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Abstract 

Alzheimer’s disease (AD) is the most prevalent form of dementia. 

The neuropathological hallmarks of AD are defined as the amyloid 

plaques whose main component is aggregated amyloid beta peptide 

(Aβ) and intracellular neurofibrillary tangles whose main component 

is hyperphosphorylated tau. Although various causative factors of AD 

have been reported so far, the current pharmacologic treatments 

cannot slow or stop the pathology of AD. Interestingly, studies have 

shown that major depressive disorder (depression) is associated 

with a greatly increased risk of developing dementia. Moreover, 

recent studies revealed that a bidirectional communication between 

the gut microbiota and the brain could play an important role in 

various mental illnesses. In this study, I focused on the effect of 

young adulthood depression on the onset of AD, AD pathology 

alteration in the gut, and gut microbiota profile in adult mice. 4-

months-old (mo) APP/PS1 mice and their wild type (WT) 

littermates were exposed to social defeat-based unpredictable 

chronic mild stress (SUCMS) to induce depression-like behavior. 

Interestingly, “depressed” APP/PS1 mice exhibited earlier onset 

of cognitive symptoms at 5-6 mo, but the age-matched WT mouse 

model of depression did not develop cognitive impairment until 11 mo. 
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Surprisingly, although there was no increase in the number of Aβ 

plaques in the depressed APP/PS1 mice brain compared to APP/PS1 

control mice, tau phosphorylation was significantly increased in the 

hippocampus 5-6 mo depressed APP/PS1 mice. Furthermore, tau 

phosphorylation was also increased in the ileum and colon of 

depressed WT mice compared to WT control mice at 11-12 mo. 

Interestingly, shotgun metagenomic sequencing revealed various 

taxonomic alterations in the gut microbiota of the depressed APP/PS1 

mice. Collectively, this study implies that depression during young 

adulthood is an important risk factor of AD, and suggests that the 

alteration of gut microbiota composition and gut tauopathy could be 

novel targets for the treatment of AD. 

 

Keyword : Alzheimer’s disease, depression, gut microbiota, social 

defeat-based chronic mild stress (SUCMS), tauopathy 
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Introduction 

Alzheimer’s disease (AD) is a neurodegenerative disease which is 

the most common cause of dementia [1]. The number of people with 

dementia was estimated to be 57.4 million globally in 2019 and is 

expected to increase to 152.8 million in 2050 due to the constant 

increase in the aging population [2]. Although the U.S. Food and Drug 

Administration (FDA) has approved six drugs for the treatment of 

AD, none of them can slow or stop AD symptoms [1]. The 

extracellular accumulation of amyloid beta peptide (Aβ) and 

intracellular tau neurofibrillary tangles in the brain are the hallmark 

pathology of AD, which leads to neuronal cell death and severe 

cognitive impairment [3]. As the neurotoxic accumulation of Aβ and 

the tau phosphorylation begin in the brain at least 20-30 years 

before symptom onset [4], exposure to risk factors of AD in this 

Aβ/phosphorylated tau-positive asymptomatic phase may affect the 

progression of AD.  

The risk factors of AD include non-modifiable factors such as age, 

sex, and genetic background, and modifiable factors such as type 2 

diabetes, unhealthy lifestyle, cognitive inactivity, depression, and 

obesity [5, 6]. Among these risk factors, depression is known to be 

a physiological condition that significantly increases the risk of AD 
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[7]. A 25% reduction in depression prevalence could potentially 

reduce 827,000 AD cases worldwide [8]. Notably, patients who 

suffered from depression early in life are associated with a 1.7 to 

3.76-fold increased risk for development of AD later in life [9-13]. 

Furthermore, the presence of depressive symptoms in mild cognitive 

impairment patients increases the risk of conversion into AD [14]. 

An animal study utilizing Tg2576 mice found that exposure to chronic 

mild stress at 4-months of age accelerated the onset of cognitive 

impairment and increased the Aβ and phospho-tau levels in the 

hippocampus [15]. Despite the existence of evidence that support a 

strong relationship between depression and AD, the mechanism 

underlying the relationship is still elusive. Several studies 

hypothesized that the depression-induced hypothalamic-pituitary-

adrenal (HPA) axis dysregulation and activation of microglia in the 

brain may result in hippocampal atrophy and neurodegenerative 

processes [16-19]. However, there are some controversies with 

these hypotheses as some studies failed to find the association 

between depression and hippocampal volume [10, 20], or the 

severity of the depression symptoms and the inflammatory status 

[21]. Therefore, a novel approach is needed to discover the effect of 

depression on AD progression. 

It is estimated that 4.4% of the world’s population is living with 
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depression, and the prevalence of depression is increasing [22]. 

Especially, 21% of adults aged 18-29 in the US have experienced 

some symptom of depression during their lifetime, which is the 

highest percentage among adults of any other age group [23]. In 

addition, the COVID-19 pandemic increased the prevalence of 

depression symptoms in young adults [24, 25], and it is reported that 

those in their young adulthood are more vulnerable to depression 

throughout the COVID-19 pandemic [26]. Thus, I focus on 

depression during the young adulthood as a risk factor of AD. 

Gut microbiota refers to the microorganisms that colonize the 

gastrointestinal tract [27]. Gut microbiota is widely dispersed 

throughout the esophagus to the colon, while most of the gut 

microbiota reside in the distal small intestine and colon [28]. A human 

gut microbiota metagenomic study demonstrated that there are 100-

150 times more genes in the human gut than our own genome [29, 

30], and the gut microbial metabolome affects the host metabolism 

and genetics [31-34].  

Few studies have discovered that the gut microbiota composition of 

AD and depressive patients is altered compared to that of normal 

individuals. A taxonomic level analysis study showed several bacteria 

taxa difference between AD patients and healthy controls, such as 

Bacteroides, Actinobacteria, Ruminococcus, Lachnospiraceae, and 
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Selenomonadales [35]. In depressive patients, Bacteroidetes, 

Proteobacteria, Actinobacteria, Firmicutes, Enterobacteriaceae, 

Alistipes, Faecalibacterium, Bacteroidales, and Lachnospiraceae 

were significantly altered compared to the healthy controls [36, 37]. 

Furthermore, animal model studies also have shown the alteration of 

gut microbiota composition in AD and depression animal models 

compared to the control [38-40]. However, these studies adopted 

16S ribosomal RNA (rRNA) gene sequencing, which only targets 

taxonomically informative genomic loci 16S rRNA. Thus, the 

taxonomic profiling of AD, depressive patients, and animal models is 

limited to the genus level in these studies [41]. Therefore, taxonomic 

profiling on the species level is needed for the precise identification 

of differentiated microbiota affected by AD and depression. 

Shotgun metagenomic sequencing is a powerful sequencing approach 

that provides insight into community biodiversity and function [42, 

43]. For shotgun metagenomic sequencing, all DNA extracted from 

the sample are fragmented and each fragment is sequenced. As it 

targets the entire genomic content of a sample, shotgun metagenomic 

sequencing can provide the species/strain level taxonomic profiling 

[42-44].  

Recent studies have revealed that the alteration of microbiota 

composition can affect the brain because there is communication 
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between the gut microbiota and the CNS through gut-brain axis [45-

47]. Gut-brain axis is a bidirectional homeostatic communication 

through two distinct mechanisms including the circulatory system and 

neural pathway. Hormone, cytokines, and neurotransmitters travel 

through the portal vein, while the vagus and enteric nervous systems 

are involved as neural pathway for the crosstalk between the gut and 

brain [46, 48].  

The interplay between gut microbial dysbiosis and AD pathology is 

well defined in many studies [49-51]. Gut microbial dysbiosis 

increases the release of inflammatory signals in the gastrointestinal 

tract, which results in systemic inflammation. These inflammatory 

signals can cross the blood brain barrier (BBB) and increase 

microglial activation and neuroinflammation in the brain. These 

cascades trigger the increase in Aβ plaques and phosphorylated tau 

that lead to neurodegeneration. Furthermore, fecal transplantation 

(FMT) of WT mice feces to AD model mice decreased Aβ plaques 

and phosphorylated tau in the brain [52, 53]. 

Although there are many studies focusing on the changes of AD 

pathological hallmarks in the brain by the alteration of microbiota 

composition, very few studies have focused on the changes of AD 

pathological hallmarks in the gut. Only one study identified the 

existence of Aβ plaques in the intestines of APP/PS1 mice [54], 
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while there are no studies about the altered phosphorylated tau levels 

in the gut of AD model mice or patients. The gastrointestinal tract 

contains intrinsic neuroglial circuits which is termed the enteric 

nervous system (ENS) [55, 56], and previous reports have shown 

that tau is expressed in the gut [57]. As there is bidirectional 

communication between the gut and brain, confirmation of the 

alteration in AD pathological hallmarks in the gut is needed. 

In this study, I sought to discover the effect depression in Aβ-

positive young adults has on the progression of AD. I placed emphasis 

on the alteration of AD pathological hallmarks in the gut and gut 

microbiota species to reveal the connection between depression in 

Aβ-positive young adults and AD. Especially, the shotgun 

metagenomic sequencing was adopted for the in-depth analysis of 

the taxonomic profiling of gut microbiota on the species level. 
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Materials and Methods 

Mice 

Male amyloid precursor protein Swedish mutation 

(APPswe)/presenilin (PSEN1) dE9 transgenic mice (APP/PS1) with 

C57BL/6;C3H background and the littermate wild type (WT) mice 

from The Jackson Laboratory (034829, Bar Harbor, ME, USA) were 

used. C57BL/6 (B6) male mice used for SUCMS confirmation were 

from The Jackson Laboratory (000664, Bar Harbor, ME, USA). For 

the aggressors of social defeat, male ICR mice at 4-6 months of age 

from Taconic Biosciences, Inc. (Rensselaer, NY, USA) were used. 

The mice were maintained in a temperature and humidity-controlled 

facility (22±2℃, 50±5%) with a 12-hour light/dark cycle. Food and 

water were provided ad libitum. All procedures regarding the use and 

the handling of the animals were conducted as approved by the 

Institutional Animal Care and Use Committee (IACUC) of Korea 

Institute of Science and Technology (#KIST-2019-057). 

 

Social defeat based Unpredictable Chronic Mild Stress (SUCMS) 

The designed SUCMS schedule refers to a previously described and 

modified protocol that details social defeat and an unpredictable 

chronic mild stress [58, 59]. The depression group mice were 
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introduced to SUCMS at unexpected times for 4 weeks at 4 to 5 

months of age (Fig. 1A). The stressors were applied as following: 

day 1-28 – exposure to an aggressive ICR mice for 5 min and 

reversed light/dark cycle; day 8-10, 23-28 – exposure to restraint 

stress for 2 hr in 50 ml conical tube; day 8-10, 18-22 – tail 

suspension stress for 40 min; day 23-28 – tail suspension stress 

twice a day for 40 min each. The selection of aggressive ICR mice 

was performed as described in the previous report [58].  

 

Serum corticosterone concentration measurement 

On the last day of the SUCMS schedule, mice were anesthetized with 

120 mg/kg ketamine and 8 mg/kg xylazine 1 hr after the last stressor 

exposure. 500 μl of blood was collected from the inferior vena cava 

and was mixed with a 100 μl citrate-dextrose solution (ACD) to 

prevent coagulation. After 10 min centrifugation at 3,000 rpm, the 

supernatant was collected. The collected serum was 1/20 diluted in 

PBS, and the corticosterone concentration was measured with 

Corticosterone ELISA kit (ADI-900-097, Enzo Life Sciences Inc., 

Farmingdale, NY, USA) following the manufacturer’s instructions.  

 

Forced Swimming Test (FST) 

FST was employed for the evaluation of immobility, a depressive-
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like behavior in mice. In a transparent cylindrical tank (15 cm 

diameter × 25 cm height), 25-26℃ tap water was filled up to 18.5 

cm. The mice were gently released in the water and the test lasted 

for 6 min. The last 4 min was manually analyzed for the duration the 

mouse was immobile, and immobility was calculated (immobile 

duration / 4 min × 100). The illuminance was maintained at 50-60 

lux.  

 

Open Field Test (OFT) 

OFT was employed for the evaluation of anxiety-like behavior and 

locomotor. Mice were allowed to freely explore in an open-field box 

(Width 40 cm × Length 40 cm × Height 40 cm) for 30 min. The 

illuminance was maintained at 15 lux. The time spent in the center 

zone (20 cm × 20 cm area in the middle) and the distance moved in 

the box were measured with EthoVision (Noldus, Wageningen, the 

Netherlands). 

 

Light-Dark Box (LDB) 

LDB was employed for the measurement of anxiety-like behavior. 

The LDB apparatus (Width 44 cm × Length 16 cm × Height 27 cm) 

is divided into a lit area and a dark area (width of the lit area: dark 

area = 26 cm : 18 cm), with a gate between the two. The dark area 
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had a lid on the top to block out light. On the test day, mice were 

placed in the dark area of the box, and the time mice spent in the lit 

area was measured for 10 min. The illuminance of the lit area was 

maintained at 10 lux. 

 

Novel Object Recognition test (NOR) 

NOR was employed for the evaluation of recognition memory. The 

test was done for three consecutive days. On the first day of the test, 

mice were habituated in an open-field box (Width 40 cm × Length 

40 cm X Height 40 cm) for 30 min. 24hr later, mice were introduced 

to two identical object A (familiar object) for 10 min in the open-

field box. 24 hr later, one of the object A was exchanged with an 

object B (novel object) and mice were introduced to the two different 

objects for 10 min in the open-field box. Time exploring the familiar 

object and novel object was measured on the last day of the test, and 

the relative exploration time was calculated (exploration time of 

familiar object or novel object divided by total exploration time). 

Objects with different color, texture, and shape were used as object 

A and B. The illuminance was maintained at 15 lux.  

 

Y-Maze Test (YMT) 

YMT was employed for evaluating short-term memory and working 
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memory. An apparatus with three arms (35 cm length × 10 cm width 

× 10 cm height) positioned at a 120° angle from each other was 

used. The mice were placed in the end of an arm of the apparatus, 

and were allowed to freely explore the apparatus for 10 min. The last 

8 min was analyzed to calculate the alteration percentage (number of 

alterations/total number of entries × 100). Every entry was counted 

as valid if all the four limbs were placed in the arm. The illuminance 

was maintained at 7 lux.  

 

Preparation of mice brain slices 

Mice were anesthetized with 120 mg/kg ketamine and 8 mg/kg 

xylazine and were perfused and fixed with a 4% paraformaldehyde 

(16005, Sigma-Aldrich, Inc., St. Louis, MO, USA) solution. The 

isolated brain was post-fixed in the 4% paraformaldehyde solution 

in 4℃ overnight and was dehydrated in 30% sucrose (84097, 

Sigma-Aldrich, Inc., St. Louis, MO, USA) solution in 4℃ for 4-5 

days. The brain samples were then sectioned with a cryostat 

microtome in 40 μm thickness. 

 

Preparation of mice gut slices 

After perfusion, ileum and colon were isolated and post-fixed with 

4% paraformaldehyde solution for two days. The tissues were 
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paraffin embedded and sectioned in 6 μm thickness. Paraffin was 

removed with xylene and ethanol before immunohistochemistry. 

 

Thioflavin S staining 

1% thioflavin S solution was prepared with thioflavin S powder 

(T1892, Sigma-Aldrich, Inc., St. Louis, MO, USA) in 80% ethanol. 

Fixed mice brain slices were washed with PBS and were incubated 

for 1 min in 70% ethanol. The brain slices were then incubated in 80% 

ethanol for 1 min and were transferred to 1% thioflavin S solution. 

After incubation in 1% thioflavin S solution for 15 min, the brain slices 

were incubated in 80% ethanol for 1 min, and subsequently 

transferred to 70% ethanol and were incubated for 1 min. After final 

washing with PBS, the brain slices were mounted on the silane coated 

slide glasses.  

 

Immunohistochemistry (IHC) 

Antigen retrieval was performed in 10mM sodium citrate solution (pH 

8.5) with 0.05% tween-20 at 80℃ for 30 min. After 1hr of blocking 

in TBS with 0.5% triton X-100 and 2% donkey serum, the samples 

were incubated in primary antibodies at 4℃ overnight. The following 

primary antibodies were used: tau (ab254256, Abcam, Cambridge, 

UK) 1:200; phosphorylated tau at Ser396 (35-5300, Invitrogen, 
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Waltham, MA, USA) 1:200; Tuj1 (ab78078, Abcam, Cambridge, UK) 

1:500. The samples were then incubated in secondary antibodies and 

DAPI (D9542, Sigma-Aldrich, Inc., St. Louis, MO, USA) for 2hr at 

room temperature. The following secondary antibodies were used: 

donkey anti-mouse 488 (A20210, Invitrogen, Waltham, MA, USA) 

1:400, donkey anti-rabbit 594 (A21207, Invitrogen, Waltham, MA, 

USA) 1:400. 

 

Western Blot 

Protein was extracted from the colon and ileum in RIPA buffer 

(89900, Thermo Fisher Scientific, Inc. Waltham, MA, USA) with 

protease and phosphatase inhibitor cocktail (78440, Thermo Fisher 

Scientific Inc., Waltham, MA, USA). 40 μg of protein was separated 

by 10% SDS-PAGE gel and transferred to PVDF membrane 

(IPVH00010, Merck Milllipore, Darmstadt, Germany). After blocking 

in 5% skim milk or BSA for 1 hr, the membrane was incubated with 

primary antibody overnight at 4℃. primary antibodies were used: tau 

(sc-390476, Santa Cruz Biotechnology, Inc., Dallas, TX, USA) 

1:2000; phospho-tau Ser396 (44-752G, Invitrogen, Waltham, MA, 

USA) 1:1000; 6E10 (803014, BioLegend, Inc, San Diego, CA, USA) 

1:2000; GAPDH (sc-365062, Santa Cruz Biotechnology, Inc., Dallas, 

TX, USA) 1:1000. The membrane was then incubated with secondary 



 

 １４ 

antibody in 5% skim milk or BSA for 1 hr. The following secondary 

antibodies were used: donkey anti-rabbit IgG secondary antibody, 

HRP (31458, Invitrogen, Waltham, MA, USA) 1:1000; goat anti-

mouse IgG secondary antibody, HRP (31430, Invitrogen, Waltham, 

MA, USA) 1:1000. 

 

Statistical analysis 

The statistical analysis of behavior tests and molecular work was 

done with a two-way ANOVA with Sidak's multiple comparisons test, 

unpaired T-test, one-way ANOVA with Tukey's multiple 

comparisons test (Prism, GraphPad Software, San Diego, CA, USA). 

 

Shotgun metagenomic sequencing 

Fresh mice fecal sample was stored in -80℃ immediately after 

collection until use. A DNA kit for feces (6531050, MP biomedicals, 

Irvine, CA, USA) was used for DNA extraction from the fecal sample 

following the manufacturer’s instructions. The quality and quantity 

of the extracted DNA were assessed by fluorometry (Qubit 

fluorometer, Invitrogen, Waltham, MA, USA) and gel electrophoresis. 

Briefly, 100 ng of genomic DNA from each sample was fragmented 

by acoustic shearing. Fragments of 350 bp were ligated to Illumina's 

adapters and were PCR-amplified to get the final libraries of 500-
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600 bp. The libraries were quantified with 4200 TapeStation system 

(Agilent Technologies, Inc., Santa Clara, CA, USA) and KAPA 

Library Quantification Kit (KK4824, Roche, Pleasanton, CA, USA). 

The resulting purified libraries were applied to an Illumina flow cell 

for cluster generation and sequenced using 150 bp paired-end reads 

on an Illumina NovaSeq 6000 sequencing system (Illumina, Inc., San 

Diego, CA, USA) following the manufacturer's protocols.  

 

Gut microbiota taxonomic classification and diversity analysis 

Taxonomic classification was performed using mOTUs2 (v. 3.0.1) 

with default parameters. Proportional abundances of the taxonomic 

table were centered log-ratio-transformed using a zCompositions R 

package (v. 1.4.0-1), and zero counts were imputed by Bayesian-

multiplicative replacement method. Prior to the transformation, taxa 

with all zeros or only one positive value were removed. Community 

composition was analyzed by principal component analysis (PCA) on 

the transformed table. Community richness was measured on rarefied 

taxonomic matrix to 11,000 reads. To identify bacteria specifically 

associated with each host and environment factors, screening at the 

species level was carried out using the Kruskal-Wallis test 

comparing the groups (WT-CTL, WT-SUCMS, APP/PS1-CTL, 

APP/PS1-SUCMS). Subsequently, significant taxa were analyzed 
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using a multivariate model with mouse age, genotype, and depression 

as independent variables. Statistical analyses were performed in R 

(v.4.1.0). All statistical tests used were two-sided and corrected for 

multiple testing using the Benjamini-Hochberg procedure or Dunn’s 

test. 
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Results 

It is widely known that stress can cause depression [60, 61]. Based 

on this idea, stress protocols have been broadly used to induce 

depression in animal models. Although unpredictable chronic mild 

stress has been widely used to study depression [62-64], it often 

fails to cause depression or is not reproducible to induce depressive 

symptoms [65]. Furthermore, unpredictable chronic mild stress 

lacks social stress factors even though stress from relationships or 

abuse is one of the main causes of depression [66, 67]. For the 

construction of an animal model of depression that reflects both social 

and physical stress factors, I designed ‘Social defeat based 

Unpredictable Chronic Mild Stress (SUCMS)’ which refers to a 

social defeat and an unpredictable chronic mild stress protocol 

previously described with some modifications (Fig. 1A).  

To verify that the SUCMS protocol can induce depressive symptoms, 

I applied the SUCMS in B6 mice. As I was targeting depression during 

‘young adulthood’, 4 mo B6 mice that are compatible to human 

adults of 20-30 years old were used. The SUCMS B6 mice showed 

decreased relative body weight (Fig. 1B; two-way ANOVA with 

Sidak's multiple comparisons test, p<0.0001, CTL N=12, SUCMS 

N=12) which is one of the symptoms that depressive patients exhibit 
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[68, 69]. Furthermore, SUCMS B6 mice exhibit increased immobility 

in the FST, which is the main depressive-like behavior in mice (Fig. 

1C; unpaired T-test, p=0.0002, CTL N=12, SUCMS N=12). The 

OFT showed that the SUCMS B6 mice have a tendency to exhibit 

anxiety-like behavior (Fig. 1D; unpaired T-test, p=0.0672, CTL 

N=12, SUCMS N=12), although the locomotion was normal (Fig. 1E; 

unpaired T-test, not significant (n.s.), CTL N=12, SUCMS N=12). 

The LDB test for further confirmation of anxiety-like behavior, 

showed no significant difference between the groups (Fig.1 F; 

unpaired T-test, n.s., CTL N=12, SUCMS N=12). Also, SUCMS did 

not induce any cognitive and memory deficit in B6 mice (Fig. 1G, H; 

unpaired T-test, n.s., CTL N=12, SUCMS N=12). 

Next, I applied the SUCMS in 4 mo APP/PS1 mice to verify the effect 

depression had on the progression of AD (Fig. 2A). The WT and 

APP/PS1 mice with SUCMS-induced depression both exhibited 

significantly decreased relative body weight (Fig. 2B; two-way 

ANOVA with Sidak's multiple comparisons test, WT-CTL vs. WT-

SUCMS p<0.0001, APP/PS1-CTL vs. APP/PS1-SUCMS p<0.0001, 

WT-CTL N=15, WT-SUCMS N=17, APP/PS1-CTL N=15, 

APP/PS1-SUCMS N=21). Also, WT-SUCMS and APP/PS1-

SUCMS mice showed increased corticosterone concentration in the 

serum (Fig. 2C; unpaired T-test, WT-CTL vs. WT-SUCMS 
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p=0.0320, APP/PS1-CTL vs. APP/PS1-SUCMS p=0.0096, WT-

CTL N=6, WT-SUCMS, N=10 APP/PS1-CTL N=8, APP/PS1-

SUCMS N=10). Furthermore, WT-SUCMS and APP/PS1-SUCMS 

mice exhibited increased immobility in the FST (Fig. 2D; unpaired 

T-test, WT-CTL vs. WT-SUCMS p=0.0066, APP/PS1-CTL vs. 

APP/PS1-SUCMS p=0.0206, WT-CTL N=21, WT-SUCMS N=19, 

APP/PS1-CTL N=17, APP/PS1-SUCMS N=25). These results 

show that the SUCMS successfully work on APP/PS1 mice and induce 

depressive symptoms. Interestingly, although APP/PS1 mice do not 

have cognitive deficit until 8-12 months [70, 71], 5-6 mo 

APP/PS1-SUCMS mice showed significant decrease in the novel 

object stiffing time percentage in the NOR test (Fig. 2E; one-way 

ANOVA with Tukey's multiple comparisons test, WT-CTL vs. 

APP/PS1-SUCMS p=0.0030, WT-SUCMS vs. APP/PS1-SUCMS 

p=0.0011, APP/PS1-CTL vs. APP/PS1-SUCMS p=0.0045, WT-

CTL N=14, WT-SUCMS N=15, APP/PS1-CTL N=10, APP/PS1-

SUCMS N=11). The YMT results also showed significantly 

decreased alteration percentage in APP/PS1-SUCMS mice (Fig. 2F; 

one-way ANOVA with Tukey's multiple comparisons test, WT-CTL 

vs. APP/PS1-SUCMS p=0.0071, WT-SUCMS vs. APP/PS1-

SUCMS p=0.0013, APP/PS1-CTL vs. APP/PS1-SUCMS p=0.0294, 

WT-CTL N=12, WT-SUCMS N=14, APP/PS1-CTL N=13, 
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APP/PS1-SUCMS N=18). These results imply that depression 

during young adulthood can advance the onset of AD symptoms. 

To see whether depression affects the formation of Aβ plaques in 

the brain, thioflavin S staining was performed. In WT-CTL and WT-

SUCMS, Aβ plaques were not observed. Although APP/PS1-CTL 

and APP/PS1-SUCMS both showed Aβ plaques in the brain, there 

were no difference in the Aβ plaque number between the two groups 

(Fig. 3A-C; unpaired T-test, n.s., APP/PS1-CTL N=5, APP/PS1-

SUCMS N=5). Some studies have revealed that tau phosphorylation 

is not only an important neuropathological characteristic of AD brains 

but is also associated with depression. Depressive patients and 

animal models exhibit increased phosphorylated tau in the 

cerebrospinal fluid (CSF) or brain [15, 72-74]. Especially, 

phosphorylated tau at serine 396 (S396) is increased in the 

hippocampus of chronic unpredictable stress depression mice model 

[67, 68]. Therefore, the level of phosphorylated tau at S396 was 

investigated in the hippocampus. Interestingly, the APP/PS1-

SUCMS group showed an significantly increased number of 

phosphorylated tau positive cells in the hippocampus compared to 

WT-CTL and APP/PS1-CTL (Fig. 4A, B; one-way ANOVA with 

Tukey's multiple comparisons test, WT-CTL vs. APP/PS1-SUCMS 

p=0.0261, APP/PS1-CTL vs. APP/PS1-SUCMS p=0.0294, WT-
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CTL N=4, WT-SUCMS N=4, APP/PS1-CTL N=4, APP/PS1-

SUCMS N=4). 

To confirm whether the pathological phenotype of AD is also 

observed and altered in the gut, Aβ plaques level was evaluated in 

the ileum and colon of the experimental animals by IHC. However, 

there was no significant difference in the level of Aβ plaques 

between APP/PS1-CTL and APP/PS1-SUCMS mice (Fig. 5A-D; 

unpaired T-test, n.s., ileum: APP/PS1-CTL N=4, APP/PS1-SUCMS 

N=6; colon: APP/PS1-CTL N=5, APP/PS1-SUCMS N=5). Next, 

the level of phosphorylated tau at S396 was also investigated in the 

ileum and colon. There was no significant difference in the level of 

phosphorylated tau at S396 between groups (Fig. 6A-F; one-way 

ANOVA with Tukey's multiple comparisons test, n.s., ileum: WT-

CTL N=4, WT-SUCMS N=2, APP/PS1-CTL N=4, APP/PS1-

SUCMS N=6; colon: WT-CTL N=4, WT-SUCMS N=2, APP/PS1-

CTL N=5, APP/PS1-SUCMS N=5). Phosphorylated tau at S396 and 

Tuj1, a maker protein for neurons, was investigated by IHC. 

Phosphorylated tau at S396 and enteric neuron as assessed with Tuj 

1 staining was co-localized in both the ileum and colon (Fig. 6G, H).  

I next tried to verify the effect of depression induced by SUCMS 

during AD progression after the onset of AD symptoms. Behavior 

tests were performed at 11-12 mo after mice were subject to 
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SUCMS at 4-5 mo (Fig. 7A). Although APP/PS1-CTL mice showed 

cognitive impairment as confirmed in the previous studies, I could not 

find any cognitive impairment aggravation in APP/PS1-SUCMS mice 

compared to APP/PS1-CTL mice in NOR and YMT. However, WT-

SUCMS mice showed significantly decreased novel object sniffing 

time percentage in NOR (Fig. 7B; one-way ANOVA with Tukey's 

multiple comparisons test, WT-CTL vs. WT-SUCMS p=0.0332, 

WT-CTL vs. APP/PS1-CTL p=0.0059, WT-CTL vs. APP/PS1-

SUCMS p=0.0028, WT-CTL N=12, WT-SUCMS N=11, APP/PS1-

CTL N=9, APP/PS1-SUCMS N=9) and alteration percentage in 

YMT (Fig. 7C; one-way ANOVA with Tukey's multiple comparisons 

test, WT-CTL vs. WT-SUCMS p=0.0006, WT-CTL vs. APP/PS1-

CTL p=0.0086, WT-CTL vs. APP/PS1-SUCMS p=0.0302, WT-

CTL N=11, WT-SUCMS N=8, APP/PS1-CTL N=8, APP/PS1-

SUCMS N=7). These results imply that depressive experience 

during young adulthood can be a critical risk factor of dementia in 

later life. Furthermore, FST results showed that the effect of SUCMS 

does not last until 11 mo of age (Fig. 7D; unpaired T-test, n.s., WT-

CTL N=5, WT-SUCMS N=8, APP/PS1-CTL N=5, APP/PS1-

SUCMS N=8), which shows that a single depressive episode during 

young adulthood can affect outbreak of dementia in later life. 

Thioflavin S staining in the 11-12 mo mice brain after the SUCMS at 
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4-5 mo also showed no difference in Aβ plaque formation between 

APP/PS1-CTL and APP/PS1-SUCMS (Fig. 8A-C; unpaired T-test, 

n.s., APP/PS1-CTL N=3, APP/PS1-SUCMS N=3). Tauopathy in the 

hippocampus also showed no alteration in the 11-12 mo WT-

SUCMS mice compared to WT-CTL (Fig. 9A, B; one-way ANOVA 

with Tukey's multiple comparisons test, n.s., WT-CTL N=4, WT-

SUCMS N=4, APP/PS1-CTL N=4, APP/PS1-SUCMS N=4).  

Subsequent verification of Aβ plaques levels in the gut showed no 

significant alteration between APP/PS1-CTL and APP/PS1-SUCMS 

mice (Fig. 10A-D; unpaired T-test, n.s., ileum: APP/PS1-CTL N=4, 

APP/PS1-SUCMS N=6; colon: APP/PS1-CTL N=5, APP/PS1-

SUCMS N=5). Surprisingly, phosphorylated tau was significantly 

increased in the ileum of WT-SUCMS, APP/PS1-CTL, and 

APP/PS1-SUCMS mice compared to WT-CTL (Fig. 11A, C; 

unpaired T-test, WT-CTL vs. WT-SUCMS p=0.0135, WT-CTL vs. 

APP/PS1-CTL p=0.0052, WT-CTL vs. APP/PS1-SUCMS 

p=0.0036, WT-SUCMS vs. APP/PS1-SUCMS p=0.0470, WT-CTL 

N=5, WT-SUCMS N=7, APP/PS1-CTL N=6, APP/PS1-SUCMS 

N=5). Furthermore, the colon of WT-SUCMS and APP/PS1-CTL 

mice showed increased tau phosphorylation at S396 compared to 

WT-CTL (Fig. 11B, E; unpaired T-test, WT-CTL vs. WT-SUCMS 

p=0.0509, WT-CTL vs. APP/PS1-CTL p=0.0479, WT-CTL N=7, 
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WT-SUCMS N=7, APP/PS1-CTL N=6, APP/PS1-SUCMS N=5), 

reflecting the behavior test results. However, there was no 

significant difference of tau expression in the ileum (Fig. 11A, D; 

unpaired T-test, n.s, WT-CTL N=5, WT-SUCMS N=7, APP/PS1-

CTL N=6, APP/PS1-SUCMS N=5) and colon (Fig. 11 B, F; unpaired 

T-test, n.s, WT-CTL N=7, WT-SUCMS N=7, APP/PS1-CTL N=6, 

APP/PS1-SUCMS N=5) between groups. Phosphorylated tau at 

S396 and Tuj1 labeled by IHC showed co-localization of 

phosphorylated tau at S396 and enteric neuron in both ileum and 

colon (Fig. 11G and H). 

To confirm the effect of depression-induced early onset AD on the 

gut microbiota composition, shotgun metagenomic sequencing was 

conducted. Fecal sample collection was done at three timepoints: 4 

mo (before SUCMS), 5 mo (1 week after SUCMS), and 11-20 mo 

(Fig. 12A). The PCA for microbial composition in all groups of 4 mo 

showed there is no significant difference between WT and APP/PS1 

mice before SUCMS (Fig. 12B; Kruskal-Wallis test with Benjamini-

Hochberg procedure, R2=0.04124, p=0.599, WT N=11, APP/PS1 

N=11). Surprisingly, WT and APP/PS1 were both significantly 

separated by SUCMS treatment (Fig. 12C; Kruskal-Wallis test with 

Benjamini-Hochberg procedure, R2=0.016103, WT-CTL vs. WT-

SUCMS p<0.01, APP/PS1-CTL vs. APP/PS1-SUCMS p<0.01, WT-
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CTL N=10, WT-SUCMS N=10, APP/PS1-CTL N=10, APP/PS1-

SUCMS N=8), which indicated that the community structure of 

microbiota differed by depression. Furthermore, WT and APP/PS1 in 

11-20 mo also exhibited significantly altered microbial community 

with SUCMS treatment (Fig. 12D; Kruskal-Wallis test with 

Benjamini-Hochberg procedure, R2=0.012813, WT-CTL vs. WT-

SUCMS p<0.01, APP/PS1-CTL vs. APP/PS1-SUCMS p<0.01, WT-

CTL N=10, WT-SUCMS N=10, APP/PS1-CTL N=10, APP/PS1-

SUCMS N=10). Interestingly, distinct microbiota composition 

between WT-CTL and APP/PS1-CTL was observed in 11-20 mo 

while there was no difference in 4 mo and 5 mo, which implies that 

the AD symptom onset affected the change in microbial community 

structure. 

For the calculation of alpha diversity measurement, observed 

richness and Shannon’s diversity index were adopted. I found 

significant increase of richness in WT-SUCMS and APP/PS1-

SUCMS group compared to WT-CTL in both 5 mo and 11-20 mo 

(Fig. 12E; Kruskal-Wallis test with Benjamini-Hochberg procedure, 

5 mo: WT-CTL vs. WT-SUCMS FDR<0.1, WT-SUCMS vs. 

APP/PS1-CTL FDR<0.1, WT-CTL vs. APP/PS1-SUCMS FDR<0.1, 

WT-CTL N=10, WT-SUCMS N=10, APP/PS1-CTL N=10, 

APP/PS1-SUCMS N=8; 11-20 mo: WT-CTL vs. WT-SUCMS 
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FDR<0.1, WT-CTL vs. APP/PS1-SUCMS FDR<0.1, WT-CTL 

N=10, WT-SUCMS N=10, APP/PS1-CTL N=10, APP/PS1-

SUCMS N=10). Although this result did not show a statistical 

significance, there was also a tendency of increased richness 

between APP/PS1-CTL and APP/PS1-SUCMS (Fig. 12E). These 

results indicate microbiota composition alteration in the SUCMS 

groups. However, there was no significant difference in Shannon’s 

diversity between the groups at both 5 mo and 11-20 mo (Fig. 12F; 

Kruskal-Wallis test with Benjamini-Hochberg procedure, n.s., 5 mo: 

WT-CTL N=10, WT-SUCMS N=10, APP/PS1-CTL N=10, 

APP/PS1-SUCMS N=8; 11-20 mo: WT-CTL N=10, WT-SUCMS 

N=10, APP/PS1-CTL N=10, APP/PS1-SUCMS N=10). 

On the species level, the abundance of the top 84 taxa were shown 

in the hierarchy cluster heat-map (Fig. 13). The alteration of 

microbiota species was analyzed based on the three different factors: 

age, AD phenotype, and depressive experience (Fig. 14; Kruskal-

Wallis test with Benjamini-Hochberg procedure, *FDR< 0.1). 

Bacteroidales bacterium M6, Bifidobacterium pseudolonum, 

Clostridiaceae species incertae sedis, Lachnospiraceae bacterium 3.2, 

Lactobacillus animalis murinus, and Romboutsia timonensis were 

increased by aging. Alistipes finegoldii, Bacteroidaceae species 

incertae sedis, Bacteroides caecimuris, Bacteroides uniformis, 
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Candidatuss Arthromitus sp., Eubacterium species incertae sedis, 

Lactobacillus species incertae sedis, and Muribaculaceae species 

incertae sedis were decreased with aging. Also, Bacteroidales 

bacterium M9, Eubacterium species incertae sedis, Lactobacillus 

animalis murinus were increased by AD, while Muribaculum 

intestinale was decreased by AD. Alistipes finegoldii, Bacteroides 

bouchesdurhonensis faecichinchillae, Bacteroides dorei vulgatus, 

Bacteroides sp., Bacteroides species incertae sedis, Bacteroides 

uniformis, Candidatus Arthromitus sp., Clostridiaceae species 

incertae sedis, and Ruminococcus species incertae sedis were 

increased by depression. Bacteroidales bacterium M1, Bacteroidales 

bacterium M12, Bacteroidales bacterium M6, Escherichia coli, 

Lachnoclostridium species incertae sedis, Lachnospiraceae 

bacterium 3.2, Lactobacillus animalis murinus, Lactobacillus species 

incertae sedis, Muribaculaceae species incertae sedis, Muribaculum 

intestinale, and Prevotella species incertae sedis were decreased by 

depression. Clostridiaceae species incertae sedis was significantly 

increased and Lactobacillus species incertae sedis was significantly 

decreased by both aging and depression. Also, Muribaculum 

intestinale was significantly decreased by both AD and depression. 

Interestingly, depression highly affected the composition of 

microbiota and was the most important factor among the three factors. 
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Altered microbiota species by depression in 5 mo and 11-20 mo are 

listed in Table 1. In 5 mo WT mice, the amount of 7 microbiota 

species was increased and the amount of 8 microbiota species was 

decreased by depression induced by SUCMS. In 5 mo APP/PS1 mice, 

the amount of 6 microbiota species was increased and the amount of 

11 microbiota species was decreased by depression induced by 

SUCMS. In 11-20 mo WT mice, the amount of 5 microbiota species 

was increased and the amount of 6 microbiota species was decreased 

by depression induced by SUCMS. In 11-20 mo APP/PS1 mice, the 

amount of 6 microbiota species was increased and the amount of 3 

microbiota species was decreased by depression induced by SUCMS 

(Kruskal-Wallis test with Dunn’s test). Bacteroides dorei vulgatus, 

Bacteroides uniformis, Bacteroides sp., and Alistipes finegoldii were 

commonly found and increased by SUCMS induced depression in all 

comparison groups, indicating that these four microbiota species are 

important depression-associated microbiota species. 
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Figure 1. SUCMS-induced depressive symptoms in 5-6 mo B6 mice. 

(A) Timeline of SUCMS schedule. (B) Body weight was significantly 

decreased by SUCMS on day 25 and 28 (two-way ANOVA with 

Sidak's multiple comparisons test, p<0.0001, CTL N=12, SUCMS 

N=12). (C) Immobility was significantly increased by SUCMS 

(unpaired T-test, p=0.0002, CTL N=12, SUCMS N=12). (D) Center 

zone duration was decreased by SUCMS, although not significant 

(unpaired T-test, p=0.0672, CTL N=12, SUCMS N=12). (E) There 

was no difference in distance moved between the control and SUCMS 
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mice in OFT (unpaired T-test, n.s., CTL N=12, SUCMS N=12). (F) 

No significant difference was found for time in the lit area between 

the control and SUCMS mice in LDB (unpaired T-test, n.s., CTL 

N=12, SUCMS N=12). (G) There was no difference in novel object 

(NO) sniffing time percentage between the control and SUCMS mice 

in NOR (unpaired T-test, n.s., CTL N=12, SUCMS N=12). (H) No 

significant difference was found in the alteration percentage between 

the control and SUCMS mice in YMT (unpaired T-test, n.s., CTL 

N=12, SUCMS N=12). *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. 
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Figure 2. SUCMS-induced depression in Aβ-positive young adult 

caused early cognition deficit in 5-6 mo APP/PS1 mice. 

(A) Timeline of SUCMS and behavior tests (B) Body weight was 

significantly decreased by SUCMS in both WT and APP/PS1 (two-

way ANOVA with Sidak's multiple comparisons test, WT-CTL vs. 

WT-SUCMS p<0.0001, APP/PS1-CTL vs. APP/PS1-SUCMS 

p<0.0001, WT-CTL N=15, WT-SUCMS N=17, APP/PS1-CTL 

N=15, APP/PS1-SUCMS N=21). (C) Corticosterone concentration 

in the serum was significantly increased in WT-SUCMS and 

APP/PS1-SUCMS compared to their control groups (unpaired T-

test, WT-CTL vs. WT-SUCMS p=0.0320, APP/PS1-CTL vs. 

APP/PS1-SUCMS p=0.0096, WT-CTL N=6, WT-SUCMS, N=10 



 

 ３２ 

APP/PS1-CTL N=8, APP/PS1-SUCMS N=10). (D) FST immobility 

was significantly increased by SUCMS in both WT and APP/PS1 

(unpaired T-test, WT-CTL vs. WT-SUCMS p=0.0066, APP/PS1-

CTL vs. APP/PS1-SUCMS p=0.0206, WT-CTL N=21, WT-

SUCMS N=19, APP/PS1-CTL N=17, APP/PS1-SUCMS N=25). (E) 

APP/PS1-SUCMS mice showed significantly decreased NO sniffing 

time in NOR compared to other groups in (one-way ANOVA with 

Tukey's multiple comparisons test, WT-CTL vs. APP/PS1-SUCMS 

p=0.0030, WT-SUCMS vs. APP/PS1-SUCMS p=0.0011, 

APP/PS1-CTL vs. APP/PS1-SUCMS p=0.0045, WT-CTL N=14, 

WT-SUCMS N=15, APP/PS1-CTL N=10, APP/PS1-SUCMS 

N=11). (F) APP/PS1-SUCMS mice showed significantly decreased 

alteration percentage in YMT compared to other groups in (one-way 

ANOVA with Tukey's multiple comparisons test, WT-CTL vs. 

APP/PS1-SUCMS p=0.0071, WT-SUCMS vs. APP/PS1-SUCMS 

p=0.0013, APP/PS1-CTL vs. APP/PS1-SUCMS p=0.0294, WT-

CTL N=12, WT-SUCMS N=14, APP/PS1-CTL N=13, APP/PS1-

SUCMS N=18). *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. 
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Figure 3. SUCMS-induced depression during young adulthood did 

not affect Aβ plaque formation in the brain of 5-6 mo APP/PS1 mice. 

(A)Images of thioflavin S staining in the cortex and hippocampus of 

5-6 mo mice. Scale bar=1000 μm. (B, C) There was no significant 

plaque number difference between APP/PS1-CTL and APP/PS1-

SUCMS mice in the cortex and hippocampus (unpaired T-test, n.s., 

APP/PS1-CTL N=5, APP/PS1-SUCMS N=5). 
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Figure 4. SUCMS-induced depression during young adulthood 

increased tau phosphorylation in the hippocampus of 5-6 mo 

APP/PS1 mice. 

(A) Images of tau and p-tau S396 co-staining in the hippocampus 

of 5-6 mo mice. Scale bar=20 μm. (B) APP/PS1-SUCMS show 

increased number of p-tau positive cells in the hippocampus 

compared to WT-CTL and APP/PS1-CTL (one-way ANOVA with 

Tukey's multiple comparisons test, WT-CTL vs. APP/PS1-SUCMS 

p=0.0261, APP/PS1-CTL vs. APP/PS1-SUCMS p=0.0294, WT-

CTL N=4, WT-SUCMS N=4, APP/PS1-CTL N=4, APP/PS1-

SUCMS N=4). *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001.
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Figure 5. SUCMS-induced depression during young adulthood did 

not change Aβ plaque formation in the ileum and colon of 5-6 mo 

mice. 

(A, B) Western blot image of 6E10 and GAPDH in the ileum and colon 

of 5-6 mo mice. (C, D) Relative O.D. of 6E10 in the ileum and colon. 

No significant change was found between APP/PS1-CTL and 

APP/PS1-SUCMS (unpaired T-test, n.s., ileum APP/PS1-CTL N=4; 

APP/PS1-SUCMS N=6, colon APP/PS1-CTL N=5; APP/PS1-

SUCMS N=5). 
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Figure 6. SUCMS-induced depression during young adulthood did 

not change tau phosphorylation in the ileum and colon of 5-6 mo mice. 

(A, B) Western blot image of p-tau (396), tau and GAPDH in the 

ileum and colon of 5-6 mo mice. (C-F) Relative O.D. of p-tau (396) 

and tau in the ileum and colon. No significant change was found 

between groups (one-way ANOVA with Tukey's multiple 

comparisons test, n.s., ileum WT-CTL N=4; WT-SUCMS N=2; 

APP/PS1-CTL N=4; APP/PS1-SUCMS N=6, colon WT-CTL N=4; 

WT-SUCMS N=2; APP/PS1-CTL N=5; APP/PS1-SUCMS N=5). 

(G) p-tau (396) and Tuj1 are co-localized in the ileum of 5-6 mo 
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mice. Scale bar=50 μm. (H) p-tau (396) and Tuj1 are co-localized 

in the colon of 5-6 mo mice. Scale bar=50 μm. 
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Figure 7. SUCMS-induced depression during young adulthood 

caused memory deficit in 11-12 mo mice. 

(A) Timeline of SUCMS and behavior tests. (B) WT-SUCMS, 

APP/CTL and APP/PS1-SUCMS mice showed significantly 

decreased NO sniffing time in NOR compared to WT-CTL mice 

(one-way ANOVA with Tukey's multiple comparisons test, WT-

CTL vs. WT-SUCMS p=0.0332, WT-CTL vs. APP/PS1-CTL 

p=0.0059, WT-CTL vs. APP/PS1-SUCMS p=0.0028, WT-CTL 

N=12, WT-SUCMS N=11, APP/PS1-CTL N=9, APP/PS1-SUCMS 

N=9). (C) WT-SUCMS, APP/CTL and APP/PS1-SUCMS mice 

showed significantly decreased alteration percentage in YMT 

compared to WT-CTL mice (one-way ANOVA with Tukey's 

multiple comparisons test, WT-CTL vs. WT-SUCMS p=0.0006, 

WT-CTL vs. APP/PS1-CTL p=0.0086, WT-CTL vs. APP/PS1-

SUCMS p=0.0302, WT-CTL N=11, WT-SUCMS N=8, APP/PS1-

CTL N=8, APP/PS1-SUCMS N=7). (D) There was no significant 
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immobility change in FST between groups. (unpaired T-test, n.s., 

WT-CTL N=5, WT-SUCMS N=8, APP/PS1-CTL N=5, APP/PS1-

SUCMS N=8) *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. 
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Figure 8. SUCMS-induced depression during young adulthood did 

not affect Aβ plaque formation in the brain of 11-12 mo APP/PS1 

mice. 

(A) Images of thioflavin S staining in the cortex and hippocampus of 

11-12 mo mice. Scale bar=1000 μm. (B, C) There was no 

significant plaque number difference between APP/PS1-CTL and 

APP/PS1-SUCMS mice in the cortex and hippocampus (unpaired T-

test, n.s., APP/PS1-CTL N=3, APP/PS1-SUCMS N=3). 
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Figure 9. SUCMS-induced depression during young adulthood did 

not affect tau phosphorylation in the hippocampus of 11-12 mo mice. 

(A) Images of tau and p-tau S396 co-staining in the hippocampus 

of 11-12 mo mice. Scale bar=20 μm. (B) There was no significant 

change in the number of p-tau positive cells between groups in the 

hippocampus (one-way ANOVA with Tukey's multiple comparisons 

test, n.s., WT-CTL N=4, WT-SUCMS N=4, APP/PS1-CTL N=4, 

APP/PS1-SUCMS N=4).
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Figure 10. SUCMS-induced depression during young adulthood did 

not change Aβ plaque formation in the ileum and colon of 11-12 mo 

APP/PS1 mice. 

(A, B) Western blot image of 6E10 and GAPDH in the ileum and colon 

of 11-12 mo mice. (C, D) Relative O.D. of 6E10 in the ileum and 

colon. No significant change was found between APP/PS1-CTL and 

APP/PS1-SUCMS (unpaired T-test, n.s., ileum APP/PS1-CTL N=4; 

APP/PS1-SUCMS N=6, colon APP/PS1-CTL N=5; APP/PS1-

SUCMS N=5).
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Figure 11. SUCMS-induced depression during young adulthood 

increased tau phosphorylation in the ileum and colon of 11-12 mo 

WT mice.  

(A, B) Western blot image of p-tau (396), tau and GAPDH in the 

ileum and colon of 11-12 mo mice. (C) Relative O.D. of p-tau (396) 

in the ileum was significantly increased in WT-SUCMS, APP/PS1-

CTL, and APP/PS1-SUCMS compared to WT-CTL. APP/PS1-

SUCMS also showed increased relative O.D. of p-tau (396) in the 

ileum compared to WT-SUCMS (unpaired T-test, WT-CTL vs. 

WT-SUCMS p=0.0135, WT-CTL vs. APP/PS1-CTL p=0.0052, 
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WT-CTL vs. APP/PS1-SUCMS p=0.0036, WT-SUCMS vs. 

APP/PS1-SUCMS p=0.0470, WT-CTL N=5, WT-SUCMS N=7, 

APP/PS1-CTL N=6, APP/PS1-SUCMS N=5). (D) Relative O.D. of 

tau in the ileum. No significant change was found between groups 

(unpaired T-test, n.s, WT-CTL N=5, WT-SUCMS N=7, APP/PS1-

CTL N=6, APP/PS1-SUCMS N=5). (E) Relative O.D. of p-tau (396) 

in the colon was increased in WT-SUCMS, APP/PS1-CTL compared 

to WT-CTL (unpaired T-test, WT-CTL vs. WT-SUCMS p=0.0509, 

WT-CTL vs. APP/PS1-CTL p=0.0479, WT-CTL N=7, WT-

SUCMS N=7, APP/PS1-CTL N=6, APP/PS1-SUCMS N=5). (F) 

Relative O.D. of tau in the colon. No significant change was found 

between groups (unpaired T-test, n.s, WT-CTL N=7, WT-SUCMS 

N=7, APP/PS1-CTL N=6, APP/PS1-SUCMS N=5). (G) p-tau (396) 

and Tuj1 are co-localized in the ileum of 11-12 mo mice. Scale 

bar=50 μm. (H) p-tau (396) and Tuj1 are co-localized in the colon 

of 11-12 mo mice. Scale bar=50 μm. *p-value<0.05, **p<0.01, 

***p<0.001, ****p<0.0001. 
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Figure 12. PCA and Alpha diversity of gut microbiota were affected 

by AD and depression in 5 mo and 11-20 mo mice. 

(A) Timeline of fecal sample collection. (B-D) PCA plot of 4 mo, 5 

mo and 11-20 mo. There is no significant difference between WT 

and APP/PS1 in 4 mo (Kruskal-Wallis test with Benjamini-Hochberg 

procedure, R2=0.04124, p=0.599, WT N=11, APP/PS1 N=11). The 

control groups and SUCMS groups are significantly separated in 5 mo 

(Kruskal-Wallis test with Benjamini-Hochberg procedure, 

R2=0.016103, WT-CTL vs. WT-SUCMS p<0.01, APP/PS1-CTL vs. 

APP/PS1-SUCMS p<0.01, WT-CTL N=10, WT-SUCMS N=10, 

APP/PS1-CTL N=10, APP/PS1-SUCMS N=8) and 11-20 mo. 

(Kruskal-Wallis test with Benjamini-Hochberg procedure, 

R2=0.012813, WT-CTL vs. WT-SUCMS p<0.01, APP/PS1-CTL vs. 
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APP/PS1-SUCMS p<0.01, WT-CTL N=10, WT-SUCMS N=10, 

APP/PS1-CTL N=10, APP/PS1-SUCMS N=10). (E) Observed 

richness of gut microbiota species. There is a significant increase of 

observed richness between WT-CTL and WT-SUCMS, WT-CTL 

and APP/PS1-SUCMS in 5 mo (Kruskal-Wallis test with Benjamini-

Hochberg procedure, WT-CTL vs. WT-SUCMS FDR<0.1, WT-

SUCMS vs. APP/PS1-CTL FDR<0.1, WT-CTL vs. APP/PS1-

SUCMS FDR<0.1, WT-CTL N=10, WT-SUCMS N=10, APP/PS1-

CTL N=10, APP/PS1-SUCMS N=8) and 11-20 mo (Kruskal-Wallis 

test with Benjamini-Hochberg procedure, WT-CTL vs. WT-

SUCMS FDR<0.1, WT-CTL vs. APP/PS1-SUCMS FDR<0.1, WT-

CTL N=10, WT-SUCMS N=10, APP/PS1-CTL N=10, APP/PS1-

SUCMS N=10). (F) Shannon’s index of gut microbiota species. 

There is no significant difference between groups in both 5 mo 

(Kruskal-Wallis test with Benjamini-Hochberg procedure, n.s., 

WT-CTL N=10, WT-SUCMS N=10, APP/PS1-CTL N=10, 

APP/PS1-SUCMS N=8) and 11-20 mo (Kruskal-Wallis test with 

Benjamini-Hochberg procedure, n.s., WT-CTL N=10, WT-SUCMS 

N=10, APP/PS1-CTL N=10, APP/PS1-SUCMS N=10).
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Figure 13. The hierarchy cluster heat-map showed the abundance 

of the top 84 gut microbiota species in 5 mo and 11-20 mo mice.
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Figure 14. Gut microbiota composition was altered by age, AD, and 

depression. 

Table of gut microbiota that are significantly increased or decreased 

by age, AD and depression (Kruskal-Wallis test with Benjamini-

Hochberg procedure). *FDR< 0.1.  
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Table 1. List of microbiota species altered by depression induced by 

SUCMS in 5 mo and 11-20 mo mice.  

In 5 mo WT mice, the abundance of 7 microbiota species was 

Age Comparison Z-score P-value taxa

-3.421 0.004 Alistipes finegoldii

-2.877 0.012 Ruminococcus species incertae sedis

-2.696 0.014 Candidatus Arthromitus sp.

-2.555 0.032 Bacteroidales bacterium M9

-2.495 0.025 Bacteroides sp.

-2.334 0.039 Bacteroides uniformis

-2.032 0.084 Bacteroides dorei vulgatus

1.912 0.084 Lachnospiraceae bacterium 3.2

1.992 0.093 Bacteroidales bacterium M6

2.032 0.063 Azospirillum species incertae sedis

2.294 0.065 Bacteroidales bacterium M12

2.938 0.007 Bacteroidales bacterium M1

2.978 0.009 Bacteroides caecimuris

3.079 0.012 Bacteroidaceae species incertae sedis

3.763 0.001 Lactobacillus animalis murinus

-3.362 0.001 Alistipes finegoldii

-3.002 0.008 Bacteroides uniformis

-2.755 0.018 Bacteroides bouchesdurhonensis faecichinchillae

-2.755 0.018 Candidatus Arthromitus sp.

-2.589 0.029 Bacteroides dorei vulgatus

-2.509 0.036 Bacteroides sp.

2.001 0.091 Bacteroidales bacterium M12

2.371 0.053 Desulfovibrionaceae species incertae sedis

2.485 0.026 Lactobacillus animalis murinus

2.547 0.033 Clostridiaceae species incertae sedis

2.637 0.025 Bifidobacterium pseudolongum

2.888 0.012 Bacteroidales bacterium M6

2.888 0.023 Muribaculaceae species incertae sedis

2.921 0.007 Bacteroides caecimuris

2.940 0.010 Bacteroidales bacterium M1

3.021 0.008 Lachnospiraceae bacterium 3.2

3.215 0.008 Azospirillum species incertae sedis

-3.333 0.002 Bacteroides dorei vulgatus

-3.324 0.001 Bacteroides sp.

-2.649 0.012 Alistipes finegoldii

-2.395 0.033 Bacteroides uniformis

-2.390 0.025 Bacteroides bouchesdurhonensis faecichinchillae

2.145 0.064 Escherichia coli

2.386 0.026 Prevotella species incertae sedis

2.739 0.018 Bacteroidales bacterium M9

2.932 0.020 Romboutsia timonensis

2.960 0.018 Lachnoclostridium species incertae sedis

3.301 0.003 Lactobacillus species incertae sedis

-3.749 0.001 Alistipes finegoldii

-3.692 0.001 Bacteroides sp.

-3.672 0.001 Bacteroides dorei vulgatus

-3.634 0.002 Bacteroides species incertae sedis

-3.271 0.006 Bacteroides bouchesdurhonensis faecichinchillae

-2.984 0.009 Bacteroides uniformis

3.118 0.004 Lactobacillus species incertae sedis

3.194 0.008 Prevotella species incertae sedis

3.443 0.002 Escherichia coli

WT-CTL vs. WT-SUCMS

APP/PS1-CTL vs. APP/PS1-SUCMS

5mo

11-20mo

WT-CTL vs. WT-SUCMS

APP/PS1-CTL vs. APP/PS1-SUCMS
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increased and the abundance of 8 microbiota species was decreased 

by depression induced by SUCMS. In 5 mo APP/PS1 mice, the 

abundance of 6 microbiota species was increased and the abundance 

of 11 microbiota species was decreased by depression- induced by 

SUCMS. In 11-20 mo WT mice, the abundance of 5 microbiota 

species was increased and the abundance of 6 microbiota species was 

decreased by depression induced by SUCMS. In 11-20 mo APP/PS1 

mice, the abundance of 6 microbiota species was increased and the 

abundance of 3 microbiota species was decreased by depression 

induced by SUCMS (Kruskal-Wallis test with Dunn’s test). 
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Figure 15. Graphical summary of depression-induced early onset AD 

in mice. 

SUCMS-induced depression in Aβ-positive asymptomatic young 

adult caused early onset AD in 5-6 mo, accompanied by increased 

phosphorylated tau positive cells in the hippocampus and altered gut 

microbiota. In WT mice, depression induced in young adult result in 

dementia in later life (11-12 mo), accompanied by increased 

phosphorylated tau in the gut and altered gut microbiota. 
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Discussion 

In this study, I sought to investigate whether the occurrence of 

depression at the Aβ-positive young adult stage affects the 

progression of AD. SUCMS-induced depressive APP/PS1 mice at 4 

months of age showed significant cognitive deficits between 5 to 6 

months of age. Considering that APP/PS1 mice normally exhibit AD 

symptom starting from 8 months of age, the result indicates that 

depression in young adult mice advanced the symptom onset of AD. 

Additionally, increased levels of phosphorylated tau were found in 

the hippocampus of 5-6 mo APP/PS1-SUCMS mice. To further 

identify the effect of depression on the progression of AD, 

depression-induced APP/PS1 and their littermates at 4 months of 

age were tested between 11 to 12 months of age. Although 

depression in Aβ-positive young adults did not aggravate the 

cognitive deficits in the later stages of AD, depression in normal 

young adult mice caused cognitive deficits later in their lives. 

Although the 11-12 mo mice did not show altered tau 

phosphorylation in the hippocampus between groups, 11-12 mo 

WT-SUCMS and APP/PS1-CTL mice exhibited increased tau 

phosphorylation in the ileum and colon. Interestingly, shotgun 

metagenomic sequencing revealed that the gut microbiota 
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composition was altered by aging, AD, and depression.  

In the hypothesis of this study, it was expected that APP/PS1-

SUCMS mice may exhibit severe cognitive deficits compared to 

APP/PS1-CTL mice at 11-12 mo. However, there was no significant 

difference observed between these two groups in both the NOR test 

and YMT. It is possible that the APP/PS1-CTL mice at this age may 

already have considerable memory loss as they were found to spend 

the same amount of time sniffing the familiar and novel objects in 

NOR and showed only approximately 60% of alternation in the YMT. 

It may have been due to a floor effect and made it hard to see the 

behavioral difference between the two groups.  

In this study, the presence of the pathological hallmarks of AD, Aβ 

plaque and phosphorylated tau were investigated in the gut through 

western blot and IHC. The presence of Aβ plaque in the APP/PS1-

CTL and APP/PS1-SUCMS mice was detected in the ileum and colon. 

As 6E10 antibody specifically target human Aβ sequence, the Aβ 

plaque observed in the ileum and colon are derived from the 

transgene of APP/PS1 mice. Both APP and PSEN1 transgenes in 

APP/PS1 mice are under control of prion protein promoter [75]. 

Prion protein is a cell surface protein mainly expressed in the central 

and peripheral nervous system [76], which includes enteric nervous 

system. However, the possibility that soluble from of Aβ in the brain 
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have transferred to the gut cannot be ignored. Further study to reveal 

the origin of the Aβ in the ileum and colon is needed.  

In the present study, although the Aβ plaques were found in the 

brain and gut of APP/PS1 AD model mice, depression induced by 

SUCMS failed to increase the number of Aβ plaques in the brain and 

gut. A previous study reported a higher plasma Aβ40:Aβ42 ratio in 

subjects with depression [77]. Also, AD patients with depression 

history showed increased hippocampal Aβ plaques [78]. On the 

contrary, Mackin et al. revealed that late life depression is associated 

with reduced cortical Aβ deposits [79]. As controversy exists in the 

previous studies, it is presumed that Aβ plaque is not a critical factor 

for depression. Further study is required to identify the relationship 

between Aβ and depression in the future. 

On the other hand, has been reported that the presence of 

phosphorylated tau is essential for stress-induced depressive 

behaviors in mice [73], and a clinical study with depressive patients 

showed that depression is associated with elevated phosphorylated 

tau but not with Aβplaques [80]. Furthermore, phosphorylated tau 

is increased in stress-induced depression animal models [72, 73]. 

The present study also showed increased tau phosphorylation at 

S396 in the hippocampus of young adult depression-induced early 

onset AD mice, indicating that depression is associated with 
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phosphorylated tau. However, I could not find any difference in the 

level of phosphorylated tau in young adult 11-12 mo mice with 

depression. As revealed in previous studies, phosphorylated tau 

levels increase with age in the cerebrospinal fluid [81]. Furthermore, 

misfolding and spreading of tau were found in the hippocampus and 

the adjacent cortical areas in old mice [82]. Therefore, it is thought 

that the level of phosphorylated tau in the hippocampus of 11-12 mo 

mice in this study could be saturated, resulting in a ceiling effect, and 

made it hard to see the phosphorylated tau level difference between 

the groups. 

Studies have found that tau is expressed in the gut [57], and 

increased phosphorylation of tau is found in the colon of Crohn’s 

disease patients [83]. In this study, increased tau phosphorylation 

was found in the ileum and colon of 11-12 mo WT-SUCMS and TG-

CTL mice compared to WT-CTL. Additional studies are needed to 

identify whether it is an enteric nerve-restricted AD pathological 

phenotype or is a brain-related phenomena. In addition, if the 

phosphorylated tau in the gut is transferred from the brain, it should 

be confirmed whether it migrated from the brain to the gut through 

the vagus nerve or circulation. 

In this study, altered gut microbiota composition by depression in 

young adult mice (young adult depression) induced through SUCMS 
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were identified. Although it is considered that depression induced by 

SUCMS caused changes in the microbiota composition in this study, 

previous reports have revealed that a“bidirectional” 

communication exists between the brain and gut microbiota [45-47]. 

Therefore, there is a possibility that the depressive condition induced 

by SUCMS affected dietary factors and caused the alteration of gut 

microbiota composition, which subsequently led to young adult 

depression. However, in the SUCMS pilot study, control and SUCMS 

mice showed no difference in food consumption, when the same 

amount of food and water were provided for both groups (data not 

shown), indicating that dietary factors were not altered by SUCMS. 

The young adult depression induced by SUCMS resulted in increased 

serum corticosterone concentration (Fig. 2C), which is presumed to 

eventually cause the change in gut microbiota composition [46]. 

Although young adult depression comes prior to the alteration of gut 

microbiota composition, the altered gut microbiota composition 

changed by young adult depression may have affected the brain, 

working as positive feedback. Therefore, further study is needed to 

confirm the effect of gut microbiota alteration in young adult 

depression.  

The present study focuses on the role of gut microbiota in the 

depression-induced early onset AD. Clostridiaceae species incertae 
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sedis and Lactobacillus species incertae sedis are commonly 

regulated by both aging and depression. The alteration of these gut 

microbiota species may have played an important role in young 

adulthood depression-induced dementia in later life. Muribaculum 

intestinale, the gut microbiota decreased by both AD and depression 

can be one of the causes of depression-induced early onset AD. 

Furthermore, Alistipes finegoldii, Bacteroides sp., Bacteroides 

uniformis, and Bacteroides dorei vulgatus were commonly found and 

increased by SUCMS-induced depression in 5 mo and 11-20 mo as 

shown in Table 1, indicating that these four microbiota species can 

be considered as an important depression-associated microbiota 

species. In addition, the amount of Candidatus Arthromitus sp., 

Lachnospiraceae bacterium 3.2, Bacteroidales bacterium M6, 

Azospirillum species incertae sedis, Bacteroidales bacterium M12, 

Bacteroidales bacterium M1, Bacteroides caecimuris, and 

Lactobacillus animalis murinus were increased by SUCMS-induced 

depression only at 5 mo, which indicates that these gut microbiota 

species change acutely after depression, but the increase does not 

last until the later stage. 

Interestingly, the gut microbiota altered by young adult depression 

identified in this study match with depression and AD associated gut 

microbiota identified in previous studies. Aizawa et al. reported that 
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the individuals with lower genus Bifidobacterium and Lactobacillus 

are more common in patients with depression compared to healthy 

control subjects [84], while Bifidobacterium pseudolongum (included 

in genus Bifidobacterium), Lactobacillus animalis murinus (included 

in genus Lactobacillus), and Lactobacillus species incertae sedis 

(included in genus Lactobacillus) were found to be decreased by 

SUCMS-induced young adult depression in this study. Furthermore, 

Naseribafrouei et al. and Jiang et al. found that the family 

Lachnospiraceae, genus Prevotella and Ruminococcus were 

downregulated while the genus Alistipes was upregulated in the fecal 

sample of depressive patients compared to the healthy control 

subjects [36, 37]. This study also revealed that Lachnospiraceae 

bacterium 3.2 and Lachnoclostridium species incertae sedis (included 

in family Lachnospiraceae), Prevotella species incertae sedis 

(included in genus Prevotella), and Ruminococcus species incertae 

sedis (included in genus Ruminococcus) are decreased, while 

Alistipes finegoldii (included in genus Alistipes) is increased by 

SUCMS-induced young adult depression. Also, Zhuang et al. 

reported that the genus Lachnoclostridium was significantly 

decreased in the fecal sample of AD patients [35], and this study 

identified that Lachnoclostridium species incertaesedis is associated 

with SUCMS-induced young adult depression. 
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Intriguingly, several animal model studies have discovered that FMT 

of normal mice feces, depletion of gut microbiota with antibiotics, and 

transplantation of certain bacteria can either ameliorate cognition 

deficit or reduce the Aβ deposit in AD model mice [85-89]. 

Furthermore, transferring feces of depressive patients to naïve 

Sprague-Dawley rats induced depressive symptoms [90], and 

injection of certain bacteria into depression animal model ameliorated 

depressive behaviors [91, 92]. These studies imply the possibility of 

alleviating AD and depression symptoms through gut microbiota 

transplantation. In this study, several gut microbiota species that are 

associated with depression and AD have been identified. Muribaculum 

intestinale was decreased by both AD and depression, while 

Bacteroides dorei vulgatus, Bacteroides uniformis, Bacteroides sp., 

and Alistipes finegoldii were increased by young adult depression and 

maintained this status until later stages. Although further studies are 

needed to confirm the effect of these microbiota, these gut microbiota 

can be novel therapeutic targets for the treatment and prevention of 

AD. 

Although some studies regarding altered gut microbiota composition 

in AD patients or animal model have performed taxonomy profiling, 

their results are limited to genus level as they used 16S rRNA 

sequencing for the characterization of gut microbiota [35, 38]. 
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However, the present study showed the taxonomy profiling of gut 

microbiota involved in depression-induced early onset AD at the 

species level through shotgun metagenomic sequencing. Therefore, 

specific, and accurate identification of putative therapeutic gut 

microbiota was available. 

This study unveiled the changes in gut microbiota composition and 

AD pathological characteristics in the brain and gut of depression-

induced early onset AD mice. Although this study encompasses high 

novelty in this field, the findings demand additional research to clarify 

the mechanism and causal relationship at the molecular level and in 

vivo. 
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국문초록 

 알츠하이머병은 치매 증상을 나타나게 하는 많은 질환 중 유병률 1위

를 차지하는 가장 보편적인 질환이다. 알츠하이머병의 주요 신경병리학

적 특징은 신경세포 외부에 침착되는 아밀로이드 베타 펩티드가 주성분

인 신경반과 신경세포 내부의 신경섬유덩어리이다. 알츠하이머병의 병인 

기전에 대하여는 수많은 과학자들이 수십년에 걸쳐서 연구해왔으나 다중

적 요인들이 작용하고 있는 측면과 더불어 현재 임상 4상에서 임상적으

로 사용되는 아두카누맙 이외에는 알츠하이머병의 진행을 늦추거나 막을 

수 있는 근본적 약물적 치료 방법은 존재하지 않는 상황이다.  

알츠하이머병 환자에 있어서 우울증 및 우울증 이력이 발병 위험성을 높

인다는 것이 여러 연구를 통해 밝혀진 바 있다. 또한, 최근 연구들에서 

장내미생물과 뇌가 양방향으로 상호작용하며, 여러 뇌 질병에 있어 장내

미생물의 변화 등이 중요한 역할을 수행할 수 있음이 보고되었다.  

본 연구에서는 알츠하이머병 동물 모델인 APP/PS1 생쥐에서 청년 시기

의 만성적 스트레스에 의한 우울증이 알츠하이머병의 발병 시기에 미치

는 영향과 장내미생물 및 장 내 변화를 조사/분석하였다. 4개월령 

APP/PS1 생쥐와 야생형 생쥐를 사회적 패배를 기반으로 한 만성적인 

스트레스에 노출시켜 우울증 증상을 유도하였다. 만성적 스트레스에 의

한 우울증이 유도된 APP/PS1 생쥐는 스트레스를 받지 않은 APP/PS1 

생쥐에 비교하여 5-6개월령의 시기에 이른 인지기능 저하를 보였으며, 

야생형 생쥐는 11-12개월령에 청년 시기의 만성적 스트레스에 의한 우
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울증으로 인한 인지기능 저하를 나타내었다. 또한, 우울증이 유도된 5-

6개월령 APP/PS1 생쥐의 뇌 내에서 아밀로이드 베타 펩티드 응집의 

증가는 나타나지 않았으나 인산화 된 타우가 뇌 해마 부위에서 증가됨을 

확인하였다. 뿐만 아니라 11-12개월령 생쥐의 소장과 대장에서도 우울

증이 유도된 야생형 생쥐와 APP/PS1 생쥐에서 타우 인산화 증가가 확

인되었다. 또한, 샷건 메타지놈 시퀀싱을 통해 장내미생물총의 변화를 

종 수준에서 확인하였고 우울증에 의해 여러 장내미생물종이 변화되어 

있음을 확인하였다. 특히 Muribaculum intestinale는 APP/PS1 동물 모

델에서 알츠하이머병과 만성적 스트레스로 인한 우울증이 발현된 생쥐 

그룹 모두에서 감소되었다. 이를 통해 본 연구에서는 동물 실험을 통하

여 청년 시기의 우울증 경력이 중년기 이후 나타나는 알츠하이머병의 주

요한 위험 요인으로 작용할 수 있다는 것을 증명하였으며, 이에는 장내

미생물총의 변화가 동반되었다. 이 연구를 통하여 장내미생물총의 변화

와 장 내의 타우 병증이 알츠하이머병의 새로운 치료 타겟이 될 수 있다

는 점을 시사하는 연구결과를 제시하였다. 

 

주요어 : 알츠하이머병, 우울증, 장내미생물, 사회적 패배를 기반으로 한 

만성적인 스트레스, 타우병증 
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