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Abstract

Advanced music recommendation systems are being introduced along with the de-

velopment of machine learning. However, it is essential to design a music recommen-

dation system that can increase user satisfaction by understanding users’ music tastes,

not by the complexity of models. Although several studies related to music recom-

mendation systems exploiting negative preferences have shown performance improve-

ments, there was a lack of explanation on how they led to better recommendations.

In this work, we analyze the role of negative preference in users’ music tastes by

comparing music recommendation models with contrastive learning exploiting prefer-

ence (CLEP) but with three different training strategies - exploiting preferences of both

positive and negative (CLEP-PN), positive only (CLEP-P), and negative only (CLEP-

N). We evaluate the effectiveness of the negative preference by validating each system

with a small amount of personalized data obtained via survey and further illuminate

the possibility of exploiting negative preference in music recommendations. Our ex-

perimental results show that CLEP-N outperforms the other two in accuracy and false

positive rate. Furthermore, the proposed training strategies produced a consistent ten-

dency regardless of different types of front-end musical feature extractors, proving the

stability of the proposed method.

주요어: content-based music recommendation, negative preference, contrastive

learning

학번: 2021-24997
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Chapter 1

Introduction

1.1 Motivation

Nowadays, the music industry is dominated by streaming services such as Spo-

tify and Apple Music. As it is seen in Figure 1.1, the number of users of digital mu-

sic streaming services is increasing every year and their popularization has made a

lot of music accessible to people. People have the advantage of having so many op-

tions for music to listen to, but on the other hand, it also brings difficulty in decid-

ing which to listen. Music streaming services are introducing music recommendation

technology to help each consumer with it, and the recommendation technology is be-

ing closely linked to the competitiveness of the service. Personalized music recom-

mendation technology has become an essential factor for both users and online music

streaming services. The need and interest in music recommendations have increased,

and many related studies have been conducted actively in recent years. Various hybrid

recommendation methods have been proposed, led by the collaborative filtering meth-

ods in which recommendations are made based on the user’s listening history and the

content-based filtering methods which are based on the song’s content. The methods

also differ by the defined recommendation task depending on the specific interest of
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Figure 1.1: Music streaming subscribers by app 2016 to 2021 (million) [1]

recommendation. Based on the user’s usage history, you can recommend songs that

users will like, or recommend songs that will follow when a playlist is given.

As machine learning technology is rapid advance, music recommendation tech-

nologies applying new deep learning models are continuously being proposed. How-

ever, recent studies on music recommendation systems were mainly conducted to im-

prove performance by adding new features or using novel machine learning techniques

such as latent factor models or deep representation learning [2]. There is no doubt that

improving the model’s performance is essential, but fundamental analysis of why bet-

ter recommendations have become possible is sometimes overlooked due to the focus

on the engineering perspective. [3] pointed out that recent advances in more complex

recommendation models further brought the difficulty of transparency. Recommenda-
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tion is all about personalization, and its objective is to model one’s music taste. It is

supported by [4], indicating that the actual goal of most real-world recommendation

systems is ”to influence the user to consume more items than she would have without

the recommendations, not to predict the next item the user will consume.” In order to

systematically explain the mechanisms of improvement in recommendation systems,

one’s music taste ought to be understood.

In order to explain an individual’s taste in music, the following two questions must

be answered - ”What kind of music do I like?” and ”What kind of music do I hate?” The

naı̈ve idea that motivated our work is, “Isn’t it easier to explain the music I hate than

the music I like?” Several studies have shown better performance when implementing

negative feedback in recommendation systems. [5, 6] applied negative feedback in

music recommendations, but they focused on proposing new architecture designs con-

sidering the negative feedback as an additional feature. Our work goes beyond simply

proposing a recommendation system to which negative feedback is applied and aims to

illustrate the role of negative feedback in modeling music taste. In a way, one’s music

taste can be seen as a set of pairs consisting of songs and corresponding preferences.

Thus the song’s content must be considered in order to approach the concept of music

taste.

Nevertheless, there has been no attempt to explain music taste by applying pos-

itive and negative feedback to content-based music recommendation systems. In our

work, we will apply negative feedback based on the content-based filtering method

and explain some parts of music taste focusing on negative feedback. To prevent the

ambiguity of negative feedback and naturally relate it to the concept of music taste, we

will use the term ”negative preference” by borrowing the expression of [5].
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1.2 Research Questions

We introduce three content-based music recommendation systems with differently

conditioned contrastive learning exploiting preference (CLEP), designed based on

Siamese Neural Network (SNN) [7]. The three models differ in the process of com-

puting the final embedding vectors of the songs according to the targeted preferences

- model exploiting both positive and negative preferences (CLEP-PN), model exploit-

ing positive preference only (CLEP-P), and model exploiting negative preference only

(CLEP-N). CLEP-PN embeds songs in a way that both positive and negative prefer-

ences are characterized. CLEP-P embeds songs in a way that positive preference is

solely characterized, and CLEP-N embeds songs in a way that negative preference is

solely characterized. Three different representations for each song will then be ob-

tained from the frozen networks and will be used to train a simple classifier to match

the preferences of each song. Afterward, the models are trained to fit a single user to

fully analyze the effect of personal preferences.

We generated a user preference dataset via survey, consisting of pairs of songs and

corresponding preferences for every user, obtained from twenty-four participants. The

models are then trained with each dataset to predict the participant’s preference for a

new song. For the training, the features of each song are represented using existing

works of musical feature extraction. To guarantee the stability of our work, we used

three different musical feature extraction methods - Contrastive Learning of Musical

Representations (CLMR) [8], Music Effects Encoder (MEE) [9], and Jukebox [10].

Our models will finally be evaluated on the test set with accuracy, precision, recall, area

under the receiver operating characteristic curve (AUROC), and false positive rate. By

comparing these metrics of the three models, we will be able to understand the effects

of preferences, especially negative preferences, and further explain the relevant parts

of music taste.
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Throughout our work, we will be investigating the following research questions.

• RQ 1.

What characteristics do negative preferences have in terms of explaining

music taste?

We will identify that compared to positive preference, negative preference in

music taste has more distinct characteristics and that it is easier to explain music

taste through negative preference.

• RQ 2.

How does applying negative preference help improve music recommenda-

tions?

We will discuss the advantages of exploiting negative preference in music rec-

ommendations through the identified roles of negative preference in music taste.

10



Chapter 2

Background

In this section, we provide an overview of content-based music recommendations

and previous attempts to exploit negative preferences in recommendation systems.

This chapter explains the theory behind our work and the field of related studies. The

2.1 briefly explains recommender systems and contrastive learning, which are essen-

tial for understanding our work. 2.2 illustrates the related preliminary studies, along

with their significance and limitations.

2.1 Background Theories

2.1.1 Recommender Systems

According to the definition of [11], recommender systems are software tools and

techniques providing suggestions for items to be a use to a user. The vast growth of

various online services have resulted into a surge in the number of service users and the

items available. Regarding the huge pool of items, finding an appropriate item might

be searching a needle in a haystack. Recommender systems support the process, help-

ing users decide which item to consume. Non-personalized recommendations can be
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conducted by recommending top 10 popular items, but these types of recommender

systems are not mostly a big interest in recommender system research. Personalized

recommender systems which aim to predict the suitable items for each user are in the

main focus, and we will be referring personalized recommender systems with the term

’recommender systems’ throughout our paper.

Recommender system is a very important technology that determines the competi-

tive edge of online services, and is being actively developed through various methods.

Based on the different approaches, [12] has distinguished recommender systems into

six different classes - collaborative filtering, content-based, community based, demo-

graphic, knowledge-based, and hybrid recommender systems. Among these, collabo-

rative filtering method which is commonly used in the field and content-based method

which will be used as the main method in the paper will be discussed in this chapter.

• Collaborative Filtering

Collaborative filtering method bases on user logs. Past histories are used to com-

pute the user’s taste, and items that are liked by other users with similar taste are

recommended. Given a database of users, items, and the users’ log of previously

consumed items, the system can focus on either the user or the item, which is

called user-based collaborative filtering and item-based collaborative filtering.

User-based method predicts a user’s rating for an unseen item by referring the

logs of other users that have similar preferences. Meanwhile, in the same situ-

ation, item-based method refers to other items with similar ratings. Due to its

strength that it can be applied regardless of the domain of the item, collaborative

filtering is known as the most widely implemented technique in recommender

systems.
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However, there are some drawbacks of collaborative filtering. ”Cold start” prob-

lem is one of the most well known problem of collaborative filtering. Since it

is being implemented based on the usage history, newly entered users and items

cannot be applied. Also, ”long tail” problem, or ”popularity bias”, is another

problem that can occur. Since recommendations are made according to the his-

tory of items consumed, it is more likely that popular items are often recom-

mended. Due to this trend, items with a small history of consumption continue

to be excluded from recommendation, resulting in a bias according to the item’s

popularity.

• Content-Based

Content-based recommendation focuses on the features of the items. By comput-

ing the similarity between items, content-based recommender systems recom-

mend items that are similar with the previously liked items. Since the similarity

is computed with the extracted set of features of items, depending on the item

domain, this method may or may not be convenient. For example, content-based

recommendation is generally used in text-based items, which can be represented

with text-based keywords. On the other hand, these methods can be difficult to

apply for domains where content is difficult to analyze or where information

retrieval technology for related fields is not sufficiently advanced. Also, since

the similarity of the content is not directly related to the user’s preference, there

exists a semantic gap between them. Another limitation of content-based rec-

ommendation is that there is a lack of novelty due to its high reliance on the

similarity of contents, continuously recommending similar items.
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2.1.2 Music Recommendation System

Along with the development of the recommender system, the music recommenda-

tion system has also developed in various ways. For example, Last.fm 1 which is a

famous music recommendation site recommends music that users will find interesting

based on the songs they have listened to. In addition, music recommendations are also

provided in music streaming services such as Spotify and Apple Music, helping people

decide what to listen to. In this section, we will introduce various approaches to the

music recommendation system and datasets that can be used for music recommenda-

tion research.

Approaches

The music recommendation systems follow the classification of the general recom-

mendation system introduced above. Collaborative filtering and content-based meth-

ods are the representative recommendation methods, and they have characteristics suit-

able for the domain of music. Music is only consisting of audio and has shorter dura-

tion compared to other domains, and these all lead to the characteristics of the music

recommendation system.

Although the operation method of collaborative filtering is independent of the char-

acteristics of the domain, there may be differences in performance depending on the

amount of data and sparsity. In the case of music, the consumption history will be sig-

nificantly higher than in other domains due to its short consumption time. Hence, data

handling is especially important in using collaborative filtering.

In the case of the content-based method, there is a difference in methodology de-

pending on how the content of music is handled. With the development of music infor-
1http://www.last.fm
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mation retrieval theory, various methods of handling music have been proposed, and

studies utilizing them for music recommendation have been proposed.

Since there are both advantages and disadvantages in the methods of music rec-

ommendation, the hybrid method, which uses various methods together, is known to

be most actively used in commercial music streaming services. In addition, a study on

contextual music recommendation aimed at recommending music suitable for context

such as mood and location is also being conducted.

Benchmark Dataset

For music recommendation research, it is important to select a dataset with various

information. However, it is not easy to produce a large dataset due to user privacy and

music copyright. Nevertheless, there are several published benchmark datasets, and

some of them are following.

• Million Song Dataset

Million Song Dataset is a cluster of dataset containing the data for one million

songs and following users, provided by ’The Echo Nest’. Analyzed features such

as loudness, danceability measures are included and metadata such as genre, tags

are also part of the dataset. Million Song Dataset is the most widely used data

in the field of music information retrieval or music recommendation research

because it is consisting various information. Although the full audio file is not

provided, researches on content-based music recommendation were conducted

using the included features.However, there is a limit in representing the content

of the song only with the provided measures, and controllability is insufficient

in conducting content-based music recommendation research. A code to obtain

a sample audio is provided, but it is unfeasible since the service is currently

suspended.
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• The Million Playlist Dataset

Spotify Research, which is actively developing music recommendation tech-

nology, has also released a large dataset for music recommendation research -

The Million Playlist Dataset. Spotify considers their users’ music consuming

behavior based on playlists, such as producing and listening to playlists, very

important. The Million Playlist Dataset is also provided on a playlist basis, and

includes 1,000,000 playlist titles created by Spotify users and song information

contained therein. It is often used in the task of predicting songs that will follow

from the playlist when the title of the playlist or several songs in the playlist are

given.

2.1.3 Contrastive Learning

Contrastive learning is a machine learning technique which learns an embedding

space where similar data pairs stay close together while dissimilar pairs far apart. It

is mainly being applied in self-supervised learning since [13] proposed a framework

for contrastive learning applying for unlabeled visual representations. Regarding iden-

tical samples with different augmentation operators positive samples, employing con-

trastive learning successfully helps extracting the representations of unlabeled data

samples. The objective of contrastive learning is visualized in Figure 2.1.

In addition, [14] proposed SupCon, utilizing the framework of contrastive learning

in supervised manner, using labeled dataset. In the existing self-supervised contrastive

learning, only samples that were augmented from one sample are considered positive

samples. On the other hand, SupCon considers different samples with the same label

and their augmented data samples as positive samples. Accordingly, contrastive learn-

ing is being performed with additional information of data labels. The differences of

the model architectures are visualized in Figure 2.2.
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Figure 2.1: Overall scheme of contrastive learning

2.2 Related Works

2.2.1 Content-based Music Recommendation

Content-based music recommendation systems have a strong advantage in that the

audio content itself is utilized. Due to its reliance on the content, it compensates for the

limitations of collaborative filtering methods, such as the cold-start problem, which is

a problem caused by a deficiency in the information about new items or new users.

Traditional content-based music recommendation systems are mainly based on meta-

data such as artists, albums, or genres. However, developments in music information

retrieval have facilitated the handling of music content in various ways. It became pos-

sible for both high-level audio features (e.g., melody, harmony, rhythm) and low-level

audio features (e.g., Mel-Frequency Cepstral Coefficients (MFCC), mel-spectrogram)

to be used for music representation. Furthermore, musical feature extractors utilizing

advanced deep learning techniques have also been proposed. [8] and [9] use the idea

of contrastive learning, and [10] use the idea of multi-scale VQ-VAE to extract low-

level features of music.
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(a) Supervised Learning

(b) Self-Supervised Contrastive Learning

(c) Supervised Contrastive Learning

Figure 2.2: Model architecture of (a) supervised learning (b) self-supervised con-

trastive learning (c) supervised contrastive learning
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Accordingly, content-based music recommendations adopting these features are

being suggested, demonstrating their practical applicability [15]. In addition to using

various methods in extracting musical features, deep learning techniques based on sim-

ple front-end features are used to predict music’s latent factors which can be utilized

for content-based music recommendations. [16] proposed a latent factor model which

maps mel-spectrogram to the item latent factor vectors obtained from the collaborative

filtering method using deep convolutional neural networks.

Based on different representations, content-based music recommendation systems

compute the distances between songs and recommend songs similar to the ones the

user likes. The computation methods of distance also vary by model [17], but the point

to note is that content-based music recommendation systems usually rely on similarity.

High reliance on similarity causes the recommendations to lack novelty, and content

similarity was once criticized for not being able to completely capture the preferences

of a user [18]. We expect to overcome these problems by exploiting user preference

data along with the contents, referring to the work of [16] which successfully bridges

the semantic gap in the content-based filtering method by using the ground truth, which

includes user feedback information.
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2.2.2 Recommendation Systems Exploiting Negative Preference

Recommendation systems rely on user feedback, which can be divided into explicit

feedback (e.g., ratings) and implicit feedback (e.g., browsing history, purchase history)

according to how it is provided. Implicit feedback outnumbers explicit feedback due

to its continuous update, but unfortunately, implicit feedback has a constraint that it is

mainly focused on positive feedback [19,20]. Thus modern recommendation systems

are predominantly based on positive feedback, followed by the concern of its deficien-

cies in discriminatory power [21, 22]. In this regard, several studies are attempting to

exploit negative feedback, or ”negative preference” in our term, in recommendation

systems [5, 6]. [5] applied negative preference in group recommendation, showing

that negative preference helped groups find consensus solutions satisfactory to all in-

dividuals. They introduced a recommendation system of avoiding the item user does

not want rather than recommending the item user wants and raised the possibility of

applying negative preference in recommendations.

Recommendation systems using positive and negative preferences were proposed

in various domains, applying different learning models. For instance, [23, 24] ex-

ploited both positive and negative preferences by modifying graph-based recommen-

dation systems. Proposed models have commonly shown that the user’s negative pref-

erences have increased the quality of recommendations [25,26]. For music recommen-

dations, negative preferences are applied through skipping behaviors. [6] introduced

a heuristic of automatic playlist generation by eliminating songs similar to the skipped

songs. Studies covering sequential skip prediction tasks [27–29] also imply the possi-

bilities of exploitation of negative preference in music recommendations.

Research in this field constantly mentions negative preferences, but most conclude

by proposing novel architecture designs with increased performance. In contrast to
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these related works, we expect to focus on illuminating the specific roles of negative

preferences compared to positive preferences.
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Chapter 3

Methods

The main goal of our study is to understand the effects of negative preference

through a comparison of recommendation models in which preferences are differently

conditioned. For methodical investigation, we designed the framework to which our

model will be applied consisting of three parts: feature extraction, embedding with

CLEP, and preference prediction. The framework overview is visualized in Figure 3.1.

3.1 Feature Extraction

Extracting the features of songs is essential in content-based music recommen-

dations. As described in Section 2.1, previous studies have introduced content-based

music recommendation systems using various features. Considering that our work at-

tempts to relate the contents with user feedback, we use low-level features following

[16]. As representation learning has been actively studied in recent years, [8–10] pro-

posed models trained in a self-supervised manner that produce novel music represen-

tations. There are also front-end models used in automatic music tagging [30,31], but

they are models trained to classify music into a limited, discrete range of descriptions.

These tags can help express the music users accept, but a much more intricate approach
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to representation is required to relate to their music preferences. Therefore, rather than

tag-based models, models based on self-supervised contrastive learning can be consid-

ered appropriate for this study since it is trained to focus on the identity of the music

content itself.

By taking advantage of the pre-trained self-supervised models, the training proce-

dure can be eased as we only need to train back-end models using a small amount of

preference data of a single person. We use different feature extractors to evaluate the

stability of our proposed method despite its varying performance according to each

music representation. Our work uses the framework of CLMR [8], MEE [9], and

Jukebox [10] as front-end musical feature extractors.

3.1.1 Contrastive Learning of Musical Representations

CLMR is a method of extracting musical features based on the idea of SimCLR

[13], which performs contrastive learning by designating different sections of the same

song as positive samples and sections of different songs as negative samples. In more

details, to designate the positive samples, random fragment is selected from a raw

audio waveform and comprehensive chain of audio augmentation is applied stochas-

tically. Augmented samples from different raw audio waveform are identified as neg-

ative samples. Then by extracting the features using the SampleCNN architecture as

the encoder, the elaborate representations are obtained through contrastive learning.

To evaluate the quality of the obtained representations, music classification tasks were

done with MagnaTagATune [32] and Million Song datasets [33]. Comparing with

other fully supervised state-of-the-art models in tag prediction tasks, CLMR has out-

performed the others.
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3.1.2 Music Effects Encoder

MEE is an encoder used in a study that proposes a music remastering system. In

order to capture the music’s mastering style, the representation of music is extracted

with a self-supervised manner similar to CLMR. MEE differs from CLMR in the archi-

tecture of the encoder and several training details. The model reproduces a mastering

style similar to the target sample, indicating that the MEE successfully extracts repre-

sentations that imply the characteristics of the music.

3.1.3 Jukebox

Unlike the previous two models, Jukebox is model proposed for music generation.

Jukebox introduces Music VQ-VAE using the architecture of hierarchical VQ-VAE

[34, 35]. Among various music generation models, Jukebox is well known for gener-

ating high-quality music with high controllability. It can be inferred that musics are

represented with latent vectors that reflect their characteristics. Hence, we will use the

encoder part of the Music VQ-VAE as one of our feature extractors.

Thanks to the provision of pre-trained models, we take each model to extract the

features of songs for our work. Details of the musical feature extraction models are

illustrated in Table 3.1. The amount of data was too small to show statistically sig-

nificant results by training the front-end model from scratch, and it was shown as we

expected in preliminary experiments - training a simple convolutional neural network

(CNN) with mel-spectrogram input and training a network adopting the idea of CLMR.

Therefore, we will be focusing on the pre-trained musical feature extractors for the rest

of our work.
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Front-end Models Dataset (# Tracks)
Sampling Rate,

Channel
Dimension

CLMR MagnaTagATune [32] (187k) 16 kHz, mono 512

MEE MTG-Jamendo [36] (55k) 44.1kHz, stereo 2048

Jukebox web crawled (1.2m) 44.1kHz, mono 4800

Table 3.1: Details of the front-end musical feature extraction models

3.2 Contrastive Learning Exploiting Preference (CLEP)

We devise three different content-based music recommendation models as follows:

• CLEP-PN

Model with contrastive learning exploiting both positive and negative prefer-

ences

• CLEP-P

Model with contrastive learning exploiting positive preference only

• CLEP-N

Model with contrastive learning exploiting negative preference only

The three models are differentiated in the embedding part. The representations

obtained in the previous part are embedded considering the preferences using the ar-

chitecture of SNN. SNN learns representations by adjusting the distance between the

embeddings according to the labels of item pairs. In more detail, SNN is trained with

contrastive loss as follows:

LContrastive = yD2 + (1− y)max(margin−D, 0)2 (3.1)

where y is the label of an item pair and D is the distance between the items. When
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Data Pair Pos - Pos Neg - Neg Pos-Neg

CLEP-PN y=1 y=1 y=0

CLEP-P y=1 y=0 y=0

CLEP-N y=0 y=1 y=0

Table 3.2: Designated labels of data pairs in the contrastive learning phase according

to the proposed models

a pair of items labeled as y = 1 is given, it leads to L = D2, reducing the distance

as training. That is, a pair of items that is labeled as y = 1 will be embedded close

together in the embedding space. On the other hand, when a pair of items labeled as

y = 0 is given, it leads to L = max(margin −D, 0)2. So as training continues, the

distance gets close to the margin value. The margin value was set as margin = 7

through empirical observations so that the embeddings from both classes were well

separated.

As it can be seen from the loss function, the embedding varies depending on how

the item pairs are labeled. In general classification tasks, items that belong to the same

class are embedded closer and those belonging to different classes are embedded far-

ther. We changed the way of labeling according to the purpose of each model like

the following. The way it is labeled is shown in Table 3.2 and visualizations of the

embedding strategies of each model are depicted in Figure 3.2.

• CLEP-PN

The label is set so that the songs with the same preference are embedded close

to each other, and the songs with different preferences are embedded far apart.

In other words, we set y = 1 for ’like-like’ and ’dislike-dislike’ pairs, and y = 0

for ’like-dislike’ pairs.
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Figure 3.2: Demonstration of each embedding space of CLEP-PN, CLEP-P, and

CLEP-N
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• CLEP-P

The label is set so that the songs with positive preferences are embedded close

together, and other kinds of pairs are embedded far apart. We set y = 1 for

’like-like’ pairs, and y = 0 for ’like-dislike’ and ’dislike-dislike’ pairs.

• CLEP-N

The label is set so that the songs with negative preferences are embedded close

together, and other kinds of pairs are embedded far apart. We set y = 1 for

’dislike-dislike’ pairs, and y = 0 for ’like-dislike’ and ’like-like’ pairs.

3.3 Preference Prediction

Pre-trained musical feature extractors are often evaluated in classification tasks by

appending a simple model of Multi-Layer Perceptron (MLP) [8]. We apply the same

technique to predict the user’s preference for each song. MLP layers are added and

trained to match the ground truth of whether the user likes or dislikes the song, with

Binary Cross Entropy loss (BCE loss). Then the sigmoid function eventually computes

the probability of preference.
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Chapter 4

Experiments

4.1 Experimental Setups

For musical feature extractors, we used the public-available pre-trained models of

CLMR 1, MEE 2, and Jukebox 3. Feature vectors of each song were extracted with

the dimension denoted in Table 3.1. Sixteen songs per batch were trained with CLEP,

which has a network architecture of MLP with 4, 5, and 5 layers for CLMR, MEE,

and Jukebox, respectively. The preference prediction stage has a network architecture

of 3-layer MLP. Both CLEP and preference prediction stage were trained using Adam

optimizer with learning rate scheduled so that it is reduced when validation loss is not

decreasing until two epochs. CLEP was trained for 20 epochs, and the learning rate

was scheduled starting from 0.01. The preference prediction stage was trained for 30

epochs with the learning rate starting from 0.001.
1https://github.com/Spijkervet/CLMR
2https://github.com/jhtonyKoo/e2e music remastering system
3https://github.com/openai/jukebox
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4.2 User Preference Dataset

We conducted a web-based survey asking participants about their music prefer-

ences to train and evaluate our models. It is difficult to define music preferences elab-

orately, but as many online music recommendation services do, user feedback can be

elicited to assume their preferences [37]. The survey asked for the likes and dislikes

of certain songs, and the collected data were used to represent each participant’s music

preference.

Twenty-four volunteers with no hearing problems were recruited from online stu-

dent communities. They were all Koreans, and their ages ranged from 24 to 37, with

an average of 27. After briefly introducing the survey process, we obtained consent for

their participation. They were asked to listen to 200 music clips and answer whether

they liked or disliked each song. Since users’ familiarity with songs does affect their

preference [38], 40 songs were randomly selected from different genres to reduce

genre bias and effects on the popularity of the songs. They consisted of the five most

popular genres nowadays - rock, EDM, hip-hop, pop, and R&B. We used the ’Get Rec-

ommendations’ function provided in Spotify API 4, which can return a list of tracks

when given a particular genre as shown in Figure 4.1. Music excerpts of 10 seconds

were randomly selected from each track and given in random order to each participant.

By referring to [38], which studied music preference and recognition, it was consid-

ered that 10 seconds were enough for the participants to identify the melodies and

decide their preferences on each song. The music clips were given stereo-channeled

with a sampling rate of 44.1kHz in the survey but were manipulated in the feature ex-

traction stage to fit each feature extraction model. A part of the questionnaire can be

checked in Figure 4.2.

4https://developer.spotify.com/documentation/web-api/
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Figure 4.1: Website of ”Spotify for Developers” showing the description of using Spo-

tify API for ”Get Recommendations”

Through the survey, we obtained each participant’s preferences for 200 songs.

Each participant had a different ratio of their liked and disliked songs - some had

much more liked songs while some had much more disliked songs. Table 4.1 shows

the specific number of responses according to the participants’ age and preference.

The average ratio of the number of liked songs to the number of disliked songs was

0.96:1 on average, saying the preferences of the entire participants were not biased.

Within the 200 individual data, we divided them into a training set and a test set at

a ratio of 3:1. We then trained the models with the training set and assessed their

performances on the test set.
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Figure 4.2: Part of the questionnaire used for data collection
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Participant Age Positive Negative

1 24 101 99

2 27 62 138

3 27 47 153

4 24 49 151

5 27 87 113

6 25 54 146

7 26 65 135

8 27 97 103

9 27 78 122

10 24 29 171

11 31 70 130

12 25 75 125

13 37 175 25

14 28 64 136

15 26 45 155

16 28 78 122

17 24 141 59

18 31 66 134

19 25 24 176

20 24 63 137

21 29 35 165

22 25 125 75

23 27 129 71

24 24 88 112

Mean 26.75 76.96 123.04

Table 4.1: Demographics from people who participated in the data collection and the

number of responses for preferences and negative preferences
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4.3 Evaluation

4.3.1 Evaluation Metric

To compare the performance of each model, we used the following five metrics -

accuracy, precision, recall, area under the receiver operating characteristic curve (AU-

ROC), and false positive rate.

Accuracy

Since our evaluation task is a binary classification task, accuracy, which is the ratio

of the number of correct answers to the total prediction, can be measured. If there is

a model with a high accuracy, it can be interpreted that the model closely builds the

embedding space containing the user’s preference through contrastive learning.

Precision

Precision is the ratio of correct answers among the predicted positive samples. It is

obtained by dividing True Positive by the sum of True Positive and False Positive.

Recall

Recall is the ratio of correct answers among the samples which their labeled positive.

In other words, recall is the value of True Positive divided by the sum of True Positive

and False Negative. Precision and Recall have a trade-off relationship that cannot be

increased together, so F1-score, which is a harmonic average thereof, is also used as

an evaluation index. However, in our work, the measurement of F1 score is omitted to

focus on the tendency of each metric.

Area Under the Receiver Operating Characteristic Curve

The Area Under the Receiver Operating Characteristic Curve (AUROC) refers to the
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area below the ROC curve where the values of false positive rate and true positive rate

according to various thresholds are shown. The existence of a threshold that derives a

low false positive rate and a high true positive rate means that the classification perfor-

mance of the model is excellent, so it can be interpreted that the larger the area under

the ROC curve, the higher the performance.

False Positive Rate

False Positive Rate is the value of False Positive divided by the sum of False Positive

and True Negative. The recommendation system field has plentiful evaluation method-

ologies [39–41], but most of them focus on true positives as the evaluation objective.

However, [42] points out that false positives are a clear concern in music recom-

mendations. From the user experience perspective, users are not aware of not being

recommended a song they like. Instead, it is more disappointing to be recommended a

song they dislike. Since false positives negatively affect user experience compared to

false negatives, measuring false positive metrics will help analyze the practical utility

of a music recommendation system. From this point of view, it is crucial to look into

precision and false positive rate, which are the metrics relevant to false positives. Pre-

cision in recommendation refers to the ratio of liked songs over recommended ones.

Meanwhile, the false positive rate is the ratio of recommended songs over the songs

that which user truly dislikes. High precision and low false positive rate imply that the

recommendation system is worthwhile in terms of user experience.
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4.3.2 Experimental Results

The experimental results were analyzed through the Friedman test, and the over-

all test results are illustrated in Table 4.2. The following χ2 and p-value in the table

demonstrate the statistical significance that the results differ by model. The results of

different musical feature extractions are also displayed in the table, showing a con-

sistent tendency to some degree regardless of feature extractors. Accuracy, recall, and

false positive rate showed statistically significant differences in all three cases, while

precision and AUROC showed differences only in models using Jukebox for its fea-

ture extractor. In order to verify specified relationships between the models, Wilcoxon

signed-rank tests were performed as a post-hoc analysis for accuracy, recall, and false

positive rate. Table 4.3 shows multiple testing results between the models, and the re-

lationships in which model showed the best result are verifiable. The full results are

shown in Table 4.4.

37



Front-end Models CLEP Accuracy (↑) Precision (↑) Recall (↑) AUROC (↑) FPR (↓)

CLEP-PN 0.62 0.37 0.367 0.508 0.329

CLEP-P 0.56 0.424 0.722 0.588 0.547

CLMR CLEP-N 0.66 0.5 0.16 0.514 0.097

χ2 (df=2)
9.621

(p=0.008**)

1.595

(p=0.451)

25.613

(p=2.74e-06***)

2.083

(p=0.353)

26.547

(p=1.72e-06***)

CLEP-PN 0.59 0.334 0.453 0.502 0.352

CLEP-P 0.55 0.375 0.481 0.519 0.439

MEE CLEP-N 0.61 0.404 0.367 0.538 0.286

χ2 (df=2)
7.101

(p=0.029*)

1.916

(p=0.384)

15.475

(p=0.0004***)

1

(p=0.607)

20.609

(p=3.35e-05***)

CLEP-PN 0.59 0.421 0.547 0.5 0.423

CLEP-P 0.64 0.457 0.747 0.653 0.431

Jukebox CLEP-N 0.7 0.519 0.338 0.555 0.15

χ2 (df=2)
11.5

(p=0.003**)

18.583

(p=9.22e-05***)

16.28

(p=0.0003***)

21.894

(p=1.76e-05***)

25.872

(p=2.41e-06***)

Table 4.2: Median values of accuracy, precision, recall, AUROC, and false positive rate

(FPR) according to the musical feature extraction models and our models. The reported

χ2 values and their p-values are obtained with Friedman test (Statistical significance :

*** p < 0.001, ** p < 0.01, * p < 0.05).
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CLEP-PN vs P CLEP-P vs N CLEP-N vs PN Results

CLMR 0.065 0.002** 0.028* CLEP-N > PN, P

Accuracy (↑) MEE 0.648 0.004** 0.016* CLEP-N > PN, P

Jukebox 0.016* 0.038* 0.008** CLEP-N > P > PN

CLMR 0.031* 9.6e-05*** 0.009** CLEP-P > PN > N

Recall (↑) MEE 0.298 0.0003*** 0.029* CLEP-PN, P > N

Jukebox 0.026* 3.6e-05*** 0.042* CLEP-P > PN > N

CLMR 0.066 7.6e-05*** 0.001** CLEP-N < PN, P

FPR (↓) MEE 0.173 0.0003*** 0.03* CLEP-N < PN, P

Jukebox 0.82 1.9e-05*** 0.001** CLEP-N < PN, P

Table 4.3: P-values of Wilcoxon signed-rank test as a post-hoc analysis of the Fried-

man test above (Statistical significance : *** p < 0.001, ** p < 0.01, * p < 0.05).

Significant order relations between the models are noted on the right side.
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Table 4.4: Full results showing the number of True Positive(TP), True Negative(TN),

False Positive(FP), False Negative(FN) for each participant and each model

Participant Model TP TN FP FN

CLEP-PN 15 27 5 3

1 CLEP-P 18 16 16 0

CLEP-N 10 32 0 8

CLEP-PN 0 35 0 15

2 CLEP-P 10 26 9 5

CLEP-N 1 33 2 14

CLEP-PN 4 24 18 4

3 CLEP-P 4 29 13 4

CLEP-N 0 37 5 8

CLEP-PN 9 26 9 6

4 CLEP-P 9 17 18 6

CLEP-N 4 33 2 11

CLEP-PN 8 22 7 13

5 CLEP-P 15 19 10 6

CLEP-N 6 23 6 15

CLEP-PN 4 28 8 10

6 CLEP-P 9 19 17 5

CLEP-N 1 30 6 13

CLEP-PN 10 26 11 3

7 CLEP-P 11 18 19 2

CLEP-N 1 32 5 12

CLEP-PN 18 11 10 11

8 CLEP-P 26 7 14 3

CLEP-N 7 18 3 22
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Participant Model TP TN FP FN

CLEP-PN 16 15 15 4

9 CLEP-P 15 15 15 5

CLEP-N 7 23 7 13

CLEP-PN 4 24 19 3

10 CLEP-P 4 25 18 3

CLEP-N 0 40 3 7

CLEP-PN 0 32 0 18

11 CLEP-P 14 20 12 4

CLEP-N 3 29 3 15

CLEP-PN 11 16 16 7

12 CLEP-P 16 16 16 2

CLEP-N 5 30 2 13

CLEP-PN 42 1 4 3

13 CLEP-P 42 1 4 3

CLEP-N 28 2 3 17

CLEP-PN 5 25 13 7

14 CLEP-P 10 16 22 2

CLEP-N 3 31 7 9

CLEP-PN 8 23 14 5

15 CLEP-P 9 18 19 4

CLEP-N 1 34 3 12

CLEP-PN 0 30 2 18

16 CLEP-P 16 16 16 2

CLEP-N 6 27 5 12
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Participant Model TP TN FP FN

CLEP-PN 30 5 8 7

17 CLEP-P 34 4 9 3

CLEP-N 28 10 3 9

CLEP-PN 0 30 0 20

18 CLEP-P 16 16 14 4

CLEP-N 8 22 8 12

CLEP-PN 2 35 11 2

19 CLEP-P 2 33 13 2

CLEP-N 0 43 3 4

CLEP-PN 15 12 20 3

20 CLEP-P 13 19 13 5

CLEP-N 5 31 1 13

CLEP-PN 5 22 15 8

21 CLEP-P 6 20 17 7

CLEP-N 2 34 3 11

CLEP-PN 32 0 18 0

22 CLEP-P 26 8 10 6

CLEP-N 14 13 5 18

CLEP-PN 24 18 2 6

23 CLEP-P 24 14 6 6

CLEP-N 13 19 1 17

CLEP-PN 12 16 12 10

24 CLEP-P 19 10 18 3

CLEP-N 5 22 6 17
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Chapter 5

Results and Discussion

We have trained our three models - CLEP-PN, CLEP-P, and CLEP-N - to embed

the contents of songs exploiting preferences and predict the preference of unknown

songs. In the training phase, each data was embedded depending on its feature and

preference. We observed that the songs were embedded as expected when visualized in

two dimensions using t-SNE as is seen in Figure 5.1 for instance. Songs with positive

and negative preferences were clustered each in the embedding space of CLEP-PN.

Furthermore, songs with positive preferences were clustered while songs with nega-

tive preferences were spread out in the embedding space of CLEP-P, and vice versa in

the case of CLEP-N.

As we showed, there were statistically significant differences between the models

in terms of accuracy, recall, and false positive rate. First, CLEP-N showed the highest

accuracy among the three models. Although the statistical significance for the differ-

ence between CLEP-PN and CLEP-P was slightly different depending on the musical

feature extractors, the accuracy of CLEP-N consistently exceeded the accuracy of the

other two models. In the case of precision, models which used Jukebox as its musical

feature extractor only showed a significant difference (χ2(2) = 18.583, p < 0.001),
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Figure 5.1: Example of t-SNE visualization of embedding spaces trained with data

obtained from a single participant, with MEE as musical feature extractor. Red points

represent the songs with positive preference, and blue points represent the songs with

negative preference.
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presenting the highest value in CLEP-N. The precision of models with other musical

feature extractors showed a lack of significance, but the median values were consis-

tently the highest in CLEP-N.

Meanwhile, the results showed that CLEP-N performed the lowest recall. In the

case of false positive rate, CLEP-N outperformed the other two regardless of musical

feature extractors, showing the lowest value. A recommendation system’s low false

positive rate implies that the model barely recommends music the user dislikes. The

results of CLEP-N showing high false positive rate and low recall indicate that it is

better at predicting songs the user dislikes than predicting songs the user likes. A sim-

ple approach can allow a rough guess of thinking that CLEP-N is too pessimistic,

predicting that the user dislikes every song. However, considering that the survey data

was balanced in terms of preferences and CLEP-N showed the highest accuracy, it is

convincing enough to claim its strength. The false positive rate and recall both have

actual preferences as the denominator, but the false positive rate focuses on the neg-

atives while recall focuses on the positives. False positive rate is an anti-metric for

recall, which is a metric aware of the irrelevant items returned by the recommenda-

tion systems. Considering that anti-metrics are more valuable than classical metrics

when distinguishing recommendation systems with similar relevance [43], the fact

that CLEP-N is showing a high false positive rate is strong evidence of its potential to

be utilized in recommendation systems.

All three models showed no particular tendency in terms of AUROC, and the val-

ues were insufficient to state the stable performance of each model. As seen from the

low AUROC, our models, including CLEP-N, have limitations in their immediate ap-

plication as a recommendation system. It is due to the shortage of data in quantity and

the simple implementation aimed at identifying the differences, and adjusting CLEP-N
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for real application will be left as our future work.

Based on the results, the research questions of our work as mentioned above can

be discussed like the following:

• RQ 1.

What characteristics do negative preferences have in terms of explaining

music taste?

If we think of a user’s music taste as a complex distribution of songs the user

likes and dislikes, we were interested in which of these three models most simi-

larly simulates the distribution. If the contents of songs that the user feels posi-

tive or negative have a certain tendency, the features of the songs with the same

preference will be embedded close to each other. Thus we can regard the embed-

ding spaces of our models as the distribution of users’ music tastes according to

their positive and negative preferences. Based on the result that CLEP-N showed

the highest accuracy, we provide evidence that songs with negative preference

have more distinct characteristics than songs with positive preference. It is also

supported by the concept of serendipity [44], which is a measure indicating the

unexpectedness of a recommendation. The fact that users react to unexpectedly

good things points out that there is a chance of finding songs the user may like

in an unpredictable area of the user’s music taste, and the findings of our work

explain it.

• RQ 2.

How does applying negative preference help improve music recommenda-

tions?

Although our experimental settings had a gap from the real-world situation, we
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verified the model’s potential to exploit negative preference in content-based

music recommendations by conditioning the preferences in the models. From

the perspective of user experience, it is shown that the model with a low false

positive rate and high precision can lead the users to a pleasant experience of

consuming music. Through our work, we verified that CLEP-N showed a dis-

tinctly low false positive rate and, in some cases, high precision. Therefore, we

can conclude that exploiting negative preference contributes to improvement in

false positive metrics, and this consideration in music recommendations will be

expected to make significant progress.
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Chapter 6

Conclusion

6.1 Contribution

In this work, we analyzed the role of negative preferences in users’ music tastes by

comparing three models with differently conditioned contrastive learning exploiting

preference (CLEP) - models exploiting both positive and negative preferences (CLEP-

PN), positive preference only (CLEP-P), and negative preference only (CLEP-N). We

found that CLEP-N, which assumes that negative preference is more characterized,

showed the highest accuracy among the three proposed models. It leads to a conclu-

sion that negative preference has the potential to have more explainable characteristics

in users’ music taste compared to positive preference. Furthermore, CLEP-N outper-

formed the other two models in terms of false positive metrics. As false positive met-

rics are told as highly relevant in recommendation literature, CLEP-N also illuminates

the capacity of improving music recommendations by utilizing negative preferences.

Based on these results, the significance of this study will be explained in this section.
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6.1.1 Novel Approach on Content-Based Music Recommendation

The previously known content-based music recommendation has chosen a method

of understanding music content using audio features or tags and recommending simi-

lar songs based on them. However, as mentioned in 2.1.1, there exists a semantic gap

between the similarity of the musics and user preferences. To compensate for this, it

is used as a hybrid method along with collaborative filtering, which can represent the

user’s preference as a latent vector. Nonetheless, the two methods work as a simple

ensemble, and the content of the music is not directly related to the user’s preference.

Since understanding the user’s music preference is essential for personalized recom-

mendation, the understanding of the user’s preferred music must be supported. Our

work is meaningful in suggesting a point where users’ preferences and music content

can be connected.

Individual music preferences are difficult to explain with simple tags. Even two

different musics with the same tag or similar audio features may be liked or disliked

by users due to minor differences. As can be seen in Figure 6.1, preferences and genre

of music tended to be quite irrelevant within the embedded space of the learned mod-

els. In other words, it can be interpreted that the new approach proposed in our work

reflects the semantic part of music preference, which is difficult to be classified as tags.

It is hoped that this will be further expanded to other domains as well as music,

and actively utilize the method that can connect content and user preferences in general

recommendation systems.
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Figure 6.1: Example of t-SNE visualization of embedding spaces trained with data

obtained from a single participant, with MEE as musical feature extractor. Colors are

representing different genres, while shapes of the marker represent the preference.

Details are notated in the legend.
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6.1.2 Comprehension of Music Preference

Our work is meaningful in that it not only proposed a music recommendation

method but also introduced an understanding of music preference from the results.

There have been several previous studies trying to understand music preference [45,

46]. However, most of the approaches are to explain preferred music, or to analyze the

factors that determine music preference rather than understanding the music prefer-

ence itself [47].

Our work attempted to understand the characteristics of people’s overall music

preference, and presented evidence for the phenomenon that music that is not pre-

ferred over preferred music is more characteristic through experiments. It contributes

to understand an individual’s music preference, and more insights on music preference

are expected to arise from the findings of our work.

6.2 Limitation and Future Works

We have intensified our work to enlighten the effects of negative preference through

comparative analysis. In other words, our work is focused on synthesizing our novel

findings for negative preferences but not on directly applicable model proposals. There-

fore, there is some limitations in directly using the methodology proposed in our work

for real-world applications.

Our work proposes to use the user’s negative preference in music recommenda-

tion. However, it difficult to explicitly obtain the user’s negative preference in most

music streaming services. Although functions such as ”Like” and ”Hide song” exist,

most people do not provide direct feedback on each music played. While people can

implicitly infer negative feedback with skipping behavior, it is not accurate because
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people may skip musics depending on their situation or mood, regardless of negative

preferences. The methodology proposed in our study has major limitation in this re-

gard because it is based on the assumption that users have data on their preference and

negative preference for music. Therefore, in order to apply the method to the actual

service, methods to supplement this point must be presented.

Also, since the proposed method is learned with individual preference data, the

model is trained individually. However, considering the real-world application, train-

ing the model individually for each user will require a lot of computation, resulting

in inefficient scalability. Given the fact that there are numerous users and numerous

songs within the music streaming service, not only providing accurate recommenda-

tions, but also operating quickly and efficiently by utilizing accessible information

properly are extremely important. Therefore, based on the late vector in collaborative

filtering, measures such as helping users with similar distributions of tastes to calculate

will be discussed in future studies. Therefore, in order to supplement this, modifying

the proposed method in utilizing the information of other users should be further stud-

ied. For instance, there may be a way to ease the training procedure among users with

similar distribution of preferences, based on the latent vector from collaborative filter-

ing. In our future work, we will consider a more generalized model training method

that can cope with a vast amount of data.

There are also several limitations regarding the dataset for model training. First of

all, in order to train the proposed model, music data showing individual preferences are

required. However, since there is no public dataset to fit these needs, it was inevitable

to produce the dataset for progressing our work. Although there were statistically sig-

nificant results even if it was collected from few participants, it is still insufficient to

generalize our findings. Furthermore, the fact that the preference for music was in-
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quired in binary manner is also one of the limitations. To determine the preference of

the music, different standards will be applied by person. Some people may be generous

to saying that they like the song, but some may say they don’t like it for a very small

reason. In our work, since binary choices of ’like’ and ’dislike’ were demanded in the

data collection process, the opinions at the boundary are not carefully reflected. In our

future work, we will inquire the music preferences in more detail - in Likert scale, for

example - to find out the characteristics according to the degree of preference.
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[42] E. Mena-Maldonado, R. Cañamares, P. Castells, Y. Ren, and M. Sanderson,

“Agreement and disagreement between true and false-positive metrics in rec-

ommender systems evaluation,” in Proceedings of the 43rd International ACM

SIGIR Conference on Research and Development in Information Retrieval,

pp. 841–850, 2020.

[43] P. Sánchez and A. Bellogı́n, “Measuring anti-relevance: a study on when recom-

mendation algorithms produce bad suggestions,” in Proceedings of the 12th ACM

Conference on Recommender Systems, pp. 367–371, 2018.

[44] D. Kotkov, S. Wang, and J. Veijalainen, “A survey of serendipity in recommender

systems,” Knowledge-Based Systems, vol. 111, pp. 180–192, 2016.
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초록

머신러닝의 발전과 함께 이를 활용한 다양한 음악 추천 시스템이 도입되고 있

다. 그러나 음악 추천 시스템에 대한 사용자의 만족도를 높이기 위해서는 단순히

복잡하고성능이좋은모델을적용하는것이아닌,사용자의음악취향에대한이해

가반영된음악추천시스템을설계해야한다.비선호도를활용한음악추천시스템

역시여러연구에서제안되었는데,비선호도를반영함으로써성능이향상됨을보였

지만비선호도를반영하는것이구체적으로어떻게더나은추천으로이어졌는지에

대한설명은부족했다.

본연구를통해우리는선호도와비선호도를다르게적용하여훈련된대조학습

모델(Contrastive Learning Exploiting Preference, CLEP)을비교분석함으로써사용

자의음악취향에서비선호도가어떤역할을가지는지에대해알아보고자한다.본

연구에서 소개하는 모델은 반영하고자 하는 선호도에 따라 다르게 학습되는 세 가

지 모델을 선호도와 비선호도를 모두 반영한 모델(CLEP-PN), 선호도만을 반영한

모델(CLEP-P),비선호도만을반영한모델(CLEP-N)로나뉜다.

본연구에서제안한각모델의훈련및평가를위해서설문조사를통해개인선호

도가 포함된 소량의 데이터셋을 구축하였다. 구축한 데이터셋에 대해 각 모델들의

평가 결과를 비교하여 음악 취향에서의 비선호도의 특징과 음악 추천 시스템에서

비선호도를활용할수있는가능성에대해추가로조명한다.또한,음악데이터로부
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터특징을추출하는과정에서사전학습된서로다른세가지모델을이용하였으며,

특징 추출기와 무관하게 일관된 경향성의 결과를 보여 제안 방법의 안정성을 입증

하였다.

주요어:콘텐츠기반음악추천,비선호도,대조학습

학번: 2021-24997
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