 [m] 

Concrete  0,15 [m] 

Total U-Value  0,1002 [W/(m2K)] 

 

 

6.5.4 Random Number analysis 

 

The Random number analysis is based on the generation of the random values for thermal 

transmittance for the respective categories. For the IDA ICE simulations, the process was simplified 

by defining a generic geometry. Each wall is defined as consisting of a homogeneous material with a 

thickness of 100 mm. By this presumption, one can input the variables as thermal conductivity values 

rather than the thermal transmittance by rewriting the equation described in Chapter 3.6. The 

equation is repeated below: 

 

 

𝑈𝑖 =
1

𝑅𝑡𝑜𝑡
 ,      𝑅𝑡𝑜𝑡 = 𝑅𝑠𝑖 + 𝑅𝑠𝑒 + 𝑅𝑖 , 𝑅𝑖 =

𝑑𝑖

𝜆𝑖
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By rewriting this formula, we have: 

 

𝑈𝑖 =
1

𝑅𝑠𝑖 + 𝑅𝑠𝑒 +
𝑑𝑖

𝜆𝑖
⁄

 

 

 

Which equals 

 

𝑈𝑖 (𝑅𝑠𝑖 + 𝑅𝑠𝑒 +
𝑑𝑖

𝜆𝑖
⁄ ) = 1 

 

 

𝑅𝑠𝑖 + 𝑅𝑠𝑒 +
𝑑𝑖

𝜆𝑖
⁄ = 1

𝑈𝑖
⁄  

 

 

𝑑𝑖
𝜆𝑖

⁄ =  1
𝑈𝑖

⁄ − 𝑅𝑠𝑖 − 𝑅𝑠𝑒  

 

 

𝑑𝑖 = 𝜆𝑖(1
𝑈𝑖

⁄ − 𝑅𝑠𝑖 − 𝑅𝑠𝑒) 

 

Thus: 

𝜆𝑖 =
𝑑𝑖

1
𝑈𝑖

⁄ − 𝑅𝑠𝑖 − 𝑅𝑠𝑒

 

 

 

As described in Chapter 3.6 Energy Performance, 𝑅𝑠𝑖  and 𝑅𝑠𝑒 Vary depending on airflow, respectively 

vertical for walls and horizontal for floors. If we define a single homogeneous layer with a thickness 

of 𝑑𝑖 = 0,1 𝑚𝑒𝑡𝑒𝑟𝑠  we get the following expression: 

 

𝜆 =
0.1 𝑚

1
𝑈⁄ − ∑ 𝑅

 

 

 

By putting the various thermal transmittance values generated by the visual programming into this 

formula expressed in Excel, we end up with a single variable for thermal conductivity (𝜆) for each 

material which would equal the generated U-Value.  

 

A new material with a new thermal conductivity value may be generated per variable for each 

combination of values entered in IDE ICE. This methodology is applied to internal and external walls. 

It is presumed that the values in Table 6.12 IDA ICE - Window specification are valid for simulation 

purposes. Beyond these values, the required inputs are the frame/window fraction, the frame u-

value, and the glazing u-value. In order to simplify calculations, it is presumed that the frame covers 1 
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% of the total window area and has a U-value of 2 W/m2K. The value of the frame will affect the total 

U-value of the window itself. However, by reducing the area to 1 %, it is presumed that this value 

does not significantly disrupt the results. As such, only the glazing U-value will be altered for each 

simulation.  As this data may be directly input, no new window material is defined. 

 

In IDA ICE, materials have other inputs than thermal conductivity, namely specific heat and density. 

For this thesis, these are considered equal to concrete. A density of 2300 kg/m3, and a heat of 880 

J/KgK, respectively. Although these values will affect the results, they will not disrupt the comparison 

for random number simulations as the values are constant. They may, however, disrupt the 

comparison. 

 

IDA ICE can display the U-value for a specific combination of materials. Per the standard, which is 

described in Chapter 3.6, Energy Performance. The R-value should equal 0,14 for vertical airflow:  

 

𝑅𝑠𝑖 + 𝑅𝑠𝑒 = 0,10 + 0,04 = 0,14  

 

 

However, when comparing the resulting U-Value from the input thermal conductivity, we have a 

discrepancy with this value. Through manual experimentation, the following R-value is defined.  

 

𝑅𝑠𝑖 + 𝑅𝑠𝑒 = 0,175 

 

 

Calculations of this value and the degree of error are included in Appendix D – Datasheet.xlsx under 

the “IDA ICE” sheet. The error margin varies between 0,18 % to 1,4 % resulting in the assumption 

that the methodology is considered valid. Thus, we have the following equation for the input of 

thermal conductivity in IDA ICE from the randomly generated thermal transmittance value through 

visual programming: 

 

𝜆 =
0.1 𝑚

1
𝑈⁄ − 0,175

  

Equation 6.1 Thermal conductivity in IDA ICE. 

 
 
This value is used for definitions of various materials. In the IDM file included in Appendix H – IDA ICE 

SIM.idm. The following system for the custom materials is defined: 

 
Table 6.15 IDA ICE - Custom material library. 

Material categorization 

x.IntW Internal Wall 

x.ExtW External Wall 
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Where x reflects the combination number, as described earlier, the thermal transmittance value for 

windows is not included in this table, as there is no direct need for altering the composition to 

generic geometry. In these cases, the U-value of the glazing was altered directly.  

 

For evaluating energy performance, it is considered valuable to calculate energy consumption per 

square meter per year. Values reflected in later parts of this thesis will operate with this value, 

although given the simulation lasts for one year, the unit displayed will be kWh/m2. 

 

 

6.5.5 Validation 

 
The IDA ICE software is also applied for validation purposes. Similar to random number analysis, 
identified optima values are entered and simulated. This methodology will serve as a tool for 
validating the optimized results.  
 
Further materials are entered with the following material definitions: 
 
Table 6.16 NSGA-II Optima validation. 

NSGA-II Optima Validation Simulations 

Optima.x.IntW NSGA-II Optima, Internal Wall 

Optima.x.ExtW NSGA-II Optima, External Wall 

 
 

6.6 Cost Analysis 

 

The limitations of Life cycle costs in this thesis are defined as investment costs. It consists of material 

costs and installation costs. Using the “Life Cycle Cost Analysis” definition would be misleading. 

However, one may argue that the limitations seem appropriate as we assess the elements' 

performance over a short timeframe for comparison purposes with energy consumption and not in a 

life cycle timeframe. For this thesis, we define cost calculation as a cost analysis. 

 

The cost analysis is performed in 7 steps, displayed in the figure below: 

 

 

 
Figure 6.13 Cost Analysis Process. 
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Firstly: Identify materials corresponding to the U-value ranges defined by the randomly generated 

numbers. In this thesis, we limit ourselves to the effect of insulation. In real-life, energy efficiency is 

dependent on several other factors. Various thickness of insulation was gathered through the Norsk 

Prisbok website [68], corresponding to the respective element, External Wall (Translated to 

Norwegian: Klimavegg), insulation in internal walls (Translated to Norwegian: isolation i innervegg), 

and finally, windows.  The values are identified under “prislinjer per fag”, which describes the 

activity. In the case of insulation, this is identified by category 12 “Tømrerarbeider”. In the case of 

windows, the values are depicted under category 14, “Vindusarbeider”. 

 

Secondly, in the insulation case, these materials were plotted in IDA ICE to calculate the U-Value for 

the combined element. We apply the element composition corresponding to the Virgin Model. An 

example of an Insulation External Wall is provided in the table below: 

 
Table 6.17 Example, thermal transmittance - Insulation External Wall. 

Name U-Value [W/(m2K)] 

Isolasjon i klimavegg, mineralull, t=150 mm, 0,035 W/mK 0,2276 

Isolasjon i klimavegg, mineralull, t=170 mm, 0,035 W/mK 0,2020 

Isolasjon i klimavegg, mineralull, t=200 mm, 0,035 W/mK 0,1729 

Isolasjon i klimavegg, mineralull, t=225 mm, 0,035 W/mK 0,1544 

Isolasjon i klimavegg, mineralull, t=250 mm, 0,035 W/mK 0,1394 

Isolasjon i klimavegg, mineralull, t=250 mm, 0,035 W/mK 0,1168 

 

By following these simulations, definite, quantifiable materials are identified. Whereas windows have 

described U-values from the product itself. It is important to note that the walls are considered a 

homogenous insulation material per this methodology.  

 

Thirdly: Identify limits. The domain for each material is defined by ranges of the mean value between 

two different materials and the actual value of the simulations.  

 

 

𝐿𝑖𝑚𝑖𝑡𝑖 = (
𝑆𝑖𝑚. 𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝑖 + 𝑆𝑖𝑚. 𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝑖−1

2 |
𝑆𝑖𝑚. 𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝑖 + 𝑆𝑖𝑚. 𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝑖+1

2 ) 

Equation 6.2 Calculation of thermal transmittance limits. 

 

 

This methodology is applied to all construction elements. Ranges are included in Appendix D – 

Datasheet.xlsx under the “Cost Definitions.” sheet 

 

Fourth step: Rounding materials to the closest limit, the randomly generated thermal transmittance 

value is rounded to the closest range depicting thickness (or product in the case of windows) 

identified in step 3. This process is repeated for each variable in all combinations. In order to speed 

up this process, a logic test script for Excel was designed. 
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Fifth step: The material cost is then extracted from the Norsk Prisbok, displayed under details for the 

material identified in step one. For this thesis, we limit ourselves to installation costs and material 

costs. As such, only these two are combined. Therefore, the displayed unit price may not be applied 

directly, as this also includes yearly costs. 

 

The sixth step is: Multiply by a fraction. The goal is to identify costs per m2 IFA. As such, each element 

(external Wall, window, and internal wall) are divided by its surface area compared to the indoor 

floor area.  This remaining fraction "𝜑𝑖" Illustrates the fraction of the category quantity [m2] 

compared with the indoor floor area of 80,85 m2. 

 

𝜑𝑖 =  
𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦𝑖[𝑚2] 

𝐼𝐹𝐴 [𝑚2]
 

Equation 6.3 Element quantity per m2. 

 
 
The final step is defining the total cost. The total cost of the material may be described in the 

equation below:  

 

𝐶𝑜𝑠𝑡𝑠 = ∑(𝐼𝑐,𝑖 ∙ 𝜑𝑖 + 𝑀𝑐,𝑖 ∙ 𝜑𝑖)

𝑖

 

Equation 6.4 Total Costs. 

 

 

Where: 

𝐼𝑐 – Installation Cost 

𝑀𝑐 – Material Cost 

𝜑𝑖  – Fraction of element area divided by gross floor area 

𝑖 – Respective material, window or insulation in the case of external and internal walls. 

 

 

In terms of the costs for the virgin model, the costs are calculated from the material compositions 

described in 6.5.2 Presumptions. The values are repeated below: 

 
Table 6.18 Virgin Simulation U-Values. 

Category U-Value [W/(m2K)] 

External Wall 0,1511 

Windows 0,74 

Internal Walls 0,6187 

 

The total dataset and calculations are included in Appendix D– Datasheet.xlsx under the “Cost 

calculation” sheet. 
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6.7 Machine Learning and Optimization 

 

This thesis's machine learning models and optimization algorithms were created in Mathworks 

Matlab, version 2023b, available on the Mathworks Webpage [70].  

 

At the start of this thesis, there was minimal experience with Matlab. The experience only included 

basic mathematic operations, addition, subtraction, multiplication, fractions and defining constants.  

There was no experience in the application of machine learning or general coding.  

 

Creating machine learning models and genetic algorithm scripts in a foreign code language within the 

timeframe of this thesis is ambitious, especially when combined with the other foreign software 

applied in this thesis, IDA ICE and the lacking proficiency in Dynamo.  

 

The goal of the scripting process was to create a sufficiently accurate model based on relevant 

sources, up to a termination process where the model was interpreted to be satisfactory. In order to 

create these scripts, a process consisting of 4 different layers was applied. The different layers are 

illustrated in the following figure: 

 

 

 

The performance of the models was based on different criteria. For the case of the ANN models, a 

plot illustrating the different input variables and an 𝑟-value above 0,90. The optimization algorithm 

underwent a similar interpretation process. The input values were correctly identified and plotted, 

the various functions sufficiently identified, and the final results measured out of credibility within 

the expected range of optimization based on previous research.  

 

Necessary sources for creating models were gathered through online sources, in particular, the 

course “Introduction to Artificial Intelligence and Machine Learning for Engineers” by Mathieu 

Bauchy [34] and the course “Introduction to Deep Learning”  by Matthias Niessner from the technical 

Figure 6.14 Script Creation Process. 
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university in Munich in 2020 [61]. General functionality for Matlab, such as file import, was gathered 

through the Mathworks online help center [35]. In the case of NSGA-II, sources were identified using 

Mathworks online help center, various videos available at the Learnwithpanda webpage [71], and 

troubleshooting using ChatGPT [39]. This process was iterative. The last resort was cooperation with 

the supervisor of this thesis.  

 

The models will not be described in detail except for the main functions, which contain parameters 

introduced in Chapter 3.5 for the neural network models and Chapter 3.9 for NSGA-II. In the case of 

ANN models, this function is the net.DivideParam combined with the train function. Whilst in NSGA-

II, optimoptions combined with gamemultiobj function. 

 

 

6.7.1 Artificial Neural Network 

 

The artificial neural network model was created by importing data from the sims from Excel into 

Matlab. The imported data is gathered in Appendix D – Datasheet.xlsx under the sheet 

“Matlab_Import.” In this context, the data used was the thermal transmittance, not the thermal 

conductivity.  

 

The goal is to create two artificial neural networks based on the three separate inputs, the U-values 

for windows, external wall and internal wall, to one output per model. These two models will then be 

analysed in terms of 𝑟-value. One is defined through the IDA ICE simulations, the energy 

consumption of room 3006 in kWh/m2, and the value from the cost analysis NOK/m2 by values 

gathered by Norsk Prisbok and Excel functions.  

 

The different models are included in Appendix I –  Matlab Code.mlx. The two models are created with 

a single hidden layer due to the limited amount of dataset (100 combinations). As described in 

Chapter 3.5, a larger sample of data would most likely provide a more accurate result.   

 

The code in Matlab was then created to interpret this data and create an ANN model. The code is 

included in Appendix I –  Matlab Code.mlx. The process of creating the code is displayed in the figure 

below. For the purpose of this chapter, only the key elements are introduced. The main functions 

described earlier in this chapter and potential additional methodology applied for the creation of the 

final models. 
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Figure 6.15 Matlab - Artificial Neural Network Workflow. 

 
Normalizing data is performed to ensure the data has an equal range. In this case, the range of 

variables varies between the various features. For example, U - values range between 0,7 to 1,6 in 

the case of Windows and 0,12 and 0,22 in the case of External Wall, as described in chapter 6.4.1  

 

By default, the larger values will significantly impact the output value [34]. As such, normalizing the 

value will ensure that each variable has the same initial weight in the neural network. For a given 

dataset, the process may be described in the equation below: 

 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝐷𝑎𝑡𝑎𝑠𝑒𝑡 =
(𝐷𝑎𝑡𝑎𝑠𝑒𝑡 − min 𝑣𝑎𝑙𝑢𝑒 𝑑𝑎𝑡𝑎𝑠𝑒𝑡)

(𝑀𝑎𝑥 𝑣𝑎𝑙𝑢𝑒 − 𝑀𝑖𝑛 𝑣𝑎𝑙𝑢𝑒)
 

Equation 6.5 Normalized Dataset. 

 

 

Where the minimum value in the given dataset is removed, the remaining variables are divided by 

the range of the dataset. This provides a number between 0 and 1 for all lists of variables ensuring all 

values are within the same range.  

 

The model structure is defined by the “hiddenlayersize [x y z]” function, where [x y z] here refers to 

layers, whilst the value of these variables describes the number of neurons in each layer. For these 

models, only a single layer was selected. 

 

Separating the dataset is done through the “net.divideParam.(Train/Val/Test)Ratio”. For this thesis, 

the dataset was separated into 70 % for the training set and 30 % for validation. This is due to the 

limited dataset of 100 combinations. Although a testing set would be beneficial, it is considered that 

this data is required in tuning the model rather than testing. The train(x,y,z) function takes three 

inputs (x,y,z). In this case, x reflects the fitnet function, which returns a neural network with a defined 

number of layers and neurons. y reflects input variables, whilst z refers to the output variable. 
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The following values are defined in the creation of the ANN models: 

 
Table 6.19 ANN Inputs. 

ANN Inputs 

Training Set 70 [%] 

Validation Set 30 [%] 

Testing Set - 

Number of hidden layers 1 

Number of neurons in hidden layers Iterative evaluation 

Propagation algorithm Levenberg-Marquardt algorithm 

 

 

The model's performance was calculated from Matlab's correlation coefficient (R-value) at the end of 

the ANN training process. In order to ensure a good fit model and avoid overfitting and underfitting 

described in Chapter 3.5, an iterative loop was coded, with the number of neurons as variables. The 

MSE for both the training and validation data was calculated and plotted. This thesis defines a good 

fit as a point where the MSE for the validation and training sets are relatively low. A comparison of R-

values serves as a confirmation. 

 

At this point, the final model with a suitable amount of neurons. Data relevant to this model in this 

thesis are the FIT function and the R-value. It is worth noting that the accuracy Matlab operates with 

for ANNs is 𝑟 which is further described in Chapter 3.5. However, it is notated as R. 

 

 

6.7.2 NSGA-II 

 
This thesis applies the elitist non-sorted dominated genetic algorithm (NSGA-II) to optimise output 

based on the three decision variables. Different ANN models were created for the NSGA-II model, 

with the same number of neurons identified in the optimization step for the previous ANN models. 

The methodology for application also rests on simulations and calculations performed in Matlab. 

 



[Master’s Thesis 2023] 

64 

 

 

 

In the case of this process, two key functions will be described further. The optimioptions, and 

gamultiobj function. 

 

Optimioptions takes five inputs, defined with numbers 1 through 5. The first input refers to the 

function for solving multiple objectives. The second input refers to options to plot the specific 

function used for the Pareto Front. The third input is the function handle, in this case, the default for 

Pareto fronts in Matlab. The fourth input specifies the level to display to show under the 

optimization process, and the final input refers to a value of the display function defining what 

information should be displayed during the optimization process. 

 

The gamultiobj function has a total of 10 inputs, defined with numbers 1 through 10.   

The first input (1) refers to the objective function defined. In this case, the ANN models for costs and 

energy consumption are combined into a multiobjective function. The following input (2) refers to 

the number of variables in the objective function. In our case, 3 U-values. The third to sixth inputs (3-

6) are potential constraints for the optimization problem, which is not defined in this case. The 7 and 

8 input refers to the upper and lower boundaries of the different decision variables (U-Values). The 

ninth input refers to the potential linear constraint function, which is not defined in this particular 

case. The final input refers to the previously defined function of optimioptions.  

In the applied code, the following terms are defined: 

 
Table 6.20 NSGA-II Inputs. 

NSGA-II Inputs 

Initial Population 100 

Mutation Rate 0,02  

Cross-over type Intermediate crossover 

Cross-over rate 0,8 

Selection process Tournament Selection 

Figure 6.16 Matlab - NSGA-II Workflow. 
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Termination Criteria  Average spread of Pareto solutions less than 1e-4 

 

 

In order to identify improvement potential for the decision variables, the following formula is 
applied: 
 

𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙𝑖 = ‖(
𝑉𝑖𝑟𝑔𝑖𝑛 𝑣𝑎𝑙𝑢𝑒 − 𝑁𝑆𝐺𝐴 𝐼𝐼

𝑁𝑆𝐺𝐴 𝐼𝐼
) ∗ 100‖ 

Equation 6.6 Improvement Potential. 

 
 
Where: 
 
𝑂𝑝𝑡𝑖𝑚𝑎– is the results of the NSGA-II process from the optimal point identified in the Pareto front 
𝑉𝑖𝑟𝑔𝑖𝑛 𝐴𝑛𝑎𝑙𝑦𝑠𝑖𝑠 – is the result of the virgin analysis 
𝑖 – Decision variable (External wall, Window, Internal Wall) 
 
It is worth noting that by this equation, a negative value describes that the virgin value is lower than 

the identified improvement potential. By placing an absolute value on this function, we may describe 

how the virgin value needs to be adjusted to reach the identified optimization value. The higher the 

number, the more adjustment is required, thus, area for improvement.  

 
The following equation calculates potential improvement: 
 
 

𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 = (𝑁𝑆𝐺𝐴 𝐼𝐼 𝑂𝑝𝑡𝑖𝑚𝑎𝑖 − 𝑉𝑖𝑟𝑔𝑖𝑛 𝑉𝑎𝑙𝑢𝑒𝑖) 
Equation 6.7 Simulation Improvement. 

 
 
 
 
Where: 
𝑁𝑆𝐺𝐴 𝐼𝐼 𝑂𝑝𝑡𝑖𝑚𝑎𝑖  – Identified optimized objectives through simulations 
𝑉𝑖𝑟𝑔𝑖𝑛 𝑉𝑎𝑙𝑢𝑒𝑖 – Current objective performance  
𝑖 – Objective (Costs or energy consumption) 
 
 
As described in Chapter 3.9, NSGA-II returns a Pareto front. The selection of the given optimum is 

based on identifying the “knee-point”, a subjectively chosen point that may be considered closest to 

the intersecting axis (0,0). This value serves as the identified optima used for calculations. Also, this 

optimum point returns identified optimized decision variables that will be applied to IDA ICE to 

validate the predicted performance identified in the algorithm.   
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6.7.3 Validation 

 
The IDA ICE software is also applied for validation purposes. Similar to random number analysis, 
identified optima values are entered and simulated. This methodology will serve as a tool for 
validating the optimized results.  
 
Further materials are entered with the following material definitions: 
 
Table 6.21 NSGA-II optima validation. 

NSGA-II optima validation simulations 

Optima.x.IntW NSGA-II Optima, Internal Wall 

Optima.x.ExtW NSGA-II Optima, External Wall 

 
The methodology described in Chapter 6.6 is applied to the identified decision variables through the 
NSGA-II process for cost analysis validation. 
 
 

6.8 Digital Twin 
 
The Digital Twin in this thesis is based on the IFC BIM file that was provided. However, illustrating the 

results of the optimization process in such a large model is considered impractical. The Digital Twin 

model was created as a separate Rvt file to reflect the given case, classroom 3006.  

 

The creation of this model is based on a combination of extracting data from the IDA ICE model, 

which identified the general geometry of the case, whilst other data that were not sufficiently 

defined, such as the digital visualization of the windows, was directly copied from the IFC model.  

 

This serves as the digital model of the physical construct to qualify as a digital twin per the definition 

described in Chapter 3.2. The digital twin aims to enable decision-makers to identify improvement 

potential and determine which category would be most beneficial to address swiftly and accurately.   

 
The model of room 3006 with the implemented visual program described in Chapter 6.4.2  is 

included in Appendix G – Digital Twin.rvt 
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7 Results 
 
This thesis combines different methodologies and results before compiling them into a digital twin, 

as such results may seem segregated. In order to address this concern, one may consider the 

illustration in the figure. This chapter is divided into similar steps as Figure 6.3 Software Hierarchy, 

presented in Chapter 6.3. Random number generation serves as the basis for energy and cost 

analysis. The datasets from this analysis serve as the foundation for creating artificial neural network 

models, which NSGA-II then optimizes. The final result is visualised in BIM. The process as a whole is 

considered the process of creating a digital twin.  

 

 

The final part of this chapter will present relevant case studies identified by the literature review 

methodology.  

 

 

7.1 Random Number Generation 

 

We get the following distributions by plotting the random variables generated by visual programming 

for internal walls, external walls, and windows. The full range of combinations is included in Appendix 

Figure 7.1 Result Presentation. 
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D – Datasheet.xlsx under the “Variables for analysis” sheet. The code applied is illustrated in Figure 

6.4 Random Number Generator. 

 

 
Figure 7.2 Random Number Generation. 

 
 

7.2 Energy Consumption Analysis 

 

The simulation results in this thesis reflect the results achieved through the IDA ICE methodology, 

described in Chapter 6.5. 

 

The Virgin analysis is based on the following values for thermal transmittance, which is a repeat of 

Table 6.18 Virgin Simulation U-Values  

 
Table 7.1 Virgin Simulation U-values, repeat from Table 6.18. 

Category U-Value [W/(m2K)] 

External Wall 0,1511 

Windows 0,74 

Internal Walls 0,6187 

 

 

As described previously, IDA ICE is a complex software that allows for results with significant detail. 

As such, only key areas are provided in this table. A complete analysis is included in a separate 

analysis thesis provided as Appendix J – Virgin analysis.xlsx 

 
Table 7.2 Virgin Analysis Result. 

Virgin Analysis Results 

Energy Energy consumption [kWh/year] Energy consumption [kWh/ (m².year)] 

Zone Heating 935,7 11,57 
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HVAC aux 479,7 5,93 

Hot water - - 

Fans 275,9 3,41 

Pumps - - 

Lighting 341,7 4,23 

Technical equipment 1160,30 14,35 

Room Cooling 606,1 7,5 

∑ (approx.) 3800 47 

 

 

Using the random number analysis described in Chapter 6.5.4, 100 variables for each category were 

created, leaving 100 combinations. The results of the IDA ICA energy efficiency simulation varied 

from 35,83 to 55,18 kWh/m2. A list of these variables and their results from simulations in IDA ICE is 

included in Appendix D – Datasheet.xslx under the “IDA ICE” sheet.  

 

The choice of adding 100 simulations was made in order to achieve a good database for the ANN 

models. The results of the simulations may be identified in the plot below. The results from the virgin 

analysis included in Appendix J – Virgin Analysis.xlsx is also included in this figure.  

 

 

 
Figure 7.3 Energy Consumption Simulation Results. 
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7.3 Cost Analysis 

 

 

As per the NS-EN 16627:2015 flowchart covered in illustrated in Figure 6.13 Cost Analysis Process. 

We define the following: 

 
Table 7.3 Cost Analysis Overview. 

Cost Analysis overview 

Purpose of the assessment Identify costs for classroom 3006 

Specification of the object of the assessment 
Limits to internal walls, windows and external 

Wall 

Scenario Development Immediate, Non-lifecycle  

Quantification of the object 
Calculation per fraction of area, see Appendix 

D – Datasheet.xlsx “Cost Definitions” sheet. 

Selection of economic data Installation Costs & Material Costs 

Calculation 
Excel, see Appendix D – Datasheet.xlsx “Cost 

Calculation.” sheet 

Communication N/A 

Verification N/A 

 

 

By applying Equation 6.3 Element quantity per m2/IFA, we have: 

 
Table 7.4 Element Quantity per IFA. 

Element Quantity per IFA 

Category Area 𝜑𝑖  [m2/IFA] 

External Wall 13,6 [m2] 0,168 

Window 64,075 [m2] 0,792 

Internal Wall 16,994 [m2] 0,21 

 

Per the definition of the Virgin Model, the following costs are identified: 

 

 
Table 7.5 Cost Calculation - Virgin Model. 

Virgin Model Costs 

Category External Wall Window Internal Wall 

U-Value 0,1511 0,74 0,6187 

Defined Material Insulation 225 mm  Window Type = 0,7 Insulation 50 mm 

Maintenance cost [NOK] 65,84 1087,2 41,68 

Material Cost [NOK] 203,68 2879,03 52,59 

𝜑𝑖  [m2/IFA] 0,168 0,792 0,21 

Costs [NOK/m2] 45,34 833,67 74,71 

Grand Total Costs [NOK/IFA] 953,72 
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By rounding the randomly generated numbers to existing materials per methodology described in 

Chapter 6.6 and identifying costs per Equation 6.4 Total Costs, we have the following plot: 

All cost calculations are included in Appendix D – Datasheet.xlsx under the “Cost Calculation” sheet.   

 

 

For further reference, NOK/IFA is translated to NOK/m2 for ease of interpretation. 

 

 

7.4 Artificial Neural Network 

 
This thesis creates two artificial neural network models, one for energy consumption defined as 

kWh/m2 and one for NOK/m2. The models are evaluated with a single hidden layer, where the 

optimal number of neurons is identified by evaluating the performance of 30 models. They are 

further evaluated on two criteria. Firstly, the performance is identified through a well-fitted model, 

identified as a model with low MSE for both the training set and the validation set, and its R-value. 

This chapter will present the results for the two neural networks separately, firstly the cost analysis 

prediction model NOK/m2), followed by the energy consumption prediction model (kWh/m2). Finally, 

it will present a graph with R values for all 30 models. 
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Figure 7.5 ANN, MSE/Neurons Cost analysis. 

 

As may be identified from the graph above, the place with the lowest degree of MSE for both the 

training set and the validation set is when the neural network contains 19 neurons.  

 

The identified model with 19 neurons is displayed in the figure that follows: 

 

Followingly, the values are repeated in the table below: 

Figure 7.6 ANN, Cost Analysis - 19 Neurons. 
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Table 7.6 Artificial Neural Network, Cost Analysis - 19 Neurons. 

Artificial Neural Network- Cost analysis 

R-Value 0,99458 

MSE Training Set 12,17 

MSE Validation Set 12,93 

Fitness 0,99*target+13 

 

 

Followingly the results of the ANN model for energy consumption will be presented. 

 

 

By applying the same methodology to the energy consumption model, we may identify that a 

suitable number of neurons is 13, where the MSE of the validation and training data is low (Note; by 

comparing the R-value, 13 neurons perform better than 18 and 19). 

 

Figure 7.7 ANN, MSE/Neurons Energy Consumption. 
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The specific values are repeated in the table below: 

 
Table 7.7 Artificial Neural Network, Energy Consumption - 13 Neurons. 

Artificial Neural Network – Energy Consumption 

R-Value 0,93393 

MSE Training Set 3,02 

MSE Validation Set 0,53 

Fitness 0’88*target+5.2 

 

Figure 7.8 ANN, Energy Consumption - 13 Neurons. 
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The overall performance of the models is depicted in the figure below, which displays the R-value 

identified in the simulation process. 

 

7.5 NSGA-II  

 

The Pareto front below illustrates the findings from the NSGA-II simulation process. The genetic 

algorithm was based on the following parameters: 

 
Table 7.8 NSGA-II Parameters. 

NSGA-II parameters 

Crossover type Intermediate crossover 

Crossover rate 0.8 

Selection Tournament selection 

Mutation Rate 2,5 % 

Ending Criteria The average spread of Pareto solutions less than 1e-4 

 

The algorithm created 187 generations before the termination criteria were met. The Pareto Front is 

displayed in the figure below, with a chosen optimum with approximate values of 30,3 kWh/m2 and 

905,23 NOK/m2. 

 

Figure 7.9 R-Accuracy ANN models. 
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The identified decision variables from the simulation variables are identified in the figure below, 
where the chosen optimum is highlighted in orange. 
 

 

By extracting these values combined with the optimised decision variables, the total performance is 

illustrated in the table below: 

Figure 7.10 NSGA-II Pareto Front. 
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Figure 7.11 Optima U-Values. 
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Table 7.9 NSGA-II Results. 

NSGA-II Optima 

Energy 

Consumption 

[kWh/m2] 

Costs 

[NOK/m2] 

U-Value External 

Wall [W/(m²K] 

U-Value Window 

[W/(m²K] 

U-Value Internal Wall 

[W/(m²K)] 

30,33 905,23 0,21024 1,4656 0,27458 

 
 
 
Table 7.10 NSGA-II optima, Decision variables. 

NSGA-II Optima, Decision Variables 

Insulation External Wall Windows type Insulation Internal Wall 

170 mm Window = 1,6 100 mm  

 
 
 
By applying Equation 6.6 Improvement Potential we have:  
 
Table 7.11 Improvement Potential. 

Improvement Potential 

Category External Wall Window Internal Wall 

Optima 0,21024 0,21024 0,27458 

Virgin Analysis 0,151 0,74 0,619 

Improvement Potential 39 % 98 % 56 % 

 
 
While applying Equation 6.7 Simulation Improvement we have: 
 
Table 7.12 Simulation Improvement. 

Simulation Improvement 

Category Energy Performance [kWh/m2] Cost Performance [NOK/m2] 

Virgin Analysis 47 953,72 

Optima 30,33 905,23 

Simulation Improvement 16,67 48,49 

Simulation Improvement [%] 35 % 5 % 

 
 
If we translate the simulation improvement with Equation 6.6 Improvement Potential, we may 
identify an improvement of 35 % in Energy Performance and a cost improvement of 5 %. 
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By performing new simulations with the identified decision variables for energy consumption, we 
have the following distribution with the optima marked with orange: 
 
 

 

 
 
Whilst new calculations per methodology described in Chapter 6.6, we have the following 
distribution: 
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7.6 Digital Twin 

 
The digital Twin is displayed in the figure below:  
 

 

 

This figure covers the given case room with the visual program. The colours reflect the degree of 

optimization calculated by Equation 6.6 , comparing U-values from the virgin analysis with the 

optimized variables identified by NSGA-II.   Visualised by the program illustrated in Figure 6.5 Visual 

Program - Visualization.  As described per methodology: closer to green, less effort and degree of 

change will be required to reach the optimized value. It is worth remembering that the grey walls 

reflect the elevator shaft, which is not included in the simulations.  

 

The values and colour scheme are displayed in the table below: 

 
Table 7.13 Digital Twin Visualization. 

Digital Twin Visualization 

 Colour Category Improvement Potential 

 
External Wall 

 

39 % 

 
Window 

 

98 % 

 
Internal Wall 

 

56 % 

Figure 7.14 Digital Twin 
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7.7 Previous research 

 

Similar research has been conducted in the field of implementing digital twins for energy and cost 

performance improvement. However, in the chosen methodology, the research identified covers 

other parameters than this thesis. For example, the work of Hosamo, Nielsen et al. implementing 

digital twin of HVAC systems (HVACDT) and multi-objective algorithms to identify optimal energy 

consumption and thermal comfort solutions [30]. Hosamo, Nielsen et al. Implementing digital twin 

for fault detection and predictive maintenance [59]. Hosamo, Tingstevdt et al. stream visual 

information to BIM using digital programming to identify parameters for reducing energy-building 

consumption and optimizing thermal comfort [6].  

 

The study of Nour El-din, Pereira et al. [20] covers digital twin applications in areas such as structural 

health monitoring, concept frameworks, construction management, facilities management and 

circular construction. Further, the bibliometric study by Zhao, Feng et al. [23] covers additional 

applications of digital twins in AEC in areas such as facility management and predictive maintenance. 

However, due to the chosen methodology, these studies are not expanded upon in further detail. 

 

Limited research has been conducted in implementing a digital twin framework with building 

performance optimization to reduce energy consumption and investment costs as of the time of 

writing this thesis. Identifying studies based on the same subjects as this thesis has proven to be 

largely unsuccessful by the chosen methodology. The following paragraph will introduce one case 

study that aims to explore cost-effective and energy-efficient design using NSGA-II and BEM 

simulation data, which strongly resembles the methodology in this thesis. It does not, however, 

implement Digital Twin as defined in this thesis. 

 

An article published by Yaolin Lin and Wei Yang published in 2018, “Application of Multi-Objective 

Genetic Algorithm Based Simulation for Cost-Effective Building Energy Efficiency Design and Thermal 

Comfort Improvement” [12]. Explore the trade-offs between energy consumption, initial construction 

costs, life-cycle costs, and the number of thermal discomfort hours using an improved multi-

objective algorithm combined with building simulations [12]. The case study was conducted using a 

single reference design building. It simulated the cold/warm weather effects in 5 different areas of 

China, all of which experienced hot summers and cold winters. The study aimed to explore cost-

effective building design with four objective functions, calculating energy consumption, initial 

construction costs, life cycle costs, and indoor thermal comfort [12].  

 

The variables investigated covered: Building orientation, window-to-wall ratio, heating temperature 

setpoint, cooling temperature setpoint, external window shading, glazing type for windows, external 

wall type and roof type. Firstly, an analysis of energy consumption was investigated using building 

energy modelling (BEM) software.  

 

The optimization process was performed using NSGA-II, and the factors for the algorithm were set as 

a population size of 200, 0.95 crossover rate, 0.02 mutation rate and 100 generations. The objective 

functions were separated into construction costs + building energy consumption and discomfort 

hours + life cycle costs. They found 244 distinct Pareto solutions through their analysis. 
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Lin and Yang conclude that an average energy-saving potential of 29,08 % can be achieved at the 

design stage. Furthermore, based on the case in 5 different environments, the findings reflect an 

average energy consumption reduction of 38,6 % with an increase of 3,18 %, 

 

The study, however, did suffer limitations: It was a single-story concrete residential building focusing 

on the building envelope and cooling heating setpoints, so it could not optimize the HVAC system. It 

is set in specific summer/cold winter regions in China and is thus not generalizable. The study 

considered a constant window-to-wall ratio, which in practice varies considerably. The study only 

considered overhang shading. The building envelope design parameters were limited to ceramic tiles, 

concrete bricks and plasterboard for external wall types. For ceilings, the design parameters were 

limited to light concrete, waterproofing, extruded polystyrene (EPS) and concrete slabs.  
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8 Discussion 
 

The discussion chapter seeks to expand and discuss the results found by the given methodology. 

Given the length of this thesis, certain results from Chapter 7 are repeated for ease of interpretation 

and discussion. This chapter is organized as follows: firstly, the findings are compared to existing 

research and literature identified in the literature review. Followingly the various steps in the 

framework are covered in the order they are applied in the framework. At the end of the chapter, a 

brief summary of the various discussion chapters is presented, leading up to the conclusion of this 

thesis.  

 

 

8.1 Relation to Previous Research 
 
As described earlier, Digital Twin implementation is a relatively new field in the AEC. One may argue 

that this thesis is innovative and novel if one considers digital twins combined with neural networks 

and genetic algorithms for optimising energy consumption and investment cost. However, this serves 

as a challenge, as there is limited existing literature for comparative purposes. This thesis only 

identified one per literature review methodology described in Chapter 6.1. Namely, the study of Lin 

& Yang presented in the previous chapter. 

 

Their study identified an average energy-saving potential of approximately 38,6 % with a cost 

increase of 3,18%. Comparingly the findings of this thesis identify an energy-saving potential of 35 % 

and a cost reduction of approximately 5 %.  

 

There are, however, significant differences in methodology. For the NSGA-II algorithm, one may 

identify the following differences. 

 
Table 8.1 Lin & Yang NSGA-II parameters. 

Lin & Yang NSGA-II parameters 

Initial Population 200 

Mutation Rate 0,02  

Cross-over rate 0,95 

Termination Criteria 100 generations 

 

Other information, such as cross-over and selection types, is not disclosed. Comparingly, this thesis 

applies the following parameters: 

 

Table 8.2 NSGA-II parameters, repeat from Table 6.21. 

NSGA-II Inputs 

Initial Population 100 

Mutation Rate 0,02  

Cross-over rate 0,8 
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Cross-over type Intermediate crossover 

Termination Criteria  Average spread of Pareto solutions less than 1e-4 

Selection process Tournament Selection 

 

When comparing the results, they appear to correspond in terms of energy. The discrepancy is only 

at 3 %. Costs, however, differ significantly (8 %). Reasons are unclear but likely include additional 

decision variables (parameters for analysis) and more products.   

 

The study by Lin & Yang covers eight decision variables, whilst this thesis only applies three. Lin & 

Yang apply 35 different discrete values (products), whilst this thesis applies 13. Additionally, the case 

geometry differs significantly. Lin & Yang applies a square single-story building of 10x10 meters in 5 

different environments. Whilst this thesis is based on a classroom in a single environment. 

 

Although the values are comparingly equal in terms of energy, there is a level of uncertainty in the 

findings of this thesis, as will be discussed in later chapters. 

 

 

8.2 Random Number Generation 

 

The results of the random number generation are intriguing and worth a mention. By inspecting 

these numbers further and plotting them in a graph diagram instead of a dot diagram, we have the 

following: 

 

 

 

By inspecting these graphs, one can quickly identify that the skewness of the various simulated 

numbers coincides with other categories. This reveals an apparent weakness in the random number 

generation programming conducted by Dynamo. This indicates that the random number generation 

is limited to a specific count within a certain range rather than an arbitrary value within each range. 

To illustrate this, when comparing the values from external and internal walls in a histogram, we 

have the following distribution: 
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Figure 8.1 Random Generated Numbers, Graph plot. 
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These histograms reveal the exact amount numbers in the ranges for both categories. In effect, one 

gets a lesser degree of combination diversity, causing more extreme values rather than small 

incremental changes by tuning the different variables to a higher or lesser degree. 

 

However, regarding simulations and machine learning techniques for identifying a correlation 

between energy consumption and U-values, the numbers may be considered satisfactory, although 

not ideal, as may be identified by the R-value of the created ANN models presented in Chapter 7.4.  

 

Further, the range of the variables chosen per methodology is unfortunate. The values generated 

surpass the performance of the virgin model. This results in the energy performance simulations will 

return more energy-efficient results. Correspondingly, the cost analysis will return a higher value 

than the virgin model.  

 

 

8.3 IDA ICE Simulations 

 
The IDA ICE simulations in this thesis are based on three separate decision variables: Internal walls, 

External walls and Windows. However, by inspecting the correlation between them, it is clear that 

internal walls do not influence the result in a significant way. This is because one does not calculate 

heat loss for internal zones as described in Chapter 3.6 Energy Performance. In fact, in inspecting two 

additional simulations with the maximum and minimum range chosen per methodology. The energy 

consumption differs by 0.1 kilowatt hours, efficiently making up for 0.2 % of the final value.  

 

The choice to include it in the simulations is made to quantify as much of the room as possible with 

common decision variables. From the viewpoint of material choice and envelope design, this is based 

on material performance. Thus thermal transmittance was considered to be the most appropriate 

choice. 

  

Figure 8.2 Histogram - Internal Wall. Figure 8.3 Histogram - External Wall. 
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This process is not without weaknesses. For example, the IDA ICE model is simulated on a generic 

geometry of wall composition, with randomly generated values in terms of thermal conductivity. 

These values do not correspond to real-life measurements, affecting the decision-making's reliability 

and credibility.  

 

As described in Chapter 3.6, thermal efficient materials used for insulation are, for example, ultrafine 

glass wool with a thermal conductivity of 0,027 W/mK, extruded polystyrene at 0,031 W/mK, or one 

of the most thermally efficient materials in the world, aerogel with a thermal conductivity of 0,003-

0,012 W/mK. In this thesis, many values surpass ultrafine glass wool and extruded polystyrene. For 

instance, the external wall input in IDA ICE has values as low as 0,0126 W/mK, which is over twice as 

thermal efficient as ultrafine glass wool and nearly on the level of aerogel. Furthermore, the custom 

materials have been defined with unrealistic density and heat storage capacity. 

 

It is unclear what impact this has on the actual prediction and optimization process. It is, however, 

safe to assume that the physical construct these simulations are based on does not correspond with 

the assets of the physical construct.  

 

There is also the consideration that IDA ICE is complex software. The application of this software is 

self-taught in this thesis. This serves as a considerable weakness when compared to accurate results. 

For instance, by comparing the results of the virgin analysis (47 kWh/m2) with the definition of 

criteria for energy efficiency measures of (110 kWh/m2), one may easily identify that the analysis 

returns a value more than twice energy efficient as the requirement. However, Tvedestrand 

Videregående Skole has achieved the plus house standard and is considered one of Norway's most 

energy-efficient schools, as described in Chapter 5.1. It may, as such, be considered to be realistic. 

However, considering an energy-consumption simulation returning a value of 35 kWh/m2 raises 

doubt. 

 

 

When inspecting the results of the simulations illustrated in the figure above, we may identify that a 

significant amount of the results are lower than the virgin analysis, indicating that the range of the 
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Figure 8.4 IDA ICE Simulations, Energy-Consumption, repeat of Figure 7.3. 
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randomly generated variables is not ideal. Ideally, these values should be spread evenly surrounding 

the virgin analysis for a more fair expectation. It illustrates and arguably sets the expectation that the 

room may be optimized.  

 

One may also identify two outliers, with values exceeding 50 kWh/m2. This indicates that the 

simulations are wrong in these two cases. The reasons are unclear but likely include a human error in 

entering input or correctly reading output.  

 

Another concern we may interpret from the figure is the distribution of results compared to the 

virgin analysis. Most of the simulations conducted perform better than the original model.  

 

 

8.4 Cost Analysis 

 
The result of the cost analysis is illustrated in the figure below: 
 

 
As may be interpreted by the figure, the results clearly emphasise the concern mentioned in previous 

chapters, the original dataset values. One may identify that the results are far beyond the virgin 

analysis. It is especially prominent in the cost analysis as all values are more costly than the original 

model. This indicates that the range of decision variables is insufficient. It is worth remembering that 

the ANN models intend to cover a good regression plot. The models may sufficiently interpret and 

predict values from the analysis and simulations if accurate.   

 

 

8.5 Artificial Neural Networks 

 

The creation of artificial neural networks in this thesis is primarily based on tutorials from the 

identified courses and troubleshooting described in Chapter 6.7. The process of creating the ANN 
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Figure 8.5 Cost Analysis Results, repeat from Figure 7.4. 
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models has, in large parts, been successful, as may be identified for accuracy. Furthermore, defining 

a well-fit model with low MSE for both the training and validation set corresponds to the expectation 

of reaching a high R-value. However, the findings reflect that a low MSE for the validation set is an 

important factor that affects the accuracy of the ANN model.   

 

The chosen methodology for the selection of the model corresponds to the expected results. The 

models presented in this thesis may be considered accurate. In particular, the cost model presented 

in Figure 7.6 with an R-value of 0,9948. This model may be considered to be extremely accurate. In 

the case of the energy-consumption model presented in Figure 7.7, the R-value equals 0.9339, which 

may also be considered an accurate model. One may also interpret that one of the reasons the R-

value is reduced is a relatively high degree of MSE on the training set data. Another reason may be 

the erroneous data points included in the simulation results.  

 

There are, however, challenges with the chosen methodology and application of ANNs on a broader 

scale. Firstly, the identified models are not the ones applied for the NSGA-II algorithm, only the 

amount of neurons in the hidden layers. This methodology is unfortunate. Each time a model has a 

unique training and validation set, the values in creating the model differ in performance, despite 

having the same amount of neurons. Generally, this is one of the drawbacks of using neural networks 

themselves. They require a significant amount of data.  

 

Secondly, by applying ANN to the dataset, the different variables are considered to be continuous. 

This is, however, not accurate. A material is discrete, with a fixed price and fixed performance. This is 

especially prominent with the material rounding methodology for cost calculation. The methodology 

chosen in this thesis is only accurate if the price and performance of different materials have a linear 

relationship (under the presumption of a sufficiently large dataset). One may consider this as 

displayed in the figure below: 

 
Figure 8.6 Linear relationship of regression. 

 

This figure summarizes the presumption of the current methodology, which considers the square to 

represent a given material. Using regression and rounding values work as the arrows displayed 

above. The closest part of the square is selected, which identifies the corresponding price. Values 
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located in the range of the left half of the square are rounded to the lower boundary of costs, whilst 

the right half of the square is rounded to the top boundary of the costs. The square illustrates that 

the U-values have the same ratio as a range of costs.  

 

This is, however, not the case. The larger the range of the U values, the more significant error. All 

values on the left side are considered lower, while all values on the right side are considered higher. 

Thus, a rounding error occurs corresponding to the regression.  

 

One may consider the level of error will be reduced based on two parameters: 

 

• More products - (which leads to fewer product squares, thus less rounding error) 

• More decision variables – The error level is spread amongst a more extensive range of 

products. 

 
If we consider this to be the case between many different decision variables, one could argue that 

the level of error will decrease as it will be distributed over a more extensive range, and the rounding 

methodology will reduce the error. It will, however, always be present. 

 

We may consider this a performance gap or a weakness in the methodology. Regardless, it reflects 

the consequences of applying purely theoretical concepts to a “real-life” scenario.  

 

 

8.6 Optimization 

 

Applying the NSGA-II algorithm identifies an optima with an energy consumption performance of 

30,33 kWh/m2 and a cost performance of 905 NOK/m2. When comparing these values to the ones 

from the virgin analysis, a cost reduction of 5% and an energy consumption reduction of 35% is 

identified. These numbers show great promise in the energy consumption category, although the 

cost reduction is significantly smaller. These values also raise concerns. One would consider that an 

energy-efficient solution rests on more energy-efficient materials with higher thermal resistance. 

These materials may be considered to be “better performing”. Such materials are usually more 

expensive than “less performing”.  

 

The following paragraph will discuss the validation process, with the additional simulations and 

calculations of the identified optima. The two figures below are a repetition of the results in Chapter 

7.5.  
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Figure 8.7 NSGA-II validation - Energy Consumption, repeat from Figure 7.12. 

 

This figure clearly indicates weaknesses during the validation process. The chosen optima has an 

energy consumption value of 30,33 kWh/m2. By entering the identified parameters in IDA ICE, the 

simulation results return a value of approximately 47 kWh/m2. This is a discrepancy of 54% compared 

to the NSGA-II value.   

 

One can easily interpret that the optimization process identifies a correlation and that the optima 

values share a common trend with values of approximately 30 kWh/m2, as may be expected. 

However, the discrepancy is substantial. The reasons behind this are unclear but most likely an 

inaccurate ANN model for energy consumption. This is surprising given the accuracy of 0.93393 

identified in Chapter 7.4. Another point to consider is the methodology of applying NSGA-II. 

Currently, it rests on applying the identified number of neurons from a similar model. This 

methodology has obvious weaknesses. As described earlier, each model is unique.  

 

When inspecting the cost analysis results repeated in the figure below, one may also identify a 

discrepancy between the calculation and the identified NSGA-II solution. Although not as substantial.   
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Figure 8.8 NSGA-II validation - Cost Analysis, repeat from Figure 7.13. 

 

From this figure, one may also interpret that the optimization process is not evenly distributed at a 

given value. In some cases, there is a  cost discrepancy of almost 100 NOK/m2. These results are also 

surprising. The NSGA-II algorithm should provide an optimized value based on linear regression and 

should be approximately the same given the Pareto fronts accuracy. One factor that should be 

considered is that the chosen methodology for creating random variables does not cover the 

material in the virgin model. The lowest range of insulation for internal walls is defined as 50 mm, 

whilst the one applied in the virgin model is 30 mm. 

 

Further, when one considers the decision variables displayed in the figure below, a repeat from 

(Figure 7.11 Optima U-Values) 
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One may identify that the main change in performance comes from altering the U-values of the 

windows. This intuitively appears correct, as windows are essential to energy and cost performance, 

given the large price and significant effect on heat loss. It also appears correct, given its extensive 

range of values created by the randomly generated numbers.  

However, the thermal transmittance value of internal walls is relatively constant at a low value. 

Indicating that that optimized value is a well-performing thermal efficient internal walls. This is 

surprising. Internal walls do not influence heat loss; one may expect this to be the cheapest 

alternative (insulation of 50mm). However, as described in Chapter 8.6, The identified combination is 

an insulation of 100 mm, corresponding to a cost of 112,5 NOK/m2 compared to 50 mm with a cost of 

74,71 NOK/m2. This result indicates an error.  

 

Furthermore, the spread is relatively low, and values appear to be approximately constant at 0,27 

W/(m2K). These results are surprising and likely have two possible explanations: 

 

• The case room modelled in IDA suffer severe weaknesses. 

• Inaccuracy in the ANN model.  

 

Given the discrepancy in the NSGA-II validation values identified in Figure 7.12 and  Figure 7.13, the 

latter seems likely. 

 

 

8.7 Digital Twin 

 

In terms of the results, the digital twin illustrates a considerable value of variety. In fact, the given 

room holds a degree of 35 % optimization in terms of energy and a 5 % reduction in costs. 

 

The figure and table below repeat the results presented in Chapter 8.7 for ease of discussion. 
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Figure 8.10 Digital Twin, repeated from Figure 7.14. 

 
 
Table 8.3 Digital Twin Visualization repeated from Table 7.13. 

Digital Twin Vizualisation 

 Colour Category Improvement Potential 

 
Window 98 % 

 
External Wall 39 % 

 
Internal Wall 56 % 

 

 
Table 8.4 Improvement Potential, repeat from Table 7.11. 

Improvement Potential 

Category External Wall Window Internal Wall 

Optima 0,21024 1,4656 0,27458 

Virgin Analysis 0,151 0,74 0,619 

Improvement Potential 39 % 98 % 56 % 

 

 

When inspecting this model, one may identify that the area with the highest degree of improvement 

potential is the windows. By further inspecting the identified U-values in the table above, one may 

determine that the best solution would be to change windows from a window with a U-Value of 0,7 
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to a window with a U-value of 1,6. External walls should increase their U-Value to 0,2 whilst the U-

value of the internal walls should be lowered to 0,27. In essence, lowering the energy efficiency of 

external walls and windows to benefit internal walls.  

 

As discussed earlier, the results themselves seem counterintuitive. Lowering the U-value refers to a 

more energy-efficient solution. The optimization process identified a potential savings of energy 

performance of 16,67 kWh/m2 and 48,49 NOK/m2, which is a substantial amount.  

 

The results indicate that increasing energy efficiency for inner walls should increase thermal and cost 

performance. Despite that, there is no theoretical heat loss for internal walls. In fact, previous 

simulations have proven the heat loss factor for internal walls to equal a total of when comparing a 

U-Value of 0,1 kWh/m2.  

 

One may claim, however, that regardless of results, the digital twin serves as a good visualization 

tool. 

 
 

8.8 Scripts and Coding 

 

It is essential to mention that the results are interactive based on a limited dataset. This dataset 

undergoes several different iterations during the scripting process for optimization, which will alter 

the final results. One may consider the figure of the process displayed below: 

 

 

Figure 8.11 Scripting Process. 
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Firstly, the energy and cost performance datasets are separated into two datasets - training and 

validation. This process is done arbitrarily based on the 100 combinations. These are then applied to 

train the different ANN models that serve as input for the NSGA-II algorithm. This algorithm 

undergoes three processes which further adapt the dataset, the crossover rate, the mutation rate 

and the results of the tournament selection. This is also based on the predictive values provided by 

the ANN models. 

 

There are also parameters that may be adjusted in the process, which will alter the final optimization 

results, such as the degree of distribution from the dataset into validation and training sets. The 

architecture of the ANN models, in terms of layers and neurons and the activation function. For the 

NSGA-II algorithm, different values for crossover rate, mutation and crossover type may be altered, 

as well as ending criteria. All of these parameters will significantly influence the results.  

 

Given this complex hierarchy of dataflow and the arbitrary nature of many of these processes, the 

results are not fully replicable, as each simulation provides different parameters for the optimization 

process. In this context, it is essential to emphasize that the final result reflects an indication and not 

a perfectly defined optimal value. 

 

One may argue that it provides a sufficient foundation for effective decision-making. However, the 

problem remains as the foundation for this decision is not static but up for interpretation. 

Additionally, the results are not fully replicable.  

 

 

8.9 Weaknesses  

 
One of the largest weaknesses in this thesis is the original defined dataset. For this thesis, one may 

identify that the original dataset is skewed. As described in Chapter 8.2 the histogram reveals the 

same exact same amount of numbers within the various ranges  

 

Another valid concern is the limited methodology with respect to replicating a functional ANN model. 

The current methodology effectively presumes that two ANN models with the same number of 

neurons will perform similarly. As identified through the validation processes, this appears to be 

false. 

 

There is also a concern with the model validation process. The results from the NSGA-II algorithm 

raise doubt about the accuracy of the IDA ICE model. This is primarily based on the results identified 

in this thesis: improving energy performance for internal walls will significantly impact the room's 

energy efficiency. This has no foundation in the existing literature.  

 

Further, the performance of the virgin model is not comparable with simulation results. All cost 

calculations have returned a higher value than the cost analysis of the virgin model. Only 17 energy 

simulations have returned an energy consumption larger than the virgin model. Indicating that the 

original range of thermal transmittance for the randomly generated decision-variables returns design 

options is unrealistic. Also, in quantifying these variables, only 13 materials are identified.  
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A clear goal of this thesis was to quantify and analyse as much of the room as possible, which was the 

motivation for the choice of the case room and methodology of covering internal walls in the energy 

consumption analysis despite its limited impact on energy performance. However, of the six 

potential variables presented in Chapter 5.2 that was available for cost and energy performance 

optimization, only three were chosen, serving as decision variables. As such, it does not cover 

optimization of the case room as a whole but only design options for external walls, windows and 

internal walls. Quantifying these variables may be argued to be an essential part of cost and energy 

performance.  

 

Furthermore, the energy performance of a room depends on more parameters than the limited 

amount of components defined in this thesis, with effects as mentioned earlier for heat storage. The 

energy performance is influenced by all factors of the room's envelope, including roofs, floors, walls, 

internal doors and windows.  Another value to consider is the use of the windows, as it drastically 

affects the heat loss from the given room. In this thesis, the windows are considered constantly 

closed. The doors are not covered at all. Despite the promising results, one may thus argue that the 

limitations in methodology serve as a source of insecurity in the optimization process and the final 

results.  

 

Generally, the weaknesses of this thesis rest on two main concerns. Unsuitable methodology in 

creating the dataset and improper use of software and coding. 

 

It is worth mentioning that IDA ICE and coding are both very complex themes. Weaknesses in 

software use and coding may be a result of the limited experience at the start of this thesis.  

 

 

8.10 Concluding Remarks 

 
In general, the challenge of this thesis is the threshold between purely theoretical concepts and 

applications physical world.  

 

Identifying costs based on U-Values work well for a single entity such as insulation. However, 

quantifying costs based on U-values alone would prove inaccurate for more extensive design options. 

Even by applying the chosen methodology by rounding randomly generated variables to a pre-

existing solution, applying this value is not intuitive. 

 

This is primarily due to the combination of materials that make up thermal efficiency. This thesis 

limits itself to a generic homogeneous layer that is not replicable in real-life situations, as each 

category contains numerous materials, depending on different solutions. Applying a methodology 

that attempts to quantify these categories and variables solely on thermal transmittance would 

suffer severe weaknesses and inaccuracy. However, in such a context, one may consider applying 

validation calculations. The Digital Twin may help identify contributing elements theoretically, 

allowing for further calculations.  
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The findings of this thesis show great promise within the optimisation field, highlighting the 

possibilities and value of performing optimization algorithms and comparing the effects to other 

optimized solutions on each other. Although there are weaknesses, the framework itself appears 

satisfactory. 

 

The framework benefits from its high degree of automation by the scripts and coding applied in this 

thesis. Consider the figure below: 

 

 

 

This figure illustrates the framework itself and the automation process. The dashed lines are 

illustrative of non-automated processes. And the arrow direction illustrates dataflow. Data from the 

simulation process is connected to an automated rounding methodology using Excel logic test codes 

to calculate the corresponding costs for the selected material. This data, combined with the results 

from the simulation process, is further automated into Matlab using the import data from the Excel 

sheet itself. 

 

Figure 8.12 Digital Twin Framework. 
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Furthermore, the results of Matlab optimization are exported back to Excel. They are serving as a 

basis for visualization program in dynamo, streaming optimization degree to the digital twin.  The 

framework loop is closed after data has been gathered. There are, however, weaknesses in the 

various steps that should be addressed.  

 

The framework may be considered satisfactory for illustrating optimization degrees in an easily 

visually interpreted model. There is little doubt that this field is of great interest, not only for 

educational value but also from a practical point of view, as it lays the foundation for effective 

decision-making. 
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9 Conclusion 
 

The research question this thesis attempts to answer is:  

 

How can digital twins be implemented to reduce energy consumption and costs in buildings? 

 

Answered by the following sub-questions: 

• How effective are different ANN models in predicting building energy performance indicators 

(e.g., U-value/costs, kWh/costs), and what are the practical implications of using these models 

in terms of energy efficiency and cost savings? 

• How to use NSGA-II to reduce energy consumption and costs? 

• How to use visual programming to stream results to BIM? 

 

The following section will describe the conclusion of this thesis, firstly the sub-questions, followed by 

the main research question. 

 

• How effective are different ANN models in predicting building energy performance indicators 

(e.g., U-value/costs, kWh/costs), and what are the practical implications of using these 

models in terms of energy efficiency and cost savings? 

 

The ANN models defined and illustrated in this thesis hold an R-rate of 0,934 for energy consumption 

and 0,995 for investment cost. The practical implication may be argued to be a theoretical 

application of regression learning to fit real-life measurements. When applied in NSGA-II, they 

significantly impact the results of the optimization process. 

 

• How to use NSGA-II to reduce energy consumption and costs? 

 

NSGA-II may be used in combination with ANN models to optimize energy consumption and costs.  

 

• How to use visual programming to stream results to BIM? 

 

Visual programming applied through Dynamo may translate the results from an optimization process 

to BIM in an easily visually interpreted result. 

 

These combined answer the main research question: 

How can digital twins be implemented to reduce energy consumption and costs in buildings? 

 

By stating that “A digital twin may be implemented to translate energy-consumption and cost-

optimization into an easily interpreted result that serves as a foundation for efficient decision-

making.”  

 

By applying the said framework, the results reflect a potential energy consumption reduction of 35 % 

and a cost reduction of 5 % compared to the original model. 
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10 Recommendations  
 
Recommendations for future work may be divided into two main strategies, either improving the 

existing framework presented in this thesis in the existing problem area. Alternatively, expand the 

framework to cover new areas of interest. This chapter will cover these two strategies. 

 

The existing framework suffers numerous weaknesses described in Chapter 8.9 and should be 

addressed in future work. One may summarize it as follows: 

 

• Additional decision variables. 

• More extensive range of thermal transmittance values for the randomly generated numbers. 

• Additional design options in terms of materials. 

• Validating the IDA ICE model by comparing it to other analyses and/or verification by a third 

party. 

• Additional simulations for an increased dataset. 

• Create a script that exports ANN models to a separate file for future import to the NSGA-II 

algorithm. 

 

Furthermore, this thesis holds significant limitations as it only focuses on a single room as a case. 

Expanding the case to include other rooms or even floors will enable design options for the 

identification of effective means to improve energy consumption and costs on a broader scale. This 

may have lasting effects, as one can base future design on an already defined database.  

 

For other applications, it is worth stressing that in the context of multi-objective optimization, energy 

efficiency and cost performance in total form do not form the basis for the operation of the room 

itself. A room may be both energy-efficient and cost-efficient, but it holds little value if it goes at the 

expense of the users.  

 

As such, it may be worthwhile to include predicted person dissatisfied (PPD) in the algorithm. These 

numbers were also extracted from simulations and are included in Appendix D –  Datasheet under 

the “IDA ICE SIMULATIONS” sheet. These were not applied in this thesis, given the complexity and 

limited timeframe.  

 

One may, for example, try to optimize the efficiency of the room in terms of costs and thermal 

comfort. For instance, problem areas like “How to apply NSGA-II to optimize the relation between 

cost and comfort?” may be worth exploring.  

 

Another valid application of the framework introduced in this thesis is the application of multi-

objective optimization with LCA studies compared to costs. This will help identify design options with 

the maximum effect on a given room in an easily interpreted model. Problem areas like “How to 

optimize environmental performance whilst reducing costs using NSGA-II?” may also be worth 

exploring. 
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This thesis rests on existing data, essentially showing the value of potential what-ifs and how-tos. 

However, sufficient application of this methodology to a large number of cases will allow for a 

dataset depicting cause-effect situations. Meaning, showing value in the design phase of a building 

itself, granting a large amount of value in terms of occupant satisfaction or environmental impacts 

compared to price. In essence, how to gain the most value for the least cost.  

 

As described earlier, the presented framework has a wide array of application areas. The challenge 

lies in identifying common decision variables between two different objectives, which may then be 

measured by a common denominator transferred further to results for comparison. 
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