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Abstract

The investment of time and resources for developing better strategies is key to deal-

ing with future pandemics. In this work, we recreated the situation of COVID-19

across the year 2020, when the pandemic started spreading worldwide. We con-

ducted experiments to predict the coronavirus cases for the 50 countries with the

most cases during 2020. We compared the performance of state-of-the-art machine

learning algorithms, such as long-short-term memory networks, against that of online

incremental machine learning algorithms. To find the best strategy, we performed

experiments to test three different approaches. In the first approach (single-country),

we trained each model using data only from the country we were predicting. In the

second one (multiple-country), we trained a model using the data from the 50 coun-

tries, and we used that model to predict each of the 50 countries. In the third experi-

ment, we first applied clustering to calculate the nine most similar countries to the

country that we were predicting. We consider two countries to be similar if the dif-

ferences between the curve that represents the COVID-19 time series are small. To

do so, we used time series similarity measures (TSSM) such as Euclidean Distance

(ED) and Dynamic Time Warping (DTW). TSSM return a real value that represents

the distance between the points in two time series which can be interpreted as how

similar they are. Then, we trained the models with the data from the nine more similar

countries to the one that was predicted and the predicted one. We used the model

ARIMA as a baseline for our results. Results show that the idea of using TSSM is a

very effective approach. By using it with the ED, the obtained RMSE in the single-

country and multiple-country approaches was reduced by 74.21% and 74.70%,

respectively. And by using the DTW, the RMSE was reduced by 74.89% and 75.36%.

The main advantage of our methodology is that it is very simple and fast to apply

since it is only based on time series data, as opposed to more complex methodologies

that require a deep and thorough study to consider the number of parameters
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involved in the spread of the virus and their corresponding values. We made our code

public to allow other researchers to explore our proposed methodology.

K E YWORD S

COVID-19 prediction, dynamic time warping, epidemiology curve, incremental machine
learning, time series similarity measures

1 | INTRODUCTION

The first cases of COVID-19 were reported to the global public in December 2019. Its origin has been placed in Wuhan, in the Hubei province of

China (Shereen et al., 2020). Shortly after its announcement, on 30 January 2020, the World Health Organization (WHO) declared the virus a pub-

lic health emergency of international concern (Zu et al., 2020).The COVID-19 virus has a high transmissibility level that causes severe acute respi-

ratory syndrome coronavirus 2 (SARS-CoV-2). Due to its pathogenicity—the capacity for causing harm—and its ease of transmission across

humans, COVID-19 has caused tremendous damage to public health, initially in China and subsequently in the rest of the world. According to

Worldometers.info, which collects worldwide reported cases, until August 2022, around 582 million people contracted COVID-19, and 6.4 million

died because of COVID-19. On top of that, the restrictive actions taken by governments to mitigate the virus, such as lockdowns and quarantines,

have caused serious damage to the global economy. For instance, there was a lack of supply of many products and many jobs were lost in many

countries (Bonaccorsi et al., 2020).

During 2021, the vaccines Pfizer-BioNTech, Moderna, Johnson & Johnson, Sputnik V and others were approved, and by July, more than 3.9

billion vaccines were massively administered around the world (Vashi & Coiado, 2021). Additionally, the original virus mutated into less severe

variants such as Omicron, which lowered the hospitalization rates (Barnard et al., 2021). Because of this, the world is slowly recovering, and the

situation in August 2022 looks much more favourable than the previous years. However, although the prospects in 2022 regarding the pandemic

are much better, it is still possible that future pandemics could emerge. It is necessary to keep studying the best strategies and solutions to pre-

vent their negative effects (Shereen et al., 2020).

The coronavirus pandemic has been combated by many disciplines. For example, the medical field has contributed with vaccination, public

health with masking and social distancing and many sciences (biology, maths, statistics,…) have helped in building COVID-19 models to support

governments in taking the best measures (Zeroual et al., 2020). There are a lot of disciplines that can positively contribute to mitigating the

COVID-19 effects (Lalmuanawma et al., 2020). However, due to our computing background, we find particularly interesting the approaches based

on developing Artificial Intelligence (AI) applications.

AI has been used to fight COVID-19 in many ways, such as fast diagnosis and screening processes, contact tracing, vaccine development

and forecasting cases (Lalmuanawma et al., 2020; Wynants et al., 2020). Thanks to predictive models able to make accurate estimations;

resources in hospitals can be managed more intelligently, saving more lives; universities can develop strategies to organize the students' aca-

demic year in a better way and more effective planning to save the economy while guaranteeing satisfactory public health can be made

(Nicola et al., 2020). Imposing restrictive measures, such as lockdown or self-isolation, can provoke catastrophic effects on the economy,

and the mental health of the population can be undermined, but not controlling the virus can cause a high number of deaths. Therefore, it is

essential to develop accurate models to help governments take the best possible actions to balance out the negative effects of potential

pandemics.

Traditionally, forecasting methods were based on statistical methods such as ARIMA (which we also used in our experiments). Still, in recent

years, researchers have used more advanced methods like Machine Learning (ML) algorithms. ML is a branch of AI algorithms to make machines

able to learn automatically from the data, requiring very little or no human intervention. ML methods can capture non-linear relationships in the

input data without prior knowledge. According to the literature, ML algorithms have replaced statistical models as a de-facto standard to make

predictions (Hsu et al., 2016).

Inside ML, there is a category of methods called Incremental Learning Methods (ILMs), in which the input is a continuous stream of informa-

tion, and the model is permanently updated with this data. ILMs are widely used in non-stationary domains like financial transactions, telecommu-

nications, weather forecasts and the internet of things, to name a few, adapting to shifts and drifts that may occur implicitly in the data (Gama,

Žliobaite, et al., 2013). Their main advantage is that models can be continuously updated with new instances and do not need to be trained from

scratch, unlike classical ML methods. To our knowledge, ILMs have not yet been applied to predict coronavirus disease cases. We believe that our

work will help to fill that gap in the literature.

In this piece of research, we put ourselves in the shoes of a country facing a pandemic that only has the information available at a certain

date. Our work falls in the category of predicting and forecasting COVID-19 cases using ML. It is very important to study how to generate reliable

and accurate predictive models in the shortest possible time to be ready in case we face a pandemic again. Accurately predicting the number of
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cases a few weeks in advance allows governments to plan ahead, develop better strategies and take preventive actions before it is too late

(Miralles-Pechuán, Jiménez, et al., 2020).

In this paper, as shown in Figure 1, we proposed three approaches to train the ML models; training them only with data from the predicted

country (single-country approach); training them using the 50 countries in the dataset (multiple-countries approach) and lastly, training only with

the nine most similar countries according to time series similarity measures (TSSM) in the third approach (time-series-filtering approach). We con-

sider the degree of similarity between countries using time similarity measures such as DTW and ED. Time measures return a real number from

the time series of COVID-19 cases in two countries. Time series similarity measures are an important research area and the main ingredient for

time series classification and clustering (Serra & Arcos, 2014). There are many of them, such as Minkowski, Manhattan, Chebyshev, Frechet-DISC,

Levenshtein, SAX, Hausdorff, or Bray-Curtis.

Our contribution is different to previous works for the following reasons. On the one hand, we compare the performance of a recent branch

of ML algorithm called ILMs with popular ML methods in forecasting the number of COVID-19 cases over the 50 countries with the most COVID

cases in 2020. We compared their performance against state-of-the-art methods such as Gradient Boosting and long-short-term memory (LSTM).

On the other hand, we present a novel methodology that applies a simple but powerful idea: this is the use of a clustering-based approach based

on TSSM to select the most similar countries to the predicted one. And then, we trained models with the data from those countries to predict

future cases. We used ARIMA to have a baseline with which to compare our results. By using these strategies, we improved the accuracy of

regressions ML methods. Results show that our approach is very efficient, and it is also very suitable for predicting quickly, like in the case when a

pandemic erupts.

We have made our code available so that other researchers could explore our proposal further and compare their methods with our approach.

We created the framework1 to encourage the scientific community to develop new models and strategies to design more accurate algorithms to

predict COVID-19 cases. To our knowledge, no other publication applies time series similarity measures to train models with data from multiple

countries, uses ILMs, and conducts a thorough study of over 50 countries at eight points in time using RMSE and MAE. Our proposal has the

advantage that it is straightforward and only needs the time series of COVID-19 cases.

The rest of the paper is organized as follows: Section 2 presents an overview of the epidemiological models to represent viruses and an over-

view of the supervised ML models. Particularly a subset of them called ILMs. Section 3 details the implemented methodology to apply the pro-

posed approaches. Section 4 presents the conducted experiments to compare the performance of the ILMs against that of other popular

methods, such as the popular deep learning method for time series called LSTM. Then, it compares the performance of the methods under differ-

ent scenarios and training schemes to find out the optimal configuration. It also discusses the obtained results for each of the models and presents

an analysis of both the static and the ILMs. Finally, Section 5 presents the main findings of our investigation and recommends some interesting

lines of research for future work.

F IGURE 1 Experiment I only uses historical cases of the country it is predicting, Experiment II uses historical cases from all the countries to
predict every single one, and Experiment III, here it is only shown for one country, only uses data from the nine most similar countries based on
time similarity measures such as DTW and ED.
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2 | STATE OF THE ART

This section describes some important research work on modelling the spread of the COVID-19 virus on a population. It also describes the main

ML methods applied, emphasizing online incremental ML algorithms and their main differences compared to static ML methods in terms of model

evaluation.

2.1 | Modelling the evolution of COVID-19

The impact of the pandemic on society has pushed researchers to find ways to combat the virus from their respective disciplines. Due to the coro-

navirus' impact on society, the volume of publications related to COVID-19 since it was detected has become enormous. To give an example, just

the number of publications related to COVID-19 in the database of the Web of Science until 14 October 2020, only 10 months after the pan-

demic started, is 12,021. This database gathers data from the bioRxiv platform (2040), the medRxiv platform (7555), the Preprints platform (1046)

and the SSRN platform (2028) (Wang & Tian, 2021).

Our investigation falls into the category of modelling the evolution of the virus in the population. On this topic, there is a high number of pub-

lications covering a broad spectrum that goes from those applying the simple method ARIMA (Benvenuto et al., 2020) to those implementing the

latest deep learning techniques (Zeroual et al., 2020). Forecasting the evolution of positive cases with precision is the backbone for planning the

optimal governmental actions to avoid damaging the economy and protect public health (Miralles-Pechuán, Ponce, & Martínez-Villaseñor, 2020).

Creating inaccurate models can mislead governments into taking the wrong actions, which could have terrible effects on the health and economy

of the population (Chin et al., 2020).

The epidemiological models are the ones used to estimate the evolution of viruses. Broadly speaking, there are two categories: the mechanis-

tic models and the statistical models (Adiga et al., 2020). The mechanistic models are based on principles and equations that explain how infec-

tious diseases spread. Those models simulate the dynamics of the virus and are quite similar to the typical models in physics. Mechanistic models

range from simple ones that only consider the incubation period to complex ones that consider multiple groups based on variables such as age,

location and vaccination rate. On the other hand, the statistical models are data-driven and use historical data of the viruses' evolution, e.g. the

registered positive cases per day (Maleki et al., 2020). They use equations from statistics, although, in recent years, they are using AI and ML tech-

niques more frequently (Zeroual et al., 2020). Statistical methods learn from the experience using the data with which they are fed. There are also

models that combine both mechanistic and statistical approaches and are becoming popular as well (Adiga et al., 2020).

Inside the mechanistic models, there is a class called mass compartmental models. Compartmental models represent the virus evolution using

differential equations that divide the population into dynamic groups (or compartments) (Brauer, 2008). The SIR model is a typical example of

compartmental model. SIR models divide the population into three groups: Susceptible (S), Infected (I) and Removed (R). Infected individuals can

transmit the virus to the Susceptible ones who have not yet suffered it. The recovered individuals are the ones that have recovered or died. In its

simplest version, the virus' evolution can be modelled using three parameters: β (contact rate), σ (incubation period) and γ (recovery rate or period

in which individuals are infectious) (Yang et al., 2020).

An extended version of the SIR model called SEIR includes a new group called Exposed (E). Exposed individuals have contracted the virus, but

they are not infectious yet (Brauer, 2008). Since these models are a bit simplistic and, in general, populations are composed of different groups,

for example, by age, location, or other similar patterns, there is an extension of the SIR models called Structured Metapopulation Models

(Gyllenberg et al., 1997).

Metapopulation models consider the heterogeneity of the groups within a population by considering multiple factors such as age, lockdowns,

two-meter distance separation and restrictions on mask use. They are more complex, but they are better at adapting to the behaviour of a popula-

tion. Metapopulation models have the overhead of fine-tuning a large number of parameters to represent the changing environment accurately,

and a mismatch in the value of the parameters can render the model flawed. This creates a need to adjust the values of the model continuously,

for example the virus can mutate, becoming more harmful or more contagious (Toyoshima et al., 2020). On top of that, the more complex the

models are, the more difficult to understand they become. Metapopulation models require a deep understanding and study of the virus. Their

main advantages are that they enable the simulation of different scenarios (pessimistic, realistic, optimistic) and that once the values are set, they

are also very fast to run.

Agent-based network models are an extension of metapopulation models. They use computer simulations that approximate the real-world

scenario by representing the population's individuals using agents inside a virtual environment. They apply a ‘bottom-up’ approach, whereas com-

partmental models apply a ‘top-down’ one. The individuals obey some coded rules and help to understand how the virus can propagate across

the population under different scenarios such as lockdowns and self-isolation. For example, at the University of Australia, Chang et al. (2020)

implemented a fine-grained simulation and calibrated the model to match the COVID-19 transmission rate in Australia.

On the other hand, statistical models try to find patterns in the data. They are also known as time-series or curve-fitting models. They are

based on sequential historical data points to predict future records. These models are less useful for simulating or understanding the virus but are
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quicker to develop. There are a lot of variables that influence the behaviour of the virus, such as the mental health of the population; the influence

of social networks; the correlation between the transmissibility of the virus and the temperatures; the number of lighting hours; the accumulative

fatigue of a lockdown; the transmissibility rates of the new strains, or the unemployment rate of the country.

It is extremely challenging to estimate their actual impact. On top of that, those variables are constantly changing over time. The collected

data from the virus intrinsically considers a high number of variables that are very difficult to understand and measure, even for the experts.

Time-series models have been proven to be effective, and they have an overall advantage over the compartmental models; the simplicity and

quickness to be modelled (Harvey & Kattuman, 2020). Those two advantages are very important when the time for taking the right measures is

critical.

The approach of our paper, based on curve-fitting models, was also used by the Institute for Health Metrics and Evaluation (IHME) at the Uni-

versity of Washington. The institute predicted quite accurately when the United States was going to have a peak on the curve of the number of

cases by creating models that fitted the curve of positive cases of the virus in other countries such as Italy, Spain, or the UK (COVID,

IHME, 2020). The work of Zeroual et al. (2020) presents a general overview of some of the most important studies on modelling the virus and

compares the performance of five different deep learning methods for modelling time-series data such as simple RNN, LSTM, Bidirectional LSTM

(BiLSTM), Gated Recurrent Units (GRUs) and Variational AutoEncoder (VAE). One of the downsides of these models is that they do not have

parameters to consider different scenarios of the evolution of the virus.

2.2 | Machine learning algorithms

Pandemic curves are non-stationary (constantly changing) by nature because, depending on the period, they can show clear trends, cycles and

seasons where the random component is more prevalent. Moreover, the virus spread in each region varies differently (Li et al., 2020; Wang

et al., 2020). Under these circumstances, incremental and online ML techniques (Ditzler et al., 2015) that adapt to the evolution of the trend and

its changes on the fly are gaining traction in different domains (Gama, Sebastião, et al., 2013; Suárez-Cetrulo et al., 2019). One of the drawbacks

of static ML methods is their inability to deal with data updates efficiently (Suárez-Cetrulo & Cervantes, 2017). This paper refers to state-of-the-

art ML algorithms that need to be trained from scratch to add new knowledge as static algorithms.

ILMs and the notion of concept drift (when the predicted target changes) have not gained enough attention in the coronavirus prediction

domain. However, incremental ML algorithms can deal either actively or passively in a better way (Elwell & Polikar, 2011) with the non-stationary

nature of data streams such as the COVID-19 curve evolution (Tsymbal, 2004). This is by adapting (passively) to the non-stationary nature of the

data or by using drift detectors (actively). These methods can find an equilibrium between prioritizing new knowledge, adapting to changes, and

retaining previous relevant information through different forgetting mechanisms. This balance is known as the stability-plasticity dilemma, and it

is very suitable for dynamics scenarios like the COVID-19 spreads (Kukar, 2003; Singh et al., 2020).

One of the main differences when comparing static with ILMs for data streams is the convention used to measure the model performance.

Different model evaluation metrics create a challenge when comparing static with ILMs, as the evaluation for both methods needs to be consis-

tent and fair. Hold-out is a typical evaluation technique in ML where the original set is separated into two independent sets for training and test-

ing. The idea is that instances from the training set differ from those in the testing set to evaluate how accurately the model can predict. Using

80% for training and 20% for testing is a very common split. Hold-out is the evaluation scheme performed in traditional ML approaches (Gama,

Sebastiao, & Rodrigues, 2013).

A prequential evaluation (or Interleaved Test-Then-Train) is a conventional setting in ILMs for continuous streams, where data is evaluated as

soon as it is available (Cerqueira et al., 2020). In this evaluation technique, every data example (instance) is used initially for making a prediction.

Then, when its target label is available, the instance is first used to compute the prediction error and later update the algorithm. This differs from

hold-out evaluation, where testing splits are not used for training. The prequential evaluation makes more efficient use of the data (Cerqueira

et al., 2020), and it is more suitable for ILMs, which can be updated and adapted to new instances and, unlike static methods, do not need to train

the whole model again from scratch (Žliobaite et al., 2015).

2.2.1 | Static machine learning algorithms

We selected some of the most relevant regression ML models to compare them with ILMs. The description of the chosen algorithms goes as fol-

lows: Linear regression (LR) minimizes the residual sum of squares between the prediction and the target feature and fits a line with coefficients

(Montgomery et al., 2012). Ridge regression, as an improvement of LR, uses regularization, minimizes β coefficients and adds a λ scalar to the

learning process (Bishop, 2006). Bayesian Ridge Regression (MacKay, 1992; Tipping, 2001) is the Bayesian interpretation of a Ridge Regression

Estimator. Thus, it performs linear regressions through probability distributors rather than point estimates. Support Vector Machines (SVM) con-

struct a hyperplane through Support Vectors to use it as a discriminator for classification tasks. Support Vector Regression (SVR) is the regression

MIRALLES-PECHUÁN ET AL. 5 of 17
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version of the SVM algorithm (Chang & Lin, 2011). Random Forest (RF) is a popular ensemble method that constructs a set of decision trees

through bagging and feature bagging (Liaw et al., 2002). The final prediction depends on voting or an aggregation mechanism. The regression ver-

sion aggregates the votes by averaging their predictions. Gradient Boosting trains its base learners gradually and sequentially (Friedman, 2001;

Hastie et al., 2009). It uses gradients in the base learners' loss function to measure the outcome of each observation and improves weak learners

iteratively. LSTM neural networks (Hochreiter & Schmidhuber, 1997) is an architecture with dense layers. LSTMs are used to keep adjacent tem-

poral information while remembering information for a long time in their memory blocks. In feed-forward neural networks, learning occurs by

changing these connection weights, often through a gradient descent-based approach like the back-propagation algorithm, to minimize the

obtained error (Murtagh, 1991). ARIMA from AutoRegressive Integrated Moving Average is one of the most popular regression methods, and it

has also been used for predicting coronavirus cases (Benvenuto et al., 2020). It is a stochastic statistical method mostly used for non-stationary

series. It is based on moving averages to predict future values, which has proved inefficient when sudden changes happen.

2.2.2 | Incremental machine learning algorithms

We also selected a set of four incremental regression ML models to compare them with the state-of-the-art static methods aforementioned. Our

choice covers incremental models that are notoriously used for regression problems in the literature. A description of the selected methods goes

as follows: A Hoeffding tree (HT) is an incremental algorithm that assumes that the data distribution is constant over time. This tree relies mathe-

matically on Hoeffding bounds, which supports that a small sample may suffice to choose an optimal splitting attribute. Hoeffding Tree for regres-

sion calculates the decrease of the variance of the target to decide the splits. Its leaf nodes fit linear perceptron models by default (Domingos &

Hulten, 2000). The Hoeffding Adaptive Tree (HAT) is an adaptive version of the Hoeffding Tree. It replaces old branches with new ones if the

error of the old ones increases over time and new branches perform better. To monitor the evolution of the errors, it uses the Adaptive Win-

dowing (ADWIN) algorithm Bifet and Gavalda (2007); Bifet and Gavaldà (2009). HAT also proposes bootstrap sampling as an improvement over

Hoeffding Trees. Adaptive Random Forest (ARF) (Gomes et al., 2017) is an adaptive version of the Random Forest ensemble for Data Streams. It

manages a pool of trees that are replaced with new ones when a concept drift is detected. As an improvement to RF, each adaptive tree is trained

with different samples and feature sets as part of the bagging process. The Passive-Aggressive algorithm (PA) is an online learning algorithm that

updates the model depending on the obtained error (Crammer et al., 2006).

2.3 | Time series similarity measures for COVID-19 forecasting

A Time Series Similarity Measure (TSSM), such as DTW or ED, quantifies the degree of similarity between two sets of values using a real value.

We can use TSSM to see how similar the time series of COVID-19 cases are between two countries. Some publications have applied TSSM like

DTW (Müller, 2007) to compare the COVID-19 curve among countries to predict cases in the future. Other authors (Rojas et al., 2020) used hier-

archical clustering to determine the most similar countries to the eastern and western zone of the United States and to create models such as the

Logistic, Gompertz and SIR models to estimate the future cases of the virus. The DTW is used very often because it has the great advantage of

being able to find similarities even when there is a shift in time between the compared time series.

The work of Stübinger and Schneider (2020) is a bit similar to ours. They used DTW to analyse lead–lag effects (one variable is correlated

with another, but with time-lags) between different countries. They used information from a related country where the virus had already been

spread to predict countries in which the virus is emerging. However, they used a statistical approach to predict new cases rather than applying

ML methods. Additionally, they only used one country to train the models and only predicted over the nine countries with more cases. The publi-

cation of Landmesser (2020) is related to our work since the author applies DTW to perform hierarchical grouping for countries but uses ARIMA,

which is not as effective as ML methods in forecasting new cases.

The work of Zeroual et al. (2020) conducts a comparative analysis over nine countries for short-term cases forecast using six promising deep

learning methods: simple RNN, LSTM, Bidirectional LSTM (BiLSTM), Gated recurrent units (GRUs) and Variational AutoEncoder (VAE). They do

not use similarity measures, which is a step that could potentially increase the performance of the methods. Many other publications related to

the virus and time similarity measures focus on one particular country or consider a different sector.

3 | METHODOLOGY

The experiments were conducted to answer the following question: What is the best approach for training incremental and static methods to pre-

dict the future number of coronavirus cases for a given country? To answer this question, we performed three experiments. In Experiment I, we

trained the static and incremental models with only one country, and we predicted future cases for that same country. In Experiment II, we
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predicted over one country, but this time, we trained the models with the 50 selected countries. Lastly, in Experiment III, we first selected the nine

most similar countries to the ones predicted using TSSM, such as ED and DTW. Then, we trained the model with those nine countries and the

selected country.

These methods were evaluated at eight points in time to calculate the average performance of the different approaches, which we called

milestones. Each milestone represents a date on which we predicted future cases, considering only previous information to that point. Figure 2

illustrates how we evaluated the applied ML methods. Each milestone test set covers a month interval after its respective training set. Using the

subset of dates given by each monthly milestone, we created samples that contained training and testing data for the subsequent experiments.

To make ILMs comparable, we trained and tested all the algorithms using the same training and testing sets. However, in the literature, ILMs

for data streams are designed to be trained continuously and static training and testing splits are not generally applied to ILMs. Thus, to follow the

convention with this type of learner, we performed an additional experiment for the second approach (multi-country) to measure the effect of

using prequential evaluation (Cerqueira et al., 2020; Gama, 2010) for the incremental learners rather than using defined training and test splits

(hold-out). The difference between the prequential and the hold-out evaluation is that the prequential retrains the model after each prediction

during the 30 days that are predicted in each milestone, whereas the hold-out scheme does not.

Since the total number of models was 400 (eight milestones � 50 models), all algorithms were implemented using their default vanilla config-

uration in each library used, covered at the end of this section. The autoregressive order (p), the degree of differencing (d) and the moving average

order (q) were optimized for ARIMA in the range [0–10], selecting the ones with the lowest Akaike Information Criteria during the first milestone.

Then the resulting values for these parameters, which are necessary in ARIMA in order to fit a model, are used as input in the rest of the mile-

stones. The seasonal parameter in ARIMA was set to false as this obtained better results in an exploratory phase using the first milestone. For the

LSTM, we used the architecture from Figure 3, a validation set for back-propagation was created using the last 10 days of the training set at each

Day 1

30 60 90 120
Day
300...

Input Model I Output Model I

Input Model II Output Model II

Input Model III Output Model III

F IGURE 2 For evaluating the models, we defined eight milestones (represented with orange circles). Each milestone performs a prediction for
a month ahead of a certain point in time. In milestone one, there is only 1 month of training data (30 training examples). In the second, third and
fourth milestones, there are 2, 3 and 4 months of training data, respectively and so on. The test set used for each milestone is the month after the
last month used for training in such milestone. Thus, in milestones one and two, the model will be tested in months two and three, respectively.
The performance of the methods was computed by averaging the model errors obtained across the eight milestones.
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F IGURE 3 LSTM architecture used. The input layer receives the feature set and consists of 50 LSTM cells. The network has a total of four
intermediate layers, three of them applying dropout at 0.2, and a final output dense layer.
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respective milestone. The LSTM was trained for 500 epochs in all the experiments. However, the batch size and patience were different in the SC

and the MC approaches.

The batch size refers to the number of training examples used in one iteration when training the LSTM sequentially. Patience represents the

number of epochs to wait before early stopping training the algorithm if the model does not lower its error. For training the LSTM method, in

Experiment I, we defined a batch size of 10 examples (one example per day) and a patience of 20 examples. In Experiment II, we defined a batch

size of 500 examples (10 days multiplied by 50 countries) and a patience of 1000 examples (20 days multiplied by 50 countries). And in Experi-

ment III, we defined a batch size of 100 examples (10 days multiplied by 10 countries) and a patience of 200 examples (20 days multiplied by

10 countries).

This methodology of dividing the dataset into milestones and calculating the error as the average of the milestones was used throughout all

the experiments. The performance of the models was measured using the root mean squared error (RMSE) and the mean absolute error (MAE),

which are common metrics for regression in the literature (Botchkarev, 2018). The results are calculated by comparing the model's predictions to

the target feature in the test set (or test-then-train set in incremental learners). Rows in these datasets are sorted first by date and then by coun-

try for the different training and testing splits and for the batches already mentioned. Figure 4 shows the end-to-end process followed for con-

ducting the experiments.

For the implementation of the LSTM, we have used the Python library Keras. For the static methods and the Passive-Aggressive Regressor,

we used the provided versions of the Python library Scikit-Learn Pedregosa et al. (2011). For the rest of the incremental approaches, we used the

implementation provided in another Python library called Scikit-multiflow. We have used the Python package RustDTW (version: 0.1.14) for cal-

culating the DTW distances due to its quick processing speed. Finally, for the baseline, we used a non-seasonal auto ARIMA (p,d,q) using a Python

library called ‘pmdarima.arima: ARIMA estimator & differencing tests’2, which handles automatically the optimisation of the autoregressive order

(p), the degree of differencing (d) and the moving average order (q).

4 | EXPERIMENTS AND RESULTS

In this section, we conducted some experiments to compare the performance of three different approaches for training models. We did so using

ILMs and state-of-the-art static methods, including the popular deep learning method called LSTM, to see which methods are more suitable under

these approaches.

4.1 | Dataset description

For this work, we used the dataset ‘COVID-19 Coronavirus data - daily (up to 14 December 2020)’ available in the European Open Data Portal 3

and provided by the European Centre for Disease Prevention and Control. The original dataset contains twelve columns with daily information

about the disease in 213 countries during 2020. To create the dataset for the experiments, we first selected the countries with eight or more

months of data by 30 November 2020 (66 in total); then, we selected the 50 countries with the highest number of accumulated cases of COVID-

19 to conduct the experiments. We considered that countries with few cases are not very helpful for making predictions.

The dataset is structured as follows: one column represents the number of positive cases; another one the number of deaths; four columns

are related to the current date; four other columns are related to country-specific information; one column refers to the continent; and lastly, one

column represents the cumulative number of the COVID-19 cases for 14 days per 100,000 inhabitants.

F IGURE 4 Methodology for implementing the training and testing of the three conducted experiments

8 of 17 MIRALLES-PECHUÁN ET AL.
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Regarding the preprocessing steps for creating the final dataset for the experiments, columns related to dates and countries were used to split

the original dataset into training and testing sets. The number of new cases is the only column used to generate the feature set (input of the

model) and the target (output of the model). The rest of the columns were removed. Each data example used as the input of the models corre-

sponds to a moving time window of 50 consecutive days. And the target/output of the model is the average of ten consecutive days, where the

first of those 10 days is 30 days ahead of the last day of the input. The main reason for using the average of 10 days is to cushion some spikes

that arise due to potential delays when reporting the test results. We also wanted to predict 30 days because it gives governments some margin

of time to lift or apply new restrictions on the population.

To illustrate how the dataset was transformed, we provide the following example. Imagine we had 200 hundred days of positive COVID-19

new cases for a given country. Then, the first row of the dataset has the input from day 1 to day 50, and as the output, the average from day

80 to 90; the input for the second row goes from day 2 to 51, and the output is the average from 81 to 91; and so on. As a result, the generated

dataset has 50 columns representing the number of new cases in the previous days and a single value representing the output of the model. The

number of rows for each trained model varies according to the experiment, as explained in more detail in Section 4.2. The feature set (inputs of

the model) was created according to the scheme shown in Figure 5.

4.2 | Experimentation

This subsection shows the results in different tables and plots the results of the three approaches.

4.2.1 | Experiment I: single-country training

This experiment trains the supervised ML models with data from a single country and predicts the cases for that same country. Results are

obtained by averaging the eight points called milestones for which predictions are made. The mean performance of the incremental and static

methods for the single country (SC) approach is shown in Table 1. We added the statistical model ARIMA to our experiments to use it as a base-

line for our experiments.

Table 1 shows the average RMSE and MAE metric and time in seconds for the 50 countries with the most significant number of cases on

30 November 2020, when running over a single country. It can be seen how the algorithms Gradient Boosting, Decision Trees and Random For-

ests algorithm outperform the rest of the algorithms in terms of RMSE and MAE. The LSTM algorithm obtains a comparable predictive accuracy,

but it requires more time and its training is more complex. If we had a dataset with more samples, it would probably perform better since deep

learning is known for requiring a lot of data to perform well. We can also see that the order of the countries by RMSE and by MAE is the same.

Figure 6 shows a boxplot comparing all the algorithms averaging the results for the eight milestones and the 50 countries. It can be seen how

static methods outperform the rest of the methods in terms of RMSE. ARIMA obtains comparative results in terms of mean accuracy to static

Machine Learning algorithms in this experiment. These results are also visible in Table 1, and a similar trend can be observed there in terms of

MAE. Gradient Boosting outperforms the rest of the methods in the single-country experiment and also outperforms methods like ARIMA and

the LSTM model in terms of computational time. Albeit the top performers can change in different countries, it is visible that static methods

F IGURE 5 Feature set used in the experiments over the training and test sets explained in Figure 2. The number of new cases in the previous
50 days is passed individually and in order (day by day) to the model as an input feature vector. The prediction target is the average of new cases
per day in the 10 consecutive days after a month ahead; the 30 days ahead are applied because the test set is always 1 month after the
training set.

MIRALLES-PECHUÁN ET AL. 9 of 17

 14680394, 2023, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/exsy.13237 by T

echnical U
niversity D

ublin, W
iley O

nline L
ibrary on [06/06/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



outperform ILMs in predictive accuracy. Most of the implemented algorithms had an average run-time per milestone and a country lower than 1 s

for predicting each country. Thus, none of these algorithms presents issues for working in real-time with the current training set sizes.

4.2.2 | Experiment II: multiple-countries training

In the second experiment, we predicted over the same 50 countries at the same eight points as in Experiment I. Still, this time we used a single

model trained with 50 countries rather than training 50 models using a single country as we did in Experiment I. Table 2 shows that Gradient Boo-

sting is still the best-performing method for predicting COVID-19 cases. The results show some discrepancies between the performance of the

methods when they are ranked using the RMSE and the MAE. However, the ranking of the methods between the two metrics is still consistent,

and the differences are just one position up or down in the ranking. There are very few differences in predictive performance between the static

methods. Conversely, there are clear differences between the incremental (marked with an asterisk) and the static methods. In this case, ARIMA

cannot be used as a baseline due to its constraints to be trained with multiple countries at once, as it is a univariate technique. ARIMA cannot be

trained with multiple time-series data at the same time. Therefore, we could not implement ARIMA in multi-country approaches. Figure 7 shows

that the SC experiment obtains lower errors than the MC experiment. We believe that this behaviour is a consequence of grouping the number of

TABLE 1 Models trained with the single-country (SC) approach

Metric RMSE MAE Time (s)

Gradient Boosting 1821 1635 0.147

Decision Tree 1976 1713 0.005

Random Forest 2187 2031 0.197

ARIMA 2483 2180 2.082

LSTM 3311 3053 20.525

Bayesian Ridge 7165 5934 0.011

Hoeffding Adaptive Trees* 15,653 11,502 0.146

Hoeffding Trees* 19,412 13,548 0.115

Adaptive Random Forest* 23,923 17,336 2.909

Linear SVR 37,518 31,370 0.02

Passive Aggressive Regressor* 111,570 91,809 0.002

Note: Results show the mean average RMSE and MAE for the prediction of the 50 countries. The symbol (*) indicates that it is an incremental method. We

used ARIMA as a baseline.

F IGURE 6 Boxplot of the RMSE for each algorithm for the eight milestones of each of the 50 predicted countries applying the single-country
approach (SC).* ARIMA was used as a baseline across experiments and its median is marked as a red dotted line.
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cases across countries regardless of the state of the epidemiological curve. This will be addressed in the next section, grouping using similarity

metrics.

Figures 6 and 7 are ordered by the median of the RMSE values in eight-time points. Static ensembles outperform ILMs in the single-country

and multi-country experiments in our study. As aforementioned, the common framework to compare incremental to traditional ML methods used

in this paper could be a constraint jeopardizing the performance of the incremental algorithms. Thus, we performed an experiment to compare

the predictive accuracy of the incremental learners using hold-out with a test-then-train evaluation (prequential). Prequential evaluation is used as

a convention in the incremental learning literature.

Table 3 shows that all but one of the ILMs improved their performance in terms of MAE by using a prequential evaluation. However, their

RMSE is higher for all the algorithms than the Passive-Aggressive Regressor, which benefited from a prequential evaluation. These results do not

suggest a significant improvement in predictive accuracy for any incremental learners based on decision trees. These algorithms also perform low

when compared to static learners, and the reason for this behaviour could be beyond the simple selection of the training mechanism. We believe

that this is because the selected feature sets act as a limiting factor for the batch size and the frequency of model updates. The adaptive

approaches may need shorter sliding windows to adapt on time to any changes in the COVID-19 curve. Hence, compared to ILMs, the static

learners show the best predictive performance and run times across all the algorithms in the current experimental setup. Figure 8 shows that as

months go by, the RMSE error tends to increase, although the models have more data. However, we need to bear in mind that this is probably

because there are more cases, and therefore the absolute errors in the predictions are higher. The option of using percentage error metrics has

TABLE 2 Average of the RMSE and MAE for 50 predictions results using multiple-countries (MC) to train each model ordered by RMSE

Metric RMSE MAE Time (s)

Gradient Boosting 7500 3,052 6.86

Bayesian Ridge 7671 2943 0.04

Random Forest 7739 3197 3.11

LSTM 8272 3089 138.57

Decision Tree 8764 3663 0.46

Linear SVR 12,824 4577 1.91

Hoeffding Adaptive Trees* 13,946 4803 21.23

Adaptive Random Forest* 14,151 4599 163.51

Hoeffding Trees* 17,381 5496 7.26

Passive Aggressive Regressor* 130,604 40,041 0.005

Note: The symbol (*) indicates it is an incremental method.

F IGURE 7 RMSE per algorithm for the six time-points (monthly) for the multi-country experiment (MC) covering the 50 countries with the
most cases. The performance of ARIMA for the SC experiment (Figure 6) is shown as a baseline using a red dotted line.
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the opposite issue; it penalizes when low cases are predicted, especially when there are zero cases. That is why most papers use RMSE and MAE

as metrics.

4.2.3 | Experiment III: multi-countries training by similarity

In the third experiment, we applied an approach that has hardly been applied in the literature. First, we used the time similarity measures (ED and

DTW) to calculate the nine more similar countries to the predicted country based on the COVID-19 time series. The similarity measures compute

the time series of COVID-19 cases (curves) of two countries and return a value representing the distances between the points of the two curves.

And then, we create a dataset to train the models with the data from those nine countries and the predicted one. We did this at each milestone,

as in Experiments I and II. The obtained results are displayed in Table 4. The ML algorithms are represented as rows and are sorted by the average

RMSE obtained across experiments. Experiments are represented as columns to make them easier to compare.

By computing the mean of each of the experiments (columns), we could observe that the average RMSE was 22,885 for MC and 22,454 for

SC. The ED reduced by 74.21% and 74.70% the RMSE obtained in the single country and multiple country approach, respectively. Likewise, the

DTW reduced by 74.89% and 75.36%, a little more than the previous performance. For some algorithms, such as Linear SVR, the obtained error

was 8.5 times lower when grouping by DTW than in the SC approach. In Table 4, DTW is shown as the best similarity metric since eight of the

10 algorithms trained after grouping with this metric obtain a lower RSME than the ones trained after grouping by ED. The results show that

applying clustering based on time similarity measures is a very efficient and promising approach.

Table 4 compares the mean results of all algorithms across experiments in terms of MAE. There is a high-performance gain in terms of MAE

in the multi-country experiment that does not occur in terms of the RSME. This means that there are more significant errors in the multi-country

approach at specific points in time. Bear in mind that RSME penalizes large errors as under or over-estimations due to squaring the differences. In

contrast, these large errors at certain points in time can be reduced in terms of MAE by periods of very accurate forecasts. The multi-country

experiment obtains a lower cumulative mean absolute error overall. This does not occur for the static algorithms, which are overall the best

TABLE 3 Average RMSE results for the eight milestones of multi-country experiments comparing the hold-out versus the prequential
evaluation

Metric RMSE MAE

Adaptive Random Forest (prequential) 16,398 4258

Adaptive Random Forest (hold-out) 14,151 4599

Hoeffding Adaptive Trees (prequential) 18,074 4891

Hoeffding Adaptive Trees (hold-out) 13,946 4803

Hoeffding Trees (prequential) 18,075 4892

Hoeffding Trees (hold-out) 17,381 5496

Passive Aggressive Regressor (prequential) 83,661 22,229

Passive Aggressive Regressor (hold-out) 130,604 40,041

F IGURE 8 Evolution of the RSME across milestones. Average RMSE across countries per algorithm in the MC experiment
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performers in terms of MAE and RSME across experiments. Gradient Boosting and Random Forest have been proven to be the best-performing

models for MAE and RSME, obtaining lower predictive error under both metrics. A summary of the performance for all the approaches can be

seen in Figure 9, which represents the average performance of the 10 Ml methods for each approach. It can be seen that for both RMSE and

MAE, the use of time series similarity measures improves the predictive performance significantly.

In terms of the SC and MC approaches in Tables 4, it is visible how these experiments outperform each other for different algorithms. In

terms of MAE, the tree-based static models, which are some of the top performer methods, obtained significantly lower MAE in the SC experi-

ment, negatively affected by the grouping of 50 countries. Conversely, Bayesian Ridge, Linear SVR and the ILMs are positively affected in terms

of MAE in the MC experiment. In terms of RSME, a similar trend can be observed; the LSTM and the Passive-Aggressive Regressor are also nega-

tively impacted by the MC experiment. Differences between MAE and RSME can occur due to the nature of both metrics computing the error

since RSME penalizes large errors. Hence, the MC approach makes the LSTM and the Passive-Aggressive Regressor less reliable methods (greater

deviations) in error over time. Similar differences between MAE and RSME between any of these approaches in our experiments can be attributed

to the same effect. When looking at these experiments at algorithm level in Table 4, training models with similar countries obtains the best aver-

age results overall. Gradient Boosting goes down to an MAE of 1419 when using Dynamic Time Warping, compared to ARIMA, which has an

MAE of 2180 (Table 1 since it only applies to SC) as it can only be trained with one country at a time due to its univariate nature.

4.3 | Discussion

It is very positive to see how the use of time similarity measures can help reduce by a factor of four the RMSE of most methods, either using the

DTW or the ED. We think that the DTW performs slightly better because it automatically aligns the time series curves even when they are shifted

on time. Although in the experiments, we used a shorter version of DTW to accelerate the experiments that only aligned within a threshold. In

TABLE 4 Aggregate results from Experiments I, II and III (DTW and ED)

N Algorithm
RMSE MAE

SC MC ED DTW Mean SC MC ED DTW Mean

1 Gradient Boosting 1822 7500 1908 1896 3282 1636 3052 1425 1419 1883

2 Random Forest 2188 7739 1811 1800 3385 2032 3197 1389 1382 2000

3 Decision Tree 1977 8764 2171 2155 3767 1713 3663 1555 1547 2120

4 LSTM 3311 8272 2277 2253 4028 3054 3089 1770 1748 2415

5 Bayesian Ridge 7166 7671 1839 1845 4630 5935 2943 1422 1429 2932

6 Hoeffding Adaptive Trees* 15,654 13,946 2594 2827 8755 11,502 4803 2012 2229 5137

7 Hoeffding Trees* 19,412 17,381 2424 2894 10,528 13,548 5496 1881 2273 5800

8 Adaptive Random Forest* 23,923 14,151 3120 3102 11,074 17,336 4599 2308 2313 6639

9 Linear SVR 37,518 12,824 4448 4405 14,799 31,371 4577 3366 3321 10,659

10 Passive Aggressive Regressor* 111,570 130,604 35,319 33,204 77,674 91,809 40,041 23,550 21,724 44,281

Note: The ED reduced by 74.21% and 74.70%, and the DTW reduced by 74.89% and 75.36% the RMSE obtained in the single country and multiple

country approach, respectively. And the ED reduces by 77.39% and 46.09%, and the DTW reduces by 78.11% and 47.80% the MAE. Results are sorted by

the mean RMSE across the experiments.

F IGURE 9 Average performance in terms of RMSE and MAE for the 10 Ml methods (incremental plus static) used in the experiments.
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this regard, our selection of ML methods is crucial to allow a multivariate representation of the daily cases; this enables learning patterns from

multiple countries concurrently, something not achievable using univariate methods such as ARIMA.

Experiments I, II and III compare traditional ML regression algorithms to Incremental Learners for 50 countries, eight-time points, and a com-

mon hold-out evaluation scheme. These results show how traditional static ML techniques perform better than the ILMs in the three experiments.

ILMs are oriented to online scenarios and continuous adaptation. Models like HT and ARF are designed for data streaming scenarios and to handle

large amounts of data, like in the stock market. The time series of coronavirus cases are not big enough for the standards of ILMs. The same

applies to LSTM, which performs very well in other domains but not in our experiments.

While one may think that the MC approach should give enough information to most models to improve their performance, the results show

the opposite. This is probably because many of these countries have very different behaviours in the evolution of COVID-19 cases and can mis-

lead rather than help the model predict a particular country. That is to say, at the same time point, different countries may be in states of an out-

break different from each other, such as at the start or the end of a different COVID-19 wave. The presence of various disease states across

countries adds extra complexity to the MC approach compared to the SC approach.

Gradient Boosting and Random Forests are the best performers in terms of predictive accuracy. On top of that, they have shown low execu-

tion times for our experiments. The linear SVR is the less accurate static learner, but apart from this method, static learners have been the best

performing methods in our study.

The Passive–Aggressive Regressor shows the worst predictive accuracy among all the methods. This can be explained by the fact that this

technique is targeted at purely incremental scenarios, such as other techniques from the ML literature, like the Stochastic Gradient Descent

regressor. This technique is highly dependent on continuous model updates to produce accurate predictions, which is not the case in our study

due to the long sliding windows used to represent each data example and for each of the milestones (see Figures 2 and 5).

The performance of the incremental learners can be justified in a similar manner. Many of these approaches are aimed at continuous data streams.

Hoeffding Adaptive Tree and Adaptive Random Forest have active drift detectors designed to align to the speed of changes. In the approach followed,

a batch of many weeks may hold abrupt changes in the COVID-19 spread curve. Under this design, the adaptive learners are unable to adapt until the

end of the batch. These would benefit from a different feature set and an experimental methodology oriented to streaming settings. But this is out of

scope in the current work since it would penalize the static learners that can clearly handle this scenario well with the current data.

Finally, in terms of time execution, the LSTM method requires a long time to be trained, about 40 times more than that of the first three

methods. This is due to the iterative design of training a neural network. Surprisingly, the incremental learners also consume more execution time,

which could be justified by the incremental updates every batch, and by the abrupt drifts that would trigger internal actions in the algorithms

(removal of base classifiers and pruning of branches) at every drift detected.

5 | CONCLUSION

This work explores the suitability of using time series similarity measures like DTW in combination with ML algorithms trained to predict the time

series of coronavirus cases. It is crucial to do more research to find the best strategies and methodologies to tackle outbreaks of future viruses so

that their effects on public health can be addressed in a more effective way.

Our research utilized the daily information on COVID-19 cases during 2020 for 50 different countries. We recreated the situation in which

countries had to flatten the curve of the number of cases while protecting the economy of the country at the same time. At that moment, there

was little information about the spread of the virus and the new outbreaks. Our research is valuable because of the insights we got from the

experiments. We compared the performance of training models under three approaches: using a single country, using multiple countries and using

only those countries similar to the one that was predicted. Additionally, we compared the performance of state-of-the-art static versus online

ILMs for predicting the number of new cases. We used ARIMA as a baseline, and many of the methods proposed were notably more accurate

than this baseline.

We highlight that using time similarity measures such as ED and DTW worked out very well, drastically increasing the performance of all

methods. The methodologies based on compartmental models that try to learn the behaviour of a virus on the population based on epidemiologi-

cal models are much more complex since they need to consider many parameters involved in a pandemic, and these parameters need to be prop-

erly calibrated. This is very difficult because a lot of different variables (sociological, medical, political, economic, cultural, etc.) affect the virus's

evolution, and their values are constantly changing. On the other hand, our methodology is straightforward and quick to implement, and we have

proved its effectiveness.

We have implemented online incremental ML models which had not been applied for forecasting coronavirus cases. ILMs, a priory, represen-

ted a relevant alternative due to their ability to adapt to non-stationary behaviours, which is a characteristic of epidemic curves. However, possi-

bly because the feature set selected with long sliding windows adds constraints to continuous updates, the ILMs did not perform well compared

to the static ones even when applying a more suitable training scheme for them called prequential evaluation, in which the model is updated con-

tinuously in batches.
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The most interesting points we consider in our paper are:

• The RMSE of implementing ARIMA is 2483 and the RMSE when using TSSM with Gradient Boosting is reduced to 1822, which is a clear

improvement. When compared to univariate methods like ARIMA, selecting multivariate Machine Learning methods brings the possibility of

learning patterns from multiple countries concurrently (MC, ED and DTW experiments). In some of these experiments, training models with

similar countries gives the best mean results overall. For instance, Gradient Boosting goes down to an MAE of 1419 cases when using Dynamic

Time Warping, compared to ARIMA, which had the best result with an MAE of 2180. In this domain, a difference of this sort is significant since

the number of cases can grow exponentially in a matter of days. Thus, ARIMA obtained competitive results in the SC experiment but its perfor-

mance is not so good when compared to multivariate algorithms trained with the similar-countries approach.

• The version of ARIMA used displayed higher runtimes, not being competitive in this aspect with other Machine Learning algorithms like Gradi-

ent Boosting.

• The idea of using time series similarity measures increases the accuracy of the methods and reduces the RMSE by a factor of four, and by a

greater factor in terms of MAE. We think this is an exciting path to explore in the future.

• Training models with all the countries give slightly worse performance than doing so training with only one country. This is probably because

COVID-19 behaves differently across countries at different points in time, and some countries may mislead the model rather than help it.

• ILMs obtained lower performance than that static methods. We believe this is due to abrupt changes in the COVID-19 spread curve and con-

straints for the models to adapt in time due to the selected feature set and experimental methodology. These changes are well captured by the

feature set selected and handled by the static learners.

• Gradient Boosting, Random Forest, and Decision Trees are very accurate and robust methods for the three experiments. On the other hand,

the performance of the Passive-Aggressive Regressor is very poor in all the experiments, demonstrating that it is not a suitable algorithm for

the current experimental design. Also, Linear SVR does not perform very well either.

• The LSTM model did not perform as well as expected even though it is considered the best method for time series in many domains. It is quite

likely that if we run some experiments to optimize the values for its parameters (hyperparameter tuning), we can get better performance from

this method. Still, this step also adds more complexity to the experiments, which we are trying to keep as simple as possible.

For future work, we would like to explore further the idea of applying time series to select similar countries. Some aspects of this approach

can be explored, such as the optimal threshold for a given measure, the most suitable measures for each method, or the methods that work best

for this approach. We should also consider time as a relevant parameter when selecting time similarity measures. There are many time similarity

measures whose performance in the context of coronavirus forecasting could be explored. Lastly, we would like to deepen on how changing the

size of the time window prediction may affect the performance of the methods.
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