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An RF-Based Positioning Method for Tracing a
Cluster of Moving Scatterers in Non-Stationary

Indoor Environments
Rym Hicheri, Member, IEEE, and Matthias Pätzold, Senior Member, IEEE

Abstract—This paper presents a novel iterative positioning
method for tracing the body segments of a person moving indoors
using radio-frequency (RF) signals. The indoor space is equipped
with a multiple-input multiple-output (MIMO) communication
system. The person is modelled by a cluster of moving point
scatterers, playing the role of moving body segments. The
proposed technique estimates the time-variant (TV) positions of
the moving scatterers by fitting the TV channel transfer function
(TVCTF) of the channel model as close as possible to the TVCTF
of the measured channels. Numerical results are presented to
demonstrate the accuracy of this method.

Index Terms—Indoor propagation, positioning, cluster of scat-
terers, non-stationary channels, MIMO systems.

I. INTRODUCTION

RADIO-frequency (RF)-based indoor positioning systems
(IPSs) find applications in several areas such as medicine,

security, surveillance, and robotics [1]. These IPSs can be
classified into two major groups depending on the technique
they employ. The first group determines the positions of
a moving person by exploiting the received signal strength
[2], the time-of-arrival [3], and/or the angle-of-arrival [4].
The second group achieves the positioning task by applying
fingerprinting and proximity methods [5], [6].

More papers that summarize and organize recent relevant
results can be found in [1], [7], [8]. RF-based IPSs suffer
from severe accuracy degradation due to signal attenuation,
multipath propagation, and the strength of the line-of-sight
(LOS) path [1], [8]. For example, the impact of the LOS
component on the performance of WiFi-based fingerprinting
for indoor positioning in non-crowded areas was investigated
in [5]. This degradation is especially prominent in uncontrolled
environments. Another fact is that all existing positioning
methods have been developed for specific settings and thus,
their performance is highly dependent on the considered
scenario [9]. A review of the literature shows that common
assumptions made for existing positioning techniques are lin-
ear trajectories [2], [3] and neglecting the fixed objects or/and
the non-LOS components [6]. Another common assumption
is that the person is not moving for short periods of time [2],
[10]. Furthermore, a widely considered assumption is that the
human body is modelled by a single point moving scatterer,
which represents the centre of the body mass. To the best of
our knowledge, existing methods do not allow to trace a cluster
of human body segments.
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The motivation of this paper is to overcome the aforemen-
tioned limitations by leveraging multiple-input multiple-output
(MIMO) configurations to trace a cluster of moving body
segments in a three-dimensional (3D) indoor environment. The
proposed positioning method was inspired by the iterative non-
linear least square approximation (INLSA) algorithm, which
was initially introduced in [11]. Owing to the fact that the
original INLSA has been developed for estimating the channel
parameters of wide-sense stationary (WSS) multipath fading
channels, the method cannot be readily applied on estimating
the motion curves positions of human body segments in non-
WSS indoor channels. The extension of the original INLSA
approach to enable the estimation of the time-variant (TV) co-
ordinates of the body segments in non-stationary propagation
environments requires to redefine the optimization problem
and results in new analytical expressions for estimating the
TV channel parameters.

The novelty of this paper is four folds. First, we extend the
original INLSA to obtain a new iterative procedure for tracing
the different human body segments in indoor environments in
the presence of fixed objects and a LOS component. Second,
we consider that each body segment plays the role of a
moving relay, which is characterized by a radar cross-section
parameter. Third, we define a new optimization problem,
where the TV positions of the moving scatterers are deter-
mined by fitting the TV channel transfer function (CTF) of
the non-stationary channel model as close as possible to the
TVCTF of the measured radio channels. Fourth, we derive
a new exact closed-form solution for the radar cross-section,
which reduces drastically the complexity of the underlying
optimization problem.

The performance of the proposed estimation method is
assessed by comparing the estimated TV positions of the
body segments with the corresponding exact (ground truth)
TV positions. For a fair comparison, we use test RF signals
generated by computer simulations for which the exact TV
coordinates of the moving scatterers are known. For a realistic
numerical analysis, the TV trajectories of the body segments
were extracted by using the musculoskeletal-based OpenSim
model [12]. The OpenSim model applies inverse biomechanics
and kinematics to describe the dynamics of a system consisting
of rigid bodies (bones) and joints upon which forces are acted
to produce motion. Moreover, the simulation parameters of
the considered orthogonal frequency division multiple access
(OFDM) communication system were chosen in accordance
with the IEEE 802.11n standard [13]. Numerical results are
presented to analyze the impact of noise on the accuracy of
the proposed positioning method. Also, a quantitative analysis
of the effect of positioning errors on the Doppler characteristic
of the channel is performed.
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Fig. 1. 3D geometrical model for a non-stationary #) ×#' MIMO channel
with moving scatterers (F) and fixed scatterers (•).

II. 3D NON-STATIONARY CHANNEL MODEL

A. Scenario Description

In this paper, we consider a scenario which consists of a
single person moving in an indoor environment, which con-
tains several fixed objects and is equipped with a distributed
#)×#' MIMO system. The transmitter (receiver) )- ('- ) has
#) (#') antenna elements �)

9
(�'
8

). The geometrical channel
model describing this multipath propagation scenario is de-
picted in Fig. 1. The transmit antennas �)

9
( 9 = 1, 2, . . . , #) )

and the receive antennas �'
8

(8 = 1, 2, . . . , #') are located
at the fixed positions (G)

9
, H)
9
, I)
9
) and (G'

8
, H'
8
, I'
8
), respec-

tively. Here, we assume the presence of LOS components.
As can be seen in Fig. 1, the moving person is modelled
by a synchronized cluster of " moving point scatterers ("<
(< = 1, 2, . . . , "), represented by the symbol (F), which
represent the major human body segments. The moving scat-
terer ("< has the TV coordinates G< (C), H< (C), and I< (C),
for < = 1, 2, . . . , " . We denote by �)

9<
(C) (�'

8<
(C)) the TV

Euclidean distance between the <th scatterer ("< and the 9 th
(8th) transmit (receive) antenna �)

9
(�'
8

). The fixed objects
(furniture, walls, decoration items, ...) are modelled by  8 9
fixed point scatterers (�

:8 9
(:8 9 = 1, 2, . . . ,  8 9 ), which are rep-

resented by the symbol (•) in Fig. 1. Single-bounce scattering
is assumed when modelling the moving/fixed scatterers.

B. Time-Variant Channel Transfer Function

In reality, the collected RF data is sampled in both the time
and frequency domains, where the time sampling interval ΔC
and the frequency sampling period Δ 5 ′ are known characteris-
tic parameters of the employed channel sounder. The TVCTF
�̂8 9 ( 5 ′@ , C?) of the received RF signal is computed from
samples of the measured channel at discrete time instances
C? = ?ΔC ∈ [0, )] (? = 0, 1, . . . , %−1) and discrete frequencies
5 ′@ = −�/2 + @Δ 5 ′ ∈ [−�/2, �/2] (@ = 0, 1, . . . , & − 1),
where ) is the total observation time and � is the frequency
bandwidth. Starting from the model depicted in Fig.1, the
TVCTF �8 9 ( 5 ′@ , C?) of the link �)

9
− �'

8
can be obtained as

�8 9 ( 5 ′@ , C?) =
"∑
<=1

28 9< (C?) exp
(
9

(
\8 9<−2c( 5 ′@+ 52)g′8 9< (C?)

))
+
 8 9∑
:8 9=0

2:8 9 exp
(
9

(
\:8 9 −2c( 5 ′@+ 52)g′:8 9

))
(1)

where 52 is the centre carrier frequency. The first part of

(1) describes the effects of the motion of the cluster of
scatterers ("< (representing the moving person). As it has
been extensively discussed in [14], [15], is a human body is
exposed to low-frequency electromagnetic fields, an electric
current is induced in the body segments, which in turn behave
as moving relays. In this case, the TV path gain 28 9< (C?)
of the <th moving scatterer ("< is expressed as 28 9<(C?) =
1< [�)9< (C?)�'8<(C?)]−W/2. Here, the parameter 1< describes
the contribution of the <th scatterer ("< , where

∑"
<=1 1

2
< = 1.

The quantity 12
< is known as the radar cross-section [15].

Also, W is a path loss component dependent on the propagation
environment. Common values of W are between 1.6 and 1.8 in
indoor spaces. Moreover, g′

8 9<
(C?) = [�)9< (C?) +�'8<(C?)]/20

is the TV path delay of ("< , where 20 is the speed of light. The
initial phases of the channel \8 9< are modelled by a random
variable uniformly distributed over the interval [0, 2c).

The second part of (1) describes the multipath propagation
resulting from the fixed scatterers. The LOS component does
not experience any Doppler effect and can be modelled by a
fixed scatterer (�08 9 . The fixed scatterer (:8 9 , : = 0, 1, . . . ,  8 9 ,
are described by constant path gains 2:8 9 , constant path de-
lays g′

:8 9
, and random phase. \:8 9 . Here, the phases \:8 9 are

uniformly distributed over [0, 2c). For simplicity, the second
term of (1) is replaced by a single complex term. The validity
of non-stationary channel models with TV path gains and
TV path delays to describe the channel state information
of measured data was confirmed for a single moving point
scatterer in [16] and for multiple moving point scatterers
in [17], where commercial WiFi devices were used. The
measurements were collected in a laboratory room, where
activities (e.g., walking, sitting, and falling) were performed.

III. THE PROPOSED ESTIMATION ALGORITHM

The main purpose of this paper is to propose a new iterative
procedure to estimate the TV positions (G<? , H<? , I<?) =
(G< (C?), H< (C?), I< (C?)), < = 1, 2, . . . , " , of a cluster of
" moving scatterers in a room equipped with a #) × #'
communication system, the characteristics of which are as-
sumed to be known. Together with the TV coordinates of the
" moving scatterers, the proposed estimation method allows
the computation of all channel parameters. Since the fixed
scatterers do not experience any Doppler effect, their impact
can be removed by applying high-pass filtering.

The problem at hand is to estimate the TV positions
(G<? , H<? , I<?) = (G< (C?), H< (C?), I< (C?)), the initial phase
\8 9<, and the parameters W and 1< (< = 1, 2, . . . , "). To
do so, we have to determine, at each time instant C? , the
set of parameters PC? = {G<? , H<? , I<? , 1<, W, \8 9<}, < =

1, 2, . . . , " , by fitting the TVCTF �8 9 ( 5 ′@ , C?) of the channel
model introduced in (1) as closely as possible to the TVCTF
�̂8 9 ( 5 ′@ , C?) of the received RF signals. To compute the set PC? ,
we chose the Euclidean norm as objective function � (PC? ),
which measures the difference between the measured TVCTF
�̂8 9 ( 5 ′@ , C?) and the TVCTF �8 9 ( 5 ′@ , C?) of the channel model.
In this regard, the objective function � (PC? ) is expressed as

� (PC? ) =
&−1∑
@=0

#)∑
9=1

#'∑
8=1

���̂8 9 ( 5 ′@ , C?) − �8 9 ( 5 ′@ , C?)��2 . (2)
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ℎ8 9<0 ( 5 ′@ , C?) = �̂8 9 ( 5 ′@ , C?)−
"∑

<=1,<≠<0

1
(;)
<

[
58 9

(
G<? , H<? , I<?

) ]−W/2exp
(
9

(
\8 9<−2c( 5 ′@ + 52)

68 9
(
G<? , H<? , I<?

)
20

))
(4)

(
G
(;+1)
<0 ?, H

(;+1)
<0 ?, I

(;+1)
<0 ?, 1

(;+1)
<0 ,W

(;+1), \ (;+1)
8 9<0

)
= argmin

PC?

&−1∑
@=0

#)∑
9=1

#'∑
8=1

�����ℎ8 9<0( 5 ′@ , C?) −
exp

(
9

(
\8 9<0 −

2c( 5 ′@+52)68 9(G<0 ? ,H<0 ? ,I<0 ?)
20

))
1−1
<0

[
58 9(G<0 ? , H<0 ? , I<0 ?)

]W/2
�����2 (5)

1
(;+1)
<0 =

&−1∑
@=0

#)∑
9=1

#'∑
8=1

[
58 9

(
G
(;)
<0 ? , H

(;)
<0 ? , I

(;)
<0 ?

)]−W (;) /2
R

{(
ℎ8 9<0( 5 ′@ , C?)

)∗
exp

(
9

(
\
(;)
8 9<0
−2c( 5 ′@+ 52)68 9

(
G
(;)
<0 ? , H

(;)
<0 ? , I

(;)
<0 ?

)
2−1

0

))}
&−1∑
@=0

#)∑
9=1

#'∑
8=1

[
58 9

(
G
(;)
<0 ? , H

(;)
<0 ? , I

(;)
<0 ?

)]−W (;) (6)

(
G
(;+1)
<0 ?,H

(;+1)
<0 ?, I

(;+1)
<0 ?,W

(;+1), \ (;+1)
8 9<0

)
= arg min
PC?\{1<0}

&−1∑
@=0

#)∑
9=1

#'∑
8=1

�����ℎ8 9<0( 5 ′@ , C?) −
exp

(
9

(
\8 9<0−

2c( 5 ′@ + 52)68 9(G<0 ? ,H<0 ? ,I<0 ?)
20

))
(1 (;+1)<0 )−1

[
58 9(G<0 ? , H<0 ? , I<0 ?)

]W/2
�����2 (7)

The set of parameters PC? is determined by minimizing the
objective function � (PC? ) in (2), i.e.,

PC?= argmin
PC?

&−1∑
@=0

#)∑
9=1

#'∑
8=1

���̂8 9 ( 5 ′@ , C?)−�8 9 ( 5 ′@ , C?)��2 . (3)

We start by setting the number of moving scatterers to 1, i.e.,
<0 = 1, and choose arbitrary initial values for the quantities
G
(0)
<0 ? , H (0)<0 ? , I (0)<0 ? , 1 (0)<0 , W (0) , and \ (0)

8 9<0
. At each iteration ;, ; =

1, 2, 3, . . . , we define the error function ℎ8 9<0 ( 5 ′@ , C?) corre-
sponding to the <0th moving scatterer as in (4) [see the top of
this page], where 58 9

(
G<0 ? , H<0 ? , I<0 ?

)
= �)

9<0
(C?)�'8<0

(C?)
and 68 9

(
G<0 ? , H<0 ? , I<0 ?

)
= �)

9<0
(C?) + �'8<0

(C?). The new
estimates of the parameters G (;+1)<0 ? , H (;+1)<0 ? , I (;+1)<0 ? , 1 (;+1)<0 , W (;+1) ,
and \

(;+1)
8 9<0

, at every iteration ;, ; = 0, 1, 2, . . . , are computed
according to the optimization problem in (5). Deriving the
right-hand side of (5) w.r.t. the variable 1<0 and expressing
the real part of a complex number by using the complex
conjugation yield the exact closed-form solution to the new
estimate of 1 (;+1)<0 in (6) [see the top of this page], where
(·)∗ denotes the complex conjugate operator, and R{·} refers
to the real value operator. Replacing the new value of 1 (;+1)<0
in (6) results in the new optimization problem as given in
(7) [see the top of this page]. The new estimates of the
remaining parameters, i.e., G (;+1)<0 ? , H (;+1)<0 ? , I (;+1)<0 ? , \ (;+1)

8 9<0
, and W (;+1) ,

are numerically determined by minimizing the right-hand side
of (7) [see the top of this page]. For a fixed value of <0, the
steps in (5)−(7) proceed until the relative error � (;)<0 in the
objective function � (PC? ) w.r.t. the number of iterations ; is
smaller than or equal to a predefined error level Y1. When
this condition is met, the number of moving scatterers <0 is
increased by 1, i.e., <0 ← <0 + 1. Utilising the error function
in (4) for the new value of <0 and following the steps (4)−(7)
allows the computation of the new estimates of G (;+1)<0 ? , H (;+1)<0 ? ,
I
(;+1)
<0 ? , 1 (;+1)<0 , W (;+1) , and \ (;+1)

8 9<0
for the new value of <0. The

proposed iterative positioning technique is repeated until no
further progress can be made. In this case, the relative error
�<0 in � (PC? ) w.r.t. the number of moving scatterers <0
is smaller than or equal to a predefined error level Y2, or a
predetermined maximum "max is reached. As a result of the
estimation method described in (4)−(7), we obtain the TV
positions (G<0 (C), H<0 (C), I<0 (C)) of the scatterer ("<0 .

Algorithm 1 describes the pseudo-code of the proposed

positioning method. Since this method requires extensive nu-
merical computation, it is worthy to study its time complexity
C? . Assuming that the quantities #) , #', and & are constant,
it can be concluded from Algorithm 1 that the complexity C?
of the estimation algorithm at the time instant C? depends on
the estimated number " of moving scatterers and the number
!<0 of interactions performed for each point scatterer ("<0 ,
<0 = 1, 2, . . . , " and " ≤ "max. Based on [18, Section 4.1],
we obtain the time complexity C? = O(

∑"
<0=1 !<0 ), where

O(·) denotes the big-O notation. Since the channel is non-
stationary, the procedure is repeated at any time instant C? .

Special cases: If the person is not moving then the proposed
method simplifies to that described in [19]. For the case of
WSS channels, where the speed of the person is constant
during the observation time, the proposed positioning method
reduces to the traditional INLSA algorithm [11], which has the
same time complexity as the proposed algorithm for the entire
observation time. A comparative analysis of the performance
of the original INLSA procedure with alternative algorithms,
e.g., ESPRIT1 and SAGE2, was conducted in [20].

IV. NUMERICAL RESULTS

In this section, the validation of the proposed iterative
estimation procedure is performed by comparing the exact
TV positions of the " moving scatterers ("< (body segments
making up the human body) with the corresponding estimated
TV positions. For a meaningful performance evaluation, one
requires the prior knowledge of the exact TV coordinates
G< (C?), H< (C?), and I< (C?) of the body segment modelled
by the moving scatterer ("< . As is discussed in [21], existing
IPSs do not provide ground truth information of the moving
person. Their output is an estimation of the TV position of
the person. To obtain the ground truth information for accu-
rate evaluation of the algorithm’s performance, we consider
computer-simulated test RF signals with known TV positions.

As it was discussed in Section I, existing parameter es-
timation methods, which were developed in the context of
wireless communications, assume that the channel is WSS and
their generalization to non-stationary channels is not straight-
forward. Moreover, existing IPSs assume that the person is not

1Estimation of signal parameters via rotational invariant techniques
2Space-alternating generalized expectation-maximization
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Algorithm 1 Tracing of the body segments of a moving person
at the time instant C?

1: Input: "max ∈ N∗, Y1 > 0, Y2 > 0, and a &×% matrix containing
the values of the TVCTF �8 9 ( 5@ , C?)

Output: Estimates of %C? = {G<? , H<? , I<? , 1<, W, \8 9<}
2: <0 ← 1
3: While <0 ≤ "max or �<0 > Y2
4: ; ← 0
5: Define G (0)<0 ? , H (0)<0 ? , I (0)<0 ? , 1 (0)<0 , W (0) , and \ (0)

8 9<0
6: Define ℎ8 9<0 ( 5 ′@ , C?) according to (4)
7: While � (;)<0 > Y1
8: Define the optimization problem as in (5)
9: Compute the new estimate of 1 (;+1)<0 as in (6)

10: Update the optimization problem as in (7)
11: Compute the remaining parameters numerically
12: Update the optimization problem in (6)
13: ; ← ; + 1
14: Update the relative error � (;)<0
15: End
16: <0 ← <0 + 1
17: Update the relative error �<0
18: End

moving for short time intervals in the order of a few seconds.
Consequently, existing IPSs estimate the average positions
and not the instantaneous positions [1], [8]. In addition, as
is discussed in [9], the performance of existing positioning
approaches is usually evaluated in customized and highly
controlled settings, which are difficult to replicate. Because of
these three limitations of existing methods no fair performance
comparison with the proposed technique can be performed.

For the numerical validation of the proposed algorithm,
we consider a room equipped with a 3 × 3 MIMO communi-
cation system. By considering the centre of the room as the
origin, the locations of the distributed fixed omnidirectional
transmit and receive antennas �)1 , �)2 , �)3 , �'1 , �'2 , and
�'3 are (−4.9,−2.4,−1.1), (−4.9,−2.4, 1.1), (−4.9, 2.4, 1.1),
(4.9,−2.4,−1.1), (4.9,−2.4, 1.1), and (4.9, 2.4,−1.1), respec-
tively. For a realistic analysis, the simulation parameters were
chosen in accordance with the IEEE 802.11n standard [13].
In this regard, the )- and the '- of the OFDM communi-
cation system are operating at 52=5.32 GHz with a bandwidth
� = 20 MHz. Although, the 802.11n standard considers the use
of 30 sub-carriers, we select 1 out of 3 subsequent subcarriers
to reduce the impact of noise. Therefore, we consider for our
simulated signals & = 10 subcarriers with Δ 5 ′=1250 kHz. The
observation time ) is 6 s with a sampling interval ΔC of 0.01 s.
The path loss component W was set to 1.7. The positions of the
 8 9 = 10 fixed scatterers are generated randomly. A high-pass
filter is employed to mitigate their contribution. The noise is
modelled by a Gaussian random variable.

In the following, the human body is modelled by a cluster of
" = 13 scatterers, which represent the centres of mass of the
humeri (upper arm bones), radii (lower arm bones), femurs
(thigh bones), tibias (largest lower leg bones), hands, toes,
and pelvis/torso. For realistic trajectories G< (C), H< (C), and
I< (C) of the centre of mass of the <th body segment ("< , we
employ the OpenSim workflow [12], which has a broad range
of capabilities for generating and analyzing the dynamics of a
system of rigid bodies and joints that are acted upon by forces

0 1 2 3 4 5 6

0

2

4

6

8

10

Fig. 2. Impact of noise on the estimation of the average radial distance A (C) .

to produce motion. Here, the input of the OpenSim tool is the
validated full-body musculoskeletal model published in [22].

For this scenario, Fig. 2 presents a comparison of
the ground truth of the average radial distance A (C) =

[∑"
<=1

√
G2
< (C) + H2

< (C) + I2< (C)]/" with the corresponding es-
timation results for different values of the SNR and 30 trials.
As can be observed, the accuracy of the estimation procedure
decreases with decreasing values of the SNR. However, this
observation does not apply to a specific time C? . To quanti-
tatively evaluate the average estimation error of the proposed
iterative method, we present the absolute average error of the
displacements G< (C), H< (C), and I< (C) (< = 1, 2, . . . , ") in
Table I. This table also presents the impact on the absolute
average errors of the TV speed and the TV Doppler frequen-
cies for different values of the SNR. The Doppler frequencies
58 9<(C) are obtained as 58 9< (C) = −2c( 5 ′@ + 52) ¤g′8 9< (C), where
¤g′
8 9<
(C) is the time derivative of the TV path delay g′

8 9<
(C)

at time C, which can be expressed in terms of the TV
coordinates G< (C), H< (C), and I< (C) of the moving scatterers
("< . For completeness, we also present in Table I the absolute
average errors of the TV mean Doppler shift and the TV
Doppler spread, the expressions of which can be found in
[23, Eqs. (21) and (23)]. The performance of the proposed
positioning method is analyzed for different values of the SNR
ranging from 0 dB to infinity (no noise). SNR values between
0 dB and 10 dB describe scenarios where the moving person
is far from or out of the range of the communication system.
All estimation results in Table I are computed by averaging
over the " = 13 moving point scatterers, the observation time
) = 6 s, the subcarriers & = 10, and 30 trials. Here, we average
over 30 trials to mitigate the impact of the random phases \8 9<
as well to fairly assess the impact of the noise. As can be ob-
served from Table I, the accuracy of the estimation algorithm
decreases with decreasing values of the SNR. The second
column of Table I shows that for SNR values strictly larger
than 15 dB the proposed algorithm can locate the person with
an average absolute estimation percentage error of less than
2.5 %. Here, the percentage error is computed as the difference
between the ground truth (known) value and the estimated
value, divided by the ground truth value and multiplied by 100.
For SNR values around 10 dB, the average absolute error is
approximately 7.80 %. Columns three and four of Table I show
that the TV speed and TV Doppler frequency behave similarly
with respect to noise, especially for SNR values higher than
15 dB, for which the absolute estimation error is less or equal
to 5 %. In the case where the SNR is less or equal to 10 dB,
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TABLE I
AVERAGE ABSOLUTE ESTIMATION ERROR FOR DIFFERENT VALUES OF THE SNR

SNR
in dB

TV displacement TV speed TV Doppler frequency TV mean Doppler shift TV Doppler spread
in m %∗ in m/s %∗ in Hz %∗ in Hz %∗ in Hz %∗

∞ (no noise) 0.015 0.29 0.013 0.95 0.142 2.75 0.129 4.17 2.01 7.27
25 0.021 0.43 0.017 1.25 0.18 3.48 0.150 4.85 21.7 97.17
20 0.032 0.65 0.024 3.26 0.258 5.00 0.308 9.96 45.6 165.15
15 0.120 2.46 0.038 5.16 0.52 10.09 0.516 16.69 101.2 365.80
10 0.380 7.80 0.314 23.08 2.081 40.40 2.135 69.09 213.3 772.54
5 0.532 10.92 0.624 45.80 4.804 93.28 5.386 174.30 340.2 1231.43
0 0.890 18.27 0.935 68.70 9.672 187.80 8.187 264.95 451.9 1636.72

∗ The symbol % refers to the percentage error.

the estimation accuracy degrades considerably. Now, the fifth
column of Table I illustrates the fact that the TV Doppler
spread is more sensitive to noise than the TV mean Doppler
shift because it is impacted by the average absolute error of
the Doppler frequencies as well as by the average absolute
error of the TV path gains 28 9<(C). This behavior is more
pronounced in the TV Doppler spread. The last column of
Table I clearly shows that the TV Doppler spread is sensitive
to small variations of the TV displacements G< (C), H< (C), and
I< (C). In fact, even in the absence of noise (SNR→ ∞), an
average absolute displacement error of approximately 1.5 cm
(0.29 %) results in an average absolute Doppler spread error
of approximately 2.01 Hz (7.27 %). This could explain why
the TV Doppler spread has not been used for determining the
TV positions of moving persons in indoor environments. This
analysis of the effects of positioning errors on micro-Doppler
human signatures is of great interest for optimal selection of
classification metrics of future RF-sensing applications.

V. CONCLUSION

A new iterative method to trace the body segments of a
moving person leveraging RF signals in non-stationary indoor
areas has been proposed in this paper. Each segment of the
human body acts as a relay and is modelled by a moving point
scatterer. The introduced algorithm uses MIMO techniques and
estimates the TV positions of the moving scatterers by fitting
the TVCTF of the received radio signals as close as possible
to the TVCTF of the 3D non-stationary channel model. .
Numerical results were provided to evaluate the performance
of the positioning method for various values of the SNR. On
average, it was shown that our procedure estimates the TV
positions with an accuracy higher than 92 % for SNR values
larger or equal to 10 dB.
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