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❑ Transport and road infrastructure departments perform regular inspections on

pavements to assess surface condition.

❑ These inspections are used to make decisions about pavement maintenance

planning, including cost considerations (Koch and Brilakis, 2011).

❑ In this study, we are focused on patch detection using object detection methods to

detect patches on images acquired using 3D laser profiling systems

❑ The contributions of this work are 1) an automatic pavement patch detection model

for images acquired by 3D profiling sensors and 2) comparative analysis of RCNN,

and SSD MobileNet-V2 models for automatic patch detection.

❑ This research utilizes asphalt pavement images acquired using the LCMS (Laser

Crack Measurement) system supplied by PMS Pavement Management Services Ltd.

❑ LCMS surveys at speeds around 80 km/h, allowing a transverse profile to be

captured every 5 mm.

❑ Image a is a range image - a visual representation of the height data collected from

the lasers. Image b is an intensity image – a visual representation of the intensity

data collected from the lasers.

❑ Both Faster RCNN and SSD models provide better patch detection on range images.

While Faster RCNN can detect more patches when compared to SSD, it has a higher

false-positive rate on both image types.

❑ A combined model based on both image types identified the most patches, achieving

0.88 recall rate using Faster RCNN which is 5% higher than the best of the range-

only and intensity only models.

❑ In future work we will investigate data pre-processing techniques such as identifying

uncertain labelled images, further tuning of model hyperparameters, and testing

other state of the art object detection networks such as Yolov5.

❑ Koch, C. and Brilakis, I. (2011). Pothole detection in asphalt pavement images. Advanced Engineering Informatics, 25(3):507–

515.

❑ Ren, S., He, K., Girshick, R., and Sun, J. (2016). Faster r-cnn: towards real-time object detection with region

❑ proposal networks. IEEE transactions on pattern analysis and machine intelligence, 39(6):1137–1149.

❑ Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., and Chen, L.-C. (2018). Mobilenetv2: Inverted residuals and linear bottlenecks.

In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 4510–4520.

Introduction

Dataset

Conclusion

References

Methodology
❑ This work proposes a method for automatically detecting the presence and location

of patches in images of pavements acquired using 3D laser profiling systems.

❑ Each patch must be detected and localized since road maintenance requires an

estimate of the size and proportion of patched surface on a length of pavement.

❑ Therefore, we use object detection to draw bounding boxes and use box coordinates

to determine the scaled area of an individual patch.

Precision =
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Experiment 1 & 2 (Patch Detection using Range & Intensity Images)

❑ Table 3 & 4 shows the detection performance of both models across range & intensity.

Where TP+FP is the total number of ROI generated from the model.

Where FN is the number of ground truth boxes.

Figure 2: Example of Intersection over Union (IoU).

Figure 2: : Proposed Approach for Automatic Pavement Patch Detection.

Figure 3: Comparison of Precision and Recall at different IoU threshold values using Range Images.

Combined Model
❑Using a combined model, we take the individual predictions from each of range and

intensity models. If either or both models identify a patch, we count that patch as a

detection.

❑ This leads to a higher true positive rate as more patches are found using results from

both models, as indicated in Tables 5 & 6.

Figure 4: Visual analysis of Range and Intensity images.

Figure 1: Left: Pavement data collection van with LCMS mounted on backside. 
Right: (a) Intensity image (b) Corresponding Gray-scale Range image.

❑We aim to address the following research question. How accurately can object

detection methods detect patches on images acquired using LCMS?

❑ The metrics used to answer this question are Precision and Recall using IoU

(Intersection over Union).
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Model Backbone Precision@0.5IoU Recall@0.5IoU

Faster RCNN Inception-V2 0.79 0.83

SSD MobileNet-V2 0.87 0.7

Table 3: Detection performance on Range images

Model Backbone Precision@0.5IoU Recall@0.5IoU

Faster RCNN Inception-V2 0.67 0.74

SSD MobileNet-V2 0.84 0.39

Table 4: Detection performance on Intensity images

Model

# patches detected in Range 

images but not in equivalent 

Intensity images

# patches detected in Intensity 

images but not in equivalent 

Range images

Faster RCNN 142 46

SSD MobileNet-V2 292 31

Table 5: Comparative analysis on Range & Intensity images

Model Backbone Precision@0.5IoU Recall@0.5IoU

Faster RCNN Inception-V2 0.6 0.88

SSD MobileNet-V2 0.79 0.7

Table 6: Detection performance on Combined Model

Image Type Total Images Training Set Testing Set

LCMS Range 2,242 1636 603

LCMS Intensity 2,242 1636 601

Image Type Total Images
# of patches in 

testing set
LCMS Range 603 856

LCMS Intensity 601 853

Table 1: Details of entire training & testing set

Table 2: Breakdown of testing set
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