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Dear Sir 

 

Firstly, thank you very much for your positive reply regarding our manuscript 

“Mitochondrial plasticity in brachiopod (Liothyrella sp.) smooth adductor muscle as a 

result of season and latitude” (MABI-D-09-00514).  We have carefully read through 

your and the reviewer’s comments on our manuscript and considered them 

accordingly.  Below is our response to some of the points made. 

 

To date, mitochondrial cold proliferation has only been described in one group of 

ectotherms, fish.  As such, this is the logical departure point for this study.  Our study 

is the first to look at mitochondrial characteristics as a function of temperature in 

invertebrates in both a long-term (adaptational) and short-term (seasonal) sense.  

Therefore we are forced to compare our data with those from fish as there are no other 

data to compare with.  Nevertheless, we do agree that fishes and brachiopods are 

vastly different animals, and any comparison has its’ limitations.  Consequently we 

have reined in our discussion and eliminated many of the comparisons with fish, 

except where we think appropriate. 

 

The section regarding the two different forms of mitochondrial plasticity has also 

been condensed and is hopefully less convoluted as a result. 

 

Spring, i.e. September to November, is the time of the largest planktonic bloom in 

Doubtful Sound as indicated by the greatest chlorophyll concentrations (Goebel, 

2005), however there is a second, smaller bloom that usually occurs between January 

and March, which was the time we collected our brachiopods. 

 

Figures 2A and B are now supplemental figures and the data from figures 3-6 are 

presented in two tables. 

 

All other comments have been duly noted and the manuscript changed accordingly. 

 

Reviewer 2 raised a valid concern with respect to scaling of organs in brachiopods.  

Evidence from mammals indicates that the relationship between muscle/organ mass 

and size is isometric (Hoppeler & Weibel 2000, Acta Phys Scan 168, 445-56, Mathieu 

et al 1981, Resp Physiol 41, 113-125).  Obviously, extending this directly to 

brachiopods would be tenuous at best, and we concede that the relationship between 

the length of the brachiopods and the adductor muscle wet weight may not necessarily 

be isometric.  But in the absence of any data of our own, or in the literature on organ 

scaling in invertebrates, we feel that our attempt to correct for size effects is valid.  

Deriving scaling exponents from our data are precluded, primarily by the very narrow 

size range we used in order to avoid this problem, i.e. 37-54mm for L. neozelanica.  

Furthermore, we consider the differences seen here to be of sufficient magnitude (i.e. 

a 27% larger absolute muscle mass in brachiopods that are 16% smaller) to 

sufficiently qualify as evidence of cold-induced muscular hypertrophy.  Nevertheless, 

we have reined in our speculative discussion in accordance with reviewer 2’s wishes.  

 

We do not have data for other tissues as this was not the focus of the study.  As a 

consequence, we are not able to give a condition index.  We do not think this would 

have any major impact on our findings.  As pointed out in the discussion, if 
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condition/nutritional state were to have an effect, it would be much more likely to be 

seen in the digestive organs than the adductor muscle. 

 

Reviewer 2’s specific comments: 

1) The referee is correct in that these brachiopods do lay down stored reserves in the 

summer and convert these to cell division and increase in structural materials in 

winter.  However, unlike many other groups (that do store lipids and carbohydrates), 

these stores are proteins or glycoproteins (James et al 1992), and thus, although they 

are almost certainly transformed form storage to structural, they are not transformed 

from lipids and CHO to protein.  Liothyrella uva increases in shell length in the 

winter more than the summer (about 4 times as much growth in winter than summer, 

(Peck et al 1997, Phil Trans R. Soc 352, 851-858), and this cycle in increase in linear 

dimension occurs completely out of phase with changes in mass. 

 

Hopefully we have made this clearer with the following alteration in the third 

paragraph of the discussion: Secondly, although the quantity of food in winter is 

drastically reduced, such that it is insufficient to met the basal metabolic requirements 

(Peck et al. 1987), the unchanged basal metabolic rate indicates that L. uva decouple 

growth from feeding, growing in size in winter on stored protein/glycoprotein 

reserves from summer (Peck et al. 1989, James et al. 1992), i.e. total animal mass is 

converted into increased size (Peck et al. 1997). 

 

2) Although evidence in mammals indicates that there is a direct linear relationship 

between mitochondrial volume density and oxygen consumption (Mathieu et al 1981, 

Resp Physiol 41, 113-125), we are aware that there may not necessarily be a linear 

relationship between volume density, cristae surface density and the myocyte aerobic 

capacity in brachiopods.  Our simple assertion is that if either volume density or 

cristae surface density increase then an increase in the myocyte aerobic capacity will 

follow. 

 

3) Giving the mitochondrial volume (µm
3
) is essential as this is a parameter that could 

affect not only the aerobic capacity of the muscle, but ultimately the respiration rate 

of the whole animal.  This parameter demonstrates that although the winter 

brachiopods were smaller, they had larger adductor muscles.  A larger muscle mass 

means they had more mitochondria, which would have an affect on the metabolic rate.  

This is a fact that has no dependence on whether the increase in adductor weight 

scales isometrically, or was the result of cold induced hypertrophy. 

 

4) Through shortening and condensing the discussion we were able to reduce the 

number of references from 55 to 38. 

 

5) The discussion has also been shortened by halving the section on hypertrophy to 

one paragraph.  Nevertheless we still think it is important to point out the significance 

of the differences in shell length and adductor muscle wet weight between the 

animals, and that if not conclusive evidence, then it is very suggestive of cold-induced 

hypertrophy. 

 

We hope you consider our remarks favourably.  I look forward to another speedy and 

positive reply, and the possibility of publishing in your illustrious journal. 

 



Yours sincerely 

Glenn Lurman 
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Abstract 

 

In fishes a negative correlation exists between habitat temperature and the mitochondrial 

volume density (Vv(mt,mf)), while seasonal acclimatization may increase Vv(mt,mf) or  the 

surface density of the mitochondrial cristae (Sv(im,mt)).  The affect of temperature on 

invertebrate mitochondria is essentially unknown.  A comparison of two articulate brachiopod 

species, Liothyrella uva collected from Rothera Station, Antarctic in summer 2007, and 

Liothyrella neozelanica from Fiordland New Zealand collected in winter 2007 and summer 

2008, revealed a higher Vv(mt,mf) in the Antarctic brachiopod.  The Sv(im,mt) was however, 

significantly lower, indicating the Antarctic brachiopods have more less reactive, 

mitochondria.  Liothyrella uva, from the colder environment, had larger adductor muscles in 

both absolute and relative terms than the temperate L. neozelanica.  Furthermore, a seasonal 

comparison (winter Vs. summer) in L. neozelanica showed that the absolute and relative size 

of the adductor increased in winter, Vv(mt,mf) was unchanged, however Sv(im,mt) was 

significantly increased.  Thus, seasonal acclimatization to the cold resulted in the same 

number of more reactive mitochondria.  Liothyrella neozelanica was clearly able to adapt to 

seasonal changes using a different mechanism, i.e. primarily through regulation of cristae 

surface area as opposed to mitochondrial volume density.    Furthermore, given the 

evolutionary age of these living fossils (i.e. approximately 550 million years), this suggests 

that mitochondrial plasticity has roots that extend far back into evolutionary history. 

 

Introduction 

 

Temperature has significant effects on the physiology of ectotherms and is often seen as a 

master regulator affecting the whole animal on a number of levels including muscle function.  

Muscle is a highly plastic tissue and a host of compensatory mechanisms on a number of 

levels ranging from molecular through to organelles are employed to maintain function 

(Egginton and Sidell 1989; Johnston 1993; Sänger 1993; Watabe 2002).  In fish, mitochondria 

are subject to reductions in efficiency as temperature decreases because increased unsaturated 

fatty acids, are needed to maintain mitochondrial membrane fluidity at low temperatures 

(Logue et al. 2000; Guderley 2004b), which leads to increased proton leak across the 

membrane (Brand et al. 1991; Guderley 2004a).  The thermodynamic effects of reduced 

temperature also lead to a reduction in enzyme activity (Sänger 1993; Guderley 2004b). 

Compensatory mechanisms include improved catalytic efficiency by the expression of 
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different enzyme isoforms (Crockett and Sidell 1990; Guderley 2004b), increasing the 

mitochondrial volume density (Sänger 1993; Johnston et al. 1998) and in one study, the 

mitochondrial cristae surface density, i.e. the “amount” of cristae packed within a 

mitochondrion also increased in the cold (St-Pierre et al. 1998). 

Although this is well characterised in fish, it is largely unknown whether the effects 

and mechanisms are the same in invertebrates.  At best, only a handful of studies exist that 

have looked at the effects of temperature on mitochondrial plasticity in invertebrates.  One 

laboratory based study looked at mitochondrial density in different populations of the same 

species of marine mud worm (Arenicola marina) from different latitudes, i.e. the North Sea 

and the White Sea in response to thermal acclimation.  An increase of 2.4-fold was found in 

the mitochondrial volume density in the White Sea A. marina compared to the North Sea A. 

marina (Sommer and Pörtner 2002).  The cristae surface density was not measured in their 

study and is seldom measured in the majority of studies concerning temperature. Therefore 

the possibility that annelids also increase the cristae surface density in their mitochondria in 

the cold cannot be excluded. 

More recent work has investigated mitochondrial volume density in the Antarctic 

limpet Nacella concinna from different latitudes within the Southern Ocean (Morley et al. 

2009).  There was evidence of mitochondrial plasticity in the foot muscle. However, there was 

no evidence for the expected change in mitochondrial volume density and the key response 

reported was through a change in mitochondrial cristae surface area (Morley et al. 2009).  

While the results of this study are interesting, in particular because they demonstrated that 

even stenothermal Antarctic invertebrates can exhibit a certain degree of mitochondrial 

plasticity, they are limited precisely because they come from a stenothermal invertebrates 

(although it can be argued that being intertidal, N. concinna are one of the more eurythermal 

Antarctic invertebrates). 

To see whether the paradigm of mitochondrial plasticity in response to temperature 

change is applicable to an even broader group of invertebrates, a completely different animal 

phylum was selected, the Brachiopoda.  Furthermore, the present study provided the 

opportunity to investigate whether these invertebrates are capable of adaptation on both 

evolutionary and/or seasonal scales.  This was possible because two species from the same 

genus, Liothyrella uva from the Antarctic Peninsula and Liothyrella neozelanica from 

Fiordland, New Zealand were studied.  Articulate brachiopods such as Liothyrella are filter 

feeders predominantly living off phytoplankton (Rhodes & Thayer 1991, Peck et al. 2005).  

They are traditionally described as common in polar regions, the deep sea and fiordic 
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environments (James et al. 1992).  In Fiordland, New Zealand, they occur at depths of 15-50 

m.  Liothyrella neozelanica experience a broad range of temperatures in Fiordland, where 

winter temperatures may drop to 9°C and summer maxima climb to 18°C, although this varies 

with depth, and there is even greater variation close to the surface (Cornelisen and Goodwin 

2008).  The Antarctic L. uva near Rothera, on the other hand, experience very stable but 

extremely cold seawater temperatures of -1.8 - +1.0°C. 

 

Methods 

 

Specimen Collection 

 

Antarctic Liothyrella uva (Fig. 1) were collected by SCUBA diving near Rothera Station, 

Adelaide Island (67°34.25’S, 68°08.00’W) from 20 m depth in February 2007 (N = 8).  

Brachiopods were then transported back to the UK where they were held for 3 months in a re-

circulating seawater aquarium maintained at 0°C and a 16:8 light:dark photoperiod. 

Biological filtration and regular water changes maintained seawater quality whilst the addition 

of an algal solution (Nannochloropsis, Instant Algae ®) supplemented the natural food in the 

seawater. 

Temperate Liothyrella neozelanica (Fig. 1) were collected by SCUBA divers also 

from approximately 20-30 m depth in Doubtful Sound, New Zealand (167°02.91’E, 

45°20.92’S).  Collections were made both in winter (July 2007, N=8) when the seawater 

temperature was 11°C, and in summer (February 2008, N=8) when the water temperature was 

17°C.  Collected Liothyrella neozelanica were kept in a bucket of seawater for a maximum of 

2 hours before they could be prepared for tissue fixation on shore at the University of Otago 

Deep Cove field station in Doubtful Sound. 

 

Brachiopod Tissue preparation 

 

Shell length was measured (±0.01 mm) with vernier callipers and wet weight (±0.01 g) were 

determined both when the mantle was full of seawater and when empty.  The anterior portions 

of both valves were cut away with scissors exposing the mantle cavity but leaving the 

majority of the two valves, the hinge and consequently the muscles intact and attached to both 

valves.  This allowed in situ fixation of all muscles at their normal contracted length.  

Brachiopods were fixed for 24 hours in 3% glutaraldehyde containing 0.05 M PIPES pH 7.6, 
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0.3 mM calcium chloride, 7 mM sucrose and 0.77 mM sodium azide.  The osmolality was 

similar to that of seawater (800 mOsm kg
-1

).  After primary fixation, the brachiopods were 

washed three times with, and stored for 5 weeks in the same solution as above, without the 

glutaraldehyde and sodium azide. 

Smooth adductor muscles were dissected free from their attachment points and care 

was taken not to destroy the natural form.  Muscles were dried with tissue paper and weighed 

(± 2 mg) and then weighed again in fixative to determine the tissue density (1.018).  Care was 

again taken to ensure the tissue did not dry out significantly.  Drying and weighing took 

approximately 15-20 sec.  Muscles were secondary fixed in 1% osmium tetroxide for 2 hrs, 

washed 3 times in the same storage buffer used above and left overnight.  They were bulk 

stained in 0.05 M maleate buffered (pH 5.2) uranyl acetate for 2 hrs.  Muscles were then 

serially dehydrated in 70, 90 and 100% ethanol solutions before being embedded in Quetol 

651 and cured at 60°C for 48hrs (Ellis 2002).  Blocks were selected at random for semithin 

(0.5 µm) sectioning. One block, containing a whole adductor muscle was sectioned 

transversely at approximately half the length of the adductor muscle using a Reichert 

ultramicrotome.  Sections were stained with methylene blue.  Ultrathin sections (80 nm) were 

placed on copper grids (200 mesh). Grids were then stained for 5 min in uranyl acetate 

saturated 50% methanol and then for 5 min in lead citrate. 

 

Morphometry 

 

Methylene blue stained semi-thin sections were analysed using a Zeiss Axioskop at 100x 

magnification fitted with an Olympus DP70 digital camera that was connected to a computer.  

Frames were selected randomly by starting in the top left corner and sampling every 5th frame 

with ten frames sampled, i.e. 250 myocytes.  The maximum cell diameter (µm) was 

determined to be the distance between the two most distant myocyte edges perpendicular to 

the longitudinal axis of the cell and was measured using the arbitrary distance function in the 

Olympus DP software, version 3.2. 

The relative mitochondrial volume density (Vv(mt,mf)), given as a proportion of muscle 

fibre volume, was determined was determined as per Morley et al. (2009).  Briefly, point 

counting (Weibel 1979) at 4400x magnification on a Zeiss EM902 transmission electron 

microscope, with a 2.12 µm spaced 16 point grid was used. For each animal 120 fields of 

view were analysed (Supplemental Fig. 2).  Electron micrographs of individual mitochondria 

(8 to 15 per animal, Fig 2 supplementary material) at a magnification of 32000x were taken 
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for the estimation of the surface density of the inner mitochondrial membrane (Sv(im, mt)), 

which was determined using line-intercept measurements (Weibel 1979).  Absolute 

mitochondrial volume (per adductor muscle) was calculated by multiplying the adductor 

muscle weight by the proportion of mitochondria.  The absolute inner mitochondrial 

membrane surface area (per adductor muscle) was calculated by multiplying the absolute 

mitochondrial volume by the relative surface area. 

 

Statistics 

 

Statistical analysis was performed using SigmaStat 3.5.  All data were checked for normality 

using Kolmogorov-Smirnov test (with Lilliefor’s correction) and equal variances.  For the 

data were normal and had equal variances, a one-way ANOVAs were used to test for 

significant species effects, while post-hoc Holm-Sidak tests were used to determine 

significant between groups.  Normal data with unequal variances (i.e. absolute volume density 

and absolute cristae surface area) were tested for significance (without transformation) using a 

Kruskal-Wallis one-way ANOVA on ranks and Tukey tests to test for differences between 

groups.  All values are given as the mean ± standard error of the mean (SE). 

 

Results 

 

Significant differences existed between the sizes (measured as shell length) of the Liothyrella 

sampled (p < 0.05, F = 18.5, d.f. = 2). The Antarctic L. uva were smaller than L. neozelanica 

sampled in winter, and both of these were smaller than L. neozelanica sample collected in the 

summer (Table 1).  Opposite to this, adductor wet weight was significantly greater in L. uva 

than summer L. neozelanica (p< 0.05), while winter L. neozelanica was intermediary and not 

significantly different to either (Table 1).  As a consequence, there were significant difference 

between all groups in the adductor muscle wet weight relative to the size (p < 0.05, F = 12.3, 

d.f. = 2) of the brachiopod (Table 1), which declined from L. uva through winter L. 

neozelanica to the smallest ratio in summer L. neozelanica.  The Antarctic L. uva myocyte 

diameter was 27% greater than winter L. neozelanica (p < 0.05) and 18% larger than summer 

L. neozelanica (p < 0.05).  No significant differences were seen between the diameter of 

myocytes from winter or summer L. neozelanica, indicating no cellular hypertrophy as a 

result of seasonal acclimatization (Table 1). 
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 A significant difference was seen in the muscle fibre mitochondrial volume density (p 

< 0.05, F = 4.2, d.f. = 2), which was significantly higher in L. uva, than summer L. 

neozelanica (Table 2).  The winter L. neozelanica Vv(mt,mf) was intermediate between the two 

and not significantly different from either group, but much closer to the summer L. 

neozelanica value.  Absolute mitochondrial volume was also significantly different between 

the groups (p < 0.05, H = 15.3, d.f. = 2), highest in L. uva and lowest in summer L. 

neozelanica. The winter L. neozelanica was again intermediate (Table 2).  This was due 

mainly to L. uva having larger adductor muscles than L. neozelanica, indicating increased 

myocyte size in the cold (Table 1). 

The cristae surface density differed significantly between groups (p < 0.05, F = 8.97, 

d.f. = 2).  Although Sv(im,mt) was approximately the same in L. uva and summer L. 

neozelanica, the winter L. neozelanica had significantly greater relative cristae density than 

either of these (Table 2).  The absolute cristae surface area was also significantly different 

between groups (p < 0.05, H = 11.7, d.f. = 2), with it being significantly higher in L. uva, than 

summer L. neozelanica again due principally to the greater adductor muscle wet weight 

(Table 1), and intermediary in winter L. neozelanica (Table 2).  The surface area of 

mitochondrial cristae per unit muscle fibre volume can be used as an estimate of relative 

aerobic capacity (see Johnston et al. 1998). This measure found no significant differences 

between the groups (p = 0.07, F = 3.0, d.f. = 2), i.e. it was similar to L. uva and winter L. 

neozelanica, but it tended to be lower (p = 0.06) in summer L. neozelanica (Table 2). 

 

Discussion 

 

The sizes of the brachiopods differed significantly between the groups studied here.  In the 

absence of any data on the relationship between muscle size and shell size, differences were 

corrected for using the adductor wet weight to shell length ratio.  On this measure the 

Antarctic L. uva had 21% larger adductor muscles than the winter L. neozelanica, although 

they were 13% smaller.  This could be the result of cold-induced muscular hypertrophy or 

mechanical and/or other species differences.  There was, however, an even greater seasonal 

change in adductor muscle size in L. neozelanica, with summer specimens having 26% 

smaller adductor muscles than winter samples although they were 16% larger.  The seasonal 

increase in adductor wet weight observed here in L. neozelanica was due primarily to an 

increase in the number of myocytes (cellular hyperplasia), as opposed to increased myocyte 

size (cellular hypertrophy).  Although seasonal hypertrophy of muscle fibres in ectotherms 
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has been investigated only rarely, for example in halibut (Haugen et al. 2006), cold-induced 

hypertrophy is not an entirely new phenomenon, having been previously documented in fish 

and mammals (Sidell 1980, Sidell and Moerland 1989).  Cold-induced hypertrophy 

compensates for a reduction in the contraction rate at low temperatures by increasing the 

muscle fibre number (Rome 1990). 

The relative mitochondrial volume density in both L. uva and L. neozelanica was low 

(0.9-1.3%) compared to more active animals such as squid mantel muscle (50%, Moon and 

Hulbert 1975), and fish red skeletal muscle (8-50%, Johnston et al. 1998).  It was in a similar 

range to the volume density of mitochondria previously recorded in slower moving or sessile 

invertebrates, e.g. 1.8-4.5% in polychaete body wall musculature (Arenicola marina, Sommer 

and Pörtner, 2002), 0.9-1.3% in scallops (Aequipecten opecularis, Philipp et al. 2008), and 

1.3-2.2% in limpets (Nacella concinna) and mud clams (Laternula elliptica, Morley et al. 

2009).  Analogous to previous findings in polychaete worms, the evidence suggests that con-

generic brachiopods increase their mitochondrial volume density in response to the extreme 

cold of the Antarctic.  Whether this trend is consistent across the phylum Brachiopoda, 

remains to be examined.  Nevertheless, it seems reasonable to conclude that temperature is the 

principal factor affecting the mitochondrial density as these two species are from the same 

genus, which eliminates many differences in phylogeny.  They share also essentially the same 

habitat and lifestyle (Peck 2001). 

The Antarctic L. uva shows only very small seasonal changes in basal metabolic rate 

(Peck et al. 1987).  However, feeding raises metabolic rate in this species by 1.6 fold (Peck 

1996), and this means summer L. uva might be expected to increase mitochondrial densities to 

meet the extra activity costs associated with increased feeding. Several pieces of evidence 

argue against this.  First and foremost, any changes in mitochondrial volume density 

associated with feeding would be expected to take place in the gut and digestive gland, not in 

muscle.  Secondly, although the quantity of food in winter is drastically reduced, such that it 

is insufficient to met the basal metabolic requirements (Peck et al. 1987), the unchanged basal 

metabolic rate indicates that L. uva decouple growth from feeding, growing in size in winter 

on stored protein/glycoprotein reserves from summer (Peck and Holmes 1989; James et al. 

1992), i.e. total animal mass is converted into increased animal size (Peck et al. 1997).  

Thirdly, applying the same principle that metabolic rate is up-regulated in the summer in 

response to enhanced food supply would mean that L. neozelanica, collected in the summer 

should have higher densities as that is the primary time of feeding for this species too, as 

reflected by the higher chlorophyll concentrations seen in summer (Goebel et al. 2005).  
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There were, however, no differences seen in the density of winter and summer L. neozelanica.  

Thus, it is most likely that temperature is the primary determinant of mitochondrial volume 

density, only when comparing different Liothyrella species. 

Evidence of two different strategies for preserving similar myocyte aerobic capacities 

in the cold was evident in the current study.  Evolutionary adaptation of mitochondria to 

changes in habitat temperature was marked by increased mitochondrial volume while the 

amount of cristae packed within the mitochondria was maintained (L. uva Vs. L neozelanica).  

Seasonal changes in habitat temperature were countered by increased cristae packing within 

the mitochondria while the mitochondrial volume stayed the same.  The results concerning 

seasonal changes are similar to recent findings in the Antarctic limpet Nacella concinna 

(Morley et al. 2009).  In that study limpets acclimated to 0°C showed only minor changes in 

mitochondrial volume density compared to 3°C acclimated limpets.  However, significant 

changes in the mitochondrial cristae surface density were observed in response to an 

acclimation difference of only 3°C (Morley et al. 2009).  The temperature difference in the 

current study was twice as large, but still modest.  A larger temperature difference may reveal 

even greater differences in the cristae surface density, or indeed differences in the volume 

density. 

The different forms of plasticity, i.e. volume density and cristae surface density, may 

have different costs associated with them in the different thermal habitats.  Changes in cristae 

surface density due to seasonal acclimatization in L. neozelanica may be a more efficient way 

of up-regulating the reactive surface for oxidative phosphorylation in individual mitochondria, 

eliminating some of the costs associated with making mitochondria de novo.  Furthermore, 

this strategy also prevents a loss in volume of the contractile apparatus if the size of the 

myocytes is to stay the same, as indeed it appears to in L. neozelanica, analogous to the 

optimal fibre size hypothesis (Johnston et al. 2003).  The costs associated with this strategy 

may be an increase in the basal energy requirements and an increase in the oxidative stress 

associated with these more reactive mitochondria (Guderley 2004a). However, brachiopods 

have been described as employing low energy, high efficiency energy utilisation strategies 

(James et al. 1992).  Changing cristae density may ultimately be a less costly mechanism than 

mitochondrial biogenesis. 

Simply increasing the number (i.e. volume density) of mitochondria, but not their 

reactive surface may mitigate oxidative stress problems, and this may be of importance in an 

animal (L. uva) that inhabits an area of high ambient oxygen levels and recognised high 

oxidative stress in some species (Abele and Puntarulo 2004).  Another hypothesis put forward 
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states that mitochondrial proliferation in the cold may be the result of diffusional limitations 

(Sidell and Hazel 1987; Guderley 2004a; Kinsey et al. 2007).  As temperature decreases, so 

too does the rate of diffusion of substrates and metabolites within the intracellular milieu.  

Proliferation in the cold means that more less-efficient mitochondria compensate for this 

limitation as the mitochondria are closer to the point of ATP demand.  This would be 

particularly advantageous for the Antarctic L. uva where diffusion of ATP will not only be 

slower, but L. uva also have myocytes 20% greater in diameter and 40-60% greater in 

volume. 

This study is the first to find evidence of mitochondrial plasticity in articulate 

brachiopods, and this is a phylum that has representatives that appear to have existed on Earth 

with unchanged morphology for over 550 million years, stretching back to the early Cambrian 

(James et al. 1992).  The Brachopoda, Mollusca, Annelida and Vertebrata therefore, have all 

been shown to exhibit some degree of mitochondrial plasticity and three of the four phyla 

have ancestors reaching back to the Cambrian/Pre-Cambrian.  This obviously has 

evolutionary implications and indicates that mitochondrial flexibility probably has deep 

evolutionary roots, stretching back to the Pre-Cambrian.  Just how the volume density and 

cristae surface density are regulated at a molecular level in response to temperature is still 

largely unknown.  The recent finding that PGC-1α is a master regulator of mitochondrial 

biogenesis in mammalian and fish muscle (Urschel and O'Brien 2008, Houten and Auwerx 

2004) makes it a prime candidate for examining the effects of temperature on mitochondrial 

proliferation in brachiopods. Irrespective of the regulation mechanisms this study has 

demonstrated different seasonal and evolutionary mechanisms of compensation of 

mitochondrial function to low temperature in brachiopod adductor muscle. 
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Figures 

 

Fig 1. A) Antarctic brachiopod Liothyrella uva.  B) New Zealand brachiopod Liothyrella 

neozelanica. 

 

Supplemental Fig. 2. A) Electron micrograph of adductor muscle from Liothyrella uva.  

Mitochondria are indicated with arrowheads.  The scale bar represents 5µm.  B) Electron 

micrograph of a single mitochondrion in Liothyrella uva adductor muscle.  Scale bar 

represents 1µm. 
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Tables 

 

Table 1. Brachiopod gross morphological data. Dissimilar letters indicate significant 

differences (p < 0.05). Mean ± SE.  N = 8 for each group. 

 Shell Length 

(mm) 

Adductor Wet 

Weight (mg) 

Weight to 

Length Ratio 

Myocyte 

Diameter (μm) 

L. uva 35.6 ± 1.38
 a
 69.4 ± 7.40

 a
 1.92 ± 0.16

 a
 3.57 ± 0.16

 a
 

L. neozelanica 

(Winter) 

40.8 ± 1.04
 b
 55.1 ± 6.78

 a,b
 1.35 ± 0.16

 b
 2.81 ± 0.14

 b
 

L. neozelanica 

(Summer) 

48.3 ± 1.91
 c
 40.7 ± 5.89

 b
 0.85 ± 0.14

 c
 3.02 ± 0.12

 b
 



Table 2. Mitochondrial parameters from brachiopod adductor muscle in relative and absolute terms.  Dissimilar letters indicate significant 

differences (p < 0.05). Mean ± SE.  N = 8 for each group. 

 Vv(mt,f) Mitochondrial 

Volume (μm
3
) 

Sv(im,mt) (μm
2
 μm

-3
) Cristae Surface Area 

(μm
2
) 

Aerobic Capacity 

(μm
2
 μm

-3
) 

L. uva 0.013 ± 0.0010
 a
 0.84 ± 0.043

 a
 25.9 ± 1.32

 a
 21.5 ± 1.43

 a
 0.34 ± 0.028 

L. neozelanica  

(Winter) 

0.009 ± 0.0007
 a,b

 0.51 ± 0.082
 a,b

 35.1 ± 1.99
 b
 18.0 ± 3.11

 a
 0.33 ± 0.030 

L. neozelanica  

(Summer) 

0.009 ± 0.0016
 b
 0.26 ± 0.025

 b
 26.7 ± 1.74

 a
 6.96 ± 0.78

 b
 0.23 ± 0.042 
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