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Abstract: In this paper, we examine deflation-based algebraic multigrid methods for solving large
systems of linear equations. Aggregation of the unknown terms is applied for coarsening, while
deflation techniques are proposed for improving the rate of convergence. More specifically, the V-cycle
strategy is adopted, in which, at each iteration, the solution is computed by initially decomposing
it utilizing two complementary subspaces. The approximate solution is formed by combining the
solution obtained using multigrids and deflation. In order to improve performance and convergence
behavior, the proposed scheme was coupled with the Modified Generic Factored Approximate Sparse
Inverse preconditioner. Furthermore, a parallel version of the multigrid scheme is proposed for
multicore parallel systems, improving the performance of the techniques. Finally, characteristic model
problems are solved to demonstrate the applicability of the proposed schemes, while numerical results
are given.

Keywords: multigrid; deflation; approximate inverses; aggregation-based algebraic multigrid; iterative
methods; linear systems

MSC: 65F08; 65F10; 65F50; 65N55

1. Introduction

Lately, research efforts for efficiently solving large sparse linear systems have focused
on multigrid methods [1,2]. Their applicability and efficiency are based on the use of a
stationary method as a smoother for higher frequency components of the error, while
the lower frequency components are transferred to a coarser level with higher frequency,
which can reduce the error [3,4]. Multigrid algorithms consider a recursive application
with two-grid coarse grid-correction schemes [5]. In the coarse level, a smoother is used
for defecting correction, which is interpolated to the finer level and then added to the
solution [3,4].

An algebraic multigrid (AMG) requires the information of the coefficient matrix of the
linear system [4]. The only difference between the geometrical and algebraic approaches
is the coarsening algorithm; however, they both consist of a smoother and a coarse grid
correction. The smoother, is usually the application of some iterations of a fixed-point
iterative method (such as Jacobi and Gauss–Seidel) and coarse grid correction is the transfor-
mation of the approximate residual to the finest grid. It should be noted that the notion of
aggregation has multiple applications in several scientific fields, including gene regulatory
networks [6,7].
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Moreover, approximate inverses have been extensively used for approximating the
inverse of the coefficient matrix of a linear system, resulting in efficient preconditioners for
Krylov subspace iterative methods. Their efficiency relies on the fact that they have inherent
parallelism and can be computed quickly in parallel [8–10]. Additionally, approximate
inverse techniques have been efficiently used in conjunction with multigrid methods for
solving partial differential equations discretized with finite difference methods [11], and for
a variety of other applications [12,13].

In this paper, a class of Modified Generic Factored Approximate Sparse Inverses (MGen-
FAspI) based on approximate inverse sparsity patterns is used to solve two-dimensional and
three-dimensional partial differential equations, discretized with high-order finite differ-
ence schemes. For the computation of these approximate inverses, a fill-in parameter is
required which affects the density, in terms of nonzero elements, of the preconditioner [10].
A deflation technique is also utilized in this work, splitting the problem at each multigrid
level into two complementary subspaces, aiming to further improve the convergence rate.

The paper is organized as follows: Section 2 introduces the deflation technique and
the corresponding algorithm used for the solution of linear systems. Section 3 presents
the aggregation-based algebraic multigrid method in conjunction with the deflation tech-
niques and the Modified Generic Factored Approximate Sparse Inverses. The algorithmic
procedures for the pairwise aggregation and the preconditioned multigrid are also given.
The parallel aspects and techniques for accelerating the computations required by the Mod-
ified Generic Factored Approximate Sparse Inverses in hybrid parallel environments are
discussed in Section 4. Finally, numerical results regarding the efficiency and convergence
behavior of the proposed techniques are presented and discussed in Section 5, by solving
characteristic model problems. Concluding remarks and directions for future research are
provided in Section 6.

2. Deflation Techniques

Deflation techniques were introduced by Nicolaides in 1987 for improving the rate
of convergence of the conjugate gradient method [14]. The main idea is based on the
projection of the linear system into two complementary subspaces, in order to separately
solve the two produced linear systems. The efficiency of this technique is based on the fact
that the projected linear systems could be solved faster than the initial system, and then
their solution can be combined for formulating the solution of the initial problem [15].

Let us consider an n× n linear system of the form:

Ax = b, (1)

where A is a symmetric and positive definite matrix, b is the right-hand side vector and x is
the solution vector. The deflation subspace V ∈ R can be represented by a full-rank matrix
V ∈ Rn×k with k� n such that:

E = VT AV. (2)

Then, the projection matrix Q can be defined as follows:

Q = I −VE−1VT A, (3)

where I is the identity matrix. The matrix Q is the orthogonal projection on the subspace
V⊥, while I − Q is the orthogonal projection on the subspace V. For the selection of
the subspace V, we can use the deflation technique for the generation of the basis of V,
proposed in [15], where the domain Ω is decomposed into m nonoverlapping subdomains
Ωj, j = 1, . . . , m, where:

vi,j =

{
1, if xi ∈ Ωj
0, if xi /∈ Ωj

. (4)
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The solution of the linear system can be computed as follows

x = (I −Q)xc + Qxs, (5)

where xc is the solution vector of the projection to subspace V, while xs is the solution
vector from the projection to the subspace V⊥. These vectors can be computed as follows:

xc = (I −Q)x and xs = Qxit, (6)

where x is an initial approximation for the solution. By applying matrix operations, the
solution vector xc can be defined as:

xc = (I −Q)x = VE−1VT Ax = V(VT AV)−1VT Ax = V(VT AV)−1VTb. (7)

Then, the vector xit can be computed by solving iteratively the following linear system:

A(I −V(VT AV)−1VT A)xit = b− Axc. (8)

The procedure for the solution of the linear system with the deflation technique can be
summarized by Algorithm 1.

Algorithm 1 Deflation technique for solving linear systems

1: Select the basis of the subspace V.
2: Project vector V based on the subspace V.
3: Compute E−1 = (VT AV)−1.
4: Compute the solution from the subspace V, using the transformation matrix I − Q,

such that xc = V(VT AV)−1VTb.
5: Solve iteratively the linear system A(V(VT AV)−1VT)xit = b− Axc.
6: Multiply the solution xit with Q and define the solution xs.
7: Compute the approximate solution by adding the two solution vectors from the two

complementary subspaces.

The use of the deflation technique in conjunction with an efficient preconditioning
scheme can accelerate the convergence behavior of the solution of the system [14]. Precon-
ditioning techniques yield the solution of a linear system of the form:

MAx = Mb, (9)

where M is a symmetric positive definite preconditioner. An efficient preconditioner should
be efficiently computed in parallel, MA should have a “clustered” spectrum, and the
M × vector should be fast to compute in parallel [9,10,16]. Then, the preconditioner can
be used in conjunction with a Krylov-subspace iterative method, such as the conjugate
gradient or the generalized minimum residual methods for the solution of the linear
system [9,10].

3. Aggregation Multigrid Method

Multigrid methods have been widely used by the scientific community for solving
linear systems, due to their convergence behavior and efficiency [8,17]. The design of these
methods is based on the fact that high-frequency error components can be damped by a
stationary iterative method, while low-frequency error components are handled by coarser
grids with a higher discretization step, where the high-frequency modes of the error are
more oscillatory and can be damped efficiently by a stationary iterative method [4,18].
Multigrid methods are composed of four components: (a) the stationary iterative method
(iterative methods such as the Richardson, Jacobi and Gauss–Seidel methods), (b) the
restriction operator (transfer operators from finer to coarser grids), (c) the prolongation
operator (transfer operators from coarser to finer grids) and (d) the cycle strategy (the
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sequence in which the grids are visited until a solution with the predefined tolerance is
achieved) [16].

The method utilized for grid coarsening in this paper is the aggregation multigrid,
first introduced in [19] and developed by Notay [5]. The nodes of the grid are combined
into pairs, creating aggregates, based on a weighting rule.

The coarsening algorithm constructs a prolongation matrix P from the coefficient ma-
trix A, which is the transformation matrix from the coarse to the fine grid. The dimensions
of the prolongation matrix are n × nc, where nc < n is the number of the nodes of the
coarser grid. The transformation from the fine to the coarser grid can be managed by the
restriction matrix R, which is computed as follows:

R = PT , (10)

and the coarse coefficient matrix Ac is estimated by Galerkin’s formula:

Ac = RAP. (11)

For the formulation of the prolongation matrix, the aggregates Gi, which are disjoint
subsets of the variable set, have to be defined. The number of these variables, nc, is, then,
the number of the subsets and is used to define the prolongation matrix P:

Pi,j =

{
1, if i ∈ Gj
0, otherwise

(1 ≤ i ≤ n, 1 ≤ j ≤ nc). (12)

Therefore, P is a Boolean matrix with one nonzero entry in each row. In order to
define the aggregates, the algorithm searches for the set of nodes Si to which i is strongly
negatively coupled, using a strong/weak coupling threshold β:

Si =

{
j 6= i|ai,j < −β max

ai,k<0
|ai,k|

}
. (13)

Then, one unmarked node at a time is selected, giving priority to the node with the
minimal mi, where mi is the number of unmarked nodes which are strongly negatively
coupled to I [5,20]. Next, one can pick an unmarked node j, which consists of the column
of the matrix A with the minimal element ai,j in line i. Then, an aggregate is created
between the node i and the node j. The algorithm of the pairwise aggregation is given in
Algorithm 2 [5]. It should be noted that the CheckDD parameter is optional and confirms if
matrix A is diagonal-dominant [5].

For the solution of a linear system with an algebraic aggregation multigrid, the V-cycle
strategy can be used. The linear system is smoothed and the residual is transferred to the
coarser level until the resulting linear system is small enough to be solved directly. Then,
the solution vector is subject to the procedure of coarse grid correction, by means of the
appropriate prolongation [5,20].

During each iteration of the V-cycle, the deflation technique is used to split the problem
into two complementary subspaces, and the approximate solution is computed, which is
transferred to the coarser level of the grid. The combination of the multigrid and deflation
techniques is depicted in Figure 1.
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Algorithm 2 Pairwise aggregation
Inputs: matrix A = (ai,j) with n rows,

Threshold β = 0.25,
Logical parameter CheckDD

Outputs: number of coarse variables nc,
Aggregates Gi, i = 1, . . . nc (such as Gi ∩ Gj = ∅)

1: if CheckDD then
2: U = [1, n]\{i|ai,i > 5 ∑

j 6=i
|ai,j|}

3: else U = [1, n]
4: end if
5: for i = 1, . . . , n do

6: Si =

{
j ∈ U\{i}|ai,j < −β max

ai,k<0
|ai,k|

}
7: end for
8: for i = 1, . . . , n do
9: m = |{j|i ∈ Sj}|

10: end for
11: nc = 0
12: while U 6= ∅ do
13: Select i ∈ U with minimum mi, nc = nc + 1
14: Select j ∈ U such that ai,j = min

k∈U
ai,k

15: if j ∈ U then
16: Gnc = {i, j}
17: else Gnc = {i}
18: end if
19: U = U\Gnc

20: For all k ∈ Gnc update ml = ml − 1 for l ∈ Sk
21: end while

Figure 1. A V-cycle of aggregation multigrid in conjunction with deflation.

Algorithm 3 depicts the procedure of using a multigrid as preconditioner for a V-cycle.
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Algorithm 3 Preconditioned V cycle
Inputs: Residual vector rk

Grid matrix at level k: Ak
Deflation matrix Mk
Prolongation matrix Pk
Matrix of next grid Ak−1

Outputs: zk

1: function MGprec(rk,k)
2: Compute z(1)k = M−1

k rk

3: Calculate the new residual vector rk = rk − Akz(1)k
4: Compute rk−1 = PT

k rk
5: if k=1 then
6: xk−1 = A−1

k−1rk−1
7: else
8: xk−1 = MGprec(rk−1, k− 1)
9: end if

10: z(2)k = Pkxk−1

11: rk = rk − Akz(2)k

12: z(3)k = M−1
k rk

13: zk = z(1)k + z(2)k + z(3)k
14: end function

The function MGprec is executed once at the higher level for k = l using the matrix
Al = A, and iteratively calls itself until the parameter k reduces to 1. For smoothing,
the symmetric Gauss–Seidel method is used, where

Mk = low(Ak)diag(Ak)
−1upp(Ak), (14)

where low, diag and upp are the lower, diagonal and upper submatrices of Ak [5].
In this paper, the coarse coefficient matrix Ac is inverted by the Modified Generic

Factored Approximate Sparse Inverse (MGenFAspI) technique [10]. For a coefficient matrix
A, we consider its incomplete LU factorization, i.e.,

A = LU + E, (15)

where L and U are, respectively, the upper and lower triangular factors and E is the error
matrix. The GenFAspI matrix can be computed using the following procedure:

A = LU ⇔ A−1 = U−1L−1 ⇔ A−1 = M = GH, (16)

considering G = U−1 and H = L−1. In order to compute the G and H, an “a-priori”
sparsity pattern is required, [21]. These patterns occur when utilizing a predetermined drop
tolerance (droptol) and then raising to a predefined power (level of fill or lfill) the upper
and lower triangular factors. After that, the GenFAspI matrix is constructed by solving the
following system:

M = Glfill
droptolH

lfill
droptol ⇔

{
Ug:,j = e:,j
Lh:,j = e:,j

, 0 ≤ j < m, (17)

where g:,j denote the elements of G, h:,j, the elements of H; e:,j are the elements of the identity
matrix and m the order of the coefficient matrix of the linear system [22]. A modified
version of GenFAspI (MGenFAspI) is used in order to enhance the performance during the
computation of the approximate inverse [10]. The MGenFAspI matrix is used to compute
each column of the factor of the approximate inverse, separately, by a restricted solution
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process of only the factors. The elements that do not belong to G and H factors are set to
zero; thus, Equation (17) is rewritten as:{

Ug:,j = e:,j
Lh:,j = e:,j

0 ≤ j < m⇔
{

gi,j = 0, (i, j) 6∈ Glfill
droptol

hi,j = 0, (i, j) 6∈ Hlfill
droptol

. (18)

The advantage of the modified version of GenFAspI is that the construction of the
approximate inverse can be easily parallelized, since the elements of the matrices G and H
or L and U are not required to be identified. The algorithmic procedure of MGenFAspI is
given in [10].

4. Parallel Techniques

In this section, the parallel algorithm for the Modified Generic Factored Approximate
Sparse Inverse and the parallel V-cycle are discussed. The matrices G and H can be
computed by solving the following equations:{

UG = I
LH = I

, (19)

where U and L are the upper and lower triangular matrices that are derived from the
incomplete LU factorization of the coefficient matrix A. Thus, for calculating the columns
of the matrices G and H, the linear system of Equation (18) should be solved.

The MGenFAspI algorithm allows the individual computation of the columns of
matrices G and H, and, due to this inherent parallelism, it can be efficiently implemented
on hybrid parallel systems that consist of distributed and multicore CPUs. Each node of the
distributed system can be assigned into a block of columns of the matrices, while, within
each node, the multiple cores can further distribute the workload.

The computation of the elements of each column of matrices G and H does not require
all rows of matrices U or L, respectively, but only the rows that correspond to nonzero
elements of each column. For this reason, there is no need to broadcast the whole matrices U
and L, yielding a reduced communication cost, especially for large-scale matrices. A visual
representation of the distribution of matrix G on the available nodes is given in Figure 2,
while the workload of two cores of a distributed node is depicted in Figure 3.

Figure 2. Distribution of columns of matrix G on four tasks.

The same process was implemented for the computation of the elements of matrix H,
where the rows of matrix L were used. Since this technique does not require any communi-
cation between the distributed processes, the parallel speedup and parallel efficiency are
expected to be high. The derived matrices (G and H) are distributed on the nodes; however,
they can be used on any distributed system for executing a column-wise matrix×vector
multiplication. The algorithm for the parallelization of the MGenFAspI has been presented
in [10]. In the context of this work, the parallelization on multicore systems was considered.
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Figure 3. Computations performed from the two cores of Task 2 for the formulation of fourth and
fifth columns of matrix G of the MGenFAspI.

5. Numerical Results

The applicability, performance and convergence behavior of the proposed schemes
are given in this section. Various model problems are considered and numerical results
are obtained, experimentally demonstrating the behavior of the proposed methods. It
should be noted that the experimental results were obtained on an Intel Xeon 2420v2 with
6 cores and 12 threads, 48GB of RAM memory, running Linux CentOS 7. All algorithmic
techniques were implemented in C++ 11.

For the evaluation of the aggregation-based multigrid method with V-cycle, the 2D
Poisson problem was initially selected with the number of elements per direction
nx = 50, 100, 200, 500. Four iterations of the Jacobi method were performed as a pre-
smoother and four iterations of the Jacobi method were used for post-smoothing in each
level of grid hierarchy. In the last level of the multigrid, the linear system is solved by
a direct method, such as LU factorization. The termination criterion is ||ri||2 < tol||r0||2,
where ||ri||2 is the norm of the residual vector of the i-th iteration, ||r0||2 is the norm of the
residual of the initial problem and tol = 10−8. In the parallel experiments, the resolution at
the lowest level was held by the PARDISO method (parallel direct solver) contained in the
parallel libraries of Intel [23].

It should be noted that the choice of pre-smoothing and post-smoothing iterations
affects the convergence behavior, e.g., increased values lead to better overall performance.
However, since the stationary iterative methods in the context of multigrids are used to
damp the high-frequency components of the error, an arbitrary increase does not guarantee
substantial improvements. In the context of an algebraic multigrid, the choices for pre-
smoothing and post-smoothing iterations vary between 1 and 4 for smoothers, such as
Jacobi or Gauss–Seidel, in the literature. Thus, determination of the optimal parameters in
the context of a multigrid depends on the problem to be solved and can be determined by
experimentation [5,18].

The convergence behavior and the performance of the AGAMG method for different
numbers of the unknowns per dimension for the 2D Poisson problem are given in Table 1.
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Table 1. Convergence behavior and performance of V cycle of AGAMG for 2D Poisson model problem.

Level
nx

50 100 200 300 500

2 Execution time 0.0967 0.8053 8.7529 40.4147 275.5410
Iterations 25 27 27 28 28

3 Execution time 0.1118 0.5446 4.2991 15.6946 90.7970
Iterations 41 45 52 55 57

4 Execution time 0.125 0.6148 3.7552 11.7529 59.7511
Iterations 49 59 63 64 65

5 Execution time 0.1483 0.7674 3.9582 10.4572 39.3368
Iterations 61 85 98 105 115

The number of iterations required for convergence slightly increases as the size of
matrix A increases, for the different number of levels. Moreover, increasing the number of
levels while increasing the number of points per dimension (nx) yields reduced execution
time. This is due to the size of the matrix at the last level, which is solved by a direct
method. Thus, for large-scale systems, an increased number of levels is recommended.

In order to examine the applicability and efficiency of the deflation techniques,
the same model problem was executed by considering deflation with V-cycle. For the
integration of the two methods, the four Jacobi pre-smoothing iterations were replaced
with one deflation iteration. The deflation algorithm computes, using a direct method, the
solution in subspace I −Q:

xc = (I −Q)x = PE−1RAx = P(RAP)−1RAx, (20)

by inverting the matrix E with the Jacobi method (i.e., inverting only the main diagonal).
The solution in subspace Q is computed with six iterations of the BiCGStab method for the
following linear system:

A(PE−1R)xit = b− Axc. (21)

The efficiency and convergence behavior of the aggregation-based algebraic multigrid
method with deflation are given in Table 2, for various numbers of levels and nx. It should
be noted that the Jacobi method with n2 = 4 was used as post-smoother.

Table 2. Convergence behavior and performance of V cycle of AGAMG in combination with deflation
technique for 2D Poisson model problem.

Level
nx

50 100 200 300 500

2 Execution time 1.6971 1.2749 11.1617 42.9594 296.577
Iterations 20 26 29 27 29

3 Execution time 0.3221 1.5183 7.8454 22.2745 117.9680
Iterations 42 45 47 46 56

4 Execution time 0.3351 2.0727 9.1327 24.3004 100.505
Iterations 40 60 59 61 66

5 Execution time 0.3964 2.9885 16.976 41.8845 170.785
Iterations 46 88 124 130 181

To further improve the convergence behavior, the Modified Generic Factored Ap-
proximate Sparse Inverse (MGenFAspI) was used for approximating matrix E−1. The l f ill
parameter was set to 1 and the droptol to zero. The corresponding results are given in
Table 3, for various values of nx and numbers of levels for the 2D Poisson problem. It can
be seen that in most of the cases, the number of iterations is reduced.



Mathematics 2023, 11, 640 10 of 15

Table 3. Convergence behavior and performance of V cycle of AGAMG in combination with deflation
technique and MGenFAspI with droptol = 0 and l f ill = 1 for 2D Poisson model problem.

Level
nx

50 100 200 300 500

2 Execution time 0.6232 4.2415 24.0091 72.6027 374.277
Iterations 17 25 27 27 28

3 Execution time 1.3349 16.3954 39.3299 93.8537 378.846
Iterations 32 96 54 54 67

4 Execution time 2.9044 33.2589 52.0096 379.832 561.296
Iterations 65 185 70 218 105

In Table 4, the convergence behavior and the performance of the proposed scheme
with the use of MGenFAspI preconditioner for various values of nx and number of levels
for solving the 3D Poisson problem are given. Moreover, in Tables 5 and 6, numerical
results are given for the 2D and 3D Poisson problem with l f ill = 2 and droptol = 0.0 for
various numbers of levels.

Table 4. Convergence behavior and performance of V cycle of AGAMG in combination with deflation
technique and MGenFAspI with droptol = 0 and l f ill = 1 for 3D Poisson model problem.

Level
nx

50 100 200 300 500

2 Execution time 9.1539 47.4512 573.946 2146.98 5649.41
Iterations 8 10 16 20 18

3 Execution time 9.9429 48.6524 571.837 1261.92 3664.08
Iterations 8 10 26 21 23

4 Execution time 10.4677 54.8827 327.732 535.449 2954.17
Iterations 8 11 28 23 57

Table 5. Convergence behavior and performance of V cycle of AGAMG in combination with deflation
technique and MGenFAspI with droptol = 0 and l f ill = 2 for 2D Poisson model problem.

Level
nx

50 100 200 300 500

2 Execution time 1.3201 6.9443 36.0793 97.401 441.648
Iterations 21 26 28 27 28

3 Execution time 1.9226 11.4484 50.453 135.453 454.7931
Iterations 27 40 42 48 52

4 Execution time 2.093 13.0483 73.6803 191.0220 555.9120
Iterations 28 43 59 65 64

5 Execution time 1.9354 17.4081 100.6990 282.1470 860.0930
Iterations 25 56 79 96 103
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Table 6. Convergence behavior and performance of V cycle of AGAMG in combination with deflation
technique and MGenFAspI with droptol = 0 and l f ill = 2 for 3D Poisson model problem.

Level
nx

50 100 200 300 500

2 Execution time 8.9012 48.5778 709.2940 1974.3400 5529.2900
Iterations 8 10 15 16 16

3 Execution time 9.986 49.2396 519.0140 1704.4200 4300.770
Iterations 8 10 15 20 22

4 Execution time 10.2313 54.0935 427.9530 1100.960 2115.110
Iterations 8 11 17 23 25

5 Execution time 13.5096 51.6422 605.7950 1135.4700 1956.0400
Iterations 10 10 24 25 27

The convergence behavior and the performance of the proposed schemes with the use
of MGenFAspI for various numbers of the l f ill parameter and number of levels for the 2D
Poisson problem with nx = 300 is given in Table 7.

Table 7. Convergence behavior and performance of V cycle of AGAMG in combination with deflation
technique and MGenFAspI with droptol = 0 and different values of l f ill for 2D Poisson model
problem with nx = 300.

Level
l f ill

1 2 3 4

2 Execution time 72.6027 98.6010 132.5990 174.9720
Iterations 27 27 27 27

3 Execution time 93.8537 138.0190 208.5200 310.3720
Iterations 54 48 48 50

4 Execution time 379.8320 191.1260 318.5270 398.9170
Iterations 218 65 71 61

5 Execution time - 283.9880 407.6990 730.2840
Iterations - 96 89 111

The performance and applicability were also tested against the Sherman problem
(https://sparse.tamu.edu/HB/sherman1 (accessed on 26 January 2023)). In Table 8, the
convergence behavior and performance of the proposed schemes with the use of the
MGenFAspI preconditioner, for various values of the parameter l f ill and number of levels
for the Sherman1 problem, are given in Table 8. In Table 9, the parallel aggregation-based
algebraic multigrid method in conjunction with deflation and Modified Generic Factored
Approximate Sparse Inverses for the 3D Poisson problem, with nx = 70 and l f ill = 2,
is given.

The addition of deflation is expected to increase the computational time, since it
involves matrix inversion operations (approximate) and matrix-by-matrix products. How-
ever, for difficult problems, e.g., Sherman1, where iterations increase substantially when
following the original AGMG approach, deflation leads to substantial improvements and
even ensures convergence within the prescribed maximum iterations. Moreover, the ad-
ditional computational work is composed of inherently parallel operations which can be
accelerated on modern hardware, leading to an efficient solution approach.

https://sparse.tamu.edu/HB/sherman1
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Table 8. Convergence behavior and performance of V cycle of AGAMG in combination with deflation
technique and MGenFAspI with droptol = 0 and different values of l f ill for Sherman1 problem.

Level
l f ill

1 2 3 4

2 Execution time 0.8757 0.9876 1.0288 1.0522
Iterations 369 367 369 357

3 Execution time 1.1042 1.2073 1.3506 1.1743
Iterations 365 368 366 341

4 Execution time 1.3235 1.5063 1.6007 1.6300
Iterations 369 371 369 354

5 Execution time 1.5504 1.6823 1.8967 1.8641
Iterations 375 360 367 339

Table 9. Convergence behavior and performance of a parallel V cycle of AGAMG in combination
with deflation technique and MGenFAspI with droptol = 0 and l f ill = 2 for 3D Poisson model
problem with nx = 70.

Level
l f ill

1 2 3 4

2 Execution time 2867.37 1804.98 1125.15 820.11
Iterations 54 37 43 40

3 Execution time 2129.46 1410.57 1087.21 866.76
Iterations 34 41 35 33

4 Execution time 3542.25 2145.36 1621.55 1299.05
Iterations 53 37 41 36

5 Execution time 3083.26 2145.08 1506.31 1201.97
Iterations 45 46 30 34

Direct parallelization of algebraic multigrid algorithms has been studied extensively
in the literature and has been shown to be limited [24]. The advantages of a truncated
approach, which is similar to the one adopted in this manuscript, for the parallelization of
the V cycle have been discussed extensively in [25].

Finally, the speedups and efficiency of the parallel aggregation-based algebraic multi-
grid method in conjunction with deflation and Modified Generic Factored Approximate
Sparse Inverses for the 3D Poisson problem, with nx = 70 and l f ill = 2, are given in
Table 10 and Table 11, respectively. The corresponding figures for the execution times,
speedups and efficiency are given in Figure 4, Figure 5 and Figure 6, respectively.

Table 10. Speedup of parallel V cycle of AGAMG in combination with deflation technique and
MGenFAspI with droptol = 0 and l f ill = 2 for 3D Poisson model problem with nx = 70.

Level
Threads

2 4 6

2 1.59 2.55 3.77
3 1.51 1.96 2.46
4 1.65 2.18 2.73
5 1.44 2.05 2.57
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Table 11. Efficiency of parallel V cycle of AGAMG in combination with deflation technique and
MGenFAspI with droptol = 0 and l f ill = 2 for 3D Poisson model problem with nx = 70.

Level
Threads

2 4 6

2 0.79 0.64 0.58
3 0.75 0.49 0.41
4 0.83 0.558 0.45
5 0.72 0.51 0.43

Figure 4. Execution times (in seconds) of parallel V cycle of AGAMG in combination with deflation
technique and MGenFAspI with droptol = 0 and l f ill = 2 for 3D Poisson model problem with
nx = 70.

Figure 5. Speedups of parallel V cycle of AGAMG in combination with deflation technique and
MGenFAspI with droptol = 0 and l f ill = 2 for 3D Poisson model problem with nx = 70.
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Figure 6. Efficiency of parallel V cycle of AGAMG in combination with deflation technique and
MGenFAspI with droptol = 0 and l f ill = 2 for 3D Poisson model problem with nx = 70.

6. Discussion and Conclusions

The Modified Generic Factored Approximate Sparse Inverse technique based on
incomplete factorization has been recently proposed and used as a preconditioner for
Krylov subspace methods. In this work, algebraic multigrid methods were examined
that are based on aggregation, while a V cycle was used in conjunction with deflation
techniques to improve the convergence behavior. The proposed schemes were discussed
and numerical results from solving two model problems were presented.

The evaluation of the proposed methods demonstrates the improvement in the rate of
convergence of the multigrid techniques using deflation, for various values of the parame-
ters nx and l f ill. The extensive experimentation that was carried out validated that the V
cycle of AGAMG in combination with deflation and MGenFAspI was the most efficient
approach in terms of convergence behavior; however, with greater execution time. For this,
the paper took advantage of the inherent parallelism of the approximate inverse scheme
and the aggregation-based multigrid method, and resulted in reduced execution times on
a shared memory parallel system. The parallel numerical results obtained demonstrated
good parallel results with good potential for large-scale parallel systems.

Future work includes the use of the aggregation-based multigrid method in conjunc-
tion with deflation techniques and approximate inverses as preconditioners for Krylov-
subspace iterative methods. Moreover, the use of domain decomposition methods will be
examined, in order to further improve the parallel efficiency of the methods.
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