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Abstract

Deep Learning models based on convolutional neural networks are known to be

uncalibrated, that is, they are either overconfident or underconfident in their predic-

tions. Safety-critical applications of neural networks, however, require models to be

well-calibrated, and there are various methods in the literature to increase model per-

formance and calibration. Subnetwork ensembling is based on the over-

parametrization of modern neural networks by fitting several subnetworks into a sin-

gle network to take advantage of ensembling them without additional computational

costs. Data augmentation methods have also been shown to enhance model perfor-

mance in terms of accuracy and calibration. However, ensembling and data augmen-

tation seem orthogonal to each other, and the total effect of combining these two

methods is not well-known; the literature in fact is inconsistent. Through an exten-

sive set of empirical experiments, we show that combining subnetwork ensemble

methods with data augmentation methods does not degrade model calibration.

K E YWORD S

calibration, data augmentation, ensembles

1 | INTRODUCTION

Deep learning models are starting to be used widely in safety-critical tasks such as autonomous driving (Bojarski et al., 2016) and medical applica-

tions. However, to be safely deployed in the real world, these models should output “reliable” predictions, meaning that the distribution of predic-

tions needs to match the empirical distribution of the data. Models which are neither overconfident nor underconfident are called well-calibrated

and it is an important characteristic to safely deploy deep learning models (Guo et al., 2017). Besides, real-world data often has different distribu-

tion than the data models are trained on. This requires models to be both calibrated and resistant to distributional shifts. Both ensembling and

data augmentation techniques have been shown to improve calibration, robustness, and model performance (Havasi et al., 2021;

Lakshminarayanan et al., 2017; Shorten & Khoshgoftaar, 2019). However, we still do not fully understand the effects (positive or negative) of

combining ensembles with data augmentation methods.

Even a simple averaging of the predictions can help reduce individual model misclassifications and other errors (Fort et al., 2019;

Lakshminarayanan et al., 2017). There are different methods for ensembling models which have been shown to be effective in improving accuracy

and robustness while not changing the total number of parameters significantly. Among others, subnetwork ensemble frameworks (subnetwork

ensemble), BatchEnsemble (Wen et al., 2020) and its variants, and MC dropout (Gal & Ghahramani, 2016) are examples of efficient ensembling

methods (Wen et al., 2021). The idea behind training subnetworks comes from sparsity, and the fact that contemporary deep learning models

have millions of parameters: are over-parameterized. The overparametrization of deep learning models lead to the lottery ticket hypothesis
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(Frankle & Carbin, 2019) and introduction of model pruning methods (Li et al., 2017). Instead of pruning a model to get a subnetwork, subnetwork

ensemble models take advantage of available neurons and overparametrization with little structural changes turning a single network into an

ensemble of subnetworks. This method enables the generation of ensembles while increasing the total number of parameters by less than 1%.

However, training such a model and ensuring independent subnetworks while sharing the main network's parameters with no explicit structural

difference is a challenge.

Data augmentation methods encompass a diverse set of methods from basic geometric transformations of images to utilization of GANs

(Shorten & Khoshgoftaar, 2019). Prior augmentation methods include cropping, flipping, and rotating, and so forth. Recent augmentation methods

such as Cutmix (Yun et al., 2019), MixUp (H. Zhang et al., 2018), and AugMix (Hendrycks et al., 2020) manipulate both the pixels of images and

their labels. These augmentations are called Mixed Sample Data Augmentations, and they try to emulate the distribution mismatch between the

training and test data by increasing diversity among training images. Increasing the quantity of image datasets with synthetically created images

helps to reduce neural networks' errors stemming from overconfidence. Consequently, models using data augmentation are less prone to over-

fitting and have better generalization capability (Hendrycks et al., 2020). Almost all state-of-art vision models use one or a few data augmentation

approaches.

In theory, data augmentation is orthogonal to ensembling (Havasi et al., 2021; Wen et al., 2021). Both ensembling and data augmentation

increase accuracy, generalizability, and calibration. However, one cannot directly combine ensembling and data augmentation without further

analysis. The findings analysing the interaction between ensembling and data augmentation are mixed in the literature. Wen et al. (2021) shows

how combining three ensembling methods (BatchEnsemble, MC dropout, and Deep Ensembles) with two data augmentation methods (Mixup and

Augmix) without structural change on the said methods can harm the calibration of the model. Rahaman and Thiery (2021) also show a similar

effect while Deep Ensembles used with MixUp augmentation. However, Rame et al. (2021) states that their findings do not confirm the pathology

between ensembling and data augmentation, but that combining the two methods increases calibration.

In this paper, we try to clarify this conflict in the literature combining MIMO (Havasi et al., 2021), MixMo (Rame et al., 2021), and Mas-

ksembles (Durasov et al., 2021) frameworks (subnetwork ensemble) with data augmentation, and illustrate that this combination does not harm

model calibration while increasing accuracy. Moreover, combining ensembles with data augmentation also helps to achieve better uncertainty

estimates. We confirmed this behaviour across three different subnetwork ensemble frameworks and two data augmentation methods on three

datasets. We also test all models on corrupted Cifar-10 and Cifar-100 datasets (Krizhevsky (2009)) and find consistent results in the presence of

corrupted data.

This paper is structured as follows: Section 2 provides some background on the topic, discusses recent approaches in subnetwork ensembles

and related augmentation methodologies. Section 3 discusses our experimental approach and gives a brief commentary on key decisions in the

experimental workflow. Section 4 presents the main findings and discusses the implications of our findings. Finally, Section 5 concludes the paper

and discusses future work as well as how to interpret the results of this paper in future studies.

2 | RELATED WORK

2.1 | Ensemble learning

Ensembling is a technique that takes advantage of diversity among different models to improve their combined performance (Dietterich, 2000).

Even simple ensembling (averaging predictions of randomly initialized neural networks) outperforms more complicated models. Lakshminarayanan

et al. (2017) show that deep ensembles trained independently improve both accuracy and calibration. Surprisingly, deep ensembles frequently

outperform more sophisticated models including Bayesian Neural Networks. Nevertheless, re-training a model with millions of parameters with

random initialization can be costly in terms of compute power and time. So, several recent works have attempted to devise efficient ensembling

methods with less resources (Fort et al., 2019; Lobacheva et al., 2020; Rahaman & Thiery, 2021). Recently, several ensembling techniques have

been proposed in the literature such as BatchEnsemble, MC dropout, and multi-input multi-output frameworks. In this paper, we focus on sub-

network ensemble models.

2.2 | Neural network pruning and subnetwork ensembles

Subnetwork ensemble frameworks are based on the idea of sparsity in neural networks and the fact that contemporary neural network models

are overparametrized. One of the drawbacks of over-parametrization is the increased cost of additional memory and computation effort during

model training and inference (Hoefler et al., 2021). This enables distilling and pruning methods to create a smaller network from the original net-

work (i.e., a “subnetwork”) without sacrificing performance. Subnetwork ensemble models take advantage of these “free” subnetworks in a single

neural network and utilize them as an ensemble of networks to improve model performance. Recently several subnetwork ensemble frameworks

2 of 13 DEMIR ET AL.
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have been proposed in the literature. MIMO, MixMo, and Masksembles frameworks are based on this idea: training subnetworks that indepen-

dently learn the task while utilizing a single model's capacity. The most distinctive feature of subnetwork ensembling is that these models encap-

sulate diverse subnetworks and train all at once simultaneously. This structure allows them to flexibly exploit the base model's capacity stemming

from overparametrization. However, the exact procedure to train models under subnetwork ensemble frameworks and combine the inputs into a

shared representation are still active areas of research.

2.3 | Dropout

Dropout was first proposed as a neural network regularization method without an in-depth theoretical grounding (Srivastava et al., 2014). This

technique “drops out” neurons in a neural network randomly with a pre-specified probability, hence the name. Although being computationally

cheap and intuitively simple, it helps to stabilize training, reduce overfitting and improve generalization performance by removing weights ran-

domly. The original paper proposes that it be used only during training. However, Gal and Ghahramani (2016) associated this method with Bayes-

ian methods and suggested a method they called MC dropout which helps to produce better uncertainty estimates. MC dropout is based on the

idea of using dropout at test time and can be viewed as an approximate Bayesian technique. Later, this technique was improved by other studies

and several different variations introduced (Srivastava et al., 2014; Gal et al., 2017, Kendall & Gal, 2017; Shen et al., 2021, Z. Zhang et al., 2019).

2.4 | Data augmentation

Data augmentation (DA) increases the training data by introducing small perturbations or transformations (Figure 1); allowing models to be trained

on more data. DA helps capture invariant feature transformations and is also used to simulate out-of-distribution data. Therefore, models utilizing

DA tend to have better calibration and accuracy resulting in a large uptake of DA in the literature. DA methods also drive the state-of-the-art

models for vision tasks (He et al., 2016a). In addition to simple data augmentation methods like random right–left flipping, cropping, and resizing,

recent data augmentation methods introduce more complex pixel-wise operations and label manipulations. Cutout (DeVries & Taylor, 2017) uses

random occlusion of part of the images whereas CutMix (Yun et al., 2019) replaces a small rectangle area in an image with a rectangle area of

another image. Rather than focusing on a specific part of the images, MixUp (H. Zhang et al., 2018) mixes pixels of two images element-wise and

combines them. Cubuk et al. (2019) proposes a method based on Reinforcement Learning in which model learns to optimize performance from a

group of augmentations. Augmix utilizes a consistency loss to generate a chain of randomly selected augmentations to produce diversity among

augmented images (Hendrycks et al., 2020).

2.5 | Summary

The effects of ensembling and data augmentations on image classification tasks are well-studied in the literature. However, we observe limited

knowledge and guidance on the total effect when these two seemingly orthogonal methods are combined. Being one of the recent ensembling

strategies, subnetwork ensembles achieve ensembling by fitting diverse subnetworks inside a single base network. Recent data augmentation

methods also use more complicated processes to generate a diverse set of new images. Accuracy is often the foremost metric targeted by studies.

Nevertheless, calibration is also an important metric for model deployment. Hence, in this paper, we seek to provide some clarity on the effects of

combining subnetwork ensembles with data augmentation methods and whether this improves model accuracy without harming model

calibration.

F IGURE 1 Common data augmentation methods (Rame et al., 2021).
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3 | METHODOLOGY

In this paper, we focus on supervised multiclass classification tasks using convolutional neural networks. Our models are based on the ResNet

architecture (He et al., 2016a) which uses shortcut connections. We designed our experiments to test model performance and calibration in vari-

ety of scenarios. A key part of this paper is that we are not trying to compare models against each other, but rather explore the effects of augmen-

tation on calibration. As such, we do not concern ourselves with whether a specific model is better calibrated than another model or whether

there is a distinct advantage (e.g., better accuracy) of using one vs. the other. Instead, we seek to provide guidance on when (and where) augmen-

tation does (or does not) improve model calibration.

3.1 | Experimental design

This paper seeks to understand the impact of combining subnetwork ensemble with data augmentation on calibration. Ensembling and data aug-

mentation are thought to be independent of each other (Havasi et al., 2021; Wen et al., 2021) while both methods are used to enhance model

performance. We try to verify Wen et al. (2021)'s hypothesis on ensembling and data augmentation pathology. To do this, we perform a struc-

tured 3 � 3 � 2 factorial experimental design consisting of three factors; subnetwork ensemble frameworks (3), data augmentation methods (2),

and data sets (3). Although they are not our main focus, we also provide deep ensembles' results acting as a point of comparison. As subnetwork

ensemble frameworks, we utilized Multi-input Multi-output (MIMO), MixMo, and Masksembles.

3.1.1 | MIMO

In MIMO (Figure 2), the network takes M inputs and outputs M outputs (predictions) where M is the number of desired subnetworks in a single

model. MIMO requires only two changes: the input layer takes M images which are simply stacked images and the output layer has M prediction

vectors instead of a single one. In this sense, MIMO uses channel-wise concatenation in pixels for the inputs. These inputs are independently sam-

pled from the training set and require no preprocessing. The base network is trained to predict matching images simultaneously. Each subnetwork

learns to disregard features from other images. This ensures the independence of subnetworks. The loss is calculated according to corresponding

labels. During testing, the same input is repeated M times, and the outputs are averaged to get the final prediction. Clearly, MIMO does not need

the neural network to have large structural changes. In terms of network structure, it is enough to change the first convolutional and last dense

layers.

3.1.2 | MixMo

MixMo (Figure 3) has a similar setting to MIMO but instead of channel-wise concatenation of images in pixels, it first encodes each image and

then employs a mixing block to combine inputs (Rame et al., 2021). Inspired by mixing data augmentation methods, MixMo uses a generalized

multi-input mixing block to combine inputs. Using identity encoding layers and choosing channel-wise concatenation turns the MixMo framework

F IGURE 2 MIMO framework with M¼2. The network receives two input images, stacks them, and outputs a prediction for each image. All

subnetworks share the same base network. At test time, the same input is repeatedM times and predictions are averaged to obtain the final
prediction.

4 of 13 DEMIR ET AL.
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into MIMO. However, the mixing block is not limited to any specific augmentation method; changing the mixing block results in a different frame-

work. Choosing different augmentations in the mixing block results in different MixMo variants. The two variants presented in the original paper

are Cut-MixMo and Linear-MixMo in which CutMix and MixUp (see Figure 1) augmentation methods used to mix input images. Following Rame

et al. (2021), we chose Cut-MixMo and refer to it as MixMo from now on, as it is the more performant variant.

Havasi et al. (2021) introduces input repetition and batch repetition during MIMO training. Input repetition helps subnetworks share the same

features but degrades diversity among subnetworks. Following the MixMo paper (Rame et al., 2021), we do not utilize input repetition. Batch rep-

etition has a regularization effect on the network training. MIMO finds that the batch repetition value b¼4 is optimal, and MixMo also uses

b¼4. Hence following both papers, we also used batch repetition b¼4. One of the core components of subnetwork ensemble frameworks is the

number of subnetworks. Since the original network's capacity is limited, as the number of total subnetworks increases, after an optimal number of

subnetworks, the performance of the network decreases. Both MIMO and MixMo find that the optimal number of subnetworks is between 2 and

4 for the base models and datasets we utilized. Moreover, the number of subnetworks also increases the training time. We choose the number of

subnetworks (M¼3) for all models.

3.1.3 | Masksembles

Masksembles (Figure 4) uses parameter masks to introduce a structured way to drop model parameters. The idea behind Masksembles is similar

to MC dropout. It basically replaces stochastic sampling in MC dropout and uses fixed number of pre-determined random masks. The diversity

F IGURE 3 MixMo framework with M¼2. The network receives two input images, encodes them with convolutional layers, mixes them
according to the mixing operation (CutMix or MixUp) and outputs a prediction for each image. All subnetworks share the same base network. At
test time, the same input is repeated M times and predictions are averaged to obtain the final prediction.

F IGURE 4 A multi-layer perceptron (MLP) example with MaskSembles framework (Durasov et al., 2021). For the above examples number of
masks (N) and number of ones in each mask (M) are fixed. The scale parameter (S) is 1.0, 1.7, and 2.3, from left to right respectively.
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and the total number of subnetworks are hyperparameters of the framework. There are three key parameters for a Masksemble layer: number of

masks (N), number of ones in each mask (M), and scale (S) that controls the amount of overlap given N and M. To match the other subnetwork

ensemble framework performance we utilized N¼4 and S¼5 as suggested by the original paper. Like dropout layers, Masksembles also provides

the flexibility of inserting masking layer into the different parts of the network. Following the original paper (Durasov et al., 2021) and dropout

paper (Gal & Ghahramani, 2016), Masksemble layers are placed before all the convolutional and fully connected layers.

3.1.4 | Optimization

For all models we used Stochastic Gradient Descent (SGD) with identical hyper-parameters as the corresponding original papers. For Deep Ensem-

bles, we used four models to match the number of subnetworks for MIMO and MixMo. For each model's specification, we trained three randomly

initialized models and take the average of metrics. We follow the original papers for learning rate, optimization algorithm, and batch size.

3.1.5 | Base model

Setting aside effects on performance, MIMO, MixMo, and Masksembles frameworks can utilize almost all neural network models as base models,

with the ResNet (He et al., 2016a) family being one of the most commonly used. Subnetwork ensemble models need over-parametrization for

efficiently fitting diverse subnetworks (Rame et al., 2021). Wide ResNets (Zagoruyko & Komodakis, 2016) are better than the original ResNets to

help Subnetwork ensembling exploit model capacity for two reasons (Golubeva et al., 2021; Timpl et al., 2021): (1) a Wide ResNet model has more

parameters compared to a ResNet model with the same number of layers, (2) Wide ResNets have more sparsity than a ResNet model with the

same number of parameters. Following the original papers (Durasov et al., 2021; Havasi et al., 2021; Rame et al., 2021), all our models are based

on a Wide ResNet model for a fair comparison in terms of model performances. For Cifar-10 and Cifar-100, the base model is a WideResNet

28-10 (28 layer ResNet with a widening factor of 10, 36.6 million parameters) (Zagoruyko & Komodakis, 2016) and for TinyImageNet the base

model is PreActResNet 18-2 (18 layer ResNet with a widening factor of 2, 44.9 million parameters) (He et al., 2016b).

3.1.6 | Augmentations

To combine with subnetwork ensemble frameworks, we chose two common data augmentation methods: MixUp and CutMix. We go beyond sim-

ple data augmentations like flipping, rotation, pixel padding and use recent data augmentation approaches. Indeed, our data augmentation

methods fall under the Mixed Sample Data Augmentation, which is the notion of manipulating both images and targets, and creating virtual sam-

ples xnew,ynewð Þ given two pairs of input images xi,yið Þ and xj,yj
� �

(see: Section 2). Following original MIMO, MIXMO, and Masksembles papers,

data augmentations are performed during training with the probability of 0.5 that a new training sample is generated.

3.1.7 | MixUp

MixUp is a simple data augmentation method which linearly interpolates pixels while manipulating the labels at the same time. The idea behind

MixUp is that linear interpolations of feature vectors should lead to linear interpolations of target labels (H. Zhang et al., 2018). By doing so,

MixUp extends the training distribution. Given two random samples from training data xi,yið Þ and xj,yj
� �

, when MixUp is applied, we get ex,eyð Þ by:

ex¼ λxiþ 1� λð Þxjey¼ λyiþ 1�λð Þyj
, ð1Þ

where λ is sampled from uniform distribution � 0,1½ �.

3.1.8 | CutMix

CutMix creates new images by cutting patches from images and pasting them among training images. CutMix also mixes the true labels propor-

tional to the area of the patches while patching. So a new training sample ex,eyð Þ is generated by combining two training samples xa,yað Þ and

xb,ybð Þ. The combining operations are (Yun et al., 2019):

6 of 13 DEMIR ET AL.
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ex¼M�xaþ 1�Mð Þ�xbey¼ λyaþ 1�λð Þyb
, ð2Þ

whereM denotes a binary mask indicating where to drop out and fill in from two images, 1 is a binary mask filled with ones, and � is element-wise

multiplication. Like MixUp, λ is sampled from the uniform distribution 0,1ð Þ.

3.1.9 | Datasets

We trained all models on the Cifar-10, Cifar-100 (Krizhevsky, 2009), and Tiny ImageNet datasets (Chrabaszcz et al., 2017). Cifar-10 and Cifar-100

datasets both have 60 k images (50 k training and 10 k test images) and 10 and 100 classes respectively. To further push the models we use Tiny

ImageNet. Tiny ImageNet (Chrabaszcz et al., 2017) is a downsampled variant of ImageNet as an alternative to the Cifar datasets with 64 � 64

pixels and with 100 k total images and 200 classes (500 training, 50 validation, and 50 test images per class).

Neural networks encounter a dramatic decrease in their performance when they are tested against out-of-distribution data. After training all

models with the matching framework, in addition to IID test sets, we tested all models on corrupted Cifar-10 and Cifar-100 test sets (Hendrycks &

Dietterich, 2019). Images in this dataset are perturbed with 19 different common corruption types (e.g., added blur, compression artefacts, frost

effects etc.) at five different severity levels. Thus, the Cifar-10 or Cifar-100 test set has 19 � 5 = 95 different unseen variations emulating out-of-

distribution data. However, a model resilient to a specific type of image corruption at the highest severity level of that corruption (severity level 5)

would possibly do so at lower severity levels of the same corruption, that is, severity level 1–4. Likewise, a model with a poor performance against a

specific type of image corruption at a low severity level of that corruption would also perform poorly at higher severity levels of that corruption.

Therefore, we set the corruption level at 3 for all corruption types across all images to isolate the effect and prevent any over/under-statement of

it. A model which improves performance on this should indicate general robustness gain and better calibration (Hendrycks & Dietterich, 2019).

3.2 | Performance metrics: Calibration and uncertainty estimates

Calibration is a notion which measures how a model's predictions match the empirical frequency of the true probabilities (Degroot &

Fienberg, 1983). We focus on supervised multi-class classification problems. We say that a model is well calibrated when a prediction of a class

with confidence p is correct p% of the time. More formally, we say a model f is calibrated if

8p�Δ : P Y¼ y j f Xð Þ¼ pð Þ¼ pm, ð3Þ

where f is a function mapping every input X to a categorical distribution with the label k, f(X) is a vector in the k�1ð Þ-dimensional sim-

plex s.t. Δ¼ p� 0,1½ �k j Pk
y¼1

py ¼1

( )
.

A model can have high accuracy yet be a miss-calibrated one. That is calibration and accuracy are two distinct phenomena. Measuring the

predictive uncertainty estimates and how well a model is calibrated is a challenging task since the ground truth is not known. Therefore, we utilize

two different metrics to measure the calibration: Expected Calibration Error (ECE) and Negative Log-Likelihood (NLL). We also use corrupted Cifar

test sets to represent out-of-distribution examples to evaluate model calibration from a domain shift perspective.

By binning the predictions to M equally-spaced intervals and taking a weighted average of each bin's accuracy, Expected Calibration Error

(ECE) (Naeini et al., 2015) which measures the absolute difference between accuracy and predictive confidence, is widely used in the literature,

and defined as follows:

ECE¼
XM
m¼1

jBmj
n

jacc Bmð Þ�conf Bmð Þj, ð4Þ

where acc Bmð Þ is the average probability of the predicted and true class for the bin m and conf Bmð Þ is the average confidence within Bmð Þ.
Negative log-likelihood (NLL) is a proper scoring rule (Lakshminarayanan et al., 2017). Scoring rules measure the quality of predictive uncer-

tainty and reward better calibrated predictions (Gneiting & Raftery, 2007). So maximizing likelihood (minimizing NLL) increases calibration. Given

a probabilistic model π and n samples, NLL is defined as:

ℒ¼�
Xn
i¼1

log π yijxið Þð Þ: ð5Þ
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4 | EVALUATION

After setting the experimental design and training all models, we tested all models on the respective test sets. We grouped our results for the met-

rics we track according to datasets. Moreover, we tested all models on corrupted Cifar-10 and Cifar-100. We report the accuracy metrics as well

as the ECE and NLL metrics as discussed in Section 3, which are averaged over three independent runs. As our main concern is what happens to

subnetwork ensembling models' calibration performance when combined with data augmentation, we will not compare and contrast individual

models, but rather discuss how individual models respond to provide more general guidance and comments.

4.1 | Results on Cifar-10/100 and TinyImageNet

Table 1 reports all model results tested on Cifar-10. Subnetwork ensembling frameworks show a performance boost in terms of accuracy com-

pared to the base models. They also improve calibration (lower ECE) and have better uncertainty estimates (lower NLL). When MIMO and MixMo

are trained with MixUp and CutMix, model performance across all three metrics also increases. That is, when ensemble models are combined with

data augmentation, they better estimate uncertainty (lower NLL) and are better calibrated (lower ECE). We also see a similar trend with Mas-

ksembles: metric performance is at least as good, or better.

Table 2 reports results for models trained and tested on Cifar-100. Improvement in the metrics for Cifar-100 is similar to Cifar-10.

Combining MixUp or CutMix with one of MIMO, MixMo, and Masksembles makes all models more performant (higher accuracy) and bet-

ter calibrated (lower ECE & NLL). Combining ensemble models with data augmentation methods results in performance gains across all

metrics.

Table 3 reports results for models trained and tested on Tiny ImageNet. We see that results still have the general tendency to be improved

when ensembling is combined with data augmentation(s). All three subnetwork ensemble frameworks have higher accuracy and lower calibration

error when one of the data augmentations of MixUp and CutMix is added to the training. These results represent strong support of the overall

results since Tiny ImageNet dataset has larger images, more labels, and more images than Cifar-10 and Cifar-100.

The test metrics for all three datasets imply that combining subnetwork ensemble frameworks with data augmentation improves accuracy,

lowers NLL, and lowers ECE, that is, combining them results in better performance and more calibrated models. However, there is a single excep-

tion to this conclusion. When combined with MixMo, MixUp augmentation results in a slight decrease in the calibration (higher NLL & ECE). This

situation is true for both Cifar datasets. Nevertheless, for Tiny ImageNet, MixUp behaves in line with the general tendency. This behaviour is con-

sistent across all combinations of subnetwork ensemble and data augmentations. Therefore, combining Subnetwork Ensembles with data aug-

mentations methods does not harm calibration when tested on in-distribution data.

TABLE 1 Performance results for WRN-28-10/CIFAR10.

Model Data augmentation Accuracy (") NLL (#) ECE (#)
Base model – 96.20% 0.149 0.021

Base model MixUp 96.99% 0.119 0.009

Base model CutMix 97.47% 0.099 0.012

Deep ensemble – 96.75% 0.110 0.008

Deep ensemble MixUp 97.37% 0.100 0.019

Deep ensemble CutMix 97.93% 0.074 0.006

MIMO – 96.63% 0.123 0.017

MIMO MixUp 97.03% 0.114 0.013

MIMO CutMix 97.56% 0.093 0.011

MixMo – 97.26% 0.092 0.010

MixMo MixUp 97.27% 0.106 0.018

MixMo CutMix 97.42% 0.086 0.010

Masksembles – 93.25% 0.232 0.027

Masksembles MixUp 94.31% 0.207 0.027

Masksembles CutMix 94.73% 0.178 0.017
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4.2 | Models against image corruptions

Tables 4 and 5 report results when all models are tested against corrupted Cifar datasets. Clearly, compared to IID test sets (uncorrupted), perfor-

mance of all models across all three metrics degrade. However, still, ensemble models with data augmentations are more calibrated than models

without data augmentations.

When compared to the base model, subnetwork ensembles always improve model calibration (lower ECE) with the exception of MIMO (with-

out augmentation). Using an augmentation in addition to subnetwork ensemble almost always improves calibration. The only exception to this is

using CutMix with MixMo on Cifar-10, where it also does not improve accuracy. Applying augmentation in addition to Subnetwork Ensembles

can boost calibration as much as 3.5� (e.g., MixMo + MixUp). One contrast to the IID dataset is that MixUp helps to enhance both calibration

and accuracy more than CutMix when tested against distribution shift. This implies that having an idea (when possible!) of the test data distribu-

tion would help to choose which combination to use in model deployment. This is also due to the fact that different Mixed Sample data augmen-

tations can result big train-test distribution gaps (Carratino et al., 2020; Gontijo-Lopes et al., 2021).

TABLE 2 Performance results for WRN-28-10/CIFAR100.

Model Data augmentation Accuracy (") NLL (#) ECE (#)
Base model – 81.39% 0.776 0.066

Base model MixUp 83.30% 0.672 0.013

Base model CutMix 83.91% 0.658 0.047

Deep ensemble – 83.42% 0.627 0.027

Deep ensemble MixUp 85.13% 0.590 0.047

Deep ensemble CutMix 86.08% 0.536 0.015

MIMO – 82.75% 0.696 0.064

MIMO MixUp 83.46% 0.644 0.025

MIMO CutMix 84.67% 0.562 0.027

MixMo – 83.86% 0.574 0.038

MixMo MixUp 84.32% 0.591 0.043

MixMo CutMix 84.78% 0.540 0.019

Masksembles – 74.34% 0.983 0.068

Masksembles MixUp 75.57% 0.902 0.022

Masksembles CutMix 76.15% 0.869 0.027

TABLE 3 Performance results for PreActResNet-18-2/Tiny ImageNet.

Model Data augmentation Accuracy (") NLL (#) ECE (#)
Base model – 64.75% 2.692 0.123

Base model MixUp 66.67% 1.789 0.119

Base model CutMix 67.71% 1.641 0.116

Deep ensemble – 69.74% 1.508 0.104

Deep ensemble MixUp 70.19% 1.406 0.083

Deep ensemble CutMix 70.38% 1.352 0.092

MIMO – 68.66% 1.691 0.122

MIMO MixUp 69.02% 1.533 0.096

MIMO CutMix 70.00% 1.460 0.109

MixMo – 69.09% 1.405 0.125

MixMo MixUp 70.81% 1.360 0.078

MixMo CutMix 70.98% 1.204 0.087

Masksembles – 56.33% 3.841 0.179

Masksembles MixUp 58.47% 3.023 0.151

Masksembles CutMix 60.04% 2.870 0.148
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To summarize, as in the case for uncorrupted test sets, utilizing data augmentation in addition to subnetwork ensembling help to improve cal-

ibration in the case of distribution shift. Out-of-distribution data or distribution shift is relevant for the models to be deployed in real-life situa-

tions. Hence, the results showing resilience against image corruption become more relevant for deployment settings and also better highlight

overall model performance.

4.3 | Consistent calibration estimator

Calibration metrics do not have a unit or scale, which makes them hard to interpret, especially if there are many models from different frameworks

competing with each other. Moreover, the randomness and incurred bias of the calibration metrics may necessitate the use of more stable met-

rics. Furthermore, as the number of classes in a classification task increases, models scale poorly. Formally, it would be better to have unbiased

TABLE 4 Performance results for WRN-28-10/CIFAR10-corrupted.

Model Data augmentation Accuracy (") NLL (#) ECE (#)
Base model – 78.21% 0.967 0.138

Base model MixUp 82.97% 0.638 0.062

Base model CutMix 77.34% 0.973 0.132

Deep ensemble – 79.72% 0.767 0.083

Deep ensemble MixUp 84.49% 0.525 0.017

Deep ensemble CutMix 79.04% 0.766 0.064

MIMO – 78.03% 0.995 0.146

MIMO MixUp 84.13% 0.533 0.027

MIMO CutMix 76.95% 0.972 0.132

MixMo – 80.55% 0.762 0.094

MixMo MixUp 84.19% 0.527 0.026

MixMo CutMix 77.63% 0.981 0.126

Masksembles – 70.01% 1.210 0.161

Masksembles MixUp 73.48% 1.090 0.149

Masksembles CutMix 71.67% 1.100 1.155

TABLE 5 Performance results for WRN-28-10/CIFAR100-corrupted.

Model Data augmentation Accuracy (") NLL (#) ECE (#)
Base model – 53.28% 2.364 0.197

Base model MixUp 59.03% 1.780 0.074

Base model CutMix 52.29% 2.388 0.199

Deep ensemble – 56.01% 2.029 0.111

Deep ensemble MixUp 61.79% 1.594 0.009

Deep ensemble CutMix 55.25% 2.065 0.101

MIMO – 54.21% 2.367 0.208

MIMO MixUp 56.88% 1.916 0.079

MIMO CutMix 54.82% 2.090 0.143

MixMo – 55.98% 2.168 0.172

MixMo MixUp 58.01% 1.803 0.048

MixMo CutMix 55.65% 2.007 0.119

Masksembles – 48.24% 3.560 0.261

Masksembles MixUp 52.10% 2.440 0.223

Masksembles CutMix 48.73% 3.310 0.257
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and consistent estimators of calibration to compare them. To tackle these issues, Widmann et al. (2019) proposes a unifying framework for cali-

bration tests. According to their calibration test, estimators are viewed as calibration test statistics with well-defined bounds. For this reason, we

utilize a calibration error called kernel calibration error (KCE), to provide additional insights into model calibration performance. KCE is defined as

(Widmann et al., 2019):

KCE k,g½ � ¼ E eY �g Xð Þð ÞTk g Xð Þ,g X0ð Þð Þ eY0 �g X0ð Þð Þ
h i� �1=2

, ð6Þ

if E k g Xð Þð ,g Xð ÞÞk k½ �<∞ and given k is a matrix-valued kernel as in definition 1 in Widmann et al. (2019), X0 ,Y 0ð Þ is an independent copy of X,Yð Þ
and ei denotes the ith unit vector. Based on this let us define a function h s.t.:

hi,j ≔ eYi �g Xið ÞTk Xið Þ,g Xj

� �� �
eYi �g Xj

� �� �
: ð7Þ

Hence, the below estimator becomes consistent and unbiased estimator of the squared kernel calibration error SKCE k,g½ �≔KCE2 k,g½ �:

SKCE¼ n

2

� ��1 X
1≤ i< j≤ n

hi,j: ð8Þ

Table 6 shows SKCE values of each model on Cifar-10 and Cifar-100 test sets. Here we see additional evidence that combining data augmen-

tation and Subnetwork Ensembles does not harm model calibration. In fact, we see a marked difference in the KCE estimator (where lower is bet-

ter) as defined by Widmann et al. (2019). Again, recall that our intention is to not compare across models, but rather to illustrate that for the

models we have experimented with that calibration is improving in the presence of data augmentation methods. Note that at this stage we do not

claim that the models are in any way “perfectly” calibrated but that in the search for better calibration, data augmentation approaches certainly

seem to help subnetwork ensembles.

5 | CONCLUSION

In this paper, we focused on multi-class classification problems and explore the effect of combining Ensembles with data augmentation on calibra-

tion. Our extensive experiments have illustrated that using subnetwork ensemble with data augmentation alone improves model calibration and

robustness. More importantly, we find that combining subnetwork ensemble with MixUp or CutMix improves accuracy while not harming model

calibration. Thus, adding some clarity to the literature on this point, as we did not observe any trade-off between ensembling and data augmenta-

tion for subnetwork ensemble. Rather, in our experiments, we observed that combining subnetwork ensemble and data augmentation improved

calibration and uncertainty estimates. Our experiments with benchmark corrupted datasets showed how the findings are also robust with respect

TABLE 6 Calibration error estimates (SKCE) for models on Cifar-10 & Cifar-100.

Model Data augmentation SKCE-Cifar10 (10�4, #) SKCE-Cifar100 (10�4, #)
Base model – 0.785 0.734

Base model MixUp 0.209 0.378

Base model CutMix 0.471 0.501

MIMO – 0.479 0.649

MIMO MixUp 0.256 0.333

MIMO CutMix 0.208 0.222

MixMo – 0.296 0.310

MixMo MixUp 0.585 0.271

MixMo CutMix 0.310 0.229

Masksembles – 0.892 0.911

Masksembles MixUp 0.827 0.873

Masksembles CutMix 0.785 0.812
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to corruption since the minimum (i.e., best) values for ECE and the NLL were obtained when both data augmentation and subnetwork ensemble

were used.

Hence, combining subnetwork ensemble with data augmentation methods for image classification tasks helps to improve performance with-

out sacrificing calibration. This situation signals a divergence on the effects of combining different methods for ensembling with data augmenta-

tion. Models trying to boost performance should consider this discrepancy. Exploring this behaviour divergence (as future research) among

ensembling methods when combined with data augmentation could yield a better understanding of seemingly uncorrelated methods.
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