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ABSTRACT

Anisotropy in tensile properties of plain weave fabric was subjected to research in this
study. For this purpose, on the basis of elliptical yarn cross-section and curves a
geometry model was suggested for fabric structure before deformation. This model
was extended to evaluate fabric deformation in bias direction. Afterward, on the
source of yarn deformation another mechanical-geometrical model was put in
forward. Yarns crimp interchange, yarns flattening and bending rigidity of yarns was
contemplated in this model. The authority of both models was investigated by
imposing tensile stress on polypropylene and cotton fabrics in different directions. To
evaluate exterior geometry of fabric during deformation an image processing method
was explained and applied. Furthermore, modified jaws were employed to reduce
stress concentration on sample’s corners. It was found that the first model is valid to
evaluate fabric geometry before deformation and during deformation in bias direction.
In addition, it was revealed that the mechanical-geometrical model is applicable to
predict force tensile-displacement and internal geometry of a fabric when it is

subjected to stress in arbitrary direction.



ABSTRAKT (IN CZECH)

Pfedlozena disertacni prace se zabyva vyzkumem v oblasti anizotropie tahovych
deformacnich vlastnosti tkanin. Z tohoto divodu byl navrzen model relaxované
tkaniny, vychazejici z eliptického priifezu nité. Tento model byl po tpravé pouzit i
pro popis tkaniny, deformované Sikmym zatizenim. Poté byl na zakladé deformace
nit¢ navrzen dalsi model, ktery pocita i se zaménou amplitudy vazné viny mezi
osnovou a utkem, se zplo§ténim nité a s jeji ohybovou tuhosti. Oba modely byly
oveéfovany zatézovanim polypropylenovych a bavinénych tkanin v rliznych smérech.
Pro hodnoceni vnéjsi geometrie tkaniny v prubéhu deformace byly pouzivany
prostiedky obrazové analyzy. Déle byly pouzity celisti dynamometru, specidlné
modifikované pro omezeni vlivu koncentrace napéti v rozich vzorku na vysledek
mereni. Bylo zjisténo, ze prvni model je vhodny pro tkaniny pred deformaci a pfi
deformaci v Sikmych smérech. Rovnéz bylo zjisténo, Zze mechanicko-geometricky
model je pouzitelny pro predikci vztahu mezi napétim a deformaci a vnitini geometrie

tkaniny pii zatézovani v libovolném sméru.
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Preface

This dissertation is submitted to the Faculty of Textile in partial fulfillment of the
requirements for the degree of Doctor of Philosophy at the Technical University of
Liberec, Czech Republic. It is prepared in seven chapters.

Chapter one contains of scopes of this dissertation.

On the basis of our existing knowledge, summary of issued literatures around of this
topic is presented in chapter two.

To assess behavior of woven fabric in bias and arbitrary directions, two models are
developed in chapter three.

Methods and materials used in this study are described in chapter four. Several
concepts to measure bending rigidity of yarn and tensile strength of fabric in arbitrary
direction are offered in this chapter.

Chapter five demonstrates the obtained results. Then, comparison between
experimental and theoretical values is discussed.

Overall conclusions of this dissertation are presented in chapter six.

Appendixes are included of solving differential equations, proofing of validity of

derived equations, and results of some empirical works in this study.
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1.1 Introduction

Nowadays, applications of fiber assemblies are hastily growing in industry. Within
textile structures, the plain weave fabric is more concerned due to individually yarn
configuration and maximum yarns interlacing in comparison with other textile
structures. The most attention in woven fabric investigations is focused on properties
of woven fabric in principal directions. However, to achieve individual properties of
woven fabric end use, understanding the behavior of woven fabric in off-axis is
fundamental key. Garment industry, composite performance, parachutes, airbags, etc.
are some applications which the woven fabric are subjected to stress not only in
principal directions but also in other directions. Accordingly, anisotropy in tensile
properties of woven fabric is addressed in this study.

1.2 Aims

Behavior of woven fabric under tensile stress is extremely anisotropic due to complex
fabric configuration, yarns interaction and yarn deformation. Multifaceted
deformations include of crimp-interchange, consolidation, extension and flattening are
anticipated for yarns inside of fabric structure under tensile stress. To challenge
anisotropy in tensile properties of plain weave fabric following two distinct aims are
considered.

1.2.1 Fabric geometry before deformation and after bias deformation

The priority in studies of fabric under tensile stress belongs to fabric geometry due to
high dependence of mechanical properties on fabric geometry. Accordingly,
developing a 3D model for fabric geometry before deformation and during
deformation in bias directions (+45°) would be the first scope of this study.

1.2.2 Tensile properties of fabric in arbitrary direction

Then, the tensile properties of woven fabric in arbitrary direction, which includes of
fabric geometry and mechanical properties, would be discussed. For this purpose, a
micromechanical and geometrical model of fabric deformation in arbitrary direction

would be established.

)
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2 Literature review

2.1 Fabric geometry

Geometry of fabric plays a vital role to predict physical and mechanical behavior of
fabric as well as weaving loom adjustment. To establish a geometrical model
considering some idealization for yarn parameters and configuration is not avoidable.
The history of research on fabric geometry probably refers to 1937, when Pierce
expressed his famous model [1]. He established a model for fabric geometry by
assuming incompressible, full flexible and circular cross-section yarns, in which the
curvature of yarns are uniform and circular upon cross yarn (figure 2.1). Then, he
modified it for yarns with elliptic cross-section (figure 2.2). Pierce’s model justifies
many specifications of woven fabric, but in some cases such as close structure of

woven fabric deformation of yarns has significant affect on properties of fabric.

Figure 2.1- Peirce’s circular cross-section geometry of plain weave fabric [4]
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Figure 2.2- Peirce’s approximate treatment of flattened yarn geometry of plain weave

fabric [4]

Afterward, Kemp [2] modeled yarn cross-section that is composed of a rectangular
with two semicircular ends (figure 2.3). This model justifies the jamming conditions

of the structure by simple relations as well.
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Figure 2.3- Kemp's racetrack cross-section geometry of plain weave fabric [4]
Hearle er al. [3] suggested a model consisting of lenticular cross-section and applying

energy method for calculation fabric mechanics (figure 2.4). Among the mentioned
models, it was found that Hearle ef a/ model is the most general model

mathematically [4].

Pa

(a)

(b)

Figure 2.4- Hearle's lenticular cross-section geometry of plain weave fabric; a: unit
cell of plain weave, b: yarn cross-section geometry [4]
Later, according to observations and the principles of lenticular geometry a bow

shaped model was proposed by Hu J L (figure 2.5) [4].
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Figure 2.5- Bow shape cross-section geometry of plain weave fabric; a: unit cell of
plain weave, b: yarn cross-section geometry [4]
To simplify Pierce’s model and evaluating mechanical properties of woven fabric

Leaf [5] and Kawabata [6] used Saw-Tooth model (figure 2.6). To interpret of
behavior of fabric in low stress deformation B. Olofsson [7] proposed a model by
considering the yarn geometry as a function of external forces and reaction forces in
the fabric and assuming a relation between the curvature of the yarn in the fabric and

in the released state. Moreover, to compare various models some investigations have

been performed [8, 9].
N
warp
eft
Ho2 P
Yo %
¢
o THE DEFORMED STATE
(a) (b)

(c)

Figure 2.6- Saw-tooth cross-section geometry of plain weave fabric, relaxed (a, b)
and deformed (c) state
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2.2 Fabric under stress in principal directions

J.Skelton et al. empirically demonstrated that the strength of a fabric in warp direction
is reduced at high pick densities and at a particular low pick density. However, for
medium pick densities the efficiency of yarns inside of fabric approaches about 100%
[10]. Moon H. Seo et al. for showing yarn failure in woven fabric reported that when
the tensioned yarns became jammed between cross yarn before straightening, the
fracture ends were abrupt, similar to those observed in near zero gauge length tests of
yarns out of the fabric (figures 2.7 and 2.8). However, when fabric structure was such
that tensioned yarns could straighten without cross yarn jamming, the resulting failure
zones were considerably longer, with a mixture of fiber fracture and slippage similar

to that observed in long gauge length tests of yarns out of the fabric (figure 2.9)[11].

Figure 2.7- Rupture of rng yarn in Figure 2.8- Rupture of rotor yarn in twill
twill structure as warp [11] structure as warp [11]

. y i
e Gt F LA

.. igure 2.9- Rupture of ring yarn in twill ructure as w 1 1 ]
M. L. Realff [12] dealt with crimp interchange of fabric during deformation in
principal weave directions (figure 2.10). Realff demonstrated that yarns in loaded
direction do not always fully straighten by encapsulation method. In such cases,

jamming occurs, thus preventing further straightening.
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Figure 2.10- Crimp interchange when a fabric is subjected to vertical stress [12]
In other work M. L. Realff er al. [13] proposed a micromechanical model for
predicting fabric properties by using Kawabata deformation geometry [6] and
measuring consolidation and flattening of yarn properties. Ning Pan [14] dealt with
predicting fabric strength under uniaxial and biaxial forces. He pointed out that the
interaction forces of yarn-yarn at crossing point are consisted of two components, a
pressure-independent adhesive component and a pressure-dependent frictional one.
Rajesh D., Anandjiwala and G.A. Leaf [15] surveyed the trend of woven fabric under
large-scale extension and recovery. They pointed out that medium to high curvature
yarn bending, which is inherent in fabric’s large-scale deformation, should be taken
into consideration. Moreover, a modification for yarn bending rule had been proposed
by accounting inter-fiber friction restraint mechanism in mentioned study. Sagar et al.
[16] applied energy method for interlacing fiber assemblies in mesoscale. They
demonstrated that the energy method is a effective way for predicting tensile response
of plain weave fabric. Recently, B. Neckar e al. has been put forward a method to
estimate jamming phenomenon and limit sett of a fabric on the basis of Pierce model
when it is subjected to stress in principal weave directions (figures 2.11 and 2.12)

[17].
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Figure 2.11- Pierce concept geometry Figure 2.12- Jamming condition on the
[17] base of Pierce model [17]

2.3 Fabric under stress in arbitrary direction

To interpret the deformation of woven fabric in bias direction, the concept of
Weissenberg er. al. [18, 19] has been contemplated by most of the researchers. On the
basis of this theory it is assumed that the motion of yarns at the interlacing point is
pin-jointed motion and the incompressible and inextensible warp and weft yarns in a
unit cell of fabric have the constant sett. Although some Weissenberg’s assumptions
are acceptable in ordinary fabrics under low shear deformation, however the
dimension of yarns and yarns sett are subjected to change in high shear deformation.
Afterward, Lindberg et al. [20] dealt with shear behavior of woven fabric. They found
that shear deformation takes place on the basis of two levels: initial shear without
sliding and shear with sliding, and then jamming. They mentioned that shear
deformation is initially resisted by friction in cross-over force and then elastic forces
after jamming. Kilby [21] had been suggested a formula for calculating Young’s
module of fabric in arbitrary direction on the basis of Young’s modules of fabric in
warp and weft direction. Treloar [22] demonstrated that test sample dimension has
significant effect on behavior of fabric in simple shear. He mentioned that the
maximum shear strain, which can be applied without the occurrence of wrinkling, is
dependent on the shape of specimen and length-width ratio. Later on, several distinct
modes of deformation had been put in forward by Grosberg et al. [23] depending the
degree of shear imposed upon the fabric. First: deformation due to rigid intersections

when the shear is too small to overcome the friction. Second: yarn slippage at the
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intersection. Third: an elastic deformation when slipping is complete and fourth:
jamming in the structure. Accordingly they deducted a model on the basis of
mechanical properties of yarns and geometry of fabric structure for predicting initial
shearing characteristics. Soon after, Grosberg et al [24] tried to suggest a model to
predicting mechanism of deformation of woven fabric under shear stress in elastic
region. S. Spival and Treloar [25] have been tried to find some relationship between
bias extension and simple shear test methods. In this study, it is declared that the
distribution of stress in simple shear and bias extension test is not the same and they
mentioned that rupture mechanism in bias extension test is strongly depended on the
shape and dimension of specimen. Meanwhile, the stress distribution across the
specimen would be a maximum at the center, then falling off to zero at the edges in
bias extension test. They pointed out that the mechanism of rupture has been gliding
to disassembly in edges. i.e., the frictional forces at the cross-over were not sufficient
to maintain the pin-pointing at the cross-over points. Skelton [26] studied the
limitation in shear deformation of a fabric. In this study it is pointed out that the limits
of shear are usually defined geometrically. For a wide range of conventional fabrics
the shear limit is essentially defined by side-by-side contact of one set of yarns.
Afterward, Leaf and Sheta [27] demonstrated that the Young’s module of a fabric
under bias stress is connected with shear modulus and fabric Poisson’s ratio in warp
and weft. Postel et al [28] proposed an energy method to apply mechanical properties
of woven fabrics. Sinoimeri and Drean [29] utilized this method for predicting shear
behavior of plain weave fabric. Ning Pan er al. [30] tried to show anisotropy in
strength of fabric. In their study the anisotropy in strength of fabric was plotted by
applying harmonic cosine series on measured values of strength as pretest. Clearly,
the accuracy of this method is depended on number of pretest in different directions.
P. Buckenham [31] compared simple shear and bias extension test method again after
S. Spival and Treloar [25]. He mentioned that the bias extension test is more
appropriate for industrial use than simple shear. Prodromou and Chen [32] tried to
find a relationship between shear angles and wrinkling of several layers of woven
fabrics that were used for composite performances. They measured angular
deformation of warp and weft as shear angles by usage a trellis frame and image
processing method. Moreover, buckling or wrinkling that occurred due to
compressive forces was studied in this research. Critical shear angle, so called

‘locking angle’, was defined as the shear angle under onset of buckling in this study.

10
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Also, shear angle was predicted up to locking angle with pin-joint assumption and
some geometrical parameters, such as, yarn width, space between yarns and friction
were considered for modifying the model. T. M. McBride and Julie Chen [33] dealt
with change in internal geometry during shear deformation. They offered a geometric
model for unit cell of a woven fabric by considering four sinusoidal curves. In that
model, it was deemed that the yarn width, yarn space and fabric height were
measurable during the deformation. So, some input data for the model were to be
measured beforehand. They found that thickness of the fabric did not depend on shear
deformation. For small shear deformation the fiber volume fraction was found to
increase directly with shear angle. J. Wang er al. [34] reported that in a bias extension
test, the aspect ratio of the specimen significantly affects on the deformation pattern
and gross stress-strain relation. In this study, the slippage is observed in carbon fabric
during bias deformation. However, for glass fabric with much lower bending rigidity,
no clear slippage is observed under bias stress. J. Page and J. Wang [35, 39] dealt with
prediction of shear force and yarn slippage analysis by using 3D non-linear finite
element method. Zhang and Fu had suggested a 2D micromechanical model for
woven fabric and its application to analyze buckling of fabric under uniaxial tension
[36-38]. W M Lo and J L Hu [40] tried to evaluate shear properties of fabric in all
directions on the base of Kilby’s model [21]. They found that there is strongly linear
relationship between shear rigidity and shear hysteresis in all direction. Lomov ez al.
carried out several investigations about internal structure of fabrics and shear
deformation of composite fabrics and braided fabrics. However, the fabrics, under
consideration, were mostly composite material [41-44]. Osamu Kuwazuru et al.
studied anisotropy in tensile properties of plain weave fabric in arbitrary direction
numerically by new concept of Pseudo-Continuum model [45-47]. This model is
constructed on the basis of three modes of deformation of fabric and Strut-Spring

concept (figures 2.13-2.15).
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Figure 2.15- Strut-Spring model [45]
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The obtained outcomes of this model in anisotropy of ultimate strength and strain by

numerical solution of an imaginary fabric are presented in figures 2.16 and 2.17

respectively.
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R. Kovar ez al. [48] tried to reduce stress concentration in sample’s corners under
tensile stress in different directions. An experimental study about in-plane shear
deformation of woven composite fabric has been done by Zhu ef al. [49]. They tried
to predict yarn diameter and gap width of plain weave fabric. Wrinkling of fabric is
studied by using 3D laser scanner in this study. Recently, R. Zouari et al. [50] dealt
with tensile test of woven fabric in off-axes direction experimentally. In this study the
tensile test of fabric is measured by articulated jaws up to buckling of fabric.

Despite of cited investigations, it is seems that the current knowledge is not adequate
to evaluate anisotropy of geometrical-mechanical behavior of woven fabric
simultaneously in advance applications. Accordingly, this study has been planed to
assess yarn deformation and configuration in structure of woven fabric when it is
subjected to stress in arbitrary direction. Concurrently, the tensile force required for

certain deformation is studied in this investigation.
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3 Theory

3.1 Geometrical Models

3.1.1 Geometry of plain weave fabric before deformation

Cross-sections in warp and weft direction are schematically illustrated in figure 3.1
and 3.2. Present model is to be on the basis of two principal assumptions; the yarns
curvature axis and yarns cross-section shape are elliptic form and the minimum
change in packing density is supposed after weaving process. Assumptions of this
model are followed in details.

Assumptions

1. Yarn counts, yarn setts, weight of warp and weft yarns in a certain area (or
yarns crimp) are defined as six general data of a fabric. Weight of warp and
weft of yarns in a certain area of fabric could be calculated by measuring
crimp.

2. Elliptical shape and arc is considered for yarn cross-section shape and yarn
axis respectively.

3. Packing density of warp and weft yarns in contact area of yarns is very close
to each other. It could be justified by equality in interaction force and contact
area between yarns. Accordingly, it is supposed that warp and weft yarns have
the same packing density.

4. Packing densities of yarns are increased due to spatial limitation in some
structures and bending deformations of yarns during weaving process. Thus,
packing density of yarns inside of a fabric can be laid between original yarn
packing density and 0.8 (maximum possibility in packing density of fibrous
assembly [51]). On the other hand, the inherent tendency of yarn is to fill the
available space of the structure. Therefore, minimum packing density among
all possibility of results can be chosen as packing density of yarns inside of

fabric.
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Warp yarn cross-section

Neutral plane

Figure 3.2- Weft cross-section
According to the schematic cross-sections, represented by figures 3.1 and 3.2, there
are several relationships between internal geometry of a plain weave fabric. The
following equations can be derived from figure 3.1 in the direction of warp cross-
section.
- ab,
] J(TE;]sin}',)z +(a, cos 1)’

The inflection angle of weft is given by making a differential from elliptic equation:

(3.1)

bt
B, = arctan(——vI azgy] ] 3.2)
a,
rz’:\f?+bf+2nb2 cos(f, = 1,) (3.4)
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2nn

2 2 2
=7 —arccos(-ur'—,fb—:J (3.4)

The curvature length of weft can be computed by elliptic integral (3.5):

Lyc =(a, +b,)[" 1-e,, sin’ xd (3.5)

Where quantities ¢,, and 6, can be calculated by equations (3.6) and (3.7):

P, ivh) (3.6)
5 (a, +b,)’
6, = arcsin (bi £ bi)tan v (3.7)
Vb, +b,)* tan® ¥, +(a, +b,)’
The total length of weft in unit cell is :
B L oms
F Tex: D D, (3.8)

Where, 17, is the weight of weft yarns in one square meter of fabric. Thus, linear
segment of weft can be calculated by (3.9).

Ly, =L,-2L,
(39)
Finally, equilibrium (3.10) is valid in horizontal direction.

= 2b
£, =VL +4b% cos(arctan(L 2J—,{32J+21v, sin 7, —DL=0 (3.10)

2L 1

Moreover, in vertical direction one can write:

; 311
d, = VL2 +4b% sin(arctan( ib‘J—ﬁzJ+2r. cos ; — 25, G

2L

Similarly, the following equations are valid in direction of weft cross-section (figure

3.2):
b= a,b,
e : P 2 (3.12)
\/(1’)2 sin yz) + (a2 cos }/2)
b, tan
B, = arctan(z—zsz (3.13)
a,
v/ =+r" +b° +2rb cos(B, - 7,) (3.14)
wobr b
Y, =y, - arccos{—'Tzl,rz—' (3.15)

4 .
L. =(a,+b, )Iﬂ J1—e, sin’ xdx (3.16)
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- :1_(_b|+_bi (3]?)
(e, b))
6, = arcsin (G40 yan)y (3.18)
JB +b,) tan® ¥ +(a, +b,)’
10,
il (3.19)
Tex DD,
L, =L 2L, (3.20)

2

£, =V +4b sin[arctan[%b—l} -5, J +2r,cosy, —2b, +d, =0 (3.22)

1F

fo =V L +4b% cos{arctan(%} —ﬂl}- 2r, siny, — E)l_ =0 (3.21)
1L

If the packing density of yarns in warp and weft are close to each other due to equality

of interaction forces and almost equal pressure at this area, equation (3.25) is valid.

Tex,

— 23
£ mp,a,b,10° )
L 3.24)

' ap,a,b,10° G
H, a,b,p,Tex,

iy b e 325

2 A, a,b, p,Tex, o

Evidently, there are four equilibriums (3.10), (3.21), (3.22) & (3.25) depended on six
unknown variables a,, a, b;, b,, y,andy,. These equilibriums can be solved by
considering two arbitrary values k; (a;/b;) and k, (b,/b;). Certain yarn packing density
can be obtained by each pair of k; and k,. Quantities k;, k> and yarn packing density,
which satisfy mentioned equilibriums are graphically demonstrated in appendix (A)
for two real fabrics. Accordingly, all possibilities in results are computed and on the
basis of assumption 6, a series of results which is conducted to minimum packing
density is picked out as an ultimate result. These arguments are arranged as a script in
MATLAB program. Nevertheless, other respects can be considered in some special
conditions in fabric structure.

Special conditions

a. Balanced Fabric

In a balanced fabric, distance between yarns and neutral plane of the fabric, d /2, is

zero. Thus, equations (3.22) would be independent of equation (3.11) and equation

18
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(3.11) can be accounted for evaluating. Accordingly five equilibriums on the basis of
six unknown variables can be derived for balanced fabric.

b. Compact structure

Linear part of a yarn in structure of a fabric can be vanished if there is enough
contraction in structure. Actually, this system of yarn could be considered as non-
linear part (L, or/ and L,; = 0). Therefore, equations (3.10), (3.11), (3.12) and (3.22)
converted to equations which are independent of L, or/ and L,;. Accordingly, both
side of a fabric satisfy two new equations, if the amount of contraction is sufficient in
warp and weft direction. In this case, one can evaluate internal geometry of a woven
fabric. Otherwise, five equilibriums are considerable if only contraction take place in
one side of fabric.

3.1.2 Geometry of plain weave fabric after deformation in bias direction

Bias direction is technically used when the initial angel of warp and weft direction
with stress axis is +45. When a piece of fabric is subjected to bias stress three distinct
sectors will appear in arrangement of yarns in structure of fabric due to effects of jaws
(figure 3.3). Hereafter, we will focus on area /II. Evidently, jaws width can affect on

fabric strain in this regard. Figure 3.4 illustrates this effect and related equation.

Variable
length during
bias

deformation

Constant
-

length=cw/2
Width of specimen=w

Al
L—-w

Strain in zone [l =

q b

Figure 3.3- a: bias cut specimen before  Figure 3.4- strain in zone 111 is depended
deformation, b: specimen under on width of the sample.
extension
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To assess internal geometrical parameters of a plain weave fabric under deformation
in bias direction, the model mentioned in section 3.1.1 is expanded. Indeed, elliptical
concept for both cross-section and yarn’s axis curvature is used to evaluate behavior
of plain weave fabric under shear deformation. Figure 3.5 is a conceptual indication

of ideal structure of woven fabric under shear deformation.

Cross section
plane of weft

Cross section plane of
warp

Figure 3.5- Schematic diagram of woven fabric under shear deformation
Assumptions
In order to develop the mentioned model in sheared fabric we have made the
following assumptions.
1. Initial state of woven fabric can be determined by expressed method in section
3L
2. Elliptical shape and arc is considered for yarn cross-section shape and yarn
axis respectively.
The packing densities of warp and weft yarns are equal.
4. Minimum packing density among all possibility of calculated packing density
can be chosen as packing density of yarns inside of fabric
5. Yarn setts in warp and weft are constant and equal to initial values, unless

linear part of yarns in contrary system reach to zero (situations 2, 3 table 3.1).
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6. Elongation of yarn is negligible while packing density of yarn is lower than
the maximum value of it, namely 0.8 (situations 1-4 table 3.1).
7. Quantity dy is constant when the packing density of yarns reaches to
maximum (situations 5-10 table 3.1).
8. Major radiuses of warp and weft yarns and b./b; proportion (k) are constant
unless yarns laterally contact to each other (situations 9-10 table 3.1).
All expressed assumptions are summarized in table 3.1.

: 2 * *%
Table 3.1- Variable and constant values in different situation of shear deformation

Situation Comment Constant value Variable value
1 Lap Lo >0 A ';:;' 2 & LY.
2 i <0'80 Li1=0,Ly>0 | a1, m;,e1, k2 bis, 1. 1 & dy
3 gap,,8ap, > Li1>0,L=0 | ai, @, e,k bis.7,.7..e1,dy
4 Lyp=0, Ly =0 a, ax, k bis. Y. ¥s 21, €2, 87
5 L|L =0 3 LzL =0
6 M, u, =08 L1 <0, L=0 a, a2, bis, k2, W5
i gap,,gap, >0 | Ly, =0, L <0 dy e, e
8 Eir =0 £2_1_ <0
a or da aor a;
9 ﬂ],ﬂz =08 bst.“blg bISOJ"bQS
gap, =0or gap, =0 e or e; VS
ds e, or e
a, az
=08
10 Hos My €1 5 €2 bis, bas
gap, =0, gap, =0 dy vy
1272

" Subscripts | and 2 refer to warp and weft yarn. Subscript L indicates linear part
of yarn and subscript S refers to shear deformation condition.
Quantity bys can be calculated by k>* by .

In ideal structure of a plain weave fabric, the warp cross-section plane includes the
central axis of a weft yarn. It is parallel to the weft yarn system, and the weft cross
section plane includes the central axis of a warp yarn vice versa (figure 3.1).
Obviously, major radius of warp and weft could be derived by relations (3.26) and
(3.27). According to assumptions, equilibriums (3.28)-(3.31) could be inferred by
substituting a;, as, Dy, D, by and by with ai5, axs, D)/(ext1), Dy/(e;+1), bys and byg
respectively in relations (3.1)-(3.25) of section 3.1.1. Also, gaps between yarns could
be defined by respects (3.32) and (3.33).
al

as = m (3.26)
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a,

= ——— 127
& cos(w/2—y) Cal

- 3 2b, _ 1+e,
fi =VL 2 +4b°s cos(arctan[ by }— ﬁ3]+ 2r,siny, — Le' =0 (3.28)

L, ,

d, =\L2 +4b%s sin{arctan( ZLbZS ]— ﬁ2J+ 21, cos ¥, — 2byg (3.29)
2L
) ) b
fo=NL+4b71s cos[arctan(

=

2

: l+e
'SJ—51]+2rzsmy2— = :

1L

fi =VLw +4b%s Sin[arCtan(zb]S J— ﬁ|)+ 2rycosy, —2bys +d, =0 (3.31)

1L

=( (3.30)

L

2

t\,

R (3.32)

~=2a,; (3.33)

On the basis of assumptions, one can deal with the internal fabric geometry during
deformation in bias direction different conditions.

a. Packing density is lower than maximum amount of it and gap between yarns
is not vanished (situation 1-4 of table 3.1)

. Linear part of warp and weft are none zeros value: Lyz, Ly >0

There are three variable, ), , ,and d s, at this condition for certain warp-weft yarns
angle (y<90) deformation. Values a5, a>s can be computed by relations (3.26) and
(3.27). According to assumptions, fabric strain in warp and weft directions (e,, e>) are
equal to zero although there is real fabric strain in bias direction due to rotation of
yarns. Similarly, quantities b5 and b,s come through without change and they are
equal to initial values b; and b,. When warp-weft yarns angle begins to reduce up to
certain angle, one can also calculates quantities ¥,, ¥, and d; by equilibriums (3.28),
(3.29) and (3.31) in this condition.

. At least linear segment in one of the warp or weft is zero: L,; =0, Ly; >0 or
Ly >0, Ly =0

In this regard (L, >0, Ly, =0) linear segment in weft yarn is zero and in warp yarn
linear segment is significant value. Equation (3.34) is valid at this condition and
relation (3.29) is converted to (3.35). Eventually, equilibriums (3.30), (3.31), (3.34)
and (3.35) are depended on the variables b5, 7,, ¥,and d ;. Then, the strain of fabric

in weft direction namely; ¢, could be found by relation (3.28). It was clarified that

o)
(g
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value hyg can be gained by constant k; and variable b;s. Concerning second condition
(Liz =0, Ly, >0), equations (3.28), (3.29), (3.36) and (3.37) could be applied.
Evidently, relation (3.39) is adequate for evaluatiﬁg strain of fabric in warp direction

(e1) at this condition.

=L, —2L,. =0 (3.34)
d, =2b,ssin(r/2- B,)+2r,cos ¥, —2b, (3.35)
=L -21..=0 (3.36)
[y =2b,gsin(w/2— B)+2r,cosy, —2b,s +d, =0 (3.37)
e, = D,(2b,5 cos(z /2~ 3, )+ 2r, sin ;)1 (3.38)
e, =D, (25, cos(z /2~ B, )+ 2r,siny,)—1 (3.39)
. Linear part of warp and weft is zero: L,z =0, Ly, =0

According to assumptions yarn elongation is still negligible in this state therefore, the
equations (3.34)-(3.37) can be used for obtaining values bis , %, ¥, d 7 .

Subsequently, fabric strain in warp and weft directions namely e; and e, are computed
by equations (3.39) and (3.38) respectively.

b. Packing density is reached to maximum amount of it and gap between yarns
is not vanished (situation 5-8 of table 3.1)

Extension in yarn length is expected in this state; accordingly, equations (3.34) and
(3.36) are not responsible. However, yarns strain (&,; and &,,) during deformation can
be derived by relations (3.40) and (3.41). Quantity d; is simultaneously deemed

constant and known value. Hence, variables y,,%,, e; , e; can be determined by
equations (3.35), (3.37), (3.39) and (3.38).

2l . —-L
=-1c " L1700 if2L\c> Ly (3.40)

T o
=21——1—2100 if2Ly0> L (3.41)

2

g,v 2

c. Packing density is reached to maximum amount of it and gap between yarns
is vanished (situation 9-10 of table 3.1)

Lateral contact between yarns would occur when gaps vanished in warp and/or weft
direction. This stated condition so called warp or weft yarns jamming. In this regard
equations (3.32) and/or (3.33) become zero. Then, depend on jamming direction the

equations (3.42), (3.44) and/or (3.43), (3.45) are valid. Wherea,,a’, b and b’ are

corresponding values to constant values just before gap vanished. Quantity/s y, and/or
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7, can be obtained from (3.38) and/or (3.39) relations. Finally, equations (3.42)-

(3.45) can be applied as well as in situation10 of table 3.1.

gy =52 3.42
1S 2D, (3.42)
- _l-|-e1 3.43)
25 2D2 ( &
2b'.a'D

bys = = 3.44
B (l+e,)cos(z/2—p) C
b,s = 2350,D, (3.45)

(1+e )cos(z/2-y)

Exterior characteristics of a fabric
Some expressed parameters, such as warp-weft angle (1), strain of fabric in both warp
and weft directions namely e, e, and fabric strain (e)) are exterior characteristics of a
fabric. According to this model, relationship between exterior characteristics could be

deducted as equation (3.46).

Sin(n'—l;/] 1+ez+l+e]

2 N

=

4 «/5(1 I J
dos | T

2D, ",

= (3.46)

Rupture mechanisms

Yarns features in rupture area in bias direction can be classified in two categories:
slipped yarns and broken yarns (figure 3.6). Friction force and number of interlacing
points determine the feature of a yarn in rupture area. Slippage can be expected on
low friction force and contact number while yarn failure is occurred in condition of
high friction force and contact numbers. Obviously, the width of specimen play vital
role to determine rupture mechanisms. In this study “Critical width” is defined as the
initial width of sample which at least one broken yarn is observed in rupture area
(figure 3.7). This failure is generally taken place within weft yarns due to bigness of

number of contacts in comparison with warp yarns in traditional fabrics.
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3.2 Anisotropy in tensile properties of woven fabric

Although proposed models in previous sections predict some geometrical parameters
of woven fabric in relaxed condition and deformation in bias directidn however, they
are not able to evaluate mechanical properties of woven fabric. The vital target of this
study is establishing a model to appraise tensile properties of woven fabric in arbitrary
direction. Tensile properties of fabric indicate how the fabric will react to forces being
applied in tension. Tensile properties of a fabric in this study consist of tensile force-
strain curve of fabric and variation in fabric geometrical characteristics simultaneity.
For this purpose understanding yarns behavior under tension and compressive forces
and bending moment is necessary. Indeed, determining of deflection curve of yarn
under different conditions is the main key of investigation in tensile properties of
fabric. A yarn is constructed by assembling of fibers in different technologies and
arrangements. Definition and determining of yarn deflection curve is difficult due to
viscoelastic behavior of fibers and complex interaction within fibers in yarn structure.
Accordingly, considering some simplifications are necessary to establish a
comprehensive model for tensile properties of fabric.

3.2.1 Deflection curve of tensioned yarn

Figure 3.8 indicates the path of a yarn in unit cell of plain weave. Half path of yarn
between two cross yarns is adequate to study deflection curve of yarn due to

symmetry of path.
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Figure 3.8- Yarn path between two cross yarns (fabric cross-section)
The well-known Euler-Bernoulli beam equation (3.47) is usually used in continuum
mechanic for isotropic materials. This equation reveals the relation between beam
curvature and moment at certain point of (x,y) by considering £/ quantity. Where, E/
shows stiffness of beam which it consists of £, Young's modulus of beam, and /,
moment of inertia of beam cross-section.

1 M(x,_vl

S (3.47)
p(x,,v] EI

To derive equation (3.47) it is assumed that the absolute values of deformation of

materials in compressive and tensile stress are the same and the Hooke’s law is
governed. However, there are some restrictions for applying this equation to evaluate
bending stiffness of textile materials as well as yarn due to non-isotropic behavior of
textile materials. Therefore, behavior of textile materials 1s not the same as continuum
materials when they are subjected to bending moment.

It is cleared that response of yarns in axial compressive and tensile stress are
dissimilar. Thus, considering £/ can not be used as yarn stiffness. Nevertheless, the
yarn curvature at certain point (x,y) is logically proportional to the ratio of bending

moment and yarn stiffness at this point. Therefore, the quantities £/ do not exert
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directly in this study. Hereafter, we indicate the stiffness of yarn at point (x.y) as Sy

which will be estimated empirically. Thus, the equation (3.47) can be rewritten as

equation (3.48).
1 M.,
S (3.48)
p(x,_l'] S(x,_v}

Yarn’s stiffness can be contemplated as a function of yarn orientation and fiber
properties. For instance, the effects of tension and bending angle on yarn’s stiffness
are studied in appendix (D). Indeed, when a certain bending moment is put on yarn
then the geometry and arrangement of fibers in structure are subjected to change.
These changes are depended of many factors namely; structure of yarn, technology of
spinning, yarn tension and so on. Consequently, modeling of yarn stiffness is
problematic. Therefore, following assumptions are considered in this model.
Assumption
1. Effects of yarn tension, yarn deformation and yarn flattening on yarn stiffness
are negligible.
2. Yarns are full elastic. In other word, the residual forces in structure of bent
yarn are disesteem.
3. The yarn geometry and properties through whole of the yarn do not vary.
According to diagram of forces and moments in figures 3.9 and 3.10, bending

moment at point O can be computed as equation (3.49).

Fl

B (3.49)

Also, bending moment at certain point of (x,y) follows equation (3.50).
" T(y—h)
M, =F|x-= |+T(- (3.50)

The curvature mathematically corresponds with first and second order derivative of

deflection curve like equation (3.51).

.

' (3.51
P 1+ >
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Figure 3.9- Curvature and cantilever  Figure 3.10- Diagram of force and bending
bending at fixed point moment at point (X,y)

Eventually, the equation (3.52) can be derived by substituting equations (3.50) and
(3.51) in equation (3.48). Differential equation (3.52) indicates the relation among
deflection function, yarn stiffness and exerted force/s on yarn. In addition, following

two boundary conditions are valid.

F [ T
__;L_T=—1P~-J+—4y—h) 10)=0.y'0)=0 652)

The differential equation (3.52) has been analytically solved under stipulation that
T>2F, (appendixes (B), (C)). On the basis of this appendix, when planar force is
bigger that normal force (7>2F,) then the equations (3.53) would be solution of
equation (3.52). Otherwise when 7<2F,, numerical solution must be considered for
equation (3.52). The authenticity of analytical solution in comparison with numerical

solution in different conditions has been surveyed in appendix (C).

If T >2Fnthen:
T
yzfg;ﬁ(_i_£1+/£}
2T 2 ) /i (3.53)
T
L | L R L [RC TR £ P
T gustr AT
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Where:

£ - (3.54)

3.2.2 Flattening of yarn

A compressive force on yarn causes to flatten of cross-section. Deformation of yarn
cross-section is a function of fibers arrangement in yarn structure, quantity and
modality of compressive force, yarn tension, etc. However, in this study it is assumed
flattening coefficient namely e, is only function of compressive force F, (equation
(3.55) and (3.56). G function can be determined via empirical method which is

expressed in chapter 4.

13.35)

e; =G (F,) (3.56)
The original diameter of yarn d can be computed for certain value of yarn packing
density and fiber density.

Following classification can be contemplated in anisotropy of tensile properties of
fabric.

Remark: the subscripts 1 and 2 refer to warp and weft respectively.

3.2.3 Relaxed fabric state:

In this condition, it is deemed that the planar force 7, and 7, are zero then, the
differential equations (3.52) for both side of warp and weft yarns convert to (3.57) and
(3.58) equations. These equations should be solved in numerical manner due to
absence of planar force. Obviously, the interaction normal force F, at interlacing point

is unique for both warp and weft yarns.

bat Bl =0.3/[0]=
__ng{x—ﬂ »,(0)=0,y/(0)=0 (3.57)
g+Grrp ™

x F [1 ’
_yz_3=S_:(x_3-J 1,(0)=0,74(0)=0 (3.58)

(1+(,) )

The quantities /, and /, computed on the basis of relations (3.59) and (3.60).
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1
L =(+e )-5— (3.59)

2

_ { _
B=(1+e)—
» =(l+e,) - (3.60)

|
Where, D;, D; and e, e, are yarn sett (as known values) and fabric strain in relative
warp or weft direction respectively. Evidently, in relax condition fabric strain in warp
and weft direction is zero (e;= e,=0). In the other hand, the flattening functions for
warp and weft can be written like (3.61) and (3.62) equations separately.

en =G,(F,) (3.61)
ez =G, (F)) (3.62)
On the basis of fabric geometry, following relation is always true in all conditions
(figures 3.1 and 3.2).

ML

s b, (3.63)

Where, d; and d> are thickness of warp and weft yarns. Consequently, equation f; can
be established by substituting equations (3.61) and (3.62) in equation (3.63).

fi=d,(+e,)+d,(1+e,))/ 2+ +h)=0 (3.64)
On the other hand, the length of warp and weft yarns between two cross yarns can be

calculated by relations (3.65) and (3.66) respectively.

g = G/100+1 an
DZ

1, = C/100+1 b
D

1

Where, C'; and C; are warp and weft yarns crimp respectively (as known values). The
length of yarn between two cross yarns can be calculated via deflection curve too.

Therefore, equations (3.67) and (3.68) govern if the deflection curves of warp and

weft determine.

%
fi=2| 1+ -1, =0 (3.67)
0

A

fi=2 |1+ -L,=0 (3.68)

]

Finally, a system of equations consist of equations (3.64), (3.67) and (3.68) can be

contemplated to evaluate relaxed fabric state. Three unknown values F), §; and S, can
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be computed from this system of equations numerically by utilizing mathematical
methods. Accordingly, a script has been constructed in MATLAB program.

On the basis of assumptions, the stiffness of yams which are derived by mentioned
method in relaxed fabric state, are constant during deformation. Hence, warp and weft
yarns stiffness is deemed as known values in next states.

3.2.4 Stress in principal direction:

Suppose that the direction of imposed stress is in warp direction. Then, the planar
force in cross yarns, here weft yarn, is negligible. In this condition 77 is zero, while
both ¢; and e; are subjected to change. Evidently, quantity e, indicates the strain of
fabric in warp direction and e, shows the contraction of fabric in weft direction.
Equations (3.59) and (3.60) can be used to calculate new values of /; and /,. Whereas,
the planar force in warp direction 7 is generally bigger than F,, the equation (3.69) is
responsible in warp yarn. However, to indicate deflection curve of cross yarn (weft
yarn) the equation (3.71) must be used in this regard.

If T) >F, then:

V=
T 2. :F 7. (3.69)
— |I'T.I
e L T s —2x+1 [+h
27, el T
Where
( 4 [% Ly
[ (L fE ) )
1 |
= i AR G-10)
T ez\fs, 1 2\S,
4 F, I p
— - [x_;J ¥,(0)=0,y5(0)=0 (3.71)
=R 2

0+02))
Apparently, maximum yarn strain &, is occurred in inflection point due to bigness of
tension at this point (3.72). Relation (3.73) reveals the inflection angle of warp yarn.
Where, E; is the original warp yarn modulus which we consider it as one of the inputs
data of this model. The maximum yarn strain quantity is considered for whole yarn
strain. Thus, the equation (3.67) must be modified like equation (3.74). While the

strain in cross yarns &, is deemed negligible due to absence of T, then the equation

(3.68) is still valid in this state.
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1

£, A
b B cos 8
Where,
tan §, = y/(/, /2)
VA
f2=2IV1+J’|’2 —Ll(1+£l_v):0 (3.74)

]

(3.72)

(3.73)

Now, the system of equations is composed of equations (3.64), (3.68) and (3.74). This
system of equations can be solved for certain value of 7; by applying mathematical
methods. Eventually, the variables F,, ¢; and e; can be estimated by this system of
equations. When the fabric is suffering the stress in weft direction then proposed

equations can be utilized by substituting relative subscripts in the same way

(equations (3.75)-(3.80)).

If 7; >F, then:
5
L E  An| L KT, S,
22 2T, e ( > F + 7, (3.75)
) (F[Li /S_z}_2x+12]+h2
27, S s T,
Where
LT LT
e U 0 D
2 T 2 2
—— = 3.76)
2
” 15 [ ’
=N AR (X*EIJ 7,(0)=0,y/(0)=0 (3.77)
(+oirf
75
L HeRe 3.78
» " E,cosf3, s
Where, (3.79)

s =y,0,/2)

A
=2 Wy L (re =0 (3.80)
]

3.2.5 Stress in arbitrary direction, except of principal directions
When a strip fabric is subjected to stress in arbitrary direction except of principal

direction all quantities ¢/, €2, . w2 and F), are subjected to change. Current equations
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are not adequate to achieve final solution. It seems more assumptions must be
contemplated in this regard.
3.2.5.1 Exterior geometry of plain weave fabric after deformation in arbitrary
direction
Figure 3.11-I describes the deformation of a specimen when the initial angle of force
axis with weft yarns is ¢. Suppose one imaginary square abcd on center of specimen
which is parallel to edges. Square abcd is converted to parallelogram a’b’c'd’ after
deformation. Figure 3.3.11-II illustrates deformation of square abcd in details. On the
basis of observations, following assumptions are deemed.
Assumptions
1. Deformation is symmetric around central point of specimen “O”.
2. Lateral sides of imaginary parallelogram are parallel to force axis.
3. Deformation and distribution of force are homogonous for each yarn and cut
end effects effect is negligible.
4. The perimeter of imaginary parallelogram is constant during deformation and
1s the same as initial imaginary square abcd before deformation.

5. Jaws effect on deformation on area under consideration is negligible.

Figure 3.11- Imaginary square abcd on center and parallel with sample’s edges. I:
deformation of square Il: converting square to parallelogram in details
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On the basis of pure geometry and assumptions, subsequent arguments are valid.
Lateral sides of parallelogram are parallel to force axis, thus:

Ll te )siny,

-1
tan @.siny, (@5l

Strain of fabric can be calculated as equation (3.76).
e, =(l+e)sing.cosy, +(1+e,)cosy,.cosp—1 (3.82)
Remark: the calculated fabric strain by equation (3.76) is not the same as the fabric

strain recorded by Tensile Instron due to this equation computes real strain of fabric in

direction of force axis.
Oblique angle of parallelogram can be accounted as subsequent equation.

B (I+e).cosy, —singp—e,.cosp

(1+e,).siny, 0

The subsequent equilibrium (3.78) is logically true when it is deemed that perimeter
of parallelogram is constant.

_2(1+e¢).siny,

s

3.2.5.2 Distribution of planar force

+2cosg.(l+e,)—4cosp=0 (3.84)
cosa

Figure 3.12 indicates the unit cell of woven fabric under certain tension 7. The
contribution of each system of yarns to reaction is a function of fabric density and
angle of each system of yarns with tension axis. Equations (3.79) and (3.80)

demonstrate these relations for warp and weft yarns respectively.

T =T 12_.5111%-00%!!/1 (3.85)
[,.siny, +1,.siny,

[,.siny/,.cosy,

I,=T 3.86
4 [,.siny, +1,.siny, 201
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=Y

Figure 3.12- Forces diagram of unit cell (surface of fabric)

3.2.5.3 Solving system of equations

When a fabric is subjected to stress in arbitrary direction, except principal directions,
then planar forces 7; and 7, are bigger than F,. On the basis of previous arguments,
the yarn deflection equation (5.53) can be applied in both warp and weft yarns by
using relative subscripts (equations (3.69) and (3.75)). There are warp and weft yarns
strain due to existence of planar force in both warp and weft direction. A system of
equations includes of five equations (3.64), (3.74), (3.80), (3.81) and (3.84) can be

applied to determine five variables for a certain value of 7.

A =(d01 (l+edl)+d02(l+ea’2 ))"}2"'(}’1 +h,)=0 (3.64)

A
fi=2[ 1+ -L(+£,)=0 (3.74)
L

%
fi=2[ 14y - L,(1+£,)=0 (3.80)

0
. (1+e¢,).siny, e

3.81
tan @.sin Y, St
f4 S 2(1+€1);1n W, +2cos¢_(l+ef)_4cos¢9={] (3.84)
COS

Table 3.2 illustrates the inputs and variables of this model when the stress is imposed
in arbitrary direction except of principal directions. According stated arguments, a

script has been constructed in MATLAB program to solve equations.
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Table 3.2- Input data and variables
Input data Variables

Cy C; ey e;
Dy, dy; Wi, W2
D!’ D2 Fn
By B>

G, (F), G: (Fy)
Eventually, the total imposed force in arbitrary direction of a sample width @ can be
accounted by equations (3.87)-(3.90). Figure 3.13 shows the schematic arrangement

of unit cells at a certain width of samples @ when the force is applied to sample in

arbitrary direction ¢ with weft yarns.

E . (3.87)
3 ®.D,.D, .
(D, cos &+ D, sin8)sin(p+ 6) o
F=N.T (3.89)
Number of ccllsN
N
1Dy 1D
Warp Wefi
@ (
- m =

Figure 3.13- Calculating number of unit cells at certain width
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4 Methods and materials

4.1 Methods

4.1.1 Applying image processing to measure external geometry of fabric

a. 2D Fourier Transform

Suppose that the main image obtained from the fabric is included f{x, y) in grey level
that x, y show the position of a pixel in row and column, respectively. Also this image

is of NxN size. The discrete 2D FT of f{x, y) is given by equation (4.1).

N-1 N-1

1
F(”«"):—N"Z Zf(x,y)exp[—jZﬂ‘(ux+vy)f'N] 4.1)

x=0 y=0
For frequency variable u, v = 0, 1, 2..., (N-1). The above function is complex relation
with these elements:
F(u,v)=R(u,v)+ jl(u,v) (4.2)

Where R (u, v) and / (u, v) are real parts and j is imaginary unit of F (u, v):

R(u,v) = %E E 7 (x,y)cos[ 27 (ux +vy)/ N] (4.3)
I(u,v)= % Nz' E £ (x,y)sin[27(ux + vy)/ N] (4.4)

The power spectrum P (u, v) of f(x, y) is defined as:

P(u,v)=|F(uy) | = R*(u,v)+1* (u,v) (4.5)
To show spectrum as an intensity function in gray scale level, P (u, v) is converted by
equation (4.6).

P(u,v)=log(l+’F(u,v) B (4.6)
As f (x, y) is real, 2D FT will be symmetric and the magnitude of the transform is
centered in the main 2D FT image [52]. The FT domain image has 90° phase lag with
the main image and is sensitive to rotation. Any angular change in the main image
will be effected in the FT domain image with an angular 90° delay. It will be shown
that to measure warp-weft angle during fabric deformation the present power

spectrum is not suitable.
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Figure 4.1- a: A schematic trellis and its b: 2D FT domain image c: intensity
detector, d: angle detector
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Figure 4.2- a: Trellis rotated in 25 ° (clockwise), b:2D FT domain image, c: intensity
detector, d: angle detector
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b. Modified Power Spectrum

A schematic trellis and its 2D FT domain image are shown in figures 4.1(a) and 4.2(b)
respectively. Now, consider a function that returns the radial intensity of values in
gray scale level, henceforth is called ‘intensity detector’. Due to symmetry of domain
image of 2D FFT, average values through 1 to 180 are adequate for angular study
(figure 4.1(c)). Critical positions of ‘intensity detector’ can be expressed by function
‘angle detector’. This function returns subtraction each value from next value in
‘intensity detector’ with interval one degree. Figure 4.1(d) shows ‘angle detector’ of
2D FT domain image. Figure 4.2 shows how some disorderliness in intensity function
are arise due to 25° rotation of trellis shape. Figure 4.2(a) shows the main image of
rotation of trellis shape in 25° in direction of clockwise. 2D FT domain image of this
rotation is shown in figure 42.(b). Figures 4.2(c), 4.2(d) are computed as intensity of
2D FT domain image and angle detector functions respectively. It is observed in
figures 4.2(c) and 4.2(d) that disorderliness in angle detector does not show elements
of rotated trellis clearly. It seems that power spectrum (4.6) is very sensitive to any
rotation and study of angular change by this method is complicated. To overcome the
stated problem, two solutions are considered in this investigation. The first way is to
use maximum regional filter that detects maximum value of each 8x8 pixel area and
converts this maximum to 1 and other values to 0. Outcome of this process is a binary
matrix with the same dimensions of domain image. Henceforth, this matrix will be
shown as H (u, v). Higher values of power spectrum matrix can be detected easer by
inner-multiplying H (u, v) (figures 4.3(b), 4.3(c), 4.5, 4.6). Exponentiation the result
of mentioned process is the second alternative. It seems that the exponent n=40,
which is obtained by trial and error from several images of fabric, is adequate for this

study (figures 4.4). These solutions can be summarized as equation (4.7).

P(u,v) = [P(u,v).H (u,»)]" 4.7)

Where P(u,v)is the power spectrum (equation (4.6)) and f’(u,v)is the modified
power spectrum and # (u,v) is the matrix of high intensity point of 2D FT domain
image. Effect of applying these functions on power spectrum can be observed in

figures 4.3 and 4.4.
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Figure 4.3- a: Rotated trellis in 25 degree (clockwise), b: domain image, c: domain
image with using H (u, v), d: modified power spectrum image with 'n=40’",
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Figure 4.4- Angle detectors of a: standard power spectrum, b, ¢, d are modified by n=
10, 30, 40 respectively, e: modified without using H (u, v) filter.

Effects of exponent “n” on “angle detectors” can be observed in figure 4.4. Figure

4.4(a) displays ‘angle detector’ of trellis 4.3(a) with ordinary power spectrum. Figures
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4.4(b), 4.4(c), 4.4(d) are connected with exponents 10, 30 and 40 of modified power
spectrum respectively.
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Figure 4.6- Yarn detecting with using H(u, v)
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According to figure 4.4, when the exponent ‘n’ is higher, the results of angle detector
function are better. Also, trial and error in this work for traditional fabrics shows that
expoﬁent 40 can be conducted to clear results in angle detector. Impact of using
maximum regional detector filter, // (1, v), on actual polypropylene fabric can be
observed in figures 4.5 and 4.6. Figure 4.7 shows variations of intensity functions in
standard power spectrum and modified power spectrum of different position of a
trellis at different conditions. Obviously, the modified power spectrum is more
effective than standard power spectrum to detect angular changes. Also, direction and

amount of glinted light can be influenced on intensity changes of fabric surface. This

influence is revealed in figure 4.8.
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Figure 4.7- Using standard power spectrum and modified for a: trellis b: trellis in 45
degree rotation c: trellis in 25 (clockwise) rotation, 1: standard, 11: modified
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Figure 4.8- Effect of different glinted light on angle detector
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Figure 4.9- a: Schematic trellis with 30 and 150 degree liens(non-orthogonal) , b: 30°
lines, c: 150° lines, d: lines angle detecting by modified spectrum

¢. Detecting and measuring yarns sett
Furthermore, it is possible to remove all periodic components or part of them by using

particular direction of FT domain image information and reconstructing new 2D FT

with this information. Periodic components of main image will be visible by applying

Inverse Fourier Transform (IFT) function on reconstructed domain image. If F(u,v)
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is considering as an image in the frequency domain the IFT of main image will be

obtained by applying equation (4.8).

7 1 M X
fu,v)= ;Z Fu,vyexpl j2m(ux + vy)/ N] (4.8)

N=1

y=0

gor x, y= 1, 2... N and }(u, v) main image will be reconstructed by using power
spectrum function. It will be visible in grey scale level [52-54].
Thus, critical angle of warp and weft can be evaluated by applying the modified
method (equation (4.7)). The domain image consists of the all data of warp and weft
yarns in strips in these critical directions. All information about each system of yarns
1s obtained by removing related strip data from domain image with proper width in
critical directions and reconstructing 2D again. Moreover, yarns sett and space
between them can be computed by using mentioned method. Figures 4.5 and 4.6
reveal the outcomes of mentioned method on a real fabric image to detect yarns
angles and reconstruct their virtual images.
4.1.2 Yarn flattening measurement
As mentioned before, deformation of yarn cross-section due to compressive force is a
function of fibers arrangement in yarn structure, quantity and modality of compressive
force, yarn tension, etc. Thickness reduction can be accounted as e, (equation (4.9))
which indicates the deformation in yarn cross-section in direction of exerted
compressive force. Where d is original yarn diameter, which can be obtained via
equation (4.10) and d is yarn thickness (256).
d —d,
= n

| = (4.10)
10” up

Where u and p are yarn packing density and density of fibers correspondingly.

e, (4.9)

For this purpose, a yarn sample is mutually subjected to tension and bending moment.
Then, the effect of compressive forces on yarn flattening is observed by a microscope
equipped with camera in different tension and angle. Figure 4.10 illustrates this
concept schematically. Eventually, the thickness reduction is considered as a function
of compressive force and this function is utilized to evaluate tensile properties of

fabric. Appendix (E) represents the results of an investigation on flattening behavior

of several yarns.
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Figure 4.10- Yarn flattening measurement concept

Figure 4.11- Sectional image of a cotton Figure 4.12- Sectional of the same point

5 ° var i e arn in figure 4.11 at
) L=0.98 [CN], f=30°, yarn tension of cotton yarn in figure .
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4.1.3 Modifying the jaws

To evaluate tensile properties of a fabric, the strip test method is conventionally
applied (F). However, when a strip fabric is subjected to stress in arbitrary direction,
except of principal directions, then failure usually occurs at jaw’s griper due to lateral
contraction of samples and arising stress concentration at sample corners. Thus, most
of these results are almost not trustworthy. Indeed, the recorded strength by apparatus
is lower than the real strength of sample at direction under consideration. This defect
of tensile test method has been subjected to study by R. Kovar er al. [48]. They
suggest a new dumbbell shape instead of oblong shape of specimen. Further more, to
deduct the effect of lateral contraction the folded sample is subjected to stress [48,
55]. Although the dumbbell geometry and sample folding are effective ways to
approach real ultimate strength of samples, definition of geometrical shape is still
problematic and depends on fabric specifics. Accordingly, an opinion has been put in
forward to modify the jaws. On the basis of this concept, the imposed stress is
moderated between griper nip and capstan friction which is created by three metal
rods. This concept is represented in figure 4.13. More details concern capstan part can

be found in patent [56].

Main
Jjaw

Friction
rod

Fabric
sample

e T E|:| Camera
sample |

-v-_N__,__C apstan

b part :

Figure 4.13- Modifying jaws to reduce concentrate siress al corners, I: Schematic
cross-section of fabric path, II: Schematic modified jaws

Synchronizing strain
Obviously, the main disadvantage of this method is the strain reported by Instron is

not synchronic with its force due to non-straight path of sample. Moreover, fabric

49




Anisotropy in tensile properties of plain weave fabric Chapter 4: Methods & materials

slippage would be occurred in capstan parts which affect on strain results. In order to

solve stated problem, regional strain is measured by installing a camera at center of
sample. The obtained images can be aﬁalyzed by image processing technique to
measure exterior properties of fabric as well as regional strain. The regional strain

would be synchronized with correspond force by mentioned method.
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4.2 Materials

Several sets of fabrics at two level of grey and finished (washed and dyed only) have

been subjected to study. Yarns of these fabrics are produced by three kinds of .

spinning technology. The fabric specifications are summarized in table 4.1

Table 4.1- Specifications of fabrics under consideration

Yarns count/ Yarn Fabric
Fiber density/ Yarns sett Y'.?rns Packing Planar
B Material MP Density” Weight
o = T ST
E % 2 . Itex]S E E
5 & w5 gr/cm 5 5 [%] [-] [gr/m’]
_-_; g .5 -1 2 a2
2 E E Z
;;'-:'. g tex;, texg
;g p D, D, G G, u W,
Z =
RI0G Ring  Grey 4850 3090 82 6  0.541 88
RIOF Ring Finished 110’5120 5100 3010 5 11 0.541 84
N10G Nova.  Grey 100% Cotton 4840 3110 86 5.9 0.547 84
NIOF Nova. Finished 5090 3020 4.7 112 0.547 80
R20G Ring  Grey 2580 2330 4.4 108 0.482 104
R20F Ring Finished 2760 2330 3.1 182  0.482 103
020G OE Grey 21‘”51;“ 2490 2430 7.4 8.7  0.438 103
O20F OE  Finished  jggou Cotton 2730 2310 24 192 0438 104
N20G Nova.  Grey 2560 2370 5.6 9.5  0.462 105
N20F Nova. Finished 2770 2310 3 195  0de2 105
R30G Ring  Grey 2360 2120 82 8 0.443 142
R30F Ring Finished 2570 2140 9.3 117  0.443 144
030G  OE Grey 29-]5*5229'5 2370 2060 8.2 7.3 0.404 148
O30F OE  Finished 0004 Cotton 2450 2030 103 109  0.404 144
N30G Nova.  Grey 2410 1960 7.6 7.4  0.441 141
N30F Nova. Finished 2480 2000 89 112 0.441 140
14.48, 14.48
Cl4 Ring  Grey 1.52 3720 3460 62 69  0.512 115
100% Cotton
29.23,29.23/
P30 Ring  Grey v 2350 2100 190 92 0517 155

Polypropylene

" Novaspin is a spinning system technology which developed at VUTS Liberec.
** Yarns packing density are calculated on the basis of Neckar equation [51].

An exhaustive Ph.D. study had been performed to analyze fabric cross-section by J.
Drasarova [9]. In this study, geometry of fabrics R10G, R10F, N10G, NI0F, R20G,
R20F, 020G, O20F, N20G, N20F, R30G, R30F, 030G, O30F, N30G and N30F in
warp and weft directions had been investigated. Yarns cross-section dimensions,

inflection angles and relative high of yarns wave are measured by aide of LUCIA
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program. These results are represented in table 4.2. We will compare some outcomes

of our models with measured values.

Table 4.2- Internal geometry of fabrics in warp and weft directions investigated by J.

Drasarova[9]
S Yarn dimension in cross-section Inflection angle

£ 3 [m*) [m™] () [m [Degree]

= @, SD & SD b 8D . b,. SD warp. Welt
R10G | 62.36 1.82 69.60 2.88 4983 1.63 52.17 1.63 28 19
RI0F | 56.76 1.74 67.46 2.78 46.83 1.35 49.07 1.68 20 30
N10G | 65.19 1.68 6494 230 4985 1.21 4759 1.58 24 24
NI1OE | 58.46 1.54 69.71 327 5129 128 5071 1.71 22 33
R20G | 85.80 3.93 9568 284 7345 2.78 72.85 1.65 25 21
R20F | 80.01 3.14 11946 4.70 76.20 3.31 61.88 3.11 13 34
020G | 87.31 352 91.80 3.46 7184 336 76.67 3.01 26 20
O20F | 84.18 3.69 103.25 530 71.03 225 60.78 3.25 12 31
N20G [ 91.50' 443 10027 2935 7373 2294 G777 168 26 21
N20F | 83.89 3.03 11654 7.71 68.77 196 64.03 4.10 12 32
R30G | 138.10 4.73 13582 5.67 10697 3.65 101.95 4.25 37 28
R30F | 118.40 4.10 13430 5.29 97.19 348 90.15 2.59 30 28
030G | 159.69 6.18 14746 5.74 100.84 4.73 92.13 341 34 22
O30F | 142.63 5.35 154.01 7.37 8558 2.88 94.09 4.70 31 19
N30G | 144.15 7.02 146.41 5.17 92,10 335 097.62 4.09 27 27
N30F 136.07 4.76 151.46 7.97 88.11 2.72 85.56 2.50 26 23
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5 Results and discussion

5.1 Geometry of plain weave fabric before deformation

To verify fabric geometry model a set of cotton fabric in different specifications and
yarns spinning systems are considered. For this purpose, internal geometry of fabrics
R10G, RIOF, N10G, N10F, R20G, R20F, 020G, O20F, N20G, N20F, R30G, R30F,
030G, O30F, N30G and N30F in warp and weft directions before deformation are
estimated by proposed method in section 3.1.1. For each fabric all series of values
which satisfied the equilibriums were collected then a series of results which conducts
to minimum packing density was considered as final results. On the basis of this
model, the elliptical shape is assumed for yarn cross-section. Accordingly, the major
and minor radiuses are compared with measured values. Figure 5.1 shows the
predicted warp and weft yarns cross-section dimensions in comparison with measured
values by J. Drasarova [9]. Despite of fabrics variety bigness, it is observed that this
model is responsible for all kinds of fabrics as well as finished and grey.

Relation between measured and predicted values in dimension is represented in figure
5.2. The correlation coefficient among predicted and measured values of yarn
dimension in warp and weft direction is about 0.84 which is reasonable for this set of
fabrics.

200 ——-—o -
|Oa1 exp. Ba1 mod. a2 exp. O0a2 mod. b1 exp. Ob1 mod. @b2 exp O0b2 mod |

Dimension [um]
A
——
—

=
. :
=il

60

40

20 I
11 L

G R20F 020G 020F N20G N20F R30G R30F 030G O30F N30G N3OF

Fabric code

R10G R10F N10G N10F R20

Figure 5.1- Dimensions of warp & weft yarns cross-section: measured & estimated
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Figure 5.3- Average errors between experiment and model in dimension of yarns

Furthermore, the average of relative errors in yarns dimensions is represented in
figure 5.3. It can be observed that the accuracy of predicted values for finished fabrics
is better than grey fabrics in most fabrics under consideration, except of fabrics made

; by 10 rex. Indeed the average of relative errors for finished fabric is 15.9% while this
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quantity for grey fabric is 24.6%. Consequently, the average of relative errors of this
model for fabrics under consideration is 20.3%.

The association amohg experiment and model prediction values in inflection angle for
both warp and weft yarns are shown in figures 5.4. Correlation coefficient between
experimental and model values is 0.92 and 0.64 in inflection angle of warp and weft
directions respectively.

On the base of fabric geometry, this model proposes a value for yarns packing density
inside of relaxed fabric. Figure 5.5 indicates the impact of weaving process on yarn
packing density in comparison with original yarn packing density. Obviously, when
the warp and weft yarns are interlaced as woven fabric then the packing density of
yarns are subjected to increase due to generating some spatial restriction. According
to estimated values, weaving process does not have great effect on packing density in

most of the fabrics under consideration (figure 5.5).

0.8
/
/ 1
0.7 e N d 7. VAL 55 SR
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oyl at N L // g & /1
v ©
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=} y = 0.8809x
= .s /" ® |R=or19 :
A — /_.Z__./ |
L /0 -
»
031 i : = PE— e o5 l
|
0.2 1

0.2 0.3 0.4 0.5 0.6 0.7 0.8
Experiment [1]

Linear (warp 0%) — — Linear (weft 0%) |

Lo warp 0% = weft0%

Figure 5.4- Coefficient of determination between experiment and model in inflection
angle of yarns
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5.2 Geometry of plain weave fabric under bias stress

Indeed, geometry of a fabric could be classified in to two distinct categories; exterior
and internal geometry. Where, the exterior geometry reveals warp-weft yarns angle,
yarns sett and fabric strain. However, the internal geometry of fabric expresses the
configuration of fabric structure. Proposed model in section 3.1.2 is able to predict all
geometry characteristics of a fabric under bias stress. In this work, the exterior
specifications of a fabric, which are obtained from empirical work, is compared with
predicted values. To survey responsibility of suggested model in part 3.1.2, behavior
of two fabrics C14 and P30 (100% cotton and 100% polypropylene respectively) are
evaluated during deformation in bias direction. To simulate behavior of these fabrics
under bias stress, initial states of them are estimated by mentioned method in section
3.1.1. Table 5.1 represents the predicted internal geometry of C14 and P30 fabrics
before deformation. Then, the expressed method in section 3.1.2 is applied to predict
fabrics geometry under bias stress by using initial data of these fabrics as input.

Table 5.1- Predicted values of internal geometry of P30 and C14 fabric
Polypropylene fabric Cotton Fabric

Internal geometry parameter  Unit Fabric code: P30 Fabric code: C14
Warp Weft Warp wefl
a, ,a, cm 0.0161 0.0141 00114 0.0106
b .b, cm 0.01103 00126  0.0049 0.0052
W, ¥ degree  62.72 7156 7542 79.89
y A A degree  53.23 69.63 6178 716
Mol . 0.5759 05759  0.5477 0.5477
Lz, Lo cm 0.0022 -8E-6  0.0020 0.0017
k, - 1.46 2.3477
k, 2 1.14 1.08
d, cm 0.0098 0.0030
i, - 8.6E-5 ) Ly
1 - 3.1E-8 -6.3E-8
T - 5.1E-5 9.7E-5
/. : : !

In the other hand, the exterior geometry of these fabrics under bias stress is studied by
image analysis techniques (explained in section 4.1.1). For this purpose, the
specimens are prepared in oblong shape with aspect ratio 10 in three different widths
and length namely; 10100 mm, 15%150 mm and 20x200 mm in direction of 45

degree from warp and weft (bias direction). The numbers of trials for each fabric in

each width were three. Simultaneously, to record the external features of specimens, a
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microscope equipped camera is adjusted in center of samples. The exterior

specifications of fabrics, which are obtained by this manner, will be compared with

predicted values in following.

Polypropylene fabric:

On the basis of initial data of polypropylene fabric (code: P30), the linear part of weft
yarns of negligible (table 5.1). Therefore, this fabric can be classified in situation 2 of
table 3.1. Empirical evaluations of warp-weft yarns angle are judged against predicted
values in figure 5.6. Meanwhile, the values of Weissenberg’s model [18, 19] are
revealed in this figure. As it is observed in figure 5.6 there is a critical angle (about 48
degree in 38% strain) which the ratio of angle variations after this angle reduces
significantly. This critical angle, so called locking angle or jamming angle, is
subjected to study by many researchers [20, 25-26]. Actually, shear deformation of
fabric is limited by locking angle. At this point, warp-weft yarns rotation would be
limited by lateral contacts of yarns. Anyway, proposed model indicates this critical
angel. The relative errors between predicted and measured values in warp-weft angle
are demonstrated in figure 5.7. Average of relative errors in predicting warp-weft

angle is 3.6% for this fabric which is reasonable.
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Figure 5.6- Measured and predicted values of warp-weft angle for fabric (P30)
during bias deformation
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Figure 5.7- Relative error between measured and predicted values in warp-weft

angle for fabric (P30)

Moreover, variations in yarn sett can be investigated by applying image analysis

technique on exterior features of a fabric under bias stress. Figure 5.8 shows the

predicted and measured values of shear yarn setts in warp and weft yarns. Unlike

shear angle behavior, slope of reduction in yarns sett after locking angle are increased

in both directions. Accordingly, one can argued that before locking angle the yarns

rotation govern the fabric deformation while, the yarns crimp-interchange is dominant

effect after reaching to locking angle during fabric deformation. Figures 5.9 represent

relative errors for measured and predicted values in yarns sett. The average of this

error for yarns sett is 3.8% which is sensible.
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Figure 5.9- Relative error between measured and predicted values in yarns sett for
fabric (P30)

Figures 5.10 indicates the estimated values of warp and weft yarns dimensions during
" deformation. On the basis of this evaluation, major radius of yarns is constant during

shear deformation however: minor radius of these yarns is subjected to reduction up

' to maximum packing density. Figure 511 reveals the variation in contact angle of

yarns. It seems that after Jocking angle the increasing in contact angles for both warp
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and weft yarns is not too much. Figure 5.12 demonstrates the variation between yarns
‘gaps during deformation in bias direction. It is estimated that the gaps between warp
yarns are gradually vanished up to lateral contact of these yarns. However, the gaps
between weft yarns are increased during whole states. Figure 5.13 shows the yarns
packing density variation during deformation. It must be mentioned that estimated

parameters within figures 5.10-5.13 are some internal geometry of fabric which are

evaluated by suggested model during deformation in bias direction.
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Figure 5.10- Estimated dimensions of Figure 5.11- Estimated contact angle of

yarns during deformation (P30 fabric) warp and weft yarns(P30 fabric)
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Figure 5.12- Estimated gaps between Figure 5.13- Predicted variation in
warp and weft yarns(gapl and gap 2 packing density in P30 fabric
respectively) during deformation (P30
fabric)

Cotton fabric (C14)
Estimated initial state of cotton fabric (table 5.1) indicates that there are linear parts in

warp and weft yarns. According to table 3.1 this fabric can be classified in situation 1.

Figure 5.14 discloses the variations of warp-weft angle experimentally and

theoretically when the fabric is subjected to bias stress. Similar to P30 fabric, locking
angle can be observed in this fabric as wel

fabric is about 58 degree, but the measure

| as. The estimated locking angle for this

d locking angel is about 48 degree.
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Nevertheless, the average of relative errors for estimated and measured values is 3.9%
(figure 5.15).
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Figure 5.14- Measured and predicted values of warp-weft angle for fabric (C14)
during bias deformation
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Figure 5.15- Relative error between measured and predicted values in warp-weft
angle for fabric (C14)

Estimated and measured values of yarns sett is summarized in figure 5.16. According
to mentioned arguments it is seems that before locking angle the yarns rotation govern
the fabric deformation but, the yarns crimp-interchange is dominant effect after

reaching to locking angle during fabric deformation. The average of relative errors in

estimated and measured yarns sett is 2.7% (figure 5.17).
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Figure 5.17- Relative error between measured and predicted values in yarns sett for
fabric (C14)

Figures 5.18 indicates the estimated values of warp and weft yarns dimensions during
deformation of C14 fabric. Like fabric P30, major radius of yarns is constant during
shear deformation however; minor radius of these yarns is subjected to reduction up
to maximum packing density. Figure 5.19 reveals the variation in contact angle of
yarns as well as. Moreover, figure 5.20 illustrates the variation between yarns gaps
during deformation in bias direction. It is estimated that the gaps between warp yarns

are gradually vanished up to lateral contact of these yarns. However, the gaps between
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weft yarns are increased during whole states. Eventually, figure 5.21 shows the yarns

packing density variation during deformation.
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E o.nﬂ. e ..'_-_— — -7 __ - " ___
BESS e S :
; 000 i — o gu‘
E I —— +gap 1 zgu — {
" - .N: ................ Al e : : s L P
g Sample strain [%] 3 ;—w___;o o n 7 a0 50 0 1]
Sample strain [%]
Figure 5.20- Estimated gaps between Figure 5.21- Predicted variation in
warp and weft yarns(gapl and gap 2 packing density in C14 fabric
respectively) during deformation (C14
Jabric)

5.3 Anisotropy in tensile properties of woven fabric

5.3.1 Input data and estimating

To verify the proposed model, expressed in section 3.2, a cotton fabric (R30F) is
considered. The cotton fabric R30F was resized and dyed. Table 5.2 represents the
considered input data to evaluate tensile force strain and geometrical behavior of this
fabric. It must be mentioned that flattening function (G(F,)) is obtained by empirical
work performed on 30 tex cotton yarn expressed in appendix (E). Also, it is deemed
that this function is unique for warp and weft. The yarns stiffness (S;, §2) can be

estimated by solving the system of equations in non-deformed fabric condition.
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Table 5.2- Input data for fabric R30F

Parameter Unit Value
Hi= 2 - : 0.35
C;, G 9.3, 11.7
D, D; yarns/m 2540, 2140
E), E; N 100, 70

Gi(F,)= G(F,) - e, =—0.0815In(F,)—-0.5712
Sy, Sy/evaluated by model in non-deformed N.m’ 2.09E-9, 1.34 E-9

state]

lex,, tex; tex 29.5, 29.5
EyluEyu - 0.05, 0.065

5.3.2 Preparing samples and installing apparatuses

Henceforth, the angle of force axis and weft yarns would be called force angle and
denoted by ¢. Specimens with 50200 mm dimensions are prepared in different ¢
angel namely; 0° 15° 30°, 45°, 60°, 75° and 90°. Figure 5.22 describes the
arrangements of samples in comparison with different force angles. The number of

trial for each direction was three.

Warp direction I
p= 900 = 750
p=60°

p=45°

p=30°

p=15°
Weft direction
74 0= 0°
4 Force axis

— : :
Yarns direction

I

Figure 5.22- Sample arrangement in comparison with force axis
To evaluate exterior geometry of fabrics, two squares are drawn in center of each
sample. The dimension of first square was 20%20 mm in parallel to sample edges,

hereafter so called inner square. Second square was depicted in parallel with warp and
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weft yarns directions and out of the first one, so it is called outer square. Figures 5.23
and 5.24 indicate these squares for samples with ¢=15° and p=60° typically.

Instron 4411 with testing speed 100 [mm/min] was employed for measuring tensile
force. The jaws are modified by mentioned method in section 4.1.3. To synchronize

the strain with recorded force and measuring exterior deformation of sample a camera

is installed and focused in center of sample.

Weft direction Warp direction
Warp directio,

Weft direction
Force axis Force axis

Figure 5.23- Inner and outer squares in  Figure 5.24- Inner and outer Squares in
center of sample p=15°(weft yarns-force center of sample p=60°(weft yarns-
axis angle) force axis angle)

5.3.3 Exterior geometry results

Figure 5.25 reveals the measured circumference of inner square of different samples.
It can be observed that in most of the samples the variation in inner square perimeter
is not significant. The coefficient of variation (CV) for these specimens is 0.92%,
2.02%, 2.51%, 1.60% and 1.05% for samples p= 15°, 30°, 45°, 60° and 75°
respectively. A source of perimeter reduction in samples ¢p=30°, 45°, 60° is buckling
of samples. However, the influence of buckling is not significant due to using capstan
part in gripers (section 4.1.3). On the basis of assumptions, perimeter of inner square

is assumed as constant during deformation which is agreement with measurements

(figure 5.25).
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Figure 5.25- Circumference of inner square in samples with different ¢ (weft yarns-
Jorce axis angle)

In the other hand, the arrangement of squares, depended on the force angle ¢, are
subjected to change during deformation. Figures 5.26 and 5.27 show these squares in
samples with p=15° and ¢=60° after deformation and near to rupture.

Actually, when the tensile stress is imposed in weft direction, the variation in
arrangements of contrary yarns, here warp yarns, can be estimated by proposed
model. As well as, this method can be applied when the fabric is suffering tensile
stress in warp direction. The outcomes of experimental and predicted values of warp
and weft yarns sett is summarized in figure 5.28. Evidently, the estimated values are
higher than measured values. It can be justified by restriction in yamns sett. In real
fabric, there are some geometrical restrictions which cause to limit sett for contrary

yarns [17]. This limitation do not considered in this model. Thus, the predicted values

are higher than measured values.
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Figure 5.26- Inner and outer squares in Figure 5.27- Inner and outer Squares
center of sample p=15°(weft yarns-force axis in center of sample p=60°(weft
angle) after deformation and near to rupture yarns-force axis angle) after
point deformation and near to rupture point

Indeed, in comparison with the condition that the stress is applied in principal
directions, the variation in yarns arrangements is really more complex when the
tensile stress is inflicted in arbitrary direction. For instance, when the tensile stress is
inflicted in warp direction then the warp yarns sett increased and yarns sett in weft
direction starts to reduce. But, when the stress is imposed in arbitrary direction of a
fabric then both warp and weft yarns arrangements are subjected to non-uniform
changes. It is strongly depended on planar and normal forces which are generated on
yarns during deformation. Figures 5.29-5.33 depict the average of measurements and
evaluated yarns sett when the tensile stress is imposed in different angles. In figure
5.29 and 5.30 can be observed that if the force angel is closer to weft yarns, yarns sett
in weft direction start to reduce continuously, but warp sett is gradually increased then
starts to decrease. The rivers trend is detected in figure 5.33 for force angel 75°.
However, both warp and weft yarns setts begin to reduce when the force axis angle is
45° (figure 5.31). Whereas the predicted values depict the trend of variations in yarns
sett as well as the measured values, it can deducted that the proposed model is

responsible to estimate yarns sett changes during deformation in arbitrary direction.
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Figure 5.28- Comparison between predicted and measured values: Change in warp
and weft yarns sett when the fabric is subjected to tensile stress in weft and warp
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Figure 5.33- Comparison between predicted and measured values: Change in yarns
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One of the important quantities in exterior properties of a fabric during deformation is

warp-weft yarns angle which indicates the shear angle and shear strain [20, 25-26].
The samples with bigger change in warp-weft yarns angle are known as more
deformable than others. This model is able to estimate warp-weft angle too. Figures
5.34-5.38 reveal the comparison between estimated and measured values of warp-weft
angle in different force angle. It can be observed that maximum shear angle

(minimum warp-weft angle) can be achieved when the force angle is 45° (figure
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5.36). One of the defects of this model is inability to estimate critical shear angle or
jamming angle. Although, the general experience indicates that the cotton fabric

samples are failed before or under Jamming condition (section 5.1.2).
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Figure 5.34- Comparison between predicted and measured values: Warp-weft yarns
angle for force angle p=15 °
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Figure 5.36- Comparison between predicted and measured values: Warp-weft yarns
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Figure 5.37- Comparison between predicted and measured values: Warp-weft yarns
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5.3.4 Tensile force- strain results

Predicted and measured values of tensile force -strain curves are compared in figures
5.39-5.44. Figure 5.39 indicates the outcomes of estimated tensile force-strain values
and synchronized mean values obtained from real samples fabric in warp and weft
directions. Although, the estimated and measured trends are good agreement to each
other, there are some errors to evaluate tensile behavior of fabric in principal
direction. The average of absolute errors are 36.4 [N] and 26.7 [N] in warp and weft
directions respectively. There are very good agreement between the estimated and
measured values of ultimate strength and strain of fabric in principal direction.

Figure 5.40 depicts the results of estimated and average of measured values when the
tensile stress is applied in 15° direction (from weft yarns). The estimated values in
this direction are better in comparison with principal directions. The average of
absolute errors in this direction is 10.2 [N]. Despite of using the modified jaws in this
study, all the samples in this direction are failed in the nip of jaws. Therefore, the
predicted ultimate strength and strain of fabric in this direction are really higher than

the measured value. It is demonstrated that using the modified jaws conducts to better

results (appendix (F)).
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Figure 5.41 illustrates the average of measured values in comparison with predicted
values if force angle of 30°. Very good agreement between experimental data and
theoretical can be found in this direction. The ziverage of absolute errors is 5.3 [N] in
this direction. Similarly to direction 15°, the estimated ultimate strength and strain is
higher than experimental values in this direction.

The predicted and measured data in force direction of 45° is summarized in figure
5.42. The concord between predicted and measured values is very good as well as
before. The average of absolute errors in this direction is 10.2 [N]. Furthermore, the
estimated ultimate strength and strain for fabric in direction of 45° is very compatible
with measured values. It must be mentioned that the rupture of samples in this
direction taken place out of the nip of jaws. Therefore, one can argue that the
proposed model is probably accurate to estimate ultimate strength and strain of fabric
in arbitrary direction as well as tensile force-strain estimation.

Figure 5.43 and 5.44 show the comparison between measured and evaluated data of
tensile force-strain of this fabric in directions of 60° and 75°. The samples in these
directions were broken at jaws, so the estimated values are higher than experimental
data. As well as, the rate of increasing force in the obtained data from this model is
bigger than tentative values. Nevertheless, the trend of predicted curve is acceptable
and the averages of absolute errors are 26.6 [N] and 32.1 [N] in 60° and 70° directions
respectively.

Figure 5.45 represents the tensile force-strain curve of samples in all directions to
comparison. Clearly, the fabric in direction of 45° has a great strain and good strength
(a bit higher that warp/weft direction). On the basis of estimations of this model, the
maximum strength of this fabric can be expected when the tensile stress is imposed in
axis 60° direction (p=60° form weft yarns). Figure 4.46 describes the absolute errors
of samples in different directions. The measured and estimated values of ultimate
strength are summarized in figure 4.47 at different direction. There is good agreement
between estimated and measured values in principal and bias directions. However,
despite of using modified jaws the samples in other directions are broken at the jaws.

Thus, the more strength is anticipated in this direction. The effect of modified jaws on

anisotropy of tensile properties is investigated in appendix (F).
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Figure 5.39- Comparison between predicted and measured values: tensile force-
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Figure 5.40- Comparison between predicted and measured values: tensile force-
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Figure 5.41- Comparison between predicted and measured values: tensile force-
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Figure 5.42- Comparison between predicted and measured values: tensile force-
strain curve in =45 ° direction
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Figure 5.44- Comparison between predicted and measured values: tensile force-
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Figure 5.47- Comparison between measured and estimated ultimate strength of fabric
C14 in different directions

5.3.5 Distribution of planar force and normal force

One of the important outcomes of the proposed model is estimating planar force
where the yarns suffer during fabric deformation. Further more the variation in
normal force during deformation is another attractive estimations of this model. In
order to indicate these variations during deformation of fabric in arbitrary direction,
the planar force on single yarn is depicted versus normal force in warp and weft
directions. Figure 5.48 represents the estimated planar force and normal force data in
warp and weft direction separately. When this fabric is subjected to stress in warp
direction then the normal force arise gradually. This increase in normal force at the
beginning of deformation is occurred rapidly in comparison with other parts. As well

as, if the fabric under consideration subjected to stress in weft direction then the

normal force increase quickly then limited to some value.
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Figure 5.48- Variation of planar force and normal force on single yarn in warp and
weft direction (p=90° and p=0° respectively)

Figure 5.49 shows attractive linear trend in variation of planar and normal force in
single warp and weft yarns when the force angle is 15°. As it was anticipated, the
planar force in weft yarns is higher than warp yarns due to closing of weft yarns with
force angle. Thus it is expected that weft yarns are failed sooner than warp yarns.
Consequently, the ultimate strength of fabric in this direction is low than the strength
of fabric in higher force angles due to lack of weft sett yarns and small contribution of
warp yarns in fabric resistance. The proportion planar force to normal force is 2.1 and
10.0 for warp and weft yarns respectively.

Figure 5.50 indicates variation of planar force in single yarn in warp and weft yarns of
a sample under 30° force angle. The trend of planar and normal force is still linear.
However, contribution of warp yarns to suffer stress is increased in comparison with
15° force angle. Nevertheless, weft yarns are anticipated to rupture sooner than warp
yarns. The respect of planar force and normal force is 2.8 and 6.3 for warp and weft
yarns respectively.

Figure 4.51 specifies the planar and normal force on a single yarn of warp and weft
when the fabric is suffering bias stress. The involvement of both warp and weft yarns
bear force is almost the same. Therefore, the superior strength is expected in this
direction. Maximum normal force is predicted in this direction. The proportion planar

force to normal force is 3.4 and 4.6 for warp and weft yarns respectively.
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Figure 5.51- Variation of planar force and normal force on single yarn under force
angle 45° (p=45°)

Figure 5.52 reveals the estimated planar and normal force of single yarns for this
fabric when the force angle is 60°. In contrary with other mentioned directions, the
warp yarns in this direction are subjected to rupture. Whereas the warp yarns sett is
higher than weft sett and the involvement of weft yarns in suffering stress is high too,
the highest strength among angles under consideration is estimated in 60° direction.
However, the maximum ultimate strength of this fabric can be occurred in a certain
force angle in interval 45°-60° which both warp and weft yarns are subjected to break
simultaneously. The respect of planar force and normal force is 5.0 and 3.2 for warp
and weft yarns respectively.

Figure 5.53 represents the data of predicted values for planar and normal force on
single yarn when the force angle is 75°. The linear relation is observed in planar-
normal force trend for warp and weft yarns too. The warp yarns are anticipated to fail
sooner than weft yarns due to closing force axis to warp yarns in this direction. The

proportion planar force to normal force is 8.0 and 2.2 for warp and weft yarns

respectively.
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Figure 5.52- Variation of planar force and normal force on single yarn under force
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6 Conclusion

Tensile properties of fabric indicate how the fabric will react to forces being applied
in tension. Tensile properties of a fabric in this study consist of tensile force-strain
curve of fabric and variation in fabric geometrical characteristics simultaneity. To
challenge anisotropy of tensile properties of fabric, a geometrical model for
understanding bias deformation has been put forward then a micro-mechanical for
evaluating fabric in arbitrary direction has been established successfully. The

conclusions of each of these models and developed methods are presented in

following:

6.3 Geometry of fabric during bias deformation

Very simple geometrical model has been constructed with numbers of assumptions.
This model had been utilized to evaluate geometry of a set non-deformed cotton
fabrics. The comparison between tentative and estimated data indicates that this
model is responsible in internal fabric geometry before deformation. Then this model
is expanded to assess geometry of deformed fabric in bias direction by considering
some more assumptions. To evaluate deformed fabric, the outcomes of this model had
been compared with experimental work. It is found that suggested model reveal
geometry of fabric as well as. Estimating of locking angle can be pointed out as
another advance of this model. According to proposed model and observations one
can argued that before locking angle the yarns rotation govern the fabric deformation
while, the yarns crimp-interchange is dominant effect after reaching to locking angle
during fabric deformation.

Notwithstanding the capacities of this model to evaluate fabric geometry before and
after deformation in bias direction, this geometrical model does not satisfy whole
targets of our study. Consequently, a micro-mechanical model has been established.
6.4 Micro-mechanical model for evaluating fabric in arbitrary direction

When a woven fabric is subjected to stress in arbitrary direction then a complex
behavior for the fabric can be anticipated. Relative rotation between yarns, crimp
interchange in warp and weft yarns, yarns flattening, yarns extension etc. are the well
known reactions of fabric’s yarns when the fabric is suffering stress in arbitrary
direction. For this purpose, deflection curve of a yarn under planar and normal forces
has been determined by considering yarn bending stiffness and some assumptions.
Moreover, behavior of tensioned yarn under compressive force is empirically

determined. Thus, a system of equations include of some differential equations has
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been constructed. Whereas the yarns stiffness can be determined in relaxed fabric
condition, the mentioned system of equations can be solved for certain force and force
angle. It has been demonstrated that the established model is successful to appraise
tensile properties of fabric by comparing the empirical and theoretical data. Despite of
capacities of proposed model to simulate behavior of fabric under stress in arbitrary
direction, lack of ability to estimate jamming condition is the main defect of this
model. Some sources of errors in model are summarized in following categories:

I. Bending rigidity of tensioned yarn is a function of tension and bending angle,
however in this study we contemplate is as a constant value during
deformation.

2. Mechanical properties of a yarn inside of fabric are not the identical as free
yarn.

3. Distinguishing yarn deformation under tension and compressive force is
complicate. Nevertheless, we applied an empirical approach to measuring
yarn cross-section deformation under a certain interval tension and
compressive forces.

6.5 Developed methods

To investigate external geometry of woven fabric, the 2D FFT technique is modified
and used effectively in this study. It is demonstrated that this technique can be
employed to detect yarns shear angle and change yarns density during deformation.
Moreover to evaluate flattening of tensioned yarn when it is subjected to normal force
a simple method is suggested in this study. The exponential behavior in deformation
of yarn cross-section under formal force is observed by applying this method. The
flattening of tensioned yarn is accompanied with yarn consolidation by increasing
tension. To better understanding this behavior of yarn an independent investigation is
proposed.

As other researchers, to measure ultimate tensile strength and strain of woven fabric
in arbitrary direction there were a dilemma due to rupture of samples at nip of jaws.
Beside of other solutions a new concept to overcome stated problem is put forward.

On the basis of this concept, the jaws can equipped with capstan parts to apply tension

on the sample gradually. The observations indicate that this method is more effective

than the other solution to measuring tensile properties of woven fabric in arbitrary

direction.
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Appendix A: Minimum packing density of yarn inside of two real fabric
As mentioned in section 3.1.1, four equilibriums (3.10), (3.21), (3.22) and (3.25) can

be inferred from geometry of a fabric which are depended on six variables. To obtain
variables, all series of results which satisfy equilibriums are to be computed by
considering two arbitrary values for proportions (A.1) and (A.2). It can be graphically

shown that, there is one pair of k; and &, among arbitrary values which corresponds

with minimum possibility of packing density.

a
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To demonstrate relation among k;, k; and packing density, two plain weave fabrics

C14 and P30 are considered (their specifications are presented in table 4.1).
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K;=(a:/b4)

Figure A.1- Relationship among k,,k, and yarn packing density for fabric (P30)
All possibilities in results which satisfy equilibriums (3.10), (3.21), (3.22) and (3.25)
are computed and collected in figures Al and A2 for fabrics C14 and P30
respectively. Then, a series of data which is conducted to minimum packing density is
picked out as a final result for each fabric. The minimum calculated packing densities
for polypropylene and cotton yarns inside of fabric are 0.576 and 0.548 respectively.

The results of this evaluation are summarized in table 5.1.
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Figure A.2- Relationship amongk, ,k, and yarn packing density for fabric (C14)
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Appendix B: Solving deflection equation of tensioned yarn by simplification

General equatlon of deflection of tensioned yarn (3. 52) can be rewritten as equation
(B.1):

y F, [ =
__—E:S— x——z— +_S_(y '—h) )’(O)=0,y’(0)=0 (Bl)

1+ ) )

In next appendix (appendix C) will be demonstrated that if planar force is bigger that
normal force (7' >2F,) then the first order derivation quantity ( y") can be omitted

from equation (B.1). Thus we have:

- 0 S ‘
y :S (x—;] S (}’ _h) )’(O)=O,y(0)=0 (B.2)

The equation (B.2) can be rewritten as equation (B.3).

: F.l
y'S—Ty=F.x —( - J (B.3)

Outcome equation is a differential equation with a general answer (B.4) which it
consists of two parts namely; particular and homogeneous answers. Each of them can
be solved by regarding to differential equation theorems as equations (B.5) and (B.6).

Eventually, equation (B.7) is deducted as general answer of this equation.

y=y,(x)+y,(x) (B.4)
y, = (B.5)
Vi =C]ex‘E F e s .9
y=~—% ;Q”Tf+h+Cef+Ce s (B.7)

To obtain quantities C; and C; boundary conditions (B.8) and (B.9) can be applied.

{x=0
{ HC\/:— f*——: (B
e =0

(B.8)

Therefore:
__Fl b F [8 (B.10)
& 4T 2 ar\r
Fl h f-‘,,\/§ (B.11)
. . =
iT 2 2TV\7T
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Eventually, If 7 >2Fn then the deflection equation of tensioned yarn can be derived as

equation (B.12) and (B.13).

T
Fr S(_z hT

e
5

(B.12)

G _fF (B.13)
e2 4 +e 8
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Appendix C: Verifying the deflection equation of tensioned yarn
In this appendix it is tried to verify the validity of deflection equation (B.12) which is
obtained by considering first order derivation quantity (") as zero. Nevertheless the

equation (B.1) can be solved numerically. Following diagrams compare the difference

between numerical and analytical solutions in different conditions. Figure C.1
indicates the analytical and numerical solutions when the planar force is zero. When
the normal force arises then the distortion form numerical solution and analytical
solution is observed. Therefore, using analytical equation does not suggest when the
planar force is absent or negligible compared to normal force.

Figure C.2 and C.3 verify the numerical and analytical solution for a yarn with 1E-9
[N.m’] as stiffness and 2.33E-4 [m] as //2 in different planar force (T). Figures 5.47-
5.51 demonstrated the planar/normal force ratio was varying within 2-10 rang.
Accordingly, the ratio of planar force and normal force is considered as three ratios
namely 10, 5 and 2 in this appendix. Distortion from numerical values is indicated by
absolute errors. This comparison between analytical and numerical is repeated by
assuming 2E-9 and 4E-9 [N.m’] as yarn stiffness and different planar forces. The
outcomes are pointed out in figures C.4-C.7. It can be argued that when the

planar/normal force ratio increases then the first order derivation ( y") of equation

(B.1) tends to zero. As a conclusion it can be observed from figures C.2-C.7 that the
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Figure C.1- Analytical () and numerical (...) solution of «ffeﬂection equation for
S=1E-9[N. m’]: planar force is zero and normal force increase gradually

S - 1
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analytical solution (Equation (B.12)) is a good estimation of numerical solution (B.1)

if the planar/normal force ratio is equal or bigger than 2.
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Appendix D: Bending rigidity of tensioned yarn

The deflection path of tensioned yarn is investigated by estimating yarn stiffness in

this appendix. Accordingly, the best value of stiffness (S) is computed by fitting

differential equation (3.52) with yarn deflection path obtained form image analyzing.
Image D.1 indicates a real yarn image and figure D.2 illustrates the free body diagram
of bent yarn under tension schematically. The bending angle is varied from 10 degree
to 80 degree with 10 degree step. Furthermore, a mutual tension is imposed in the
ends of sample yarns (figure 4.10). Behavior of yarn was investigated under different
angle and four different weights namely 0.36, 1, 2 and 3.66 [gr]. The components of
imposed tension are planar and normal forces, which can be computed on the basis of
bending angle and mutual weights. In this study, a 30 tex cotton ring yarn with 710

[t.p.m] as twist, was considered. Two samples per each image test were examined and

number of trials was four.

Figure D.1- Real tensioned yarn at ~ Figure D.2- Free body diagram of tensioned
bending yarn at bending

The results of estimating stiffness of tensioned yarn are summarized in figures D.3
and D.4. It can be observed that yarn stiffness obtained by this way is not constant.
Indeed, figures D.3 and D.4 reveal that the stiffness of tensioned yarn is depended on
bending angle and yarn tension. One can argue that the yarn consolidation is occurred
by increasing yarn tension then more stiffness can be expected in this condition. In
addition, the arrangement of fibers is subjected to change by changing bending angle.
Thus, change in bending stiffness of tensioned yarn is expected during variation of
owever, the effect of tension on yarmn rigidity at low

her angle. It can be deducted that the effect of

yarn tension/bending angle. H

bending angle is higher than the hig
m for bending angle bigger than 60° is

bservations is reduced by increasing

yarn tension on bending rigidity of ya
negligible. Furthermore, the variation between 0

bending angle.
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Appendix E: Flattening of yarn

The results of yarn flattening at different tension in average, which are obtained by
mentioned method in section 4.1.2, are summarized in figures E.1 and E.2. In this
appendix the 30 tex cotton ring yarn with 710 [t.p.m] as twist, was considered under
0.36, 1, and 5.36 [gr] weights. The variations in dimensions of yarn cross-section
indicate that the yarn thickness is generally reducing when the bending angle is
increasing. However, the yarn width reduces then arises by increasing bending angle
(figure E.1). Evidently, the lower dimension is observed by increasing tension.
Reducing in width of yarn can be justified by consolidation phenomenon at low
bending angle and increasing in width refers to flattening trend of yarn at higher
bending angle.

0.04 -

|-2a,0.36 gr -&-2a, 1 gr - 2a, 5.36 gr 0 2b, 0.36 gr % 2b, 1 gr —— 2b, 5.36) |
|
0.035 |

0.03

0.025

0.02

Cross-section dimension [cm]

0.015 AL = =

0.01 T . T . . .
0 10 20 30 40 50 60 70 80 90

Bending angle [degree]

Figure E.1- Variation in yarn cross-section dimensions at different tension and
bending angle

Figure E.2 shows the flattening coefficient of yarn under consideration as a function
of normal force. The response of tensioned yam under normal force is fitted by an
exponential function. The obtained exponential function was utilized in this study as a
known behavior of tensioned yarn under different normal force. Apparently, the

deformation in thickness is limited by maximum possibility of yarn packing density.
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Figure E.2- Flattening coefficient as a function of normal force
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Appendix F: Comparison between standard and modified jaws in anisotropy

results

To evaluate anisotropy in tensile properties of fabric empirically most of the samples

out of the principal directions are broken at the standard grippers due to stress

concentration at the specimens corners. This stress concentration is proportionate with

bigness of lateral contraction of specimen. Recently increased attention has been paid
to the study of stated problem [48]. Nevertheless, an individual challenging is
suggested by current study mentioned in 4.1.3 section. As mentioned before an
independent pending patent is provided for this purpose. The main attempt of this
appendix is comparing results of ultimate strength of a set of fabrics test different
directions obtained by standard and modified jaws. The properties of fabric under
considerations in this study are represented in table F.1.

Table F.1- Specifications of fabrics under consideration
Fabric code Material Warp sett  Weft sett Yarn tex

Cl Cotton 100% 2600 2500 353
2 Pop0-col100 2360 2320 29.5
Pl Pop 100% 2360 1860 29.5
PC1 pop65-co35 2360 1860 29.5
PC2 Pop35-co65 2360 1380 29.5
PC3 Pop35-co635 2360 1920 29.5

The stress was imposed on 200x50 mm of samples in different directions between
0° (weft direction)-90° (warp direction) force angle. The summarized results in
figures F.1-F.6 reveal that there are significant different between standard jaws
and modified jaws. Furthermore, most of the samples are broken at gripper nip of
standard jaws in out of the principal directions, while the rupture zone is occurred
far from the grippers in modified jaws for these samples. Figure F.1 and F.2
indicate the outcomes of square cotton fabrics C.1 and C.2. It is may be interesting
to mention that the maximum strength of these fabrics is recorded in 45° angle by
modified jaws which is higher than the principal directions. This phenomenon can
be justified by proposed models in this study. The difference between results of

both jaws in principal directions is negligible for most of the samples.
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Figure F.1- Anisotropy in ultimate strength of fabric C1; measured by standard &
modified jaws
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Figure F.2- Anisotropy in ultimate strength of fabric C2; measur ed by standard &
modified jaws
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Figure F.3- Anisotropy in ultimate strength of fabric P1; measured by standard &

modified jaws
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Figure F .4- Anisotropy in ultimate PC1 fabric strength; measured by standard &
modified jaws
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Figure F.5- Anisotropy in ultimate PC2 fabric strength; measured by standard &
modified jaws
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Figure F.6- Anisotropy in ultimate PC3 fabric strength; measured by standard &
modified jaws
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