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Abstract Nutrients are important to promote plant growth 
and nutrient deficiency is the primary factor limiting crop 
production. However, excess fertilisers can also have a nega-
tive impact on crop quality and yield, cause an increase in 
pollution and decrease producer profit. Hence, determining 
the suitable quantities of fertiliser for every crop is very 
useful. Currently, the agricultural systems with internet of 
things make very large data volumes. Exploiting agricultural 
Big Data will help to extract valuable information. However, 
designing and implementing a large scale agricultural data 
warehouse are very challenging. The data warehouse is a 
key module to build a smart crop system to make proficient 
agronomy recommendations. In our paper, an electronic 
agricultural record (EAR) is proposed to integrate many 
separate datasets into a unified dataset. Then, to store and 
manage the agricultural Big Data, we built an agricultural 
data warehouse based on Hive and Elasticsearch. Finally, 
we applied some statistical methods based on our data ware-
house to extract fertiliser information such as a case study. 
These statistical methods propose the recommended quanti-
ties of fertiliser components across a wide range of environ-
mental and crop management conditions, such as nitrogen 

(N), phosphorus (P) and potassium (K) for the top ten most 
popular crops in EU.

Keywords Electronic agricultural record · Data 
warehouse · Nutrient · Crop yield

1 Introduction

In the last few years, there have been approximately 124 
million people in 53 countries experiencing acute food inse-
curity. Besides, in another 42 countries, there are additional 
143 million people were at the edge of facing acute hunger 
[12]. The world population in 2021 is 7.9 billion [41] and 
will increase to 8.6 billion by 2030 and 9.8 billion in 2050 
[38]. So, the major urgent challenge for humans is the grow-
ing food demands of the annually increasing population [8, 
42]. The problem is exacerbated by resources for crop pro-
duction which are really limited, such as available freshwater 
and cropland [13]. There is an urgent need to increase crop 
yield by using new agricultural technologies, such as smart 
farming also called digital agriculture.
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Today, farmers often enhance soil nutrients through fer-
tilisers to improve crop yields. The fertiliser application 
is crucial to protect global food and enhance the yield of 
cereals [15]. However, excess fertilisers will make toxic and 
negative impacts to crop quality and yield [7, 43]. Besides, 
fertilisers are very expensive and fertiliser waste will reduce 
producer incomes. Further, redundancy of fertilisers makes 
pollution of air, soil and water [34]. It can create high salt 
concentration to hurt beneficial soil microorganisms. It also 
makes eutrophication of surface water and groundwater, and 
greenhouse gas (GHG). Agricultural production contributes 
to global climate change. In 2008, it accounted for about 
25% of global anthropogenic GHG emissions, such as car-
bon dioxide ( CO

2
 ), methane ( CH

4
 ) and nitrous oxide ( N

2
O ). 

Fertiliser production is the main source because it not only 
consumes large amounts of energy, but also produces N

2
O 

and CH
4
 in the manufacture of nitrate ( NO−

3
 ) and ammonia 

( NH
3
 ) fertilisers [39, 40]. So, fertiliser inputs need to be 

optimised to increase crop yield, farmer income and envi-
ronmental quality [9, 36]. Fertilisers are composed of many 
elements, such as nitrogen (N), phosphorus (P), potassium 
(K), sulfur trioxide ( SO

3
 ) and magnesium oxide (MgO). An 

excess element can affect uptake other elements and cause 
both redundancy and deficiency of fertilisers. So the recom-
mended quantity of very element in fertilisers also needs to 
be determined.

Smart farming applies statistical algorithms and data min-
ing methods on historical data to discover new agricultural 
knowledge or build expert systems for improving farm pro-
ductivity or being used tools for farmers [1, 24]. The global 
agricultural analytic market will increase more than 110% 
from $580 million in 2018 to $1.236 million in 2023 [22]. 
For example, the Bayer company collects data from farms, 
processes and analyses it, and then sells it back to the pro-
ducers [28]. In this paper, firstly, we analyse many separated 
agricultural datasets by describing their Entity Relationship 
Diagrams (ERDs) to determine useful attributes, entities and 
objects. Secondly, a constellation schema, called Electronic 
Agricultural Record (EAR), is modeled and built. The EAR 
is adjustable to combine any agricultural data in making a 
united representation and used to build an agricultural data 
warehouse (DW). Thirdly, the information of the separated 
datasets is standardized, extracted, transferred and loaded 
into the EAR schema to make our EAR dataset which is 
an agricultural Big Data dataset. Fourthly, to store, process 
and manage the EAR dataset, we propose and implement 
an agricultural Big Data system on top of Hive and Elas-
ticsearch. Finally, the proposed analytic methods use data 
about crops, their yields and their used fertiliser elements 
which are extracted from the unified EAR dataset. The meth-
ods are applied to discover the suitable quantities of fertiliser 
components for adapting criteria, such as quality advancing, 

yield increasing, profit improvement and environment pro-
tection. For example, we extract the suitable quantities of 
fertilisers N–P–K being 100–92–123 (kg/ha) for Spring 
Dried Beans and 126–106–112 (kg/ha) for Winter Oats. We 
study the three most popular fertiliser components (i.e. N, P, 
K) to adapt efficiently nutrients for the top ten most popular 
crops in EU (i.e. Spring Barley, Winter Barley, Spring Dried 
Beans, Winter Dried Beans, Spring Linseed, Forage Maize, 
Winter Oats, Winter Rape, Winter Rye, and Winter Wheat).

The rest of this paper is organised as follows: in the 
next section, we reviewed related work on agricultural sys-
tems which propose useful information about fertilisers. In 
Sect. 3, the original datasets and their ERDs are presented 
and analysed. Specially, we build and propose an electronic 
agricultural record for agricultural data integration. In 
Sect. 4, the agricultural Big Data system is designed and 
implemented through the data warehouse. Section 5 presents 
a statistical methodology about fertiliser based on agricul-
tural Big Data system as a case study. It proposes suitable 
quantities of fertiliser components for ten crops cross a wide 
range of environmental and crop management conditions. 
Finally, we present conclusion and future work in Sect. 6.

2  Related work

Many research papers used machine learning or analysis 
methods for fertiliser optimisation in digital agriculture. 
For instance, Barrett et al. [4] applied regression analysis 
algorithm to determine a suitable quantity fertilise N for cab-
bage. Cambouris [5] investigated the effect of soil texture 
and fertiliser N on corn yield. In [9], the back propagation 
neural network model was proposed to determine the rec-
ommended quantity of fertiliser N for maize. In [34], the 
authors experimented and analysed on a trial dataset about 
wheat to evaluate a long-term N management strategy which 
maintains a base level of fertiliser N rather than attempting 

Fig. 1  Data sources in Belgium, Poland, Romania and Ukraine



251Int. j. inf. tecnol. (January 2023) 15(1):249–265 

1 3

to match N inputs to seasonal conditions. They concluded 
that a long-term N management strategy was potential to 
increase wheat yields, improve soil reserves and decrease 
environmental damage. In [43], a randomized complete 
block design on foxtail millet was conducted with four dif-
ferent rates of fertilisers N and P: no fertiliser, low, medium 
and high. The authors discovered fertiliser application at a 
medium rate (i.e. 180 kg/ha for N and 120 kg/ha for P) which 
would be suitable to improve yield and water use efficiency 
of foxtail millet in the semiarid regions. However, these 
papers only used and analysed trial data which is not real 
data collected from different farms. Especially, they did not 
adapt to Big Data in agriculture, where diverse external and 
internal factors have been combined, analysed and exploited 
together to give exact information or decisions to farmers or 
companies. Besides, they just researched fertiliser N, ferti-
liser P and one crop.

Moreover, some other papers analysed their datasets to 
support some decisions about fertilisers. For instance, Kaizzi 
et al. [19] developed a fertiliser optimization tool by the 
linear programming algorithm. The tool was used by small-
holders to select fertiliser and the amount of each nutrient 
for their crops. In [37], the authors implemented an E-Water 
system used a multi-objective genetic algorithm. The sys-
tem provided efficient management functions to find suitable 
amount of fertiliser and water. In [17], a system was built for 
developing optimum crop plan which exploited data regard-
ing cropping pattern, rainfall, water status, land use etc. In 
[31], the authors presented a soil nitrate sensor technology 

based on spectroscopy analysis to manage and improve the 
used fertiliser N. In [16], the authors implemented the smart 
weather prediction using the internet of things and statistical 
models. The algorithm used data about temperature, rain-
fall, humidity, soil moisture and air pressure. However, the 
papers did not adapt Big Data exploitation and integration. 
Their datasets just include a few of agricultural informa-
tion, similar to trial datasets of the papers mentioned in the 
above paragraph. Besides, they used available agricultural 
knowledge to decide on fertilisers; they did not propose rec-
ommended fertiliser quantities from agricultural Big Data.

Hence, to understand the importance of the data scale for 
agricultural analysis, the authors in [2, 18] and [33] analysed 
pretty large datasets. The paper [18] contains information 
about 10 crops and 5 cultivation strategies. The information 
was collected from crawling webs and interviewing selected 
farmers by face-to-face. The authors proposed suitable plant-
ing strategies for some crops to get high economic benefit. 
In [2], the authors presented some steps to build a data ware-
house in agriculture based on Microsoft SQL to facilitate 
accessibility and explorations of open datasets. While, the 
paper [33] monitored N performance for different 7 crops 
across different arable farms and over time in Dutch. How-
ever, the papers did not present how to organise agricultural 
Big Data to deal with large scale and high performance in 
data analysis. In addition, their datasets are not considered 
as real Big Data.

Finally, to fix restrictions of all the above papers, a data 
warehouse constellation schema is used in [24, 26, 27] to 

Fig. 2  Data sources in Ireland, 
United Kingdom and Brazil
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combine diverse datasets and comply with standards of agri-
culture Big Data. Nevertheless, there is not much important 
information about farming operations in the schema of [26], 
e.g. testing of crops, soils and nutrients, and management 
actions of treatments, spray, fertilisers, nutrients and inspec-
tion. The papers [26, 27] are about data warehouse design 
and implementation. While, in [24], the authors did not build 
an agricultural data warehouse. They just proposed informa-
tion about insecticides, herbicides, soil properties and soil 
pH. Specially, the three papers did not present how to design 
a suitable schema, and use data mining algorithms to extract 
recommended quantities of fertilisers.

3  Electronic agricultural record and data 
integration

3.1  Original datasets

We study and assess 29 datasets supplied by a leading agron-
omy company from 2014 to 2018. In that, each dataset is 

about 1.4 gigabytes in textual format and has 18 tables of 
records on average. The agronomy company collected these 
datasets from its technology centres, operational systems, 
iFarms, field trials and research results [29]. The company 
has real agricultural data in 103 distribution centres, 70 dem-
onstration farms, 12 million hectares of direct farm customer 
footprints, 34 input formulation and processing facilities, 
45, 000 trial units and 800 sale forces at 7 countries being 
Belgium, Poland, Romania, Ukraine, Ireland United King-
dom and Brazil (Figs. 1 and 2)

Each dataset just contains a few of farming information. 
For example, the information in the crop dataset is almost 
about crops, such as crop name, season, crop condition, esti-
mated yield, diameter, height and crop coverage percent and 
BBCH growth stage index. Besides, in the treatment data-
set, there is treatment information for crop diseases, such 
as treatment name, form type, lot code, rate, applied date, 
description and comment.

Fig. 3  A part of the ERD of 
Dataset 1
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3.2  Data standardization and analysis

Data standardization and integration are important tasks and 
need to be built in large scientific projects by the big enter-
prises which have various data sources. The above separate 
datasets will be cleaned, standardized and combined into a 
united dataset to analyse information and extract agricultural 
significant knowledge. To do this, studying and understand-
ing the datasets are necessary and useful for not only design-
ing a suitable unified schema, but also extracting, loading 
and transferring information from the separate datasets into 
a unified dataset. So, the ERDs of the complex original data-
sets need to be designed and explored.

A part of ERD of Dataset 1 is presented in Fig. 3 which 
has seven main entities being Activity, Cropping, 
Field, Inspection, Plan, Site and Treatment. 
The dataset contains information about farming operations 
on fields with detail plans, such as inspections, sprays and 
treatments for each crop. While, a part of ERD of Dataset 
2 is presented in Fig. 4 which has six main entities being 
Cropping, NutrientApplication, Observation, 
Seeding, SoilTesting and Zone. It focuses on infor-
mation about crops, soils and nutrients on zones. There are 
relationships between Field, Site in Dataset 1 and Zone 
in Dataset 2. Because, in agriculture, a site has some fields 
and a field has a few of zones. For example, Fig. 5 presents 
a field divided into 5 zones.

In Fig. 6, a part of ERD of Dataset 3 is presented. It has 
seven main entities being Company, Cropping, Diar-
yNote, Fertiliser, Operation, Order and Soil-
Sampling. Among them, the Company and Cropping 
entities have the most relationships, i.e., 5 for every entity. It 
contains mainly information about agricultural companies/
farmers and their operations on farms such as cropping, fer-
tilisers, soils and orders. Finally, Fig. 7 shows a part of ERD 
of Dataset 4. It has six main entities being Crop, Crop-
State, Field, Pest, SoilAirStation and Treat-
ment. The dataset contains information about pests on fields 

Fig. 4  A part of the ERD of 
Dataset 2

Fig. 5  Examples about a field divided into zones
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and how to treatment for crops. Besides, it also has informa-
tion about soils and air temperatures.

In the original datasets, there is a lot of overlapped infor-
mation which needs to be integrated carefully. For example, 
all four datasets contain information about crops through 
entities Cropping, Crop and CropState. While, data-
sets 1 & 4 contain information about fields which need to 
connect to information about sites and zones in datasets 1 
& 2. Treatment information for crops is contained in data-
sets 1 & 4. Further, there are some overlapped information 
between the activity table in Dataset 1 and the operation 
table in Dataset 3. So, an agricultural constellation schema 
is designed and proposed to integrate information from our 
29 separate datasets as below.

3.3  Electronic agricultural record

Our original datasets are collected from different sources 
and almost raw and semi-processed data. Specifically, the 
data is very complex, diverse, large, unstructured, conflict-
ing and non-standardised. So, data in agriculture has all 
the attributes and criteria of Big Data [25]: (1) Volume: 
The quantity of agricultural data is fast increasing and is 
explosively made by external and internal sources, such as 
sensors, farming company operations, retail agronomists, 
satellites, intelligent equipment, government agencies, 

research centres and farmers. The external sources can help 
to supply information about local market accessing, pest and 
disease outbreak tracking, treatment and food price; (2) Vari-
ety: The data in agriculture has various formats and types 
which are structured data, text, imagery, multimedia, video, 
equations, metrics and models; (3) Velocity: The data in 
agriculture is being generated, collected and stored at very 
high rates. Because the sensing and mobile devices become 
cheaper and more efficient; (4) Veracity: the characteristics 
of agricultural data are inaccuracy, ambiguous, uncertain 
and inconsistent. Because the data is collected from various 
systems, sensors, operations and manual processes. Hence, 
agronomic Big Data harmonisation and integration are very 
difficult and challenge missions.

We need to propose and implement a suitable schema for 
integrating various separate datasets. Specially, this schema 
must adapt the criteria of data warehouse and the analysis 
on agricultural Big Data. So, firstly, in three kinds of DW 
schema models (i.e. star, snowflake and constellation), we 
select constellation schema for our agricultural enterprise 
DW which needs many fact tables and their dimension 
tables. Secondly, the ideas of agronomists and the ERDs 
of original agricultural datasets are reviewed and selected 
carefully to choose suitable attributes, entities and subjects 
for the schema.

Fig. 6  A part of the ERD of 
Dataset 3
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The proposed EAR schema (Electronic Agricultural 
Record) is presented in Fig. 8 which can handle high per-
formance and high scalable. The EAR contains 5 fact tables 
being FieldFact, Management Action, Order, 
Sale and Testing. Among them, the FieldFact fact 
table describes data about fields, soils, fertilisers, nutrients, 
treatments, weather and pests. The Management Action 
fact table presents management operations on nutrients, fer-
tilisers, inspection, treatments and spray. While, the Order 
and Sale fact tables include information about business 
operations. Finally, the Testing fact table includes testing 
operations on crops, soils and nutrients on zones.

In EAR, there also are 22 dimension tables, such as 
CropState, Fertiliser, Field, Inspection, 
Soil, Treatment, Weather Station, etc. Every 

dimension table includes information in detail about 
instances which are related framing operations. Some rep-
resentative attributes of the dimension tables are described 
in Table 1. To exploit information, the HQL (Hive Query 
Language) or SQL (Structured Query Language) queries 
need to combine fact tables and dimension tables.

For example: Listing the information of fertiliser and 
treatment for each crop. The crops were harvested in spring 
or summer 2018, attached by ’black twitch’ or whitefly pests, 
and have yield > 8 tons/ha. Besides, the soil in field has pH 
> 5.5 , potassium >= 100 mg/l and magnesium (Mg) <= 80 
mg/l. To answer this requirement, the HQL/SQL query 
needs to use the FieldFact fact table and the 6 dimension 
tables, being Crop, Fertiliser, OperationTime, 
Pest, Soil and Treatment, as folows.

Fig. 7  A part of the ERD of 
Dataset 4
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Select CR.CropName, FE.FertiliserName, FF.FertiliserQuantity,
FE.ComponentNames, FE.ComponentPercentages,
TR.TreatmentName, TR.TreatmentComment, TR.Rate

From Crop CR, Fertiliser FE, FieldFact FF, OperationTime OT,
Pest PE, Soil SO, Treatment TR

Where FF.CropID = CR.CropID and
FF.FertiliserID = FE.FertiliserID and
FF.OperationTimeID = OT.OperationTimeID and
FF.PestID = PE.PestID and
FF.SoildID = SO.SoilID and
FF.TreatmentID = TR.TreatmentID and
Year(OT.StartDate) = ’2018’ and
(OT.Season = ’Spring’ or OT.Season = ’Summer’) and
(PE.CommonName = ’Black twitch’ or PE.CommonName = ’Whitefly’) and
FF.Yield > 8 and SO.PH > 5.5 and
SO.Potassium >= 100 and SO.Magnesium <= 80

Fig. 8  A part of our EAR for 
smart farming
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4  Big data system implementation and design

4.1  Hive and elasticsearch

A data warehouse is a unified repository system for vari-
ous heterogeneous data sources that a big company can col-
lect from its business systems, research results and external 
inputs. The DW should adapt all the criteria of agricultural 
Big Data being volume, variety, velocity and veracity. 
Redshift1, Cassandra2, MongoDB3, and Hive4 are popular 
databases supporting efficiently the DW. Hence, we analyse 
them on data management, DW and technical features, and 
see Hive as be the best suited for our data problem. Hive 
is a data warehouse system built on Hadoop Distributed 
File System (HDFS)5 for processing, writing and storing 
large datasets and running distributed applications [3, 20]. 
Hive supports many main features: (1) Online analytical 
processing (OLAP); (2) Storage capacity; (3) Data extract 

- transform - load (ETL); (4) Governance and data lifecycle 
management (via Hadoop); (5) Data science; (6) Security 
and monitoring; (7) Workload management; (8) Hive query 
language, similar to SQL; and (9) Replication-recovery.

However, Hive was not built for: (1) Real-time queries; 
(2) Data variety adaptation; (3) Online transaction pro-
cessing (OLTP); (4) Iterative execution; and (5) Row-level 
update. So, it needs to be combined with Elasticsearch to 
overcome its disadvantages.

Elasticsearch [35] is an open-source, distributed search 
engine server built on top of Apache Lucene [14]. So, it is 
high scalable and high performance. Besides, Elasticsearch 
can support agricultural information and documents, such as 
JSON, text, images, figures, geo-spatial, multi-media. It uses 
the JSON over HTTP API and gets back a JSON reply for 
indexing and searching data. It is built on the Java program-
ming language and hence it can run on different platforms. 
Finally, Elasticsearch supports functions to visualise, ana-
lyse and search easily.

4.2  System architecture

Our system architecture for agricultural Big Data is illus-
trated in Fig.  9 which contains three modules, namely 

Table 1  The 22 dimension tables and their representative attributes

No. Tables Representative attributes

1 Business Name, Phone, Mobile, Address, Email, ContactPerson
2 Crop CropName, EstimatedYield, BbchScale, HarvestEquipment, SeasonStart, SeasonEnd
3 Crop State Height, Diameter, CoveragePercent, StageScale, MinStage, MaxStage
4 Farmer Name, Phone, Mobile, Address, Email
5 Fertiliser FertiliserName, ComponentNames, ComponentPrecentages, Status, Description, CompanyName, ManufactureDate
6 Field Name, Reference, Block, Latitude, Longitude, Area, GeoPoints, Notes
7 Inspection Date, ProblemType, Severity, AreaValue, Order, GrowthStage, Notes
8 Nutrient NutrientName, Quantity, Unit, RecordedDate
9 Operation Time Year, Season, StartDate, EndDate
10 Pest Name, CommonName, Description, PestType, Coverage, Density, MinStage, MaxStage
11 Plan PlanName, RegisNo, ProductName, ProductRate, Date, WaterVolume
12 Product Name, Company, DateOfPurchase, GroupName
13 Spray SprayName, ProductRate, ConfirmedHumidity, ConfirmedTemperature, ConfirmedWindSpeed, WaterVolume, 

SprayArea
14 Site Name, Area, Address, GPS, OwnedBy
15 Soil Sand, Silt, Clay, Nitrogen, Potassium, Phosphorus, Magnesium, Calcium, Unit, PH, TestDate, SoilType, SoilTexture, 

OrganicMatter, SupSoil, TopSoil
16 Supplier Name, Phone, Mobile, Address, ContactName
17 Task Description, Status, AppCode, DateStart, DateEnd, TaskInterval, Note
18 TransTime OrderDate, Note, DeliveryDate, ReceivedDate
19 Treatment Name, Description, Type, Rate, ProductCode, ApplicationCode, LevelNo, ApplicationDescription, Comment
20 Weather Reading Date, Time, SPLite, Rainfall, AirTemperature, SoilTemperature, Humidity, LeafWetness, WindDirection, WindSpeed
21 Weather Station Name, Region, Latitude, Longitude
22 Zone Name, ZoneArea, ZoneType, GeometricPoints, Latitude, Longitude, SatelliteImage, YieldMap

1 http:// aws. amazon. com/ redsh ift
2 http:// cassa ndra. apache. org
3 http:// www. mongo db. com
4 http:// hive. apache. org
5 http:// hadoop. apache. org

http://aws.amazon.com/redshift
http://cassandra.apache.org
http://www.mongodb.com
http://hive.apache.org
http://hadoop.apache.org
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Data Integration, Management and Storage, 
and Information Extraction. The Data Data 
Integration Module has components being Raw Data 
(External and Operational Databases), ERDs and Electronic 
Agricultural Record (see more in Sect. 3). The Manage-
ment and Storage Module is DW Storage including 
the Elasticsearch component and the Hive component (see 
more in 4.1 and below). The Information Extrac-
tion Module presents Web Application and Dashboard 
products which apply data mining algorithms to extract sta-
tistical information about fertiliser components correspond-
ing to each crop (see more in Sect. 5).

In DW Storage, Elasticsearch and Hive receive data in 
Operational Databases and External Data from Raw Data 
module through the ETL tool. Products module also sends 
information to Elasticsearch and Hive. In that, Elasticsearch 
receives real-time data in dashboard and web application. 
Otherwise, Elasticsearch sends analysed answers which need 
to be retrieved in real-time to Products module. With que-
ries having multiplex calculation, the Hive component will 
receive from and process for the Products module directly. 
Hive also stores the online data from Products module 
through Elasticsearch and sends processed data to store in 
Elasticsearch.

4.3  Our primary storage performance evaluation

The reading performance of our primary DW storage (i.e. 
Hive) needs to be evaluated because a DW is used primar-
ily for reporting and analysing data, not for writing data. In 
addition, the secondary DW storage (i.e. Elasticsearch) is 
near real-time in indexing and searching [11]. So it does not 
need to be evaluated the performance. We use Hadoop 2.6.5, 
Hive 2.3.3, JDK 1.8.0_171 and MySQL 5.7.22 for evalua-
tion. The software are installed on Ubuntu Bash 16.04.2 on 
Windows 10 and a Dell laptop having 16 GB memory and 
Intel Core i7 CPU (2.40 GHz).

Our database in Hive is copied to MySQL to evaluate 
and compare run-time performance. The popular HQL/
SQL commands, namely Where, Group by, Having, Right 
(left) Join, Order by and Union, are used to create 10 query 
groups for testing. Each query group uses a few of com-
mands and includes five queries (see Table 2). In addition, 
the queries also applies operations, e.g. Sum, Count, Or, 
And, Like, Min and ≤ , to the commands to express com-
plex queries. Each query is evaluated the runtime in three 
times and taken its average runtime.

The mean executive times of the 10 query groups on 
MySQL and our primary storage (Hive) are shown in 

Fig. 9  Agricultural data ware-
house
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Fig. 10. The average runtimes of a query on the primary 
storage and MySQL are 216 seconds and 688 seconds, 

respectively. So, MySQL is lower 3.2 times than the pri-
mary storage. If our DW is deployed on a distributed 

Table 2  The query groups with 
combined commands

Group Commands Group Commands

G
1

Where G
6

Where, Right (left) Join and Order by
G

2
Where and Group by G

7
Where, Group by and Having

G
3

Where and Right (left) Join G
8

Where, Group by, Having and Order by
G

4
Where and Union G

9
Where, Group by, Having, Right (left) Join and Order by

G
5

Where and Order by G
10

Where, Group by, Having, Union and Order by

Fig. 10  Mean executive times 
of MySQL and Hive in every 
query group

Table 3  Mean yield (ton/ha) in 
each yield group of every crop 
type

Crop Name Gr. Mean Yield % Crop Name Gr. Mean Yield %

 Barley S. 1 8.16 +91.5  Maize F. 1 47.00 +99.0
2 7.32 +71.8 2 44.67 +89.1
3 6.52 +53.1 3 40.27 +70.5
4 5.81 +36.4 4 32.63 +38.1
5 4.26 0 5 23.62 0

 Barley W. 1 10.92 +111.6  Oats W. 1 8.06 +42.9
2 8.29 +60.7 2 7.50 +33.0
3 7.30 +41.5 3 7.00 +24.1
4 6.40 +24.0 4 6.93 +22.9
5 5.16 0 5 5.64 0

 Beans S.D. 1 5.21 +382.4  Rape W. 1 4.59 +94.5
2 4.32 +300.0 2 4.00 +69.5
3 3.79 +250.9 3 3.59 +52.1
4 1.92 +77.8 4 3.15 +33.5
5 1.08 0 5 2.36 0

 Beans W.D. 1 6.15 +80.9  Rye W. 1 39.90 +124.5
2 5.51 +62.1 2 32.39 +82.3
3 4.97 +46.2 3 28.23 +58.9
4 4.52 +32.9 4 23.19 +30.5
5 3.40 0 5 17.77 0

 Linseed S. 1 2.28 +430.2  Wheat W. 1 11.74 +71.9
2 1.57 +265.1 2 10.22 +49.6
3 1.30 +202.3 3 9.32 +36.5
4 0.84 +95.3 4 8.55 +25.2
5 0.43 0 5 6.83 0
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system or a cloud storage, we believe that its runtime per-
formance will be faster than MySQL many times.

5  Case study: fertiliser knowledge extraction

5.1  Classification based on yield

From the EAR dataset, we analyse information related to 
fertiliser and crop yield in every field. This includes crop 
name, yield, field identification, year, season, the quantities 
of total fertiliser and main elements of fertiliser, being N, 
P and K. We classify each EAR record into one of the five 
yield groups of every crop type that is based on crop type 
and yield of each record. Each yield group includes 20% 
of the amount of records of each crop type. Among them, 
based on yield, group 1 is the highest 20% group, group 3 
is medium 20% group and group 5 is the lowest 20% group. 
After that, in each group, the mean values of yield, total fer-
tiliser, NPK group, and fertilisers N, P, and K are calculated.

Table 3 describes the top ten most popular crops in EU, 
which are Barley S. (Spring Barley), Barley W. (Winter Bar-
ley), Beans S.D. (Spring Dried Beans), Beans W.D. (Winter 

Dried Beans), Linseed S. (Spring Linseed), Maize F. (Forage 
Maize), Oats W. (Winter Oats), Rape W. (Winter Rape), Rye 
W. (Winter Rye), and Wheat W. (Winter Wheat). The mean 
yield of each yield group of each crop type is shown in this 
table. In addition, in each crop yield, the different percent-
ages between yield group 5 (the lowest yield group) and 
other yield groups are also presented clearly. Specifically, 
in Barley S., group 5 has mean yield of 4.26 ton/ha. While, 
group 1 and 2 have mean yield of 8.16 ton/ha and 7.32 ton/
ha, and are higher than group 5 about 91.5% and 71.8% , 
respectively. Besides, group 3 and 4 have mean yield of 6.52 
ton/ha and 5.81 ton/ha, and are higher than group 5 about 
53.1% and 36.4% , respectively. Specially, in Linseed S. and 
Beans S.D., group 1 is higher than group 5 about 430.2% 
and 382.4%.

Fertilisers have been used since the start of agriculture 
to supply one or more essential nutrients to the growth of 
crops. Today, farmers often use fertilisers being either mined 
or manufactured. However, fertilisers are very expensive and 
can harm the environment. Besides, excess fertilisers will 
badly impact crop quality and yield. So, the right fertiliser 
quantities for every crop should be used. The fertilisers are 
composed of many major, secondary and trace elements. 

Table 4  The mean quantities 
of general fertiliser and NPK 
group (kg/ha)

Crop Name Gr. Total NPK NPK in Crop Name Gr. Total NPK NPK in
(kg/ha) (kg/ha) total (%) (kg/ha) (kg/ha) total (%)

 Barley S. 1 882 415 47  Maize F. 1 812 460 57
2 712 422 59 2 1,172 574 49
3 881 368 42 3 789 257 33
4 816 342 42 4 1,698 723 43
5 1069 376 35 5 485 186 38

 Barley W. 1 1240 486 39  Oats W. 1 724 344 48
2 805 423 53 2 397 289 73
3 1316 539 41 3 461 297 64
4 498 274 55 4 616 367 60
5 652 255 39 5 291 193 66

 Beans S.D. 1 436 315 72  Rape W. 1 920 330 36
2 391 294 75 2 730 374 51
3 391 270 69 3 998 351 35
4 291 215 74 4 1,190 470 40
5 268 212 79 5 942 343 36

 Beans W.D. 1 300 224 75  Rye W. 1 1,036 421 41
2 304 209 69 2 1,129 495 44
3 257 128 50 3 1,403 501 36
4 657 201 31 4 1,083 479 44
5 306 205 67 5 799 478 60

 Linseed S. 1 580 230 40  Wheat W. 1 1,403 578 41
2 403 249 62 2 1,424 580 41
3 377 223 59 3 1,179 516 44
4 315 217 69 4 1,009 491 49
5 367 164 45 5 1,134 532 47
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Among them, the trace elements are ions of Chlorine (Cl), 
Iron (Fe), Manganese (Mn), Zinc (Zn) and Copper (Cu). The 
secondary elements are Calcium (Ca), Magnesium (Mg) and 
Sulfur (S). While, the primary elements, being Nitrogen (N), 
Phosphorus (P) and Potassium (K), are used in large quanti-
ties by plants and play a key role in plant nutrition [32]. So, 

the “Big 3” nutrients will be detected and analysed more 
careful.

5.2  Crop and NPK group correlation

With classifying through the five yield groups of ten crops, 
we extract information about the quantities of fertiliser in 
Table 4 and Fig. 11. They show the mean quantities of total 
fertiliser, NPK group and other group of each crop in each 

Fig. 11  Mean fertiliser quanti-
ties of the NPK groups and the 
other groups

Fig. 12  Mean nitrogen fertiliser quantities Fig. 13  Mean phosphorus fertiliser quantities



262 Int. j. inf. tecnol. (January 2023) 15(1):249–265

1 3

Fig. 14  Mean potassium fertiliser quantities

yield group. In addition, they also present the percentage of 
NPK group in total fertiliser.

From Table 4 and Fig. 11, there are not significant differ-
ences among yield groups in Barley W., Beans S.D., Rape 
W. and Rye W. While, in the remain 6 crops being Barley S., 
Beans W.D., Linseed S., Maize F., Oats W. and Wheat W., 
the percentages of NPK groups between high-yield groups 
and low-yield groups are clearly separate. Hence, we rec-
ommend the suitable percentages of NPK groups are about 
47% for Barley S., 75% for Bean W.D., 40% for Linseed S., 
57% for Maize F., 48% for Oats W. and 41% for Wheat W. 
Besides, the suitable total fertilisers are about 882 kg/ha for 
Barley S., 300 kg/ha for Bean W.D., 580 kg/ha for Linseed 
S., 812 kg/ha for Maize F., 724 kg/ha for Oats W. and 1,403 
kg/ha for Wheat W. Moreover, the ratio of N, P and K in the 
NPK group is also important for developing crops. So we 
continue to analyse these ratios in next section.

5.3  Crop and N–P–K ratio correlation

Nitrogen is very important because it is a major compo-
nent of chlorophyll, amino acids (being the building blocks 
of proteins) and nucleic acids (e.g. DNA). Without nitro-
gen, plants wither and die. Moreover, nitrogen deficiency 
will limit plant growth, make yellow leaves and be easily 
attacked by diseases and insects. On other hand, nitrogen 
redundancy can cause excessive growth of aquatic plants and 
algae which use up dissolved oxygen and clog water intake 
to affect growth of crops. Besides, nitrogen can pervade in 
drinking water, environmental damage, and be harmful to 
human or livestock [6]. So, in each crop, we need to deter-
mine the suitable quantity of nitrogen fertiliser to make the 
highest yield. Figure 12 presents mean quantities of fertiliser 
N used in yield groups of crops that are extracted from the 
data warehouse.

Phosphorus is a vital component of DNA and RNA. Espe-
cially, it captures and converts the sun’s energy into use-
ful plant compounds. P deficiency makes a stunting of the 
plant in the early growth, and affects both seed development 
and normal crop maturity in the late growth [30]. While, 
too much P can be toxic. Because, waste P can easily flow 
into water and cause algal blooms and excessive vegetative 
growth. Besides, it also impedes the uptake of Fe and Zn. 
The mean quantities of fertiliser P in yield groups for crops 
are presented in Fig. 13.

Potassium is essential in photosynthesis, enzyme activa-
tion and protein increment to sustain growth and reproduc-
tion of plants. K deficient plants are less resistant to drought, 
excess water, disease, insect attack, frost and cold [21]. Spe-
cially, K deficiency makes yellow firing leaf and poor root 
development. While, excess K can affect uptake other nutri-
ents, such as N and Mg. We extract the mean quantities of 
fertiliser K in yield groups of crops from the data warehouse 
and present in Fig. 14.

The N–P–K ratio in fertiliser is important for develop-
ing crops. So we use ternary graphs to analyse correlation 
between the ratio of N, P and K and crop yield. In Fig. 15a, 
c, e, we don’t see the separation among yield groups of Bar-
ley S., Barley W., Lindseed S. and Rye W. However, there 
are significant differences between high-yield groups and 
low-yield groups of Beans S.D., Beans W.D., Maize F., Oats 
W., Rape W. and Wheat W. in Fig. 15b–e. So we can propose 
the suitable ratio of N, P and K in the NPK group for the 
6 crops based on information of their group 1. Combining 
with information extracted in Sect. 5.2 and information in 
Figs. 12, 13, 14 and 15, we propose the suitable ratio of N, 
P and K in the NPK group, and the suitable percentage of 
NPK group in fertiliser total for crops in Table 5. The suit-
able quantities of N, P and K for Beans S.D., Beans W.D., 
Maize F., Oats W., Rape W. and Wheat W. are extracted 
and recommended. While, we can only propose the suitable 
quantity of group NPK for Barley S. Besides, we do not have 
enough information to recommend the fertiliser quantities 
for Barley W., Linseed S. and Rye W.

6  Conclusion and future work

In this paper, we analysed and integrated many original agri-
cultural datasets to determine useful dimensional and fact 
tables, and their attributes and relationships for proposing 
an EAR. Based on the EAR, also being a fact constellation 
schema, various separate datasets are extracted, transferred 
and loaded into a unified crop dataset. The EAR is adjustable 
and scalable to new datasets and variety standards of Big 
Data analytics in agriculture. Besides, we also designed and 
implemented an agricultural DW based on Hive and Elastic-
search which adapted criteria about DW and Big Data, such 
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as security, high performance, high storage, variety data 
and data science support. Specially, from the unified EAR 
dataset, we presented a data analysis method based on crop 
yield classification with fertiliser components. The studied 
results showed that in some crops, the more fertilisers used, 
the more yield increased. However, in many other crops, 
they are suitable to medium fertiliser quantities and their 
yield decreased as using more fertilisers. We proposed the 
suitable quantities of the NPK group, N, P and K in various 

season and farms on the top ten famous crops in continental 
Europe, Ireland, United Kingdom and Brazil.

With the scope of the paper, we exploited information 
about fertiliser as a case study. However, the crop yield 
improvement is affected not only the fertiliser components, 
but also available soil properties, soil texture and nutrient 
translocation. So, in the future, we will apply our deep learn-
ing [10] and machine learning [23] algorithms to discovery 
relation of fertiliser components, soil properties, adjuvants 
and water requirements on increasing crop yield. Besides, 

Fig. 15  N–P–K ratio

(a)

(b) (c)

(d) (e)
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time series and the weather factors, such as temperature of 
air and soil, sunshine, rain fall, humidity and wind speech, 
are powerfully affect to crop yield and also will be studied.
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