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Abstract

This thesis proposes methods for performing autonomous navigation with

a topological map and a vision sensor in a parking lot. These methods are nec-

essary to complete fully autonomous driving and can be conveniently used by

humans. To implement them, a method of generating a path and tracking it

with localization data is commonly studied. However, in such environments, the

localization data is inaccurate because the distance between roads is narrow,

and obstacles are distributed complexly, which increases the possibility of colli-

sions between the vehicle and obstacles. Therefore, instead of tracking the path

with the localization data, a method is proposed in which the vehicle drives

toward a drivable area obtained by vision having a low-cost.

In the parking lot, there are complicated various static/dynamic obstacles

and no lanes, so it is necessary to obtain an occupancy grid map by segmenting

the drivable/non-drivable areas. To navigating intersections, one branch road

according to a global plan is configured as the drivable area. The branch road

is detected in a shape of a rotated bounding box and is obtained through a

multi-task network that simultaneously recognizes the drivable area. For driv-

ing, imitation learning is used, which can handle various and complex environ-

ments without parameter tuning and is more robust to handling an inaccurate

perception result than model-based motion-planning algorithms. In addition,

unlike existing imitation learning methods that obtain control commands from

an image, a new imitation learning method is proposed that learns a look-ahead

point that a vehicle will reach on an occupancy grid map. By using this point,

the data aggregation (DAgger) algorithm that improves the performance of im-

itation learning can be applied to autonomous navigating without a separate

joystick, and the expert can select the optimal action well even in the human-in-
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loop DAgger training process. Additionally, DAgger variant algorithms improve

DAgger’s performance by sampling data for unsafe or near-collision situations.

However, if the data ratio for these situations in the entire training dataset is

small, additional DAgger iteration and human effort are required. To deal with

this problem, a new DAgger training method using a weighted loss function

(WeightDAgger) is proposed, which can more accurately imitate the expert ac-

tion in the aforementioned situations with fewer DAgger iterations. To extend

DAgger to dynamic situations, an adversarial agent policy competing with the

agent is proposed, and a training framework to apply this policy to DAgger is

suggested. The agent can be trained for a variety of situations not trained in

previous DAgger training steps, as well as progressively trained from easy to

difficult situations.

Through vehicle navigation experiments in real indoor and outdoor parking

lots, limitations of the model-based motion-planning algorithms and the effec-

tiveness of the proposed method to deal with them are analyzed. Besides, it

is shown that the proposed WeightDAgger requires less DAgger performance

and human effort than the existing DAgger algorithms, and the vehicle can

safely avoid dynamic obstacles with the DAgger training framework using the

adversarial agent policy. Additionally, the appendix introduces a vision-based

autonomous parking system and a method to quickly generate the parking path,

completing the vision-based autonomous valet parking system that performs

driving as well as parking.

keywords: Vision-based Navigation, Look-ahead Point, Multi-task Perception

Network, Imitation Learning, Data Aggregation Algorithm, WeightDAgger,

Adversarial Agent Policy

student number: 2016-26039
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Chapter 1

INTRODUCTION

1.1 Autonomous Driving System and Environments

Figure 1.1: Levels of autonomous driving (NHTSA)

National Highway Traffic Safety Administration (NHTSA) has classified au-

tonomous vehicle technologies into six levels (see Figure 1.1) [1]. ‘Level 0, 1, and

3’ driving technologies are being applied to vehicles in structured environments

such as highways or urban environments [2]. The lowest level, ‘Level 0’, is the

1



level without automation. An audio-visual alarm serves as an emergency noti-

fication and an auxiliary function for human driving. ‘Level 1’ assists driving

concerning speed or steering on a road with lanes. A human controls the vehicle

and is responsible for detecting variables in driving and for accidents. There is

Adaptive Cruise Control (ACC), which maintains the vehicle speed and dis-

tance between vehicles, and Lane Keeping Assist System (LKAS), which keeps

the lane while driving.

Partial automation is possible in ‘Level 2’. The steering, acceleration, and

deceleration of the vehicle within a specific condition are controlled by the ve-

hicle or human. The driver always needs to monitor the driving situation and

must intervene immediately in a situation that the system is not aware of. Rep-

resentative technologies at this stage include highway driving assist (HDA) of

Hyundai and Autopilot of Tesla. In ‘Level 3’, the system performs driving con-

trol and situation detection, and conditional automation is possible. In most

urban areas that are not complex and on highways except toll gates, the sys-

tem takes charge of driving, and the driver only intervenes in case of danger. A

representative technology is a full self-driving beta (FSD) in Tesla. It can au-

tomatically change the lane, join the inter or junction changes, and cope with

lane changes or intervening vehicles.

High automation is possible in ‘Level 4’, and autonomous driving is possible

on most roads. Technologies in semi-structured environments such as alleyways

and parking lots are necessary to complete fully autonomous driving. A parking

assistance system has been commercialized, and research on valet parking tech-

nology including parking lot driving is required. In ‘Level 5’, technologies up to

‘Level 4’ are integrated, and fully autonomous driving that does not require a

driver is performed. The system takes care of driving in all conditions. At this

level, vehicles without steering and acceleration/brake will be adapted.

2



Table 1.1: Autonomous Driving Environments
Changes in Width
and Curvature of

Drivable Area
Lane

Topolo-
gical Map

Representation

Road
Condition Etc.

Un-structured
Environment Large and Varied X X Un-paved

Dessert,
Indoor Room,
Large Space

Semi-structured
Environment Large and Varied

△
(center
lane X)

O Paved

Parking Lot,
Wide Roundabout

or Uncontrolled
Intersection

Structured
Environment Small and Smooth O O Paved Highway,

City Road

The environments to which autonomous driving technology can be applied

are divided into the un-structured, semi-structured, and structured environ-

ments. Each environment is classified according to several criteria, as shown

in Table 1.1. The un-structured environment is the most difficult environment

to apply autonomous driving, and it is mainly an unpaved road environment

such as a desert or an indoor room. The change in curvature and width of the

drivable area is large, and it is difficult to represent with a topological-map.

Road environments where parking lots or lanes are ambiguous belong to

semi-structured environment. This environment is similar to un-structured en-

vironment, but most of it is a paved road, and it is an environment that can be

represented by a topological-map. Even if a topological-map level global plan

can be executed, the width of the drivable area is wide and there is no center

lane, so the location and direction of static and dynamic obstacles can be varied.

In addition, there are cases where the shape of the drivable area is not divided

into lanes, and even if it is divided, safe navigation is difficult because various

obstacles such as curbs, pedestrian paths, vehicles, and pedestrians exist (see

Figure 1.2). Unlike this, the structured environment is most of the roads that

vehicles drive on, which is possible to cover it with researched and developed

autonomous driving technology.
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1.2 Motivation

Figure 1.2: Complex and narrow parking lot and necessity for valet parking

Autonomous navigating technology for semi-structured environments is at

‘Level 4’ of the aforementioned autonomous driving levels, which is important

for fully autonomous driving. In particular, autonomous navigating in complex

parking lots as shown in Figure 1.2 are hard for humans, which can be con-

venient for them. In the parking lot navigating, a vehicle drives from a point

where passengers get off until it reaches a parking spot. After this step, the

vehicle automatically parks through a similar process to automated parking.

Most studies on the semi-structured environment navigating including park-

ing lot have suggested a system based on high-cost infrastructure and sen-

sors [3–6]. In these methods, the vehicle receives a goal point using a vehicle-to-

infrastructure (V2I) communication system [7–9]. To reach the goal, a global

path consisting of way-points is generated using the high definition (HD) map

constructed by 3D-LiDAR and depth cameras [10–12]. However, the cost of

constructing and managing the infrastructure and the HD map is expensive.

The vehicle tracks the global path by acquiring localization data which is

the position and direction of the vehicle related to the HD map or the global

path. However, this data is inaccurate in the semi-structured environment. A
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(a) (b) (c)

Figure 1.3: Inaccuracy in obtaining localization data with DGPS, 3D LiDAR-
based SLAM, and vision-based SLAM in semi-structured environments.

differential global positioning system (DGPS) or LiDAR-based simultaneous

localization and mapping (SLAM) is used to obtain it. Mostly, the global posi-

tioning system (GPS) is used and has an error of about 1 ∼ 30 m. Differential

GPS (DGPS) uses communication base stations with GPS and has an error

of about 0.1 ∼ 3 m (see Figure 1.3(a)). However, the roads in the parking lot

are narrower and closer to each other than urban roads, and the error becomes

high [5]. Besides, the error is larger in an area close to the building, and these

cannot be used in the indoor parking lot.

The LiDAR and vision based SLAM using the state-of-the-art algorithms

were tested, but these cannot get accurate localization data in the parking lot.

Figure 1.3(b) is a result using the Cartographer algorithm [13] with Velodyne

64E 3D-LiDAR and IMU. A matching error occurred between the previously

acquired global map and the local map acquired obtained while driving, occur-

ring an error of about 0.1 m [6,11]. Figure 1.3(c) shows a result of vision-based

SLAM using the ORB SLAM2 [14] algorithm with ZED stereo camera. There
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was an error on every road, especially at corners (before loop closing), and the

error was more than 0.15 m [8, 15]. These algorithms also require high compu-

tation time and are difficult to ensure in real-time when the map is enlarged.

Due to the localization error, a matching error occurs between the planned

path and the path that is tracked, which increases the possibility of colliding

with obstacles. Therefore, there is a need for a parking lot navigation method

without generating the global path and tracking it with the localization data.

This eliminates the need for HD maps, infrastructure sensors, and localization

data with additional sensors.

1.3 Contributions of Thesis

Figure 1.4: Architecture of proposed autonomous navigating system.

This thesis proposes a method to perform autonomous navigating in an

semi-structured environment using only deep learning and vision sensor in order

to use minimal global information. A proposed navigating method does not use

global information such as the HD map, the global path, and the localization
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(a) (b)

Figure 1.5: Data for vision-based autonomous navigating in semi-structured
environment: (a) and (b) for navigating

data. As shown in Figure 1.5(a) and 1.5(b), only following data are used: the

topological map consisting of intersections and roads, navigation information

at intersections (straight/left turn/right turn), and vision.

To navigate at an intersection with a driving policy that does not consider

intersections, a multi-task network is proposed. It recognizes not only the driv-

able area but also the branch road existing at the intersection in the form of a

rotated bounding box. According to the navigation information at the intersec-

tion, one branch road is selected and combined with the drivable area to obtain

the occupancy grid map consisting of one branch road.

Imitation learning is used to obtain a driving policy for avoiding obsta-

cles and driving toward the drivable area obtained by the vision in the semi-

structured environment. The proposed imitation learning method uses the look-

ahead point, so the data aggregation (DAgger) algorithm, which improves the

performance of imitation learning, can be applied to autonomous driving. Be-

sides, even when the vehicle is controlled by the trained policy action in DAgger

training (even in human-in-loop design), the expert can select the optimal ac-

tion well. Real-world experiments show limitations of the model-based motion-

planning algorithms and the effectiveness of the proposed method that is robust
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to sensor noise and does not need to tune model parameters to handle various

and complex environments.

A new DAgger training algorithm, DAgger with the weighted loss function

(WeightDAgger), is proposed to more accurately imitate the look-ahead point

in unsafe or near-collision situations than not using this function, requiring

fewer DAgger iterations. The weight value is calculated through the discrepancy

between policy and expert actions during DAgger execution. This is additionally

paired to the entire training dataset with a high state similarity. Based on the

weighted value, the policy is trained with a high learning rate for unsafe or

near-collision situations among the entire training dataset.

In order to extend WeightDAgger on dynamic obstacle avoidance situations,

a novel DAgger training framework is proposed, which adopts an adversarial

policy having a competitive relationship with the agent policy. The proposed

adversarial policy generates various data by training, which considers the per-

formance of the agent policy that is gradually improved through DAgger. The

performance of the agent and adversarial policies are updated together, and

finally an agent policy with high performance is obtained.

1.4 Overview of Thesis

The remainder of this thesis is as follows. Chapter 2 shows the multi-task net-

work for vision-based navigation. Chapter 3 explains the DAgger algorithm with

the look-ahead point. The proposed DAgger training algorithm WeightDAgger

is described in Chapter 4. For avoiding dynamic obstacles, Chapter 5 introduces

the DAgger training framework using adversarial policy. The thesis is concluded

in Chapter 6. Finally, Appendix A mentions a vision-based autonomous parking

system.
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Chapter 2

MULTI-TASK PERCEPTION NETWORK FOR

VISION-BASED NAVIGATION

2.1 Introduction

This chapter introduces a detection method to apply the existing motion-

planning methods to the navigation of semi-structured environments including

intersections using only vision sensor. Localization data is primarily used for

autonomous vehicles navigating at intersections by tracking the global path.

However, this data is inaccurate in an semi-structured environment due to

narrow roads and complex obstacles. Hence, instead of tracking the path, a

method for detecting and driving using vision has been studied. To navigate

at intersections, it is necessary to distinguish exiting roads at those intersec-

tions. Model-based detection methods recognize patterns of the branch roads;

but are sensitive to sensor noise and have difficulty finding appropriate model

parameters for various complex situations.

To address the limitations, his chapter proposes a vision-based branch road
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detection method using deep learning that can learn various shapes of branch

roads in semi-structured environments [16]. Branch roads consist of straight,

left turn, and right turn roads, which are detected and are represented as a

shape of rotated bounding boxes. Compared to using the un-rotated bounding

box, the rotated version can detect the branch road more accurately even when

the vehicle is turning at an intersection. At the intersection, one branch road

is selected according to a global plan, and the inside of the selected road is

regarded as the drivable area of an occupancy grid map. Furthermore, for safe

navigating, obstacles inside the selected road are considered in this map by

using the segmented drivable area image. This occupancy grid map is used as an

input to existing motion-planning algorithms to enable intersection navigation.

In addition, drivable area segmentation and branch road detection consist of a

single multi-task deep neural network, which improves the learning performance

of each task and reduces overall network memory usage. Experiments in real

environments show that the proposed method detected the branch roads more

accurately than the model-based detection method, and the vehicle drove safely

at the intersection.

The rest of this chapter is organized as follows. Sec. 2.1.1 introduces motion-

planning algorithms. Sec. 2.2 explains the proposed branch road detection and

the multi-task network for intersection navigation. The experimental setup and

results are presented in Sec. 2.3. Finally, this chapter is concluded in Sec. 2.4.

2.1.1 Related Works

The conventional autonomous navigation studies [17–19] use a global path with

localization data. The global path consists of multiple waypoints that the ve-

hicle can pass through intersections. The localization data is obtained through

the global positioning system or by the simultaneous localization and mapping
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technique. However, in an semi-structured environment with narrow roads or

complex obstacles, the localization data can be inaccurate, which increases the

possibility of collision with obstacles [20–22].

Studies have been conducted to navigate using local sensor information,

referencing inaccurate localization data rather than tracking the global path

[23]. There is a study [18,19] that recognizes obstacles with the 3D laser scanner

and generates an avoidance path that can follow the global path including the

intersection. In [19], a local path is found on a road segmented through 3D-

LiDAR by considering the global path and inaccurate localization data. These

studies reduce the possibility of collisions compared to using global paths alone.

However, when a large localization error occurs more than about 1 m, the global

path cannot be properly reflected to find the local path, and the vehicle may

not reach a destination. In addition, real-time path generation is difficult in

situations with complex obstacles.

To address the problems of the model-based motion-planning methods, there

are studies using deep learning [24–28]. Control commands are obtained through

the deep neural network which receives the camera image and the navigation

information. The deep neural networks and training data are separately config-

ured and trained, according to the navigation information (straight, left, and

right). The driving policy can be trained on data collected in various complex

environments that are difficult to handle with the model-based navigation meth-

ods. Besides, the parameters in the driving policy do not need to be manually

adjusted for various situations. However, these methods require much human

effort and training time because the multiple training data and networks ac-

cording to the navigation information are separately collected and trained.

Navigating methods by detecting road and obstacles with local sensor data,

especially vision, have been studied rather than tracking the global path with
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inaccurate localization data [29–32]. For motion-planning at the intersection, it

is necessary to recognize the intersection and detect the branch road existing

at the intersection. Model and learning-based methods have been studied for

branch road detection.

The model-based detection methods recognize and distinguish the branch

road according to a pattern of its shape, size, and direction. In [29–31], a road

is segmented and contours of the road are recognized. The branch roads are

distinguished according to the difference in position and direction between the

vehicle and the road boundary, and entry points are recognized at the widest

area of the branch road. Yang Yi et al [32] proposed a method of converting the

road distance from the vehicle into a histogram using the road segmentation

image. Then, the branch road is classified according to the histogram distribu-

tion. However, model-based detection methods do not accurately detect branch

roads, especially in environments with changes in the width or curvature of

the branch road, or in the presence of obstacles [33]. These methods are also

sensitive to sensor noise in non-accurately distinguished road boundaries.

Deep learning-based methods have been studied to address challenges in

the model-based method. In [34], vehicle kinematic information, point cloud

acquired by 3D-LiDAR, and open street map (OSM) are used to find branch

roads at an intersection using machine learning. However, this method [34] uses

global data, OSM, and a high-cost 3D-LiDAR sensor. The camera image is

passed through a long-term recurrent convolutional network to recognize vehi-

cles passing through an intersection [35]. However, this method does not distin-

guish branch roads at the intersection. A method in [36] distinguishes branch

roads in a form of region of interest on a front view image to determine whether

a vehicle is driving at an intersection. However, this method is applied only in

a structured environment where the width and curvature of the branch road
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are constant, not in semi-structured environments. Further, detected branch

roads are not applied to the intersection navigating method, and a separate

intersection navigating algorithm is used.

2.2 Proposed Method

Figure 2.1: System architecture of vision-based drivable area segmentation and
branch road detection for navigation, including intersections.

This chapter proposes a method to detect branch roads existing at an in-

tersection in semi-structured environments using deep learning. In addition, a

method to obtain inputs for the use of existing motion-planning algorithms at

intersections is proposed by combining the data from detected branch road,

global planning, and drivable area segmentation. The overall system architec-

ture of the proposed method is shown in Figure 2.1. The method uses vision,

road distance information, vehicle velocity, and navigation information. It does

not use the global path and localization data. The navigation information gives

the command to vehicles going straight, turning left, or turning right when a

vehicle is passing through the intersection. This information is obtained through

global planning using a topological map consisting of intersections and roads,
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before starting the navigation [37].

A multi-task network is proposed to perform two tasks: segmenting the

drivable area and detecting the branch roads as rotated bounding boxes. The

drivable area segmentation image is used to obtain an occupancy grid map

(OGM). Through the detected boxes, it is determined whether a vehicle is

navigating at the intersection, and after which one branch road is selected

using the navigation information. A road occupancy grid map (OGMroad) is

obtained that considers the inside of the selected road as the drivable area.

By merging OGM and OGMroad, a merged occupancy grid map (OGMmer) is

acquired so that the vehicle can drive toward the selected road at an intersection

while avoiding obstacles. Thus, OGMmer can be used as an input to existing

motion-planning algorithms.

2.2.1 Bird’s-Eye-View Image Transform

Figure 2.2: Process of transforming front to bird’s eye view image.

A camera sensor consists of two lenses and is used to detect drivable/non-

drivable areas as well as branch roads at an intersection. The front view camera

image is transformed to the bird’s eye view image which is depicted in Fig-

ure 2.2. The world coordinates ([A, B, C, D], as seen in Figure 2.2(d)) can

be calculated to obtain an 11 m × 11 m occupancy grid map by considering

the vehicle position. The world-to-pixel coordinate relationship is obtained us-
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ing the extrinsic parameters, polynomial coefficients, and the camera position

and orientation from the vehicle. Through the relationship, a trapezoidal shape

ROI, which is the coordinate of the pixel corresponding to the obtained world

coordinate ([a, b, c, d], the green area shown in Figure 2.2(a)), is calculated. As

shown in Figure 2.2(b), the front view camera image vertices ([a, b, c, d]) and

vertices of the bird’s eye view ([A, B, C, D], as seen in Figure 2.2(c)) are passed

through a getPerspectiveTransform function which aids in the acquisition of a

perspective transform matrix. The bird’s eye view image is obtained by using a

warpPerspective function with the obtained matrix. These functions are in the

OpenCV library. The size of this image is 200 × 200 pixels, and its real world

size is 11 × 11 m.

2.2.2 Multi-Task Perception Network

Figure 2.3: Multi-task perception network for intersection navigation.

The perception network receives the transformed image of the bird’s eye

view. As shown in Figure 2.3, the perception network shares one encoder, which

is used in YOLOP [38], DLT-Net [39], and Multinet [40]. Then, the output of the

encoder is passed on to two decoders. Each decoder performs the drivable area
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segmentation and rotated road bounding box detection tasks, which receives

the same abstracted features for the drivable area from the one encoder. There-

fore, the network size, computation time, and GPU usage can be reduced. It

also decreases the possibility of overfitting by learning more generalized shared

expressions to simultaneously fit multiple tasks.

The structure of the encoder and the segmentation decoder is the same as

the Multinet [40]; however, the detection decoder is different. The encoder is

based on the VGG16 network [41] which is widely used for training 2D data

and shows high accuracy while ensuring real-time computation due to its simple

structure. Each decoder and its output are described in detail below subsections.

The sizes of the encoder layers are set according to the 200 × 200 input. This is

shown on the left side of Figure 2.3. The encoders’ weights are initialized using

pre-trained weights from the ImageNet data [42]. Each decoder and its output

are described in detail below subsections.

2.2.2.1 Drivable Area Segmentation (Occupancy Grid Map (OGM))

Figure 2.4: Process of drivable area segmentation to obtain occupancy grid map.

The structure of the segmentation decoder is shown in the upper left side of

Figure 2.3. Features abstracted by the encoder have a low resolution 7 × 7 with

a 1 × 1 convolution layer. These features are passed through a convolution layer
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and up sampled by three transposed convolution layers [42,43]. The size of the

segmentation decoder layers is related to the encoder and is the network size

for outputting 200 × 200. In addition, each convolution layer of the encoder is

combined with the decoder’s layers with skip connections [44] to extract high-

resolution features from the lower layers (see Figure 2.3). The convolution layers

are initialized using the scheme in [40] which performs bilinear upsampling to

segment two classes: drivable/non-drivable.

The output of the segmentation decoder is a probability of the drivable at

each pixel in the input image, which is shown in Figure 2.3(b). The closer the

pixel is to black, the more likely it is drivable. The Otsu algorithm [45] is used to

calculate the threshold value (Figure 2.3(c)). This algorithm divides the pixels

into two classes by randomly setting a boundary value, and repeatedly obtains

the intensity distribution of the two classes. Then, it selects the boundary value

that makes the distribution of the values of the two classes most uniform. In

other words, an optimal threshold value at which the ratio difference between

binary-classified pixels can be smallest is obtained. The size of the segmented

image is 200 × 200, and it is converted to the occupancy grid map (OGM).

This map is a 2D map that divides the image into 25 × 25 grids as shown in Fig-

ure 2.3(d). The grid is considered occupied even with only a single non-drivable

pixel in the grid cell. That is, only drivable pixels exist in the unoccupied grid.

The data labeling criteria for training the drivable area segmentation image

are in the image as follows: roads, road marks, a stop line, and crosswalk are

labeled as the drivable area. The other area except the drivable area is desig-

nated as the non-drivable area. Sidewalks, parking spaces (including parking

line), road boundary lines, pedestrian walkways, and vehicles are regarded as

the non-drivable area.

Driving policies using the occupancy grid map have two advantages. First,
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the segmented image can ignore irrelevant information for driving, such as dif-

ferences in the types of obstacles and sidewalks in the drivable area. Therefore,

driving policies can achieve similar performance in untrained environments,

which can enhance the generality of driving performance. Second, close and far

distance information can be distinguished because the occupancy grid map is

a 2D map (i.e., bird’s-eye-view). Thus, the vehicle can avoid nearby obstacles

preferentially or consider distant obstacles in advance.

2.2.2.2 Rotated Road Bounding Box Detection

(a)

(b)

(c)

Figure 2.5: Rotated road bounding box detection results.
(a) Non-intersection case, (b) Intersection case with rotated bounding box, and
(c) Un-rotated bounding box

The rotated bounding box is used to detect and distinguish the branch

roads. In general, the bounding box is recognized as an unrotated form in the
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image frame. In this thesis, the rotated bounding box is used because, when

a vehicle is located at an intersection, the direction of the road is differs from

that of the vehicle. In this case, if the unrotated bounding box is used, it is not

possible to cover all the drivable area without including obstacles inside the box

(see Figure 2.5(c)). Moreover, an area that is not an actual branch road can be

mistaken as a branch road (see the third (center box), fourth (right box), fifth

(center box) images in Figure 2.5(c)). The rotated bounding box can detect one

branch road as one box and cover the drivable area as much as possible (see

Figure 2.5(b)), and the detection network can accurately find the box with a

feature of the branch road.

A structure of the detection decoder is illustrated at the bottom right side

of Figure 2.3 and is like the YOLO network [46]. The abstracted features, and

the output of the encoder, pass a 1 × 1 convolutional layer with 50 filters.

These passed features are divided into 7 × 7 grids g, and a 7 × 7 × 50 shape

tensor is obtained. Then, this tensor is passed through another tensor with 7 ×

7 × 5 shape to obtain a box’s detail information, where 5 in 7 × 7 × 5 means

the number of the channels of the rotated bounding box, b; the first to fourth

channels represent the road bounding box coordinates. The x and y coordinates

of the box’s center, the width and height ratio of the box to the image. The

fifth channel is a rotated angle value of the rotated box.

Each grid g is assigned a bounding box b. The origin of the grid and box

coordinates is the upper right corner, and the box labels are parametrized based

on a grid’s position.

gx = xb − xg

wg
, gy = yb − yg

hg
, gw = wb

wg
, gh = hb

hg
, (2.1)

where xg, yg and xb, yb are the center coordinates of g and b; w and h denote

width and height, and wg and hg are the grid size; These units are pixels. The
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loss value in each grid is calculated by the following equation.

L(g, ĝ) = gp(|gx − ĝx|+ |gy − ĝy|+ |gw − ĝw|+ |gh − ĝh|+ |ga − ĝa|), (2.2)

where gp indicates whether a box exists in the grid, and if it exists, it is 1,

otherwise 0. That is, a valid loss is reflected only when the box exists on the

grid.; g is the ground-truth of the grid and ĝ its prediction value; ga is the angle

of the rotated box in radians. The loss per image is the average over the losses

of all grids.

Figure 2.6: Non-maximum suppression algorithm.
Blue box: raw output of detection decoder (not grouped); Yellow box: finally
detected (grouped) box through the blue boxes.

Through the 7 × 7 × 50 shape tensor, 50 boxes are predicted, and boxes for

the case where a confident value of the box is less than a threshold is filtered out

(blue boxes in Figure 2.6). Here, the confidence value is calculated as the largest

confidence value of the width and height channels. Through the non-maximum

suppression algorithm [47], a box with the highest confident is selected among

other sets of boxes where the overlapping area between boxes exceeds 50 %

(yellow boxes in Figure 2.6).

The data labeling criteria for training the rotated road bounding box are

as follows. 1) The drivable area between the front of the vehicle’s bonnet and

the front end of the image is labeled as a rectangle. In this case, the width of

the rectangle should not exceed the vehicle’s width. 2) Additional labeling is

needed if there are unlabeled drivable areas on the side of the image. 3) The
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maximum number of boxes is three. 4) The size of the box should exceed 7 m2.

5) Overlapping between two different boxes is possible but should be labeled to

avoid overlapping area exceeding 5 m2. 6) When labeling the rotated bounding

box, one or two corners of the box can be outside the image to label it as large

as possible.

2.2.3 Intersection Decision

(a)

(b)

Figure 2.7: Intersection decision process.
(a) Two or more road boxes are detected in a non-intersection road: False pos-
itive case. (b) Intersection decision using a distance between intersections and
the driving distance additionally.

When two or more boxes are recognized, it is regarded that the vehicle is

driving at an intersection. As shown in Figure 2.7(a) and Figure 2.8(d), multi-

ple boxes can be detected at a non-intersection road, which is a false positive

case. To deal with this, a road distance between the center of intersections

dinteri and an accumulated distance dvehi
are defined. dinteri is defined as an

edge distance (road) between two nodes (intersection) of the topological map,
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which is between the i’th and i+1’th intersections. Here, i is an index accord-

ing to the order of the intersection, and a case of i = 0 indicates the starting

point (not an intersection). The order of visiting the intersection on this map is

determined according to the navigation information. dvehi
is the accumulated

distance moved by a vehicle from the i’th intersection, and is calculated using

the vehicle’s velocity.

If two or more boxes are recognized, and a difference between dinteri and

dvehi
is lower than dth, it is determined that the vehicle is driving at an inter-

section:

Intersection F lag =


True |dinteri − dvehi

| ≤ dth & ‘Number of box ≥ 2’

False |dinteri − dvehi
| ≤ dth & ‘Number of box < 2’

False |dinteri − dvehi
| > dth.

(2.3)

Thus, if the vehicle is located at a distance of dth between the intersection

i’th and i+1’th as shown by the black arrow in Figure 2.7(b), it is regarded

as not passing the intersection, even if more than two boxes are recognized. i

is increased when Intersection Flag in (2.3) changes from True to False and

|dinteri − dvehi
| is larger than dth together.

2.2.3.1 Road Occupancy Grid Map (OGMroad)

When it is determined that the vehicle is passing the intersection, one box

is selected according to the navigation information, such as Going Straight,

Turning Left, and Turning Right. This information is obtained through a global

plan to visit all the roads in the topological map [37]. This process is shown in

Figure 2.1, and Figure 2.8. The criteria for selecting one box are as follows.
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• Going Straight: the box closest to the middle of the image.

• Turning Left: the leftmost box in the image.

• Turning Right: the rightmost box in the image.

Through the selected box, a road occupancy grid map (OGMroad) is obtained,

as shown in Figure 2.8. An inside region of the selected box is regarded as the

drivable area, whereas its outside is considered as the non-drivable area. The

image segmented according to the selected box is converted into OGM . If only

one box is recognized, it is determined that the vehicle is not driving at the

intersection, so all area of OGMroad is regarded as drivable area. This is shown

in Figures 2.8(c) and 2.8(d).

2.2.4 Merged Occupancy Grid Map (OGMmer)

(a) (b) (c) (d)

Figure 2.8: Processes of obtaining merged occupancy grid map (OGMmer).

To navigate intersections, using existing motion-planning algorithms that

do not take the intersection navigation into account, a merged occupancy grid
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map (OGMmer) can be used as an input for these algorithms (see Figure 2.8).

At intersections, several branch roads exist in the drivable area in OGM , and

these algorithms cannot calculate the action of which branch drivable area to

head to. To address this problem, the drivable area of OGMroad consists of

the drivable area of OGMmer. In addition, to consider obstacles existing inside

OGMroad, only the common drivable between OGMroad and OGM is drivable

in OGMmer.

Drivable Area of OGMmer = Drivable Area of (OGMroad ∩ OGM). (2.4)

The drivable area on each map is defined as the “true” value (the black area

(grid) in Figure 2.8), and the non-drivable area as the “false” value (the white

area (grid) in Figure 2.8)., Each grid in OGMmer is calculated by the ampersand

operator (&) between OGM and OGMroad, and becomes a true value only

when the grids of both maps are the “true” value. Thus, at an intersection,

in OGMmer, only one branch road among several branch roads is the drivable

area as if it were not the intersection. At non-intersection roads, OGMmer

Figure 2.9: Driving Policy Network.
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equivalent to OGM , since all grids of OGMroad is regarded as the drivable

area (see Figures 2.8(c) and 2.8(d)). Therefore, by using OGMmer, the motion-

planning algorithm can calculate the vehicle’s action as it heads to the drivable

area of one branch road while avoiding obstacles.

In Chapter 3, a method of driving a vehicle toward the drivable area using

imitation learning is proposed. The driving policy is trained to imitate an ex-

pert’s driving towards the drivable area while avoiding obstacles in real-time in

a non-intersection environment (see the upper side of Figure 2.9). As shown in

the lower side of Figure 2.9, by using OGMmer, the driving policy can acquire a

look-ahead point at which the vehicle heads to the drivable area corresponding

to only one branch road.

2.3 Experiment

2.3.1 Experimental Setup

2.3.1.1 Autonomous Vehicle

Figure 2.10: Autonomous vehicle.

As shown in Figure 2.10, the vehicle used in the experiments was a Hyundai

HG 240. The operating system of the laptop computer was Ubuntu 16.04, and
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the robot operating system (ROS) was used as a meta-OS platform. The GPU

was Nvidia GTX 1080-ti (8 GB), and the CPU was 3.9 GHz Intel i9-8950HK.

The steering wheel, accelerator, and brake were controlled by a micro controller

unit using a proportional-integral-derivative (PID) controller.

Pure pursuit algorithm [48] was used to calculate the steering angle com-

mand (δ) to reach the look-ahead point: δ = tan−1
(2L sin θl

Lf

)
, where L is the

wheelbase, and Lf is the distance between the positions of the vehicle and look-

ahead point. θl is the look-ahead heading, which is the difference between the

heading of the vehicle and the heading of the vector from the vehicle to the

look-ahead point. The range of δ was -540◦ to 540◦.

The velocity command v used to reach the look-ahead point was propor-

tional to ay which is the longitudinal distance between this point and the vehi-

cle. Thus, v = ay

2.24, where the final v was set to half of ay for safety reasons.

The range of v was 0.5 ∼ 2.2 (desired velocity) m/s. The accelerator and brake

commands for controlling the velocity were calculated using the PI controller.

A front camera was attached 1.55 m above the ground and 0.25 m away from

the center of the vehicle. Moreover, it was rotated about 20◦ downward for the

ground direction. This is to minimize the shaded area in the conversion of the

image to the bird’s eye view image. This camera consists of two lenses to widely

recognize the environment, and the two images obtained are concatenated. The

field of view of each lens is 120◦ so that the branch roads can be sufficiently

recognized. Distortion of the image is corrected by obtaining the focal length,

principal point, and distortion coefficients.
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2.3.1.2 Multi-task Network Setup

A method for training a multi-task-based perception network followed a classic

fine-tuning pipeline [40]. The weights of each decoder were calculated and in-

dividually updated with the different loss values. To update the weights of the

encoder, two-loss values were added with different weightings (segmentation:

25%; detection: 75%).

Lenc = (αLseg + (1− α)Lbox)/2, (2.5)

where Lenc is multi-task loss function of the encoder; Lseg and Lbox are losses

for the drivable area segmentation and the rotated bounding box detection; α is

a ratio that adjusts the training importance between Lseg and Lbox, and is set

to 0.25. The weights of each decoder were calculated and individually updated

with Lseg and Lbox. Through this process, different data, and training hyper

parameters could be applied to each decoder.

The loss function of the drivable area segmentation (Lseg) decoder was Soft-

Max cross-entropy. It infers the drivable and non-drivable probability values for

each pixel. The average value of all pixels becomes a loss value of segmentation.

The road rotated bounding detection (Lbox) decoder was trained with the L1

(regression) losses for each five-channel value in the grid of 7 × 7 cells. The

five channels are values for the box’s position (x/y), width, height, and angle.

These values are summed with equal weight. If the grid is non-drivable, the

sum of the detection loss becomes zero. Additionally, the confidence values of

the width and height channels are trained with the cross-entropy loss function.

The Adam optimizer with a 10−5 learning rate was used to train the per-

ception network. The weight decay of 5·10−4 was applied to all layers, and a

dropout with 50 % probability was applied to all 1 × 1 convolution layers of
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(a) (b) (c)

Figure 2.11: Parking lot environments for collecting perception data.
(a) and (b) outdoor parking lot, (c) indoor parking lot; the map image was
built by LiDAR-based SLAM [49]. A topological map was built to obtain the
navigation information. Through an algorithm [37], an order of visiting the
intersection was calculated, and the navigation information was obtained by
using the calculated order, which is shown in the red arrows and numbers.

the detection decoder. Epochs were 10k, and the batch size was set to 128.

Training time was about 3 hours when using a laptop. Weights were assigned

before training to initialize the network for efficient training. The encoder was

initialized with weights trained on ImageNet data.

The dataset was collected in three parking lots having 18 intersections (see

Figure 2.11). One bird’s-eye-view image per second was collected while driving,

and 1,069 images were collected. In each task, 80 % of the dataset was used for

training, and the remaining portion of the dataset was used for validation. The

entire image was used to segment the drivable area by using a pixel annotation

tool [50].

To label the rotated bounding box data, Bbox label tool [51] was used.

Among the collected images, half of the non-intersection data were excluded,

and the road bounding box was trained using 772 images. The reason not to use

the entire collected data is to balance the ratio between the non-intersection
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and intersection data by excluding a similar situation from the non-intersection

data. Therefore, the detection accuracy could be higher at the intersection than

when using the entire data.

2.3.1.3 Model-based Branch Road Detection Method

Figure 2.12: Results for intersection scan model (ISM) method.

The intersection scan model (ISM) method [32] is used to compare the

performance of detecting branch roads with the proposed method. The ISM

method recognizes branch roads at the intersection using the segmented image,

without the global information. ISM [32] defines 21 traversable lines from a

scan center point to the end of the image according to a traversable direction

[13◦, 21◦, ..., 165◦, and 173◦]. The traversable directions are divided into the

left turn (6 traversable lines), straight (9 traversable lines), and right turn (6

traversable lines) on the horizontal axis of the histogram.

If there are obstacles on the traversable line, an obstacle distance from the

scan center point to the closest obstacle on the traversable line is calculated

(blue lines in Figure 2.12). The traversable distance ratio of the traversable

line’s length to the obstacle distance is obtained. These ratios according to

the traversable direction are used to obtain an ISM histogram (see the red
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dashed box in Figure 2.12). If more than half of the traversable distance ratio

exceeding the threshold (0.7) exists in the traversable direction section, it can be

determined that the branch road exists. Here, the distance ratio is the vertical

axis of the ISM histogram.

2.3.2 Experimental Results

2.3.2.1 Quantitative Analysis of Multi-Task Network

The performance of the multi-task network was tested with the validation

dataset that was not used to train the network. The performances of the driv-

able area segmentation and rotated road bounding box detection tasks were

measured by different metrics.

The pixel accuracy metric was used to evaluate the performance of the

drivable area segmentation:

Pixel Accuracy = number of correctly classified pixels

number of total pixels
, (2.6)

where the numerator is the number of cases matching the output of the network

and the label in the data, in each pixel. The denominator which was 200 × 200,

is the number of pixels in the bird’s-eye-view image.

Detecting result of the rotated road bounding boxes was used over the union,

the intersection over union (IoU) metric:

IoU = area of overlap

area of union
, (2.7)

where the numerator represents the size of the overlap between the label box

and the prediction box. The denominator represents the region for the union of
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the label box and the prediction box. High IoU indicates that the performance

of the proposed network is high. Table 2.1 shows the performance of the network

for each task in Figure 2.11 parking lots using the validation images.

Table 2.1: Results of the Perception Network
Parking Lots

Figure 2.11(a) Figure 2.11(b) Figure 2.11(c)
Drivable Area Segmentation

(Pixel Accuracy, (2.6)) 95.81 % 94.15 % 93.73 %

Branch Road
Detection (IoU, (2.7))

Rotated Box
(Proposed) 98.58 % 97.31 % 97.10 %

Un-rotated Box 97.73 % 95.17 % 94.79 %

As shown in Figure 2.13, the resulting images of the segmentation task

are indicated as the green area in the bird’s-eye-view image or the black area

in OGM . The detection task result is indicated by the yellow squares. The

inference speed of the perception network was an average of 23.7 fps.

2.3.2.2 Comparison of Branch Road Detection Method

To evaluate the intersection recognition performance, the proposed rotated road

bounding box detection algorithm and ISM [32] algorithm were tested on the

same image. A branch road detection accuracy was defined as follows:

Intersection Accuracy = Nmatch

Ninter
, (2.8)

where Nmatch represents the number of matched cases between a label branch

box for the validation dataset and an output branch box by each algorithm.

Ninter represents the number of images containing the intersection. For example,

if there were turning left and straight boxes in the data, and the output of the

proposed algorithm was the turning left and straight boxes, it is regarded as

the correctly recognized case. In the same situation, if ISM recognizes only the
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straight navigation information, it is not considered as a correctly recognized

case. The results are shown in Table 2.2.

Table 2.2: Intersection Detection Results
Rotated Box

(Proposed) Un-rotated Box ISM Algorithm [32]

Intersection Accuracy (2.8) 97.2% 95.4% 82.7%

(a)

(b)

Figure 2.13: Branch roads detection results at Intersection.
(a) and (b) are results of different ISM performance at different spots at the
same intersection; (a) Success case, (b) Failure case in ISM algorithm [32]

‘#n’ in Figure 2.13(a) and ‘#n′ ’ in Figure 2.13(b) are results in scenes for

slightly different spots at the same intersection. Figure 2.13(a) represents situa-

tions where two algorithms correctly detected the branch roads. Figure 2.13(b)

shows that the proposed algorithm was recognized accurately; however ISM did

not. There were cases in which a specific branch road at an intersection was not

recognized. #1′ and #2′ in Figure 2.13(b) are examples where some drivable
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area was recognized as non-drivable (perception noise), so the traversable dis-

tance ratio in ISM was calculated shorter (indicated as the red lines in #1′ and

#2′ of Figure 2.13(b)) than a real ground-truth traversable distance ratio. Even

if the inside of the rotated bounding box is recognized as not all drivable, the

proposed detection algorithm had high accuracy, because it inferred the overall

shape and distribution of the drivable area inside the box.

Cases #3′ , #4′ , and #5′ of Figure 2.13(b) are cases where the branch road

was not detected in ISM since the area behind the obstacle was recognized

as the non-drivable area due to the shadow of the camera. The traversable

distance ratios of the left (#3′ and #4′) and right (#5′) turn sections were

short, and each branch road was not detected. In #6′ , the straight branch road

was too wide, and the drivable distance ratio of the left turn was recognized

as too long, and was mistaken as the left branch road. Situations #3′ , #4′ ,

#5′ , and #6′ may be addressed by properly tuning the model parameters of

ISM, although it is unclear whether these parameters can be applied to other

situations. However, the proposed learning-based method was able to accurately

find the branch roads without finding the model parameters.

The computation time of the proposed multi-task network was 27.3 fps and

ISM showed 29.5 fps. Although, ISM showed a higher calculation speed, the

difference between the two methods are not much different. These methods are

faster than the driving control period, 20 fps.

The driving results using the output of the proposed multi-task perception

network for motion-planning algorithm are shown in Section 3.5.2.5.
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2.4 Conclusion

This chapter proposes a method that detects branch roads at an intersection

using vision and deep learning, which can be used alongside the existing motion-

planning algorithm for navigating in an semi-structured environment. The pro-

posed multi-task network distinguishes the branch roads at an intersection as

the rotated bounding box. At the intersection, the inner area of a box selected

through the navigation information is regarded as the drivable area. Further-

more, this network segments the drivable area so that obstacles existing inside

the box can be recognized.

The proposed method was tested in three parking lot with 18 intersections.

It detected the branch roads more robustly than the model-based method us-

ing the distance and direction histogram of the branch road in the cases where

branch roads varied in size and shape, or the drivable area was detected noisy.

In addition, the vehicle successfully navigated the intersection by applying the

proposed perception method to the existing motion-planning algorithms such

as the tentacle, field, imitation learning algorithms without using global in-

formation. In the future, the experiment will be conducted in more diverse

environments.
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Chapter 3

DATA AGGREGATION (DAGGER) ALGORITHM

WITH LOOK-AHEAD POINT FOR AUTONOMOUS

DRIVING IN SEMI-STRUCTURED ENVIRON-

MENT

3.1 Introduction

Autonomous driving technology for semi-structured environments such as park-

ing lots and alleyways is important for fully autonomous driving. Moreover, it

is more difficult than driving in structured environments. In a structured envi-

ronment, autonomous driving involves a global plan using a road network, and

a vehicle keeps within a lane via lateral control and maintains a safe distance

from vehicles in front while following a target speed through longitudinal con-

trol. Furthermore, in an semi-structured environment, the curvature can rapidly

change, such as at right-angled corners, and the drivable area can be narrowed

because of double-parking or illegal parking. Other obstacles include vehicles,

humans, curbs, and bollards, which vary in shape, size, and location. Typically,
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Figure 3.1: Motion-planning algorithms and comparison between them.

such obstacles are unknown in advance. Navigating such a situation is diffi-

cult even in a static environment, and existing motion-planning algorithms are

unable to handle such settings.

A representative approach for driving in an semi-structured environment

is to generate a global map on a global path to reach the destination. The

vehicle tracks the path using localization data (i.e., the position and heading

of the vehicle relative to the path) [52]. While tracking the global path, the

vehicle checks for obstacles in its path. Object detection algorithms detect the

position and shape of obstacles using camera or LiDAR sensors. If obstacles

are detected near the global path, motion-planning is used to search for a local

path or waypoint that can reach the global path without collision. The planned

solution must also satisfy kinematic constraints on the motion of the vehicle.

These motion-planning algorithms developed for robotics have been used in

autonomous vehicles [53]. These can be categorized according to the method

and calculation time. An overview of motion-planning algorithms is shown in

Figure 3.1, which includes optimization, graph search, and incremental tree

search planning methods to find a solution for the local area.

The path planning method using optimization theory, such as model predic-

tive control (MPC) [54] and convex optimization [55], uses a vehicle’s kinematic
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or dynamic model to predict its future trajectory. This method provides an op-

timal solution that satisfies the objective function and constraints. In driving

situations, the objective function can be modeled as avoiding obstacles while

reaching the global path and maintaining the target speed. Constraints can be

the control capabilities and maintaining a safe distance from obstacles.

The graph-search path planning method builds a graph in the local area

and then searches for a path. The Voronoi diagram [56], Visibility graph [57],

and Probabilistic roadmap (PRM) [58] algorithms can be used to build the

graph. These algorithms discretize the configuration space into obstacles and

free space, which are represented in the form of a graph. The graph is used

to search for the minimum path length using the Dijkstra or A* graph search

algorithm. The searched path is interpolated via spline algorithms to satisfy

vehicle constraints and obtain a smooth path.

An incremental search path planning method uses tree exploration algo-

rithms, which iteratively expand a tree into free space at the end of the tree to

reach a goal. Rapidly exploring random trees∗ (RRT∗) algorithm [59] extends

the tree with samples randomly selected in the configuration space. The hybrid-

A∗ [60] and anytime-D∗ [61] algorithms expand the tree in grid units. The path

with the minimum length is searched for to reach the goal pose while satisfy-

ing the non-holonomic constraints of the vehicle. The non-holonomic constraint

refers to a motion that cannot move directly sideways, so a vehicle must drive

forward or backward to rotate.

However, these methods have three problems [62]. First, if the local area

is large or complex, a long computational time is required to generate the

path, and the solution may not be found within a control loop (i.e., not real-

time). Second, selecting a goal pose in the global path to search for the local

path is heuristic. Third, when an algorithm is implemented, accurately recog-
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nizing whether an obstacle is close to the global path and tracking the path

without collision is difficult because of inaccurate localization data. In semi-

structured environments, various types of obstacles are complexly placed in

the drivable area. Thus, obtaining accurate localization data at every point in

semi-structured environments is difficult.

Rather than searching and tracking a path, alternative methods can be used

that allow the vehicle to drive toward the global path while reactively avoiding

obstacles. The candidate path selection and artificial field generation methods

find a solution close to a vehicle that can be calculated in real-time. They select

a candidate path or waypoint and calculate the control commands.

The candidate path selection method generates candidate paths and selects

one path that satisfies multiple objectives. These paths are smooth and are

designed to account for the non-holonomic constraints of the vehicle. To select

one path, the objective function is modeled to reach the global path, avoid

obstacles, and keep the ride comfortable. Three algorithms have been used to

achieve these: the dynamic window approach (DWA) [63], the curvature velocity

method (CVM) [64], and tentacle [65] algorithms. The DWA algorithm designs

a window according to the current state of the vehicle, and candidate paths

are generated within the window. The CVM algorithm is similar to DWA, and

it additionally considers vehicle accelerations. The tentacle algorithm mimics

the antennas of a beetle as candidate paths to drive on narrow and variable-

curvature roads more smoothly than DWA and CVM.

The artificial field generation method uses a repulsive field against obstacles

and an attractive field toward the global path. These fields are combined with

different weights, and a vehicle is guided by the combined field’s vector. There

are three algorithms available that differ in how they model the fields: namely,

the virtual force field (VFF) [66], the artificial potential field (APF) [67], and
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the velocity vector field (VVF) [68] algorithms. The VFF algorithm calculates

the repulsive force as a vector from the obstacle to the vehicle and the attractive

force as a vector from the vehicle to the target point. The APF algorithm creates

a repulsive field with high potential energy for obstacles and an attractive field

with high energy at the vehicle point and low energy at the goal point. The VVF

algorithm considers the desired velocity and velocity of obstacles, in addition

to the fields of the APF algorithm.

However, the candidate path selection and artificial field generation methods

have several limitations that make them difficult to be used in semi-structured

environments. First, the parameters in the objective function or field model

may differ to cope with the various complex situations of such environments. It

is difficult to identify specific parameters that can handle all of these situations.

Second, inaccurate localization data make it difficult in practice to know where

exactly the global path is located in a local area. Third, if the local obstacle

information is difficult to recognize accurately, especially at road boundaries

or shadowed areas (i.e., noisy state), the vehicle may not drive smoothly [69].

Moreover, a vehicle may drive out of the drivable area or toward an obsta-

cle. To address these limitations, this chapter proposes a deep learning-based

method for selecting the look-ahead point to drive toward the drivable area

while avoiding obstacles in real-time without the use of global information such

as the global map and localization data. This is shown in Figure 3.3. Vision data

is segmented into the drivable area and non-drivable area using deep learning,

and this is represented as an occupancy grid map; it does not recognize whether

obstacles exist close to the global path and can ignore irrelevant information for

driving, improving the generality of driving policy in untrained environments.

The proposed method uses imitation learning as the motion-planning al-

gorithm, which is an alternative to general ones. Imitation learning obtains a
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safe driving policy by collecting expert driving data for various complicated

situations that occur in semi-structured environments such as large changes

in the curvature and width of the drivable area. Thus, it is not necessary to

manually model the policy and tune parameters heuristically to handle such

situations. The data include cases where the occupancy grid map is incorrectly

recognized correctly or is noisy because of shadows, ensuring that the driving

policy is robust in these situations. Furthermore, imitation learning obtains the

policy faster than reinforcement learning in real environments because it does

not require trial-and-error and heuristic reward function modeling.

The proposed imitation learning method trains the driving policy to select

the look-ahead point on the occupancy grid map [70]. The look-ahead point is a

target waypoint for a vehicle to reach, which is calculated from the pure pursuit

algorithm [48] that is commonly used in autonomous driving. The velocity is

calculated according to the longitudinal distance between the look-ahead point

and vehicle. There are several advantages to using the look-ahead point. First,

selecting the look-ahead point that can avoid obstacles while driving fast on the

occupancy grid map has a clearer pattern relationship than a front-view image

and steering-velocity relationship which is common in imitation learning. The

driving policy can properly train driving patterns and is safer. Second, the

trained driving policy and expert behavior can be shared, allowing the data

aggregation (DAgger) algorithm [71] to be applied to the autonomous vehicle,

which enhances the imitation learning performance

The rest of this chapter is organized as follows. Sec. 3.2 introduces DAgger

algorithms for autonomous vehicle and background of the DAgger algorithm.

Sec. 3.3 explains the proposed DAgger algorithm with the look-ahead point. The

experimental setup and results are presented in Sec. 3.4 and Sec. 3.5. Finally,

this chapter is concluded in Sec. 3.6.
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3.2 Related Works & Background

This section introduces related works applying the DAgger algorithm of imi-

tation learning to the autonomous driving. In addition, the behavior cloning

algorithm, which is the base of imitation learning, and DAgger is explained.

3.2.1 DAgger Algorithms for Autonomous Driving

Figure 3.2: Behavior cloning and DAgger algorithms for autonomous driving.

Figure 3.2 shows studies applying imitation learning to autonomous driv-

ing, and their state, action, expert model, and experimental configurations. All

studies use the image obtained from the front camera of the vehicle as the

state, and the action is composed of the steering angle, and velocity or acceler-

ation. The study proposed by M Bojarski et al. [72] uses the behavior cloning

algorithm, and experimented in simulation and real environments, but 2 % of

driving resulted in a situation in which human intervention is required in a

simple driving situation.
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Based on the DAgger algorithm, [73] proposes a SafeDAgger algorithm that

collects data when there is a large difference between expert and trained net-

work actions in the training process. A Selective-SafeDAgger algorithm classi-

fies driving situations such as sharp curves, selects data and collects more [74].

These algorithms use rule-based controller as an expert model, and are tested

only in simulations. A study [75] introduces an optimized DAgger performance

method in simulation. In [76], a method for training by efficiently sampling from

DAgger additional data is proposed, and similarly validated in simulations.

A HG-DAgger algorithm [77] proposes a method for humans to perform

DAgger as an expert model, which is applied to a simple real-world experiment.

A study [78] proposes applying the MPC algorithm to DAgger data labeling,

and it is tested in a real environment but not to an actual vehicle. Unlike the

aforementioned studies, the proposed method has the advantage that a human

consists as an expert model. Compared to using rule-based controllers, forward

simulations, and MPCs, consisting the expert model human is easier to apply to

various and complex situations and enables real-time calculations. In addition,

the proposed method can be tested with the real vehicle, and the reason is

explained in detail in Section 3.3.4.

3.2.2 Behavior Cloning

Imitation learning involves mimicking a behavior of an expert in certain states.

While an expert in driving, state action pairs of data are collected. The driving

policy πnet (i.e., deep neural network) is trained with the data through a process

known as behavior cloning, which is a single training step in imitation learning.

behavior cloning is performed to train a function approximator πnet=BC

that can imitate an expert’s behavior. πBC(st; θ) is parameterized by θ, and it
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produces an action value a given state s. The action value a is the behavior

of the expert for state s. The process of training πBC(st; θ) is similar to that

of supervised learning. To train the function approximator πBC(st; θ), the pa-

rameter θ is optimized to minimize the loss function L. The loss function L is

the difference between πBC(st; θ) and the action value a, which is expressed as

LGaut for st. A large number N of state action data pairs D = {(st, aexp,t)}Nt=1

is used to optimize θ.

However, if πnet=BC encounters states that are not similar to dataset D or

are noisy, πBC may produce unsafe or unsafe actions. As shown in Figure 3.5(b),

a noisy state is when the boundary of the drivable area or shadow area is not

accurately recognized. Furthermore, the location and type of obstacles differ

when the dataset for πBC is collected and executed. Here, the vehicle cannot

sufficiently avoid obstacles; this is known as the data mismatch problem, which

occurs when the data for unsafe or near-collision situations are included in D

less. Thus, the policy πnet cannot reflect these situations in πBC well; this is

known as the data imbalance problem. Moreover, when these problems occur

in a driving situation, the error may magnify afterward because πBC has not

learned recovery behavior; that is known as the compounding error problem.

3.2.3 DAgger Algorithm

To address the limitations of behavior cloning, DAgger [71] is used to collect

additional data by executing the trained behavior cloning policy and retraining

πnet. This process is repeated until the best policy is obtained.

Algorithm 1 represents the basic structure of DAgger. First, DAgger initial-

izes the policy πnet,i=1 and dataset D as those obtained from behavior cloning.

The DAgger iteration i and η̂i representing the performance of the trained pol-
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Algorithm 1: Pseudo-code of DAgger Algorithm
*Note The blue font is related to WeightDAgger introduced in Chapter 4.

1 function DAgger(πBC , DBC)
2 Initialize πnet,1 ← πBC

3 Initialize D ← DBC

4 Initialize i ← 1, η̂i ← 0.0
5 while η̂i ≤ η do // Do Until Obtaining Desired Policy
6 Di, η̂i ← Sample unsafe or near-collision data using

Data-Sampling Function(πnet,i)
7 Weight Update(D, Di) using Algorithm 4 // for WeightDAgger

(Chapter 4)
8 Aggregate dataset D ← D

⋃
Di

9 Train policy πnet,i+1 on D using Eq. 3.3
10 i += 1
11 return πnet,i

icy πnet,i are initialized. When the iteration is started (i = 1), the additional

dataset Di is collected by the data-sampling function as described in the next

chapter, which samples the only data for unsafe or near-collision situations (line

6 in Algorithm 1). Following the driving via the data-sampling function, the ad-

ditional dataset Di collected is aggregated to the existing dataset D (line 8).

The aggregated dataset D is used to retrain the policy πnet with (3.3) (line 9).

After training, a policy πnet,i+1 that causes fewer unsafe or near-collision sit-

uations than πnet,i can be obtained. This process is repeated until the desired

policy is obtained.

As more data from these problem situations are aggregated, πnet,i becomes

more capable of dealing with the situations, which is proven in [71]. DAgger

repeats this process until the problem situation rarely happens (Algorithm 1

in line 5). This can be judged by η̂i which is the ratio of executed network

actions among the total executed actions. If η̂i is greater than the threshold η,

the iterations of DAgger are terminated. Finally, a policy πnet,i that does not

cause unsafe or near-collision situations is obtained (line 12).
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Figure 3.3: System architecture of the proposed driving method.

3.3 Proposed Method

3.3.1 DAgger with Look-ahead Point Composition

(State & Action)

The dataset comprises state and action pairs D = {(st, at)}t, where t is an

index of the data. The state st is the occupancy grid map (25 × 25 grid ∈

{0 (black): drivable(unoccupied), 1 (white): non-drivable(occupied)}), which

is used for the input of the driving policy πnet.

The action at is a command of an expert and the output of πnet. In this

thesis, the look-ahead point is used as the action at ∈ {atx , aty}, which is the

target waypoint for a vehicle to reach. Most autonomous driving studies based

on imitation learning use the steering-accel/brake as the action, but the look-

ahead point is more useful in executing the DAgger algorithm. This reason is

explained in detail in Section 3.3.4. The output of the policy for a state is

expressed as follows:

anet,t = πnet(st), (3.1)
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(a) (b)

Figure 3.4: Dataset collection process of imitation learning (behavior cloning).
The yellow look-ahead point is the action aexp,t selected by an expert. The
expert selects aexp,t in the combined image xt. The yellow lines are the future
trajectory that the vehicle will drive towards aexp,t along during a certain time.
The state st is the occupancy grid map. The white area of the grid represents
obstacles, and the black area represents the drivable area.

where anet,t ∈ {ānet,tx , ānet,ty , σ2
anet,tx

, σ2
anet,ty

} are the mean and variance of the

look-ahead point. The variance of the look-ahead point is calculated using the

Gaussian process (GP) to quantify the uncertainty or confidence of πnet [79].

To collect training data, the expert selects the look-ahead point aexp,t ∈

{aexp,tx , aexp,ty}, and the vehicle is controlled in real-time to reach the selected

look-ahead point. The pure pursuit algorithm [48] is used to calculate the steer-

ing angle command. The velocity command is proportional to the distance be-

tween this point and the vehicle. The dataset D = {(st, aexp,t)}t is stored for

every period t as the vehicle is moving, and numerous data can be easily col-

lected. This process is repeated continuously until the driving is completed.

The expert selects the look-ahead point aexp,t using a mouse pointer in the
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(a)

(b)

Figure 3.5: Illustration of the data-sampling function of DAgger.
(a) Whether executing the network’s action (ānet,t) or the expert’s action
(aexp,t). (b) Unsafe or near-collision situations and collecting the additional
dataset. In this example, DAgger is in iteration i = 1, and the network πnet,i=1
has the behavior cloning policy, πBC . The yellow point is the newly labeled
action aexp,t of the expert while πBC is being executed. The red point in the
combined image xt is the mean of the output by πnet,i: the network’s action
ānet,t. The blue circle is the threshold τ of τ̂t which is the difference between
the actions ānet,t and aexp,t. The red lines centered at ānet,t represent the vari-
ance of the output of πnet,i: χ̂t. The blue dashed lines centered at ānet,t represent
the threshold of χ̂t which is the variance of the output of the network πnet,i: χ.

combined image xt instead of the occupancy grid map st (see As Figure 3.4):

aexp,t = πexp(xt), (3.2)

where πexp indicates the behavior of the expert. The combined image xt is an

image of transparently combining the information about the drivable area to

47



the RGB image: xt ∈ {RGB with green: drivable, RGB only: non-drivable},

which is because, if st is inaccurate (i.e., noisy), the expert may wrongly select

the look-ahead point. This situation is shown in Figures 3.4(b) and 3.5(b).

The selection of the look-ahead point in the state (occupancy grid map st)

takes into account the distribution of obstacles and the drivable area. With

this, the following three criteria can be proposed to driving in semi-structured

environments, which the expert can refer to and select the look-ahead point at:

(i) The look-ahead point must be within the drivable area.

(ii) The expert selects the look-ahead point where obstacle avoidance is pos-

sible by referring to future trajectories calculated on the basis of the kine-

matic bicycle model indicated in Figs. 3.4 and 3.5(b).

(iii) The look-ahead point is selected as far as possible while satisfying the

first and second conditions so that the vehicle can move fast.

The look-ahead point can have a geometric relationship with the state through

these criteria, so the action pattern for the state can be more clearly found than

the steering angle and velocity. Based on these criteria, the vehicle can avoid

obstacles and drive toward the drivable area as fast as possible. For example, if

an obstacle exists on the front and left side of a vehicle, the look-ahead point is

selected to be on the right and near the front side of the vehicle in the drivable

area (see Figure 3.4(a)). At this point, a large steering angle and low-velocity

command are calculated, and the vehicle can safely avoid obstacles. Conversely,

if there are no obstacles, the look-ahead point is chosen as far as possible from

the vehicle in the drivable area (see Figure 3.4(b)). At this point, the vehicle

can drive at high speed with a small steering angle difference.
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3.3.2 Loss Function

The collected data can be used to train the policy πnet in a process similar

to that of supervised learning. πnet is expressed as πnet(st; θ) parameterized

by θ for the state st. The process of training πnet(st; θ) is the process of op-

timizing θ to minimize the loss function LGaut for st. This is expressed as

LGaut(πnet(st; θ), aexp,t), and its detailed expression is given in (3.3). A large

number T of dataset D = {(st, aexp,t)}Nt=1 is used to optimize θ:

min
θ

T∑
t=1
LGaut(π(st; θ), aexp,t), (3.3)

where LGaut is the multivariate Gaussian log-likelihood loss function. Through

LGaut , the policy infers the mean and variance of the look-ahead point [79]:

LGaut = 1
n

∑
j

1
2
Ltj

σ2
tj

+ 1
2 log|σ2

tj
|, (3.4)

where n is the dimension of the look-ahead point and j is the index of n, so j

belongs to x and y, and n becomes two. Ltj in LGaut is the non-weighted loss

function used to infer the look-ahead point:

Ltj = (aexp,tj − π̄net,a(st; θ)j)2, (3.5)

where π̄net,a(st; θ)j is the mean of the policy output (look-ahead point) while

training; aexp,tj is label of the look-ahead point. σ2
tj

is the variance of the policy

output:

σ2
tj

= (0.0− π̄net,σ(st; θ)j)2, (3.6)

where π̄net,σ(st; θ)j is the policy output while training; 0.0 is a labeled variance

value that the network is trained to output a low variance. When this process is

performed only once, the trained policy πnet is denoted as πBC . When a vehicle
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drives with πBC in an environment similar to the trained environment, πBC

calculates a look-ahead point similar to that of the expert.

However, if πBC encounters states that are not similar to dataset D or are

noisy, πBC may output unsafe or unsafe actions. As shown in Figure 3.5(b), a

noisy state is when the boundary of the drivable area or shadow area is not

accurately recognized. Furthermore, the location and type of obstacles differ

when the dataset for πBC is collected and executed. Here, the vehicle cannot

sufficiently avoid obstacles; this is known as the data mismatch problem, which

occurs when the data for unsafe or near-collision situations are included in the

training dataset D less often than situations of driving in a relatively large

drivable area or with no misrecognition problems. Thus, the policy πnet can-

not reflect these situations in πBC well; this is known as the data imbalance

problem. Moreover, when these problems occur in a driving situation, the error

may magnify afterward because πBC has not learned recovery behavior; that is

known as the compounding error problem.

3.3.3 Data-sampling Function in DAgger

The data-sampling function is based on EnsembleDAgger [80]. This function

quantifies the similarity and confidence for the output of the trained policy πnet,i

to determine whether the driving situation of πnet,i is unsafe or near-collision.

The outputs of πnet,i and the expert behavior πexp are obtained simultaneously

(lines 5 and 6 in Algorithm 2) and compared before either is used to control

the vehicle (lines 7-9). The discrepancy (error) between the actions of πnet,i and

πexp is calculated (line 7), which is defined by the SafeDAgger algorithm [81].

To quantify the confidence of πnet,i, the variance of πnet,i is obtained: χ̂t (line

8) used in the EnsembleDAgger algorithm [80].
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Algorithm 2: Pseudo-code of Data-sampling Function in DAgger
*Note The blue font is related to the proposed DAgger algorithm, WeightDAgger,
introduced in Chapter 4.

1 function Data-sampling Function(πnet,i)
2 Initialize Di ← ∅
3 Initialize ntot ← 0, nnet ← 0
4 for t = 0 to End of Execution do
5 ānet,t, σ2

anet,t
← πnet,i(st) // Output of trained policy

6 aexp,t ← πexp(xt) // Action of expert
7 τ̂t ← ∥ānet,t− aexp,t∥2 (calculated as (4.3)) // Action discrepancy
8 χ̂tj∈x,y ← σ2

anet,t

9 if τ̂t < τ and χ̂tx < χ and χ̂ty < χ then
10 Control the vehicle with ānet,t

11 nnet += 1
12 else
13 Control the vehicle with aexp,t

14 Di.append({st, aexp,t, τ̂t})
// Collecting τ̂t for WeightDAgger in Chapter 4

15 ntot += 1

16 η̂i ←
nnet

ntot
// Ratio of executed network actions (nnet)

17 return Di, η̂i

By determining whether τ̂t or χ̂t is less than threshold values τ or χ, an

unsafe or near-collision situation can be identified (line 9, see Figure 3.5(a)). In

situations of Figure 3.5(b), τ̂t is greater than τ (blue circle). In the rightmost

case, χ̂t (red lines) is greater than χ (blue lines). In these cases, if the vehicle

follows the action of the network (red circle), the distance between the vehicle

and the obstacle decreases, and the possibility of collision increases. The expert

action (yellow circle) is used to control the vehicle to avoid unsafe situations

(line 13). Moreover, only the state st of this situation and the expert action

aexp,t are collected with the additional dataset Di (line 14). This is used to

intensively train the network to overcome unsafe and near-collision situations.

By using the criteria for τ̂t and χ̂t (line 9), the states with unsafe or near-
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collision situations can be collected as much as possible within a range where

the vehicle does not collide with obstacles. If the expert judges these situa-

tions heuristically without using these criteria, these problem states cannot be

sufficiently collected. This is because experts prefer to avoid these situations im-

mediately, so they are difficult to experience them. In the next iteration i + 1,

these situations can be handled better with a larger dataset containing these

problem situations, in contrast to when the criteria are not used.

3.3.4 Reasons to Use Look-ahead Point As Action

Figure 3.6: Human labeling is effective.

In the process of performing DAgger training, it is effective to label actions

by humans as experts. Other expert models can be used instead of humans, but

each has limitations. Rule-based controller model requires modeling and param-

eter tuning to obtain the action for the state. It calculates actions in real-time,

but it is difficult to find suitable models and parameter values for various and

complex situations. Another method is forward simulation, which predetermines

a set of candidate actions and searches for the one that best satisfies the ob-

jective function. The other method, MPC, computes an action that satisfies an

objective function and constraints. These two methods can deal with various

and complex situations, but they are not suitable for semi-structured environ-
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Figure 3.7: Labeling look-ahead point on the state is more clear than using
steer-acc/brake.

ments because the more complicated the situation, the longer the search and

calculation time. When a human with sufficient experience obtains the action

for the state, it is suitable for a complex semi-structured environment because

human can find the optimal action in real-time even if the situation is complex.

In autonomous driving, it is appropriate to use the look-ahead point to

label the action by human. If the steering-accel/brake is used as the action, the

expert suffers two problems in executing DAgger, and these can be addressed

using the look-ahead point.

First, the network action and expert behavior should be obtained simulta-

neously as shown in lines 4 and 5 of Algorithm 2. When the vehicle is being con-

trolled by a network action, the expert action cannot be obtained simultaneously

if the steering accel/brake is used as the action. In the HG-DAgger [77] data col-

lection process, the joystick (steering wheel and accelerator/brake pedal) must

be additionally mounted on the autonomous vehicle. On the other hand, be-

cause the proposed method uses the look-ahead point as the action, the expert

can select the look-ahead point with only a mouse pointer on the combined

image xt regardless of the network action.

Second, the expert cannot clearly and instantaneously find a steering-accel
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and brake value that the vehicle can drive as safe and fast as possible when

performing DAgger, even if the action is set as the steering-accel/brake and

the expert action can be obtained simultaneously with the network action (see

Figure 3.7). This is because, when the vehicle is controlled by the network

and expert intervention is required, the expert cannot calculate an action value

considering the current network action used for vehicle control. Normally when

humans drive, they do not directly calculate an absolute steering-accel/brake

value, but calculate how much more or less rotate the steering angle and press

the accel/brake pedals from the current value (i.e., amount of change).

In this thesis, the expert selects the look-ahead point that the vehicle should

reach on the combined image xt by referring to the three criteria mentioned in

the previous subsection 3.3.1). These criteria specify where the look-ahead point

is chosen for xt by its geometric relationship. Thus, the expert can clearly find

one look-ahead point that the vehicle can drive as safe and fast as possible with-

out the current steering-accel/brake feedback of the vehicle controlled by the

network. This enables a state action pattern relationship to be clearly identified,

so a neural network can learn the driving pattern more clearly.

3.4 Experimental Setup

3.4.1 Driving Policy Network Training

The deep neural network was used as the driving policy πnet and it comprised

two pairs of convolutional and max-pooling layers with 32 and 64 channels,

respectively. The flattened and fully connected layers with 1,000 nodes were

connected to these layers with 25 % and 50 % dropouts. Finally, the fully

connected layer with four nodes was linked to predict the position of the look-
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(a) (b) (c)

Figure 3.8: Parking lots used in the real autonomous driving experiment.
At intersections, traffic cones are used to guide vehicles to drive in one direction.
The yellow line is the center of the drivable area. The red boxes represent
obstacle vehicles that were present in the fifth experiment. (a) Yellow line is
about 230 m long; this parking lot was used to collect the training dataset for
imitation learning. (b) Yellow line is 139 m long. (c) Yellow line is 149 m long.

ahead point and its confidence. The Adam optimizer with a 10−5 learning rate

was used, whereas pre-training weights were not used. The epochs were set to

10 k, and the batch size was 512.

The training dataset for the real autonomous vehicle was collected for the

one parking lot shown in Figure 3.8(a). The vehicle was driven from the start

point to the finish point and from the finish point to the start point (totaling

460 m). Data were collected at intervals of 0.05 s as the vehicle was being

driven, which was recorded as a video1. The final policy was obtained after 5

DAgger iterations (i = 5) by using a weighted loss function of the weightDAgger

algorithm explained in Chapter 4. Increasing the number of DAgger iterations

can improve performance, but not significantly. Table 3.1 presents the number

of collected data and the percentage of executed network actions.
1https://youtu.be/KOXFTEYL-xs
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Table 3.1: DAgger Results in Actual Autonomous Vehicle

BC i = 1 2 3 4 5
Number of Data [ea] 6425 9683 11946 14034 15539 16270
Training Time [min] 45 73 94 114 129 139
Network/Total (η̂i) - 0.44 0.64 0.65 0.74 0.90

*Note. Equation of η̂i in the third row is represented in line 16 of Algorithm 2.

3.4.2 Model-based Motion-Planning Algorithms

The tentacle [65] and VVF [68] algorithms were used to compare with the

proposed method, which are representative and general algorithms for the can-

didate path selection and artificial field generation methods, respectively. The

occupancy grid map was used as the input for these algorithms. The steer-

ing angle was calculated using each algorithm, and the velocity was set to be

inversely proportional to the calculated steering angle.

Tentacle Algorithm [65]: This algorithm has 16 candidate path sets depend-

ing on the velocity, and each candidate path set has 81 candidate paths. The

cost for each candidate path is calculated using the objective function, and the

candidate path with the smallest value is selected. In the experiment, a set of

candidate paths of 2.2 m/s was used. The application ratio of the clearance,

flatness, trajectory, and forward terms in the objective function was; 1:0:0:0.3.

The flatness term was not used because the occupancy grid map in this thesis

did not have the occupied probability. Moreover, the trajectory term could not

be used because of the absence of global information.

When the forwarding term was set to greater than 0.3, the oscillation prob-

lem was reduced, but the risk of collision was increased for large curvature

changes. The clearance term included a detection range parameter to calculate

the proportion of obstacles around the candidate path. This range was set to
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0.35 m, which is the width of the vehicle (0.2 m) plus the safety distance (0.15

m). When this was increased further, the vehicle could avoid obstacles more

safely, but more oscillation occurred in the narrow drivable area.

VVF Algorithm [68]: Like the artificial potential field algorithm, VVF has a

repulsive field for obstacles and an attractive field for the goal point. Addition-

ally, to follow the desired velocity and direction, the velocity field is reflected

in the APF field. The look-ahead point is searched by descending along the

gradient of the field’s direction from the front of the vehicle to drive along the

combined field. In the experiment, the repulsive, attractive, and velocity fields

were set to a ratio of 1:0:0.5. The attractive field could not be used because

global information (global path, localization data) was not used in this the-

sis. The direction of the velocity field was set so that the vehicle could drive

forward. When the fields were combined, only the repulsive field was applied

around obstacles with a range of 2.3 m. If the range was set greater than 2.3

m, the vehicle could avoid obstacles more safely, but more oscillations occurred

when it passed through a narrow drivable area.

3.5 Experimental Result

This section only describes results for driving, and results for perception are de-

scribed in Chapter 2. The driving experiments were conducted in three parking

lots without intersections, as shown in Figure 3.8. The results regarding inter-

section driving are analyzed in Chapter 2. In the driving policy test, the DAgger

algorithm was compared with the tentacle [65] and VVF [68] algorithms, and

limitations of these algorithms were analyzed for each situation (see video2).
2https://youtu.be/OQls9fDgiaA
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3.5.1 Quantitative Analysis of Driving Policy

3.5.1.1 Collision Rate

The collision rate was used as an evaluation metric to quantify the performance

of each driving policy algorithm. This metric showed the number of collisions

per 100 m as the vehicle was driven in each parking lot: 100 cntcol

lenpath
, where

cntcol represents the number of times a near-collision situation occurred. When

the vehicle headed toward an obstacle and the distance was 0.5 m or less, the

vehicle was stopped, and cntcol was incremented. Then, the driving was resumed

at a point along the reference path closest to the collision point, as indicated

by the yellow line in Figure 3.8. At this point, the vehicle could drive without

a collision. The length of the reference path was lenpath. A lower collision rate

indicated a safer driving policy. When the rate was 0, the vehicle could reach

the finish point without any collision.

Table 3.2: Collision Rate
Figure 3.8(a)
Trained
Environment

Figure 3.8(b)
Untrained
Environment

Figure 3.8(c)
Untrained
Environment

Imitation
Learning

DAgger
(proposed) 0 (0) 0 (0) 0 (0)

Model-based
Motion

Planning

Tentacle 1.12 (0.95) 1.87 (2.01) 1.47 (1.15)

VVF 1.38 (1.29) 2.01 (2.15) 1.07 (0.93)

*Note. The values represent the average collision rate over 5 trials. The parentheses indicate
additional test results where the vehicle drove from the finish to start points.

Table 3.2 presents the test results for the collision rate at the three park-

ing lots over five trials. In the experiment, each algorithm was used to travel

a distance of 5180 m. The vehicle using DAgger did not encounter any colli-

sions. Even in the untrained parking lot with obstacles of different sizes and
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shapes, the vehicle drove without any collisions. This result demonstrates that

the proposed method has generality. The tentacle and VVF algorithms resulted

in averages of 1.428 and 1.471 collisions per 100 m, respectively. Several unsafe

or near-collision (near-collision) situations occurred with the tentacle and VVF

algorithms as described in the next subsections.

3.5.1.2 Safe Distance Range Ratio

Figure 3.9: Results of safe distance range ratio.

The blue area is the safe distance range, and its ratio is a measure of how much
drivable area (green) exist within the blue area.

Moreover, in order to evaluate collision safety with obstacles, a ratio of the

drivable area within 1.0 m range from the end of ego vehicle’s bumper, safe

ratio, was measured: Ndri

Nran
, where Ndri is the number of pixels for the drivable

area among Nran. Nran is the number of pixels around 1.0 m range from the

end of ego vehicle’s bumper, which is indicated in the blue range in Figure 3.9.

Measuring this ratio can measure how safely the vehicle can maintain a safe

distance from obstacles on average. This range and ratio are shown in Figure 3.9

and Table 3.3. DAgger has the highest safe distance range ratio.
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Table 3.3: Safe Distance Range Ratio
Figure 3.8(a)
Trained
Environment

Figure 3.8(b)
Untrained
Environment

Figure 3.8(c)
Untrained
Environment

Imitation
Learning

DAgger
(Proposed) 0.83 0.72 0.91

Model-based
Motion

Planning

Tentacle 0.69 0.63 0.81

VVF 0.71 0.64 0.85

*Note. The values represent the average safe distance range ratio over five trials.

3.5.2 Qualitative Analysis of Driving Policy

3.5.2.1 Limitations of Tentacle Algorithm

Figure 3.10: Problems of the tentacle algorithm.

The vehicle using tentacle did not drive in the middle of the drivable area and
did not avoid obstacles safely. The blue lines in the tentacle image represent
the candidate paths. The red line represents the selected path to track.

In the tentacle algorithm test, the vehicle drove near the boundary between

the drivable and non-drivable areas rather than the center of the drivable area

after avoiding obstacles or escaping the corner, which is shown in the leftmost

image in Figure 3.10. This is because tentacle selects the most forward-facing

candidate path with no obstacle among the candidate paths. Then, the vehicle

drove at the minimum distance from side obstacles, increasing the possibility

of collision. In the same situation, DAgger tried to direct the vehicle toward
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the center of the drivable area. This is because, when the training dataset was

collected, experts kept the distance between the vehicle and obstacles as large

as possible by considering the overall pattern of the occupancy grid map.

The second to fourth images in Figure 3.10 show that, when the vehicle was

driving on the side of the drivable area and there was an obstacle in front, the

vehicle was unable to avoid the obstacle because of the lack of sufficient space

to avoid it. In other situations, even when a vehicle drove along the center of the

drivable area and avoided obstacles, it did not avoid the obstacle with sufficient

clearance, which is because the tentacle algorithm chose the candidate path

with the least spacing to avoid obstacles. In contrast, DAgger tried avoiding

obstacles with sufficient safe distance in advance.

3.5.2.2 Limitations of VVF Algorithm

(a) (b)

Figure 3.11: Problems with the VVF algorithm.

The white arrows represent the field direction. (a) Oscillation in a narrow driv-
able area. (b) The vehicle could not enter the right side of the drivable area in
advance at a right-angled corner.

In the VVF test, an oscillation problem occurred in narrow drivable areas

where the vehicle frequently turned left and right (see Figure 3.11(a)). In such

spaces, the magnitudes of the fields from the two obstacles were almost the same

because only a repulsive field was applied, but the directions were opposite.
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Thus, the position of the look-ahead point changed frequently in the opposite

directions. This problem may be reduced by decreasing the gain and range of the

repulsive force. However, the probability of collision would be increased in other

situations, especially where the curvature changed significantly. Whereas, with

DAgger, the vehicle drove stably without oscillation by imitating the expert

who drove toward the middle of the drivable area even in narrow spaces.

As shown in Figure 3.11(b), with VVF, the vehicle could not enter the driv-

able area when the curvature changed rapidly, such as in right-angled corners.

This problem may be addressed using the goal point obtained by the global

information would be used as an attractive field. In contrast, this problem did

not occur with DAgger because when data was collected for this situation, the

expert selected a look-ahead point where the vehicle could drive the furthest

without collision.

3.5.2.3 Limitations of Both Tentacle and VVF

(a) (b)

Figure 3.12: Problems for driving in narrow drivable area with large curvature
changes: (a) VVF, (b) Tentacle.

Figure 3.12 shows the problems of the VVF and tentacle algorithms when

the curvature and width of the drivable area changed more than the space

where the vehicle was currently driving. The vehicle headed into the drivable
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area on the side of the adjacent obstacle before sufficiently avoiding it. This

is because the tentacle algorithm selected the path with the fewest obstacles

among the candidate paths. The candidate path set according to the desired

velocity (2.2 m/s) was limited in its ability to handle these situations. For the

VVF algorithm, the generated field could not sufficiently consider the nearest

obstacles. To address this problem, the range of the repulsive field should be

increased. Meanwhile, DAgger tried to dodge the nearest obstacle until DAgger

successfully avoided it because it learned the pattern of preferentially avoiding

the nearest obstacles from experts.

3.5.2.4 Driving Results on Noisy Occupancy Grid Map

The occupancy grid map was not recognized accurately in complex and shadowy

environments (i.e., noisy input) because the learning data for such situations

were insufficient to train the perception network. Data with the noisy state were

contained in training data, so the trained network could learn some patterns for

the noise and deal with the noisy state. As can be shown from the experiment

in Figure 3.13, a vehicle could drive without collision, even though there was

noise in one trained environment and two untrained environments. However,

the Tentacle and VVF algorithms encountered several problems.

As shown in Figure 3.13(a), the boundary between the speed bump and the

road was erroneously recognized as a non-drivable area (i.e., noise). DAgger was

not affected by this noise because it trained the driving pattern from the overall

shape of the state. However, the vehicle drove unstably with the Tentacle and

VVF algorithms to avoid the misrecognized non-drivable area.

Figures 3.13(b) and 3.13(c) show situations where the noise was caused

by shadows. With DAgger, the vehicle drove towards the drivable area with
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 3.13: Driving results with DAgger and noisy occupancy grid map.

DAgger did not encounter any problems in this situation. However, the vehicle
could not drive smoothly or headed toward obstacles with Tentacle and VVF.
(a) Noise from misrecognition; (b), (c), and (g) Noise by shadow; (d), (e), and
(f) Noise at the road boundary.

fewer oscillations than tentacle and VVF. This is because a training dataset for

DAgger contained similar situations, where the expert selected action without

being affected by the noise. With the tentacle and VVF algorithms, however,

the vehicle in the Figure 3.13(b) situation avoided the shadows and then drove

toward the largest drivable area blocked by obstacles, making it unable to drive

any further. These algorithms also had more oscillation problems than DAgger

especially in Figure 3.13(c) situation.

Figures 3.13(d), 3.13(e), and 3.13(f) present situations in which a non-
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drivable area was recognized as a drivable area. In detail, not only the non-

drivable area at the curb (i.e., the boundary of the drivable area) but also the

space behind the curb was recognized as the drivable area. Except for the curb,

the vehicle attempted to drive toward the largest drivable area using DAgger.

However, tentacle was influenced by the noise at the curb, which is detected

to be a drivable area. So, the vehicle was headed to the curb. VVF was less

affected than the tentacle algorithm, but the vehicle was unable to drive toward

the largest drivable area (see Figs. 3.13(d) and 3.13(e)).

As shown in Figure 3.13(g), the vehicle with the VVF algorithm took action

to avoid the noise caused by a shadow next to the obstacle when passing through

a narrow space. For the same situation, DAgger and the tentacle algorithm did

not respond sensitively, and no problem occurred.

3.5.2.5 Intersection Navigation

The model-based motion-planning algorithms (Tentacle [65] and VVF (Veloc-

ity Vector Field) [66]) and learning-based motion-planning algorithm (DAgger

(Data Aggregation), described in Chapter 3 [70]) were used for the intersection

driving test. These algorithms utilized OGMmer as input and did not require

the localization data, global path, and goal point. These were tested in three

parking lots (see Figure 2.11), and the driving results are shown in Figure 3.14.

They were able to calculate an action toward the branch road and could avoid

obstacles existing at the branch road because obstacles were regarded as the

non-drivable area in OGMmer (see Figure 3.14(d)). Among the total 18 inter-

sections, the learning-based algorithm, DAgger, did not encounter any problems

in the above-mentioned two intersections and was able to navigate the entire

intersection in the three parking lots. The driving result in the indoor parking
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(a)

(b)

(c)

(d)

Figure 3.14: Intersection navigating results using motion-planning algorithms.
(a) map1 (Figure 2.11(a)), (b) map2 (Figure 2.11(b)), and (c) map3 (Fig-
ure 2.11(c)), (d) Case with obstacles existing in branch road box.

lot (Figure 2.11(c)) was recorded as video3.

The vehicle using Tentacle and VVF drove through intersections success-

fully except for two intersection situations where two intersections were close

together (Figure 2.11(a) 1st and 2nd intersections) and the situation in which

the branch road was narrowed by an obstacle (Figure 2.11(b) 4th intersection).
3https://youtu.be/b63HBKptKV4
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(a)

(b)

(c)

(d)

Figure 3.15: Problems of model-based motion-planning algorithm at intersec-
tion.
(a) DAgger : no problem, (b) Tentacle: collision occurrence, (c) VVF : close to
obstacles. (d) Problems Tentacle and VVF of when approaching an intersection.

Figure 3.15 shows an example of the first failure situation. After passing the

first intersection shown in #T3 and #T4 of Figure 3.15(b), and #V4 of Fig-

ure 3.15(c), the vehicle using Tentacle and VVF drove close to obstacles and
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did not drive into the center of the drivable area. This situation is shown in

#T5 of Figure 3.15(b), #V5 and #V6 of Figure 3.15(c), and Figure 3.15(d).

This was because there was no way to preferentially avoid obstacles close to the

vehicle existing between the vehicle and the branch road in Tentacle and VVF.

On the other hand, the vehicle with DAgger preferentially avoided obstacles

close to it, because the driving policy was trained on data on driving corner

roads taking into account the vehicle’s turning radius.

3.6 Conclusion

In this chapter, an autonomous driving method using a vision-based occupancy

grid map and imitation learning is proposed to deal with semi-structured envi-

ronments such as parking lots. The occupancy grid map obtained via the U-net-

based deep neural network is used as an input for imitation learning. Through

the geometric relationship between the occupancy grid map and the look-ahead

point, the expert clearly labels this point when collecting the training data, and

the DAgger algorithm is used for autonomous driving in semi-structured envi-

ronments.

In real-environment and simulation experiments, a vehicle with the pro-

posed method could drive toward the drivable area while avoiding obstacles

reactively in real-time without using a global map and localization. In the ac-

tual experiments, the vehicle with DAgger could drive more smoothly and safely

than with the tentacle and VVF algorithms in environments where the width

and curvature of the drivable area varied significantly. Especially, DAgger was

more robust when the occupancy grid map was not accurately perceived or was

noisy due to a shadow. DAgger did not cause any collision, but the tentacle and

VVF algorithms caused 1.42 and 1.47 collisions per 100 m, respectively. This
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is because the tentacle and VVF algorithms require different parameters to ac-

commodate different complex situations. In contrast, DAgger trains the deep

neural network with numerous weight parameters using expert driving data for

these situations. Future work will focus on developing the proposed method for

various environments with intersections and dynamic obstacles.
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Chapter 4

WEIGHT DAGGER ALGORITHM FOR RE-

DUCING IMITATION LEARNING ITERATIONS

4.1 Introduction

The DAgger algorithm is introduced in Sec. 3.2.3 of Chapter 3, and this chapter

proposes a method to reduce DAgger iterations by further increasing a DAgger

accuracy. DAgger are often used in robotics when a single imitation learning

step cannot obtain the desired policy. DAgger repeatedly retrains policies by

aggregating additional data obtained by executing a prior trained policy. DAg-

ger variant algorithms have been proposed to reduce DAgger iterations. They

sample data that the policy cannot accurately imitate the expert behavior.

Nevertheless, additional DAgger iterations are required if these data are insuf-

ficiently sampled, requiring considerable human effort.

Therefore, this thesis proposes a new DAgger training algorithm, WeightDAg-

ger, that can imitate expert behavior more accurately, particularly when the

data are insufficiently sampled [70]. WeightDAgger defines the weight value in
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the dataset and uses the weighted loss function. This value is calculated through

the discrepancy between policy and expert actions during DAgger execution.

Based on the weighted values, the policy is trained with a high learning rate for

normally failing situations. WeightDAgger is applied to autonomous driving in

semi-structured environments and several walking robots. It obtains the desired

policy in fewer DAgger iterations compared with existing DAgger algorithms.

The remainder of this chapter is structured as follows. DAgger variant al-

gorithms and their explanations are explained in Sec. 4.2. Sec. 4.3 introduces

WeightDAgger. Sec. 4.4 and Sec. 4.4.3 compare the proposed and variant DAg-

ger algorithms application to autonomous driving and various types of walking

robots. Finally, Sec. 4.5 concludes this chapter.

4.2 Related Works & Background

Most studies on imitation learning use a data aggregation (DAgger) algorithm,

which collects additional data from trained and expert policies [71]. These data

are aggregated with existing training data and used to retrain policies. The

accuracy of imitating expert action can be increased by increasing the amount

of aggregated data. Thus, the desired policy comes from repeating DAgger.

DAgger variant algorithms [74,76,77,80–86] have been proposed to aggregate

additional data selectively and reduce the data imbalance problem in imitation

learning. Thus, DAgger iterations and the human effort required to collect data

can be reduced. References [82, 83] sample out-of-distribution or unseen states

in the training dataset by comparing state similarity, and a proportion of these

states increases in the dataset There are algorithms [81, 84, 85] (SafeDAgger)

for sampling data that the policy cannot accurately imitate by calculating the

discrepancy between the expert action and policy action. BAgger [86] samples
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data with high variance of the policy action, which means it, has low action

confidence. EnsembleDAgger [80] collects data with low accuracy/confidence

during DAgger execution, ensuring the safety of robot control. In HG-DAgger

[77], the expert judges sub-optimal and failure situations, and only the data for

these situations are sampled during DAgger execution.

Algorithms [74, 76] distinguish easy tasks and sample fewer data for them.

Hence, they can focus on data for difficult tasks in the training process. However,

these algorithms are only applied if the data can be classified. According to

[76], data that are not similar to the sampled data in the training dataset are

excluded (down-sampled) using the replay buffer to increase the learning rate

of the sampled data. However, this may result in reduced training accuracy

for the down-sampled data. The sampled dataset is further augmented to the

training dataset in other DAgger variant algorithms by [87, 88]. However, it is

unclear how to augment the data for which state, depending on the scenario or

task other than those mentioned in [87,88].

A policy trained on the sampled data with the aforementioned algorithms

has higher accuracy than a policy trained on the unsampled (entire) data in the

same DAgger iteration. This is because, as the proportion of sampled data in

the training dataset increases, the policy can be trained with higher weights on

the sampled data. Even with these algorithms, quite low accuracy/confidence

data may not be sufficiently sampled, and the data imbalance problem is not

resolved completely. Hence, further DAgger iterations are needed to sufficiently

gather data, which requires considerable human effort.

Algorithm 3 is the data-sampling function included in Algorithm 1 (basic

structure of DAgger). This function shown in this chapter is similar to that

shown in Sec. 3.3.3 of Chapter 3 and contains more detailed description of

DAgger variant algorithms, such as VanillaDAgger [71], SafeDAgger [81], En-
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Algorithm 3: Data-sampling function in DAgger
*Note The black, cyan, brown, green, and blue fonts denote VanillaDAgger [71],
SafeDAgger [81], EnsembleDAgger [80], HG-DAgger [77], and WeightDAgger.

1 function Data-Sampling Function(πi)
2 Initialize Di ← ∅
3 for t = 0 to End of Execution do
4 āt, σ2

t ← πi(st)
5 aexp,t ← πexp(st)
6 τ̂t ← ∥āt − aexp,t∥2 (calculated as (4.3))
7 χ̂t ← σ2

t

8 if Condition according to DAgger algorithms [71] [81], [80], [77]
is satisfied then

9 Control robot with expert action, aexp,t

10 Di.append({st, aexp,t}) // In weightDAgger, this line is replaced
by (4.4) to use the weighted loss function.

11 else
12 Control robot with trained policy action, āt

13 return Di

sembleDAgger [80], and HG-DAgger [77]. Except for VanillaDAgger, these rep-

resentative algorithms can distinguish unsafe or near-collision situations caused

by the trained policy based on different criteria. Actions of the trained (πi) and

expert (πexp) policies are obtained simultaneously (lines 4 and 5 in Algorithm 3).

In SafeDAgger and EnsembleDAgger, the action discrepancy τ̂t is calculated as

the distance between these actions (line 6). Moreover, EnsembleDAgger obtains

the variance of πi, i.e., χ̂t, to quantify the confidence of the policy action āt (lines

4 and 7); χ̂t is obtained using Gaussian process regression [80].

DAgger variant algorithms sample data by defining different conditions (line

8). In VanillaDAgger, the expert action controls the robot with probability

λiβ0 ∈ [0, 1] (λ ∈ (0, 1)). Thus, as the DAgger iteration increases, more trained

policy action is selected. Under SafeDAgger, if the action discrepancy τ̂t is larger

than the threshold τ , the state visited by πi is regarded as situations wherein πi
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cannot accurately imitate aexp,t. EnsembleDAgger considers whether the action

discrepancy or the variance are larger than thresholds, i.e., τ ≤ τ̂t or χ≤ χ̂tx or χ

≤ χ̂ty . In HG-DAgger, the expert judges the unsafe or near-collision situations.

If the above conditions are satisfied, aexp,t is used to control the robot (line

9), and additional data Di are gathered (line 10). Otherwise, it is controlled

using the policy action āt (lines 11 and 12). The method used herein for ac-

tion labeling is more specific than that of DAgger variant algorithms; In these

algorithms, only the state is sampled from the data-sampling function. After

that, the expert labels the action according to the state. However, it is difficult

for the expert to label actions without actually controlling a robot. Hence, in

WeightDAgger, actions are labeled while the robot is being controlled, similar

to that presented in the HG-DAgger algorithm [77] (line 10).

4.3 Proposed Method

The proposed DAgger training algorithm, WeightDAgger, reduces the data im-

balance problem that existing DAgger variant algorithms cannot completely

resolve. These algorithms train the policy repeatedly by sampling low accu-

racy or confident data while executing the trained and expert policies. In the

proposed algorithm, different weights according to states are calculated as the

action discrepancy (through Step 1 ). These weights are paired with the entire

training dataset by comparing the similarity (through Step 2 ), by which the

policy is trained with a high learning rate on data with low accuracy. Thus,

WeightDAgger imitates expert action more accurately on these data than ex-

isting variants DAgger in the same DAgger iteration. Consequently, DAgger

iteration and human effort to collect additional data are reduced.
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4.3.1 Weighted Loss Function in WeightDAgger

The weighted loss function is one of the weight balancing methods used to

address the data imbalance problem in machine learning; in the classification

tasks, the accuracy of distinguishing classes with a relatively small data pro-

portion is lower than that of classes with considerably more data. The weight is

calculated high for the small data class to train the policy with a high learning

rate. Thus, the accuracy for the small data class is similar to that of the large

data class.

A weight value is defined according to the state to apply the weighted loss

function to imitation learning. During DAgger execution, the state accuracy is

quantified by calculating the discrepancy between the policy and expert actions.

A state with a large discrepancy has out-of-distribution/unseen states, which

exist in a small proportion in the training dataset. The weight is defined as be-

ing proportional to the discrepancy, and the policy is trained with a relatively

high learning rate for the low-distributed states in the training dataset. There-

fore, after training, the accuracy of the state is similar to that of a sufficiently

distributed state.

In WeightDAgger, the non-weighted loss function Ltj (3.5) is replaced by

the weighted loss function:

LW t = WtLt, (4.1)

where Wt is the weight value, and LW t is the weighted loss function. In the

policy training process, the change amount of parameter θ in the policy π(si; θ),

is calculated as large as the weight Wt [89]. Wt can be expressed as follows:

Wt = (1.0 + ατ̂t), (4.2)
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Figure 4.1: WeightDAgger application to autonomous driving.
The black and white areas in st are the drivable/non-drivable areas, respec-
tively. The look-ahead point is used as the action, and the vehicle tracks this
point. The yellow (aexp,t) and red (āt) circles are the expert and policy actions,
respectively. The blue line τ̂t is the action discrepancy between āt and aexp,t. If
aexp,t is selected outside at τ (blue dashed circle) or the variance of the action
χ̂t (brown line) is larger than threshold (χ), st is regarded that āt is unsafe
or low-confidence. In this case, aexp,t is used to control the vehicle, and data
including τ̂t are gathered (see lines 8-10 in Algorithm 3).

where α is the gain for the action discrepancy τ̂t mentioned in line 6 of Algo-

rithm 3. τ̂t is the normalized value for the distance between the expert action

aexp,tj and the trained policy action ātj , which can be obtained during DAgger

execution as follows:

τ̂t =

√∑
j(aexp,tj − ātj )2

n
, where τ̂t ∈ [0, 1]. (4.3)

The numerator in (4.3) represents the distance between two actions. The actions

of each dimension, j (e.g., j ∈ {x, y}; see Figure 4.1), are scaled from 0 to

1; aexp,tj , ātj ∈ [0, 1]. The denominator is used to normalize the numerator

from 0 to 1 according to the action’s dimension n (e.g., n: 2; see Figure 4.1)

to compare the accuracy of policies trained with different DAgger algorithms

between 0 and 1.
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The degree to which the policy cannot accurately imitate the expert action

in a particular state can be quantified as the action discrepancy τ̂t. By reflecting

τ̂t to the loss function LGaut in (3.4), it is evident that the loss value is larger

than that without using τ̂t for low accuracy states, and the policy is trained with

a large learning rate. Therefore, a policy trained with τ̂t can calculate actions

that are more consistent with expert actions than policies trained without τ̂t.

α in the weight, (4.2), regulates the application rate of τ̂t to the weighted loss

function. The higher the α, the larger the loss value calculated during training

for states where the expert action is inaccurately imitated (large τ̂t). However,

if α is considerably high, the policy may not converge with the lowest loss

value, which is similar to failure to converge when using the too large learning

rate value of the optimizer. Therefore, to determine a proper value for α, the

accuracy was experimentally compared by training the policy with different

values. The results are presented in Section 4.4.2.3).

To apply τ̂t to the weighted loss function, τ̂t is additionally paired with the

additional dataset Di obtained via the existing DAgger variant algorithms. This

pairing process is implemented when obtaining Di (line 10 in Algorithm 3), and

‘Di.append({st, aexp,t})’ is replaced by

Di.append({st, aexp,t, τ̂t}), (4.4)

where τ̂t is the action discrepancy value obtained in the t-th step when collecting

the additional dataset Di in the i-th DAgger iterations. In the BC dataset DBC ,

τ̂t cannot be obtained; thus, all τ̂t values are initialized to zero.
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(a) (b)

Figure 4.2: Applying the weight update process (step 2 ) of WeightDAgger
Algorithm 4 and line 6 in Algorithm 1 (a) DAgger executed once (i = 1), where
the action discrepancy τ̂(i=1)t

is paired with data obtained using DAgger and
updated to similar states in the BC dataset (lines 6-7 in Algorithm 4). (b)
Action discrepancy τ̂(i=2)t

still occurs second DAgger iterations (i = 2); the
larger action discrepancy is updated in this state such that the policy is trained
to further reduce the discrepancy (lines 8-9 in Algorithm 4).

4.3.2 Weight Update Process in Entire Training Dataset

A weight update process applies to the dataset D as well as the additional

dataset Di collected using DAgger. In order to apply the weighted loss function

(4.1) to D, the action discrepancy τ̂t in D (which is zero) must be updated to

a non-zero value. Therefore, data exhibiting a high similarity to the state of Di

are searched among the state of D, and τ̂t among these two data is updated to

a larger τ̂t. This is conducted in Algorithm 4. Through this step, the policy is

trained with a weight on all similar data relevant to the situation wherein the

policy cannot accurately imitate expert action.

Algorithm 4 is added to the DAgger algorithm (line 6 in Algorithm 1). D is

the dataset used for training the policy πi (Algorithm 3); t is the data index in
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Algorithm 4: Weight Update Process in WeightDAgger (Step 2 )
1 function Weight Update(D, Di) // (D: existing dataset Di:

additional dataset)
2 for it = 0 to Len of Di (In it, t is a variable) do
3 for t = 0 to Len of D do
4 ε̂ ← SIMILARITY(sit , st)
5 if ε ≤ ε̂ then // Cases where states of Di and D are

similar.
6 if τ̂t < τ̂it then
7 τ̂t ← τ̂it

8 else
9 τ̂it ← τ̂i

10 return D, Di

D. Di is the additional dataset obtained through the data-sampling function;

it is the index of the data in Di. The similarity between sit and st is calculated

and denoted as ε̂ (line 4 in Algorithm 4). Weight updating is conducted when

ε̂ is larger than the similarity threshold ε (line 5). This process comprises two

cases (first case lines 6-7 and second case lines 8-9).

In the first case, if τ̂it is larger than τ̂t (line 6), τ̂t is replaced by τ̂it (line 7),

where τ̂it and τ̂t are the action discrepancies paired to sit and st, respectively

(see Figure 4.2(a)). A large action discrepancy (larger than τ) occurred in

the state s(i=1)t
, because no sufficient data were similar to s(i=1)t

in the BC

dataset. The action discrepancy was paired to st, which is similar to s(i=1)t
in

the BC dataset, via Step 2. Therefore, even with the BC dataset, the policy

was trained using the weighted loss function.

In the second case, if τ̂t is larger than τ̂it (line 8), τ̂it is replaced by τ̂t

(line 9). For example, as shown in Figure 4.2(b), the action discrepancy τ̂(i=2)t

for state s(i=2)t
was slightly reduced after the first DAgger iteration (i = 1).

Nevertheless, in this situation, the action discrepancy τ̂(i=2)t
still existed. In
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(a) (b)

Figure 4.3: Semi-structured environments used for autonomous driving test cre-
ated using UNREAL ENGINE4 (a) Trained environment (data collection and
driving test) and (b) Untrained environment (only driving test).

Step 2, the policy π(t=3) was trained with the weight τ̂t, which was larger than

τ̂(i=2)t
, so that the associated data was trained with a larger weight.

4.4 Experiments

4.4.1 Experimental Setup

WeightDAgger was applied to the DAgger variant algorithms [71, 77, 80, 81]

mentioned in Section 4.2. These performances were evaluated in autonomous

driving experiments in parking lots. These environments were built by Unreal

Engine 4 and had several complex obstacles; the width of the drivable space

was narrow, and the change in its curvature was large (see Figure 4.3), re-

quiring multiple DAgger executions. Using the CARLA simulator, the training

data were collected, and the trained policy was executed [90] I uploaded the

environment configurations, code, training dataset, and policies on Github1.

The state was a 25 × 25 occupancy grid map with a 0.4 m grid (see Fig-
1https://github.com/joonwooahn/WeightDAgger
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Figure 4.4: Weight update processes in WeightDAgger (Step 2 )

ure 4.4). the look-ahead point used as the policy action. These are the same as

the imitation learning-based driving policy mentioned in Sec. 3.3 in Chapter 3.

A deep neural network was used as the policy π(s; θ), comprised of two

convolutional and max-pooling layers with 32 and 64 channels, respectively.

The flattened and fully connected layers with 1,000 nodes were connected to

these layers; 25% and 50% dropouts were applied prior to connecting each

layer. Finally, the fully connected layer with four nodes was linked to predict

the position of the look-ahead point and its confidence. An Adam optimizer

with a 10−5 learning rate was used, and pre-training weights were not used.

The epochs were set to 10 k, and the batch size was 512.

The expert selected the look-ahead point using a mouse pointer to collect

the training data, and the state action pair data were collected every 0.025 s (see

video2). The parameters of VanillaDAgger, i.e., β0 and λ, were set to 1.0 and 0.5

respectively. τ (threshold of τ̂t) in SafeDAgger and EnsembleDAgger was 0.05.

χ (threshold of χ̂t) in EnsembleDAgger was 0.05. In HG-DAgger, the expert

took the action when situations were unsafe or near-collision. The structural-

similarity index measure algorithm was used to quantify the similarity between

states using the occupancy grid map (line 4 in Algorithm 4; see Figure 4.4) [91].

The thresholds of τ̂t (action discrepancy) and χ̂t (confidence of action), τ

2https://youtu.be/FvuF9gg7_YY
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and χ, were both set to 0.05. With these thresholds, unsafe or low confident

data are collected as much as possible without colliding with the obstacles [80].

To collect the training data, the expert selected the look-ahead point using a

mouse pointer, and the state-action pair data were collected every 0.025 s. The

expert drove the vehicle from Pose1 to Pose2, and from Pose2 to Pose1 (see

Figure 4.3(a) and video3). The structural similarity index measure algorithm

[91] was used to quantify the similarity between the states, the occupancy grid

map (line 4 in Algorithm 4; see Figure 4.4).

4.4.2 Experimental Results

The performance of WeightDAgger may vary depending on the similarity thresh-

old ε (line 5 in Algorithm 4) and parameter α in (4.2). A parameter analysis

was performed using EnsembleDAgger as a representative among several DAg-

ger algorithms, and the value that obtained the highest accuracy was applied

equally to [71,77,81]. Overall, 80% of the dataset was used as the training set,

and the rest was used for the test set. The test dataset was used to measure

the accuracy calculated as 1.0 - τ̂ (4.3). Additionally, it was classified into two

types: accurately and inaccurately trained states. If τ̂t was less than τ , then

this corresponds to the first data type, and otherwise, this corresponded to the

second data type. Here, τ̂t is the t-th data that exists in first DAgger dataset.

4.4.2.1 Ablation Study According to τ

In the process of executing DAgger, data is collected only when the difference

between actions is greater than τ (see line 9 in Algorithm 2). The larger the

τ , the higher the probability of collecting data from a different distribution
3https://youtu.be/GEMmQeIwlMY
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compared to the previously collected data distribution. However, less additional

data is collected and the risk of collisions with obstacles is high.

After performing the first DAgger iteration, the accuracy (1.0 - τ̂) was com-

pared according to τ . In this test, ε was set to 70, and α was 10. The result for

this is shown at 4.1. As τ increased, the accuracy increased, and a value of 0.05

Table 4.1: Accuracy According to τ

τ = 0.01 0.025 0.05 0.1 0.15 ∼
Accuracy 0.9734 0.9791 0.9873 0.9869 Collision in data collecting

showed the largest value. Even if τ was larger than 0.05, there was no signif-

icant performance improvement, and rather collisions occurred in the DAgger

process of collecting additional data.

4.4.2.2 Ablation Study According to ε

The policy was trained with a dataset where different similarity thresholds ε:

30%, 50%, 70%, 90%, and 100%, and the proportions of data similar to D(i=1)

in BC dataset D were 90%, 52%, 23%, 7%, and 0%; α was set to 10 in this test.

Table 4.2: Accuracy Comparison According State Similarity Threshold
Test Dataset

Accurately Trained
State, τ̂t < τ

Inaccurately Trained
State, τ̂t ≥ τ

Entire
State

State
Similarity
Threshold

ε (%)

30 0.9766 {5} 0.9614 {4} 0.9750 {5}
50 0.9831 {4} 0.9775 {2} 0.9823 {4}
70 0.9869 {3} 0.9844 {1} 0.9866 {1}
90 0.9872 {2} 0.9631 {3} 0.9847 {2}
100 0.9893 {1} 0.9413 {5} 0.9845 {3}

*Note. The value in {} is the ranking of the accuracy value in each column.

Table 4.2 shows results for the test dataset with different ε values. When

τ̂t was updated for clearly similar states, such as ε = 70% (see Figure 4.4),
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the accuracy increased for the inaccurately trained state and the entire state.

When ε was 100, τ̂t was not updated to D like not using similarity, ε, and

the accuracy of “Accurately Trained State” was the highest, but “Inaccurately

Trained State” was the lowest. When ε = 30%, τ̂t was updated for similar and

not very similar states, the accuracy of which was low for all datasets.

4.4.2.3 Ablation Study According to α

Figure 4.5: Test results of the average accuracy according to parameter α

α of 0 is the same case as the policy training of EnsembleDAgger.

The policy was trained by 27 different α values (see x-axis of Figure 4.5)

with the dataset obtained via EnsembleDAgger. In this test, ε was set to 70.

Figure 4.5 shows that the accuracies of the accurately trained state (green line)

were less sensitive to α. For the inaccurately trained state (red line) and entire

state (blue line), the accuracy increased with an increase in α from 0 to 10.

Conversely, when α was between 10 and 40, the accuracy was slightly reduced.

If α was excessively large (about 45 or greater), the accuracy was rather low,

similar to when using the too-large learning rate of the optimizer in the policy

training. The accuracy was the highest when α was 10.
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4.4.2.4 Driving Test Results

Figure 4.6: Driving test results of EnsembleDAgger with/without weight.
the green line is the vehicle trajectory; the red circle indicates the collision spot;
The closer the circle is to the solid line, the higher the collision frequency is.
To obtain the policy that the vehicle can be driven without collision, Ensem-
bleDAgger with the weighted loss function required only one DAgger iteration.
However, EnsembleDAgger without weighting needed three iterations.

Figure 4.6, Table 4.3, and video4 show the driving results with implemented

policies trained through different algorithms: BC, VanillaDAgger [71], SafeDAg-

ger [81], HG-DAgger [77], and EnsembleDAgger [80]. The proposed DAgger al-

gorithm was applied to each of these algorithms, and the average number of

collisions encountered within 100 laps was measured. When the vehicle collided

with obstacles, driving was resumed 3 m in front of the collision spot on a

collision-free trajectory.

In trained and untrained environments, the number of collisions reduced

with increased accuracy. The vehicle using a policy trained via DAgger variant

algorithms with the weighted loss function was driven without collisions in

a single DAgger execution, except for VanillaDAgger. The DAgger with the
4https://youtu.be/FeMckGLgQNA
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Table 4.3: Driving Test Results for VanillaDAgger, SafeDAgger, HG-DAgger,
EnsembleDAgger and with Weighted loss function

VanillaDAgger with
weight SafeDAgger with

weight HG-DAgger with
weight

Ensemble
-DAgger

with
weight

After DAgger Iteration, i i=1 i=2 i=1 i=2 i=1 i=3 i=1 i=1 i=2 i=1 i=3 i=1
Number of Data [ea] 18277 21076 18277 21108 13094 14453 13094 13625 14340 13625 14753 13173
Training Time [min.] 183 285 203 305 174 382 188 177 280 197 385 190
Network/Total (η̂i) 0.49 0.76 0.49 0.76 0.85 0.91 0.85 0.88 0.94 0.86 0.94 0.69

Entire State 0.973 0.975 0.979 0.983 0.970 0.984 0.985 0.976 0.983 0.986 0.985 0.987Accuracy
for Inacc. Trained 0.931 0.948 0.954 0.978 0.932 0.980 0.982 0.945 0.979 0.984 0.980 0.984

Average
Collision

Trained Env. 3.50 2.00 1.50 - 3.34 - - 2.50 - - - -
Untrained Env. 3.00 2.00 2.00 1.00 3.00 1.00 - 2.00 1.00 - 1.00 -

*Note. “with weight” means the DAgger with the weighted loss function (proposed). In this
test, ε and α were set to 70% and 10. In “Training Time”, data collection time and training
time were included, when GeForce RTX 2080 TI GPU was used to train the policy.

weighted loss function trained the policy with a higher weight in collision spots,

particularly on roads with narrow or large curvature changes. VanillaDAgger,

SafeDAgger, HG-DAgger, and EnsembleDAgger required more human effort and

time to collect additional data than DAgger with the weighted loss function.

4.4.3 Walking Robot Experiments

Figure 4.7: Half-Cheetah, Ant, and Hopper walking robots in MuJoCo.

In addition to autonomous driving, WeightDAgger was applied and tested

to Half-Cheetah, Ant, and Hopper, walking robots that exist in the MuJoCo

simulator [92] (see Figure 4.7). The expert policy is obtained by reinforcement

learning provided by RL Baselines Zoo [93], which is used to implement imi-
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tation learning. The training network consists of three fully connected layers

with 96 nodes using the Relu activation function. A fully connected layer that

uses a linear activation function with nodes according to the dimension of each

action, is connected at the end of the network. The epochs were set to 30, batch

size to 64, learning rate to 0.001, and the Adam optimizer were used.

In this experiment, the effectiveness of WeightDAgger is shown through

comparison between SafeDAgger and SafeDAgger with weight algorithms. τ ,

which is the threshold difference between the expert and network actions in

SafeDAgger, was set to 0.075, 0.01, and 0.01 for Half-Cheetah, Ant, and Hop-

per, respectively. Besides, α in the weighted loss function (4.2) was set to 5, 20,

and 15, respectively. These values are the best performing values among sev-

eral candidate values. In this experiment, the weight update (Step2 ) method

according to the state similarity was not applied. This is because it is diffi-

cult to obtain similarity because the state contains various contents (position,

acceleration, angular acceleration, etc.).

Figure 4.7 shows results of SafeDAgger and SafeDAgger with weight algo-

rithms (WeightDAgger). The reward, which is the y-axis, has a higher value as

the robot walks further, and is an average value over 10 tries. Both algorithms

recorded a higher reward than behavior cloning (BC) as the DAgger was re-

peated. To achieve similar performance to the expert’s reward, WeightDAgger

required fewer DAgger iterations than SafeDAgger.

4.5 Conclusion

In this chapter, a new DAgger training algorithm WeightDAgger is proposed

to reduce the data imbalance problem. The weight values are calculated via

the action discrepancy between the trained policy and expert actions obtained
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during DAgger. These are paired to the additional data sampled by DAgger as

well as to the entire training dataset with a high state similarity. Thus, the

policy is trained with a high learning rate for high-discrepancy data among the

entire training dataset.

The effectiveness of WeightDAgger was evaluated by conducting an au-

tonomous driving experiment in parking lots with complex obstacles and walk-

ing robots in the MuJoCo simulation such as Half-Cheetah, Ant, and Hopper.

The test results showed that a policy trained with the weight value more accu-

rately imitated expert action in the same DAgger iteration than DAgger without

the weight. Therefore, it achieved the desired policy with fewer DAgger itera-

tions and less human effort for data collection. In future work, the performance

improvement of the proposed algorithm will be further studied.
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Chapter 5

DAGGER USING ADVERSARIAL AGENT POL-

ICY FOR DYNAMIC SITUATIONS

5.1 Introduction

In order to deal with static as well as dynamic obstacles, motion planning

methods using deep learning have been studied actively [24,76,94–107]. In these

studies, policies of the dynamic obstacles are manually modeled to train the ego

agent that avoids dynamic obstacles. There are studies modeling dynamic ob-

stacles by depicting pedestrian movements in real-world environments [94–96].

To model dynamic vehicles in a general road, their behaviors in road environ-

ments such as highways, alleys, roundabouts, and unprotected intersections are

depicted [24, 76, 97–99]. Multiple mobile robots move along paths with various

geometric patterns to uniformly cover a specific space [100–102]. To imple-

ment the parking situation, pre-planned parking path is used, and the agent

tracks this path [103–105]. In [106], dynamic situations involving pedestrians

are modeled with simple geometric curves, and overtaking/lane-change/lane-

keeping situations are modeled in [107].
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However, manually modeling the policy of the dynamic obstacle has some

limitations. The ego agent policy is trained only on a limited set of modeled

dynamic situations, making it difficult and heuristic to train for various sit-

uations that do not overlap with previous training steps. Moreover, since the

ego agent policy is difficult to be trained for environments more complex and

difficult than the limited dynamic situations, the performance of this policy is

difficult to be improved gradually.

In order to address the aforementioned limitations, an adversarial agent pol-

icy has been adopted to the ego agent policy’s training process without modeling

the dynamic obstacle’s policy [108–113]. During the training process, the ego

and adversarial agent policies are jointly trained to cope with the behavior of

each policy, and this process is repeated. Thus, various dynamic situations can

be generated. In addition, the performance of the adversarial and ego agent

policies are gradually improved by considering each other’s trained policies.

The adversarial agent policy has been applied only to reinforcement learn-

ing (RL) [108–113] and has not been applied to imitation learning, especially

the data aggregation (DAgger) algorithm. DAgger repeatedly performs imita-

tion learning training process and obtains an agent policy with increasingly

better performance [71]. There are advantages to using DAgger instead of RL

to train the ego agent policy. First, DAgger can gather the training data more

efficiently than RL, so convergence can be faster and applicable to the real-

world. DAgger is more sample efficient than RL because it is trained to imitate

expert behaviors that have succeeded in complex dynamic situations without

trial-and-error [114]. Second, DAgger clearly generates training data to perform

complex tasks such as avoiding dynamic and static obstacles together with ex-

pert behaviors without modeling a heuristic reward function.

Therefore, this chapter proposes a novel training framework that adopts the
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adversarial agent policy to DAgger for ego agent policy training in dynamic sit-

uations. The proposed framework has the advantage of applying an adversarial

agent policy to learning for dynamic situations as well as being able to train

the ego agent policy with DAgger. Contributions of the proposed method are

summarized as follows:

• To the best of our knowledge, this is the first study in which adversarial

agent policy is applied to handle dynamic situations with DAgger.

• The proposed framework deal with dynamic situations that are more di-

verse and difficult than those of real-world by modeling the adversarial

agent policy to compete with the ego agent policy.

• Applying the adversarial agent policy to DAgger reduces the number

of DAgger training iterations by automatically acquiring non-redundant

data that is not sufficiently trained in previous DAgger training steps.

The remainder of this section is structured as follows: Related works and

the DAgger algorithm are reviewed in Section 5.2; Section 5.3 introduces the

DAgger training framework using adversarial agent policy method; Section 5.4

analyses the proposed framework through navigation task experiments and Sec-

tion 5.5 concludes the study.

5.2 Related Works & Background

5.2.1 Motion-planning Algorithms for Dynamic Situations

Existing model-based obstacle avoidance algorithms have been extended to ob-

tain the ego agent policy in dynamic situations. The dynamic obstacle’s trajec-

tory is reflected to the cost function of the dynamic window approach (DWA)

91



algorithm [63]. Studies using the model predictive controller (MPC) propose a

cost function that includes bounds for dynamic obstacles [94, 99]. If an avoid-

ance path planned by the search-based planner is not valid due to dynamic

obstacles, this path is modified with the optimization-based path planner [105].

In [107], the velocity difference between the ego agent and the dynamic obsta-

cle is reflected in the cost of the constrained iterative linear quadratic regulator

(LQR). An avoidance strategy is determined using the learning method and is

reflected in an optimization based collision avoidance (OBCA) algorithm [103].

However, these methods are difficult to deal with various situations other than

those modeled in a specific situation. It can be improved through complex mod-

eling and parameter tuning, but this is also limited.

Using learning methods, the ego agent policy can be trained for a variety

of dynamic situations. There are studies applying the tree expansion process of

the monte-carlo tree search (MCTS) algorithm to cope with various dynamic

situations by training it with RL [100, 104]. Through RL training, one of the

safe path is selected according to the speed prediction of the oncoming vehicle

obtained from the neural network [97]. A sub-goal considering obstacles and

global path is acquired from the network, and dynamic obstacles are considered

while tracking the sub-goal using MPC [102]. In [101], LSTM-based RL method

copes with multiple dynamic obstacles by adding a reward that maximizes

the distance from dynamic obstacles. A method using generative adversarial

imitation learning (GAIL) calculates the desired direction and speed of the

mobile robot by predicting the social force according to pedestrian gait images

[95]. In [106], whether to perform re-planning is trained to handle passing,

following, and crossing situations between a robot and a pedestrian by imitation

learning. Although these methods can be trained for various situations, this

requires modeling different dynamic obstacle policies to obtain data.
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Without modeling the dynamic obstacle policy, there are studies using an

adversarial agent policy for dynamic situations. Through this policy, not only

training data for various situations can be obtained through interaction with

the ego agent, but also the performance of the ego agent policy can be improved

gradually. A study conducting multiple mobile robot training on cooperation

and competition tasks transforms a reward function structure to use adversarial

policies in the RL process of GAIL [115]. In a multi-agent task with competing

policies such as games, each policy is modeled as an adversarial agent policy

and trained by RL to enhance each other’s performance [108, 109]. Adversar-

ial agents are trained with RL to collide with the autonomous vehicle to find

cases of its failures [110]. In a study of applying RL to autonomous driving at

intersections, failure cases are found by training an adversarial driving agent,

and robustness of autonomous vehicles is improved through re-training [111].

Through RL, avoidance situations of the unmanned aerial vehicle and adversar-

ial attack situations against them are handled [112]. The robot arm is trained

to catch a moving object with RL, and the object is modeled as an adversarial

policy and is trained not to get caught [113].

5.2.2 DAgger Algorithm for Dynamic Situation

Algorithm 5 represents a basic structure of the DAgger algorithm. πBC is an

ego agent policy trained by behavior cloning (BC), and DBC is BC dataset. BC

is an algorithm in which imitation learning is performed only once. These are

used to initialize π1 and D (line 2 in Algorithm 5).

A data-sampling function (line 4, the original version) takes an expert pol-

icy (πexp), a trained ego agent policy (πi), and a modeled dynamic obstacle

policy (πdyn), and returns an additional dataset Di, where i is a DAgger it-

eration. If πdyn is not used, the ego agent policy is to be trained in a static
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Figure 5.1: Original DAgger for dynamic situations

Algorithm 5: DAgger Algorithm for Dynamic Situations
*Note The blue font is the proposed DAgger algorithm.
1 function DAgger()
2 Initialize π1 ← πBC , D ← DBC // BC means behavior cloning
3 for i = 1 to N do // Do Until Obtaining Desired Policy
4 Di ← Data-Sampling Function(πexp, πi, πdyn) // Original

Version
5 Di ← Data-Sampling Function(πexp, πi, πadvi

) // Proposed
Version, replace line 4

6 Aggregate data D ← D ∪ Di

7 Train ego agent policy πi+1 on D
8 Train adversarial agent policy πadvi+1 // Added by proposed

algorithm

9 return πi

environment. As shown in Figure 5.1, πdyn does not improve in the repeated

DAgger training loop. In the data-sampling function, πexp, πi, and πdyn are

executed simultaneously (see left three boxes in Figure 5.1). While executing,

if an action discrepancy between the actions of πexp and πi is greater than the

threshold, the robot is controlled by the expert action and Di is collected [81].

The additional dataset Di is aggregated with the existing dataset D (line

6), which is used for training πi+1 (lines 7). These steps are repeated N times

until a desired policy is obtained (line 3 and 9).
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Figure 5.2: Proposed DAgger for dynamic situations

5.3 Proposed Method

5.3.1 DAgger Training Framework Using Adversarial Agent Pol-

icy

The proposed framework adds the adversarial agent policy (πadvi
) to the DAgger

training process to generate data for the ego agent policy training. A schematic

diagram of the proposed DAgger training framework is shown in Figure 5.2.

The modeled dynamic obstacle policy πdyn used in the original DAgger for

dynamic situations is replaced by πadvi
(see line 5 in Algorithm 5). The process

of training πadvi
is shown in the red box of Figure 5.2 and indicated in the line

8 of Algorithm 5.

The adversarial agent policy πadvi
is configured to take an action that com-

petes with the ego agent policy πi and is trained through RL. For example, if πi

behaves to avoid dynamic obstacles, πadvi
acts to block the ego agent (πi). This

πadvi
does not actually exist in the real-world, and it is proposed to generate

data for πi training. Thus, πi can be trained for more difficult situations than
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dynamic situations that could happen in the real-world.

Figure 5.3 shows the detailed training loop process. In the first step of the

DAgger training loop (i = 0), the ego agent policy πBC is trained with BC

in a static environment because there is no trained πadvi
. In the subsequent

process, πi is trained with a play of πadvi
, and then πadvi+1 is trained by playing

trained πi. During this process, πi is trained to perform better against πadvi
,

and πadvi+1 is also trained to perform better on πi. The performance of πi and

πadvi
improves to outperform each other over and over again, and πi=N obtained

by performing N training times finally shows close to the best performance.

Among training data samples that can be generated for πi training in dy-

namic situations, the distribution of practically valid data samples is partial.

This is depicted in the black dotted box of Figure 5.3. For example, in dynamic

situations of autonomous driving, valid data samples include situations in which

ego vehicle’s future driving trajectory is overlapped with that of dynamic obsta-

cle while having various directions and speed relationships. However, it is not

easy to obtain such samples by modeling πadvi
manually or with the traditional

methods. On the other hand, the proposed framework that trains πi using πadvi

in DAgger can generate the valid data according to following two factors.

First, the proposed πadvi
automatically generates valid training data sam-

ples by considering the updated πi performance in repeated DAgger training

steps without manual modeling. At each DAgger training step, additional data

may be collected with a distribution different from that of the previously col-

lected data. Since πi can be trained on situations that have not been sufficiently

covered in previous DAgger training steps, only the data necessary for training

are gradually aggregated into the DAgger training dataset. Thus, the number

of DAgger iterations can be reduced without wasted training steps.
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Figure 5.3: Detail proposed training framework and its effect

Second, the training process of the proposed framework is similar to the

curriculum learning process [116], which can help πi to be trained better through

situations that gradually illustrate increasingly complex tasks. In the initial

course of DAgger training, πi begins to be trained about the easy πadvi
that

has not been learned sufficiently. As the DAgger training process progresses, πi

is trained for increasingly difficult situations with πadvi
that has been improved

by the training process. This increases the learning efficiency and robustness of

the training, which can speed up the convergence rate of πi training and help

generalization [116].

5.3.2 Applying to Oncoming Dynamic Obstacle Avoidance Task

In this chapter, the proposed training framework is applied to a dynamic obsta-

cle avoidance task in a semi-structured environments of autonomous driving. As

shown in Figure 5.4, the ego agent policy (πi) and the adversarial agent policy

(πadvi
) drive from opposite side on a road with no lanes and a width of about

three cars, such as a parking lot or an alley. πi behaves to avoid a dynamic ob-

stacle without colliding with static obstacles The dynamic obstacle agent acts
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to block the driving of πi and consists of πadvi
. Both agents have autonomous

driving systems that use only in-vehicle sensors without global information and

predicted trajectory of a dynamic obstacle.

5.3.2.1 Ego Agent Policy

The ego agent policy πi is trained using the DAgger algorithm. πi is approxi-

mated as a convolutional recurrent neural network (CRNN). An input (state)

of πi consists of a set of 10 sequential occupancy grid maps (OGMs). This map

considers obstacles and lanes as occupied grids, and the ground to be unoccu-

pied. The area of the future trajectory of the dynamic obstacle is additionally

reflected as occupied on this map. The action of the ego agent policy is the look-

ahead point [70], which is the point the ego agent will reach, and the steering

angle and velocity are obtained through the pure pursuit algorithm [48].

The expert policy (πexp) for collecting BC and DAgger training data con-

sists of a forward simulation algorithm, not a human-in-the-loop design that

human must intervene during DAgger training. This is because, in repeated

DAgger iterations, this algorithm can obtain state-action relationships in a

consistent pattern. However, humans are heuristic by manually labeling data

in human-in-the-loop. In addition, the DAgger execution process can be config-

ured automatically as human intervention is not required. Although the process

of obtaining data with this algorithm requires a lot of computation time, the

output of the network trained on this data can be computed in real-time.

Through the forward simulation, look-ahead points (Lfree) in unoccupied

grids of OGM (state) are searched:

Lfree ⊂ LOGM , (5.1)
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Figure 5.4: Proposed training framework is applied to dynamic situation of
autonomous driving. The ego agent (white, left) avoids static and dynamic
(adversarial agent) obstacles. The adversarial agent (red, right) blocks the ego
agent‘s driving.

where LOGM is a set of look-ahead points of all grids existing in OGM. The

cost of each look-ahead point lfree (∈ Lfree) is calculated through the objective

function, O(OGM, lfree). Among Lfree, one look-ahead point having the largest

objective value is obtained and is denoted as ldata. During the DAgger execution,

if the action discrepancy (τ̂) between ldata and πi output is greater than a

threshold (τ), ldata is labeled as the action and collected as additional data

(Di) along with the state (see line 5 in Algorithm 5).

The objective function to obtain ldata is as follows:

O(OGM, lfree) = α× FreeT raj(OGM, lfree)

+ β ×DistLong(OGM, lfree)

+ γ × FreeLat(OGM, lfree),

(5.2)

where α, β, γ are gains for each sub-objective functions. FreeT raj returns a ratio

of an unoccupied area for an area around the ego agent’s future driving trajec-

tory. This trajectory is obtained using the kinematic bicycle model according

to the steering angle and velocity from the center of the vehicle’s rear wheel
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to lfree. DistLong calculates a longitudinal distance between the ego agent and

lfree. This distance is normalized by dividing by the maximum longitudinal

distance of OGM. FreeLat obtains a ratio of unoccupied region around both

sides of the vertical direction from lfree to the end of the OGM. Here, the ver-

tical direction is perpendicular to lfree from the ego agent. All sub-objective

functions have values between 0 and 1.

5.3.2.2 Adversarial Agent Policy

The objective of the adversarial agent policy (πadvi
) is to block the ego agent,

and πadvi
is trained by RL. Either DAgger and RL can be used. Since πadvi

is

trained to perform a simple task, RL can also achieve sufficient performance.

Training through random actions with a simple reward function in RL is more

appropriate than defining an optimal expert policy πadvi
for DAgger. πadvi

is

trained with the recurrent proximal policy optimization (PPO) algorithm in

RL [117].

The state of πadvi
is OGM, and static obstacles are not reflected in the state

and the reward function. This is because when πadvi
faces a dynamic obstacle,

it rarely collides with the static obstacles, and it is difficult to train πadvi
to

avoid the static obstacles while blocking πi. Besides, unlike the πi state, the

future trajectory of the dynamic obstacle is not reflected in the πadvi
state. The

reason for this is to balance the training speed between πadvi
and πi, so that

πadvi
does not diverge. This is because the behavior of πadvi

, which blocks πi, is

easier than that of πi, and πadvi
is trained faster than πi. The reward function
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settings are as follows:

R =


+ dmax − d

dmax
, To get close to ego agent,

− t

tmax
, To get close quickly,

(5.3)

where d is the distance between the ego agent and the adversarial agent, and

dmax is the maximum distance that d can have. t is the time step performed

in each training episode and tmax is the maximum value of t. The action is the

steering angle and velocity.

5.4 Experiments

The proposed DAgger training framework using adversarial agent policy method

was applied to autonomous driving with dynamic environments, and the per-

formance was analyzed.

5.4.1 Experimental Setup

The proposed method was developed and tested in simulation. Autonomous

driving environments including a parking lot were built by Unreal Engine 4.

A CARLA simulator [90] was used to collect training data and to implement

the policy. To get accurate state (OGM) without occlusion, the camera was

positioned at x: 5.7 m (forward), y: 0.0 m (left), and z: 5.7 m (upper) relative

to the vehicle center, and the pitch angle was -90◦. The size of OGM was 80 ×

80, and each grid size was 0.125 m. The velocity range was -3.0 to 7.0 km/h.
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5.4.1.1 Ego Agent Policy Training

The ego agent policy πi consisted of convolutional networks with 32 and 64

channels, and the long short-term memory (LSTM) layer with size 16 was con-

nected to them. The flattened and fully connected layers with 32 nodes were

connected to these layers with 25 % dropout. The action was predicted by con-

necting a fully connected layer with 2 nodes. The Adam optimizer with a 10−5

learning rate was used. The epochs were 10 k, and the batch size was set to

512.

The gain hyper-parameters α, β, γ of the objective function O(OGM, lfree)

(5.2) were set to 10.0, 1.0, 1.0. If the value of O(OGM, lfree) was calculated

to be less than 9.5, it might be experimentally regarded that a sufficiently safe

driving was impossible, and lfree data for this case was not collected. Then,

the steering angle was fixed at 0◦ and the vehicle drove backward with -3.0

km/h. Also, if a collision occurred due to a look-ahead point ldata obtained

through O(OGM, lfree), data from the starting point to the collision was not

collected. When 9 seconds have elapsed since the start of driving, the ego agent

was considered to be stuck, and data was not collected. If the distance between

the ego agent and the adversarial agent was less than 5.5 m, the adversarial

agent was stopped to avoid collision caused by itself.

The starting position of the ego agent was randomly determined in the

range of y axis: ±2.3 m and yaw: ±15◦ with respect to the leftmost-centered

axis (see left side of Figure 5.6). While driving, if the x position of ego agent

exceeded 20 m, passed an adversarial agent, or a collision occurred, the ego

agent was respawned. A total of 20 executions of the above process was one

DAgger training iteration.
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5.4.1.2 Adversarial Agent Policy Training

The Stable Baselines3-contrib library [118] was used for the adversarial agent

policy πadvi
training. The recurrent PPO algorithm was implemented using the

RecurrentPPO-CnnLstmPolicy function provided in this library. In the reward

function (5.3), the maximum distance between the two agents (dmax) was set

to 20 m, and the episode length (tmax) was set to 128 frame. batch size was 128

and epoch was 10.

The starting position of the adversarial agent was 20 m of x, and y and yaw

had random values within ±2.3 m and ±15◦ (see axis in left side of Figure 5.6).

If x position of the adversarial agent was less than 0 m, or if it passed the ego

agent, or a collision occurred, this agent was respawned to the starting point.

A total of 100,000 frame times of the above process was one πadvi
training

execution process. During training, the policy with the maximum reward in an

episode was saved and used in the next training iteration. The reward was the

accumulated value of frames until tmax, occurring collision, or passing πi.

5.4.2 Experimental Result

In the proposed framework, 10 iterations of DAgger and RL training were per-

formed (N = 10). This value was sufficient to check the performance change of

the ego and adversarial agent policies as training was repeated.

5.4.2.1 Performance of Adversarial Agent Policy

The performance of the trained adversarial agent policies were tested to check

if they were improved with the proposed training framework. As training pro-

gressed (i increases), πadvi
was trained by playing the ego agent policy πi−1.
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Here, πadvi
is adversarial agent policies trained with RL. After training ends

(after N becomes 10), each trained πadvi
was played 100 times with πi=10, and

the number of times that πadvi
blocked the driving of π10 was counted.

Figure 5.5: Adversarial agent policy that gradually improves as training pro-
gresses

As i increased, the number of times πadvi
blocked the driving of π10 increased

(see Figure 5.5). These results demonstrated that the performance of πadvi

increased gradually as training was performed.

5.4.2.2 Ego Agent Policy Performance Comparisons Trained with /

without Adversarial Agent Policy

In DAgger training, the performance of the ego agent policies trained with and

without πadvi
was compared. In the original method, as the DAgger training

progresses, πi was trained by playing πadvi=1 which was trained only once with-

out further performance improvement. The proposed method trains the ego

agent policy πi by playing πadvi
trained in the i learning step. After training

is over, each πi was played with πadvi=10 100 times, and the number of times

πi avoided against driving of πadv10 was counted. Here, πadv10 showed the best

blocking performance for πi.
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(a)

(b)

(c)

Figure 5.6: Comparison of trained ego agent policy performance with and
without adversarial agent policy. The ego agent policy trained at each DAgger
training step was played against πadvi=10 (a-b) or πparking (c), and the number
of collisions was counted. (a): trained environment (parking lot), (b): un-trained
environment (empty space), (c): un-trained environment (parking situation).

The test result is shown in Figure 5.6. In both the original and proposed

DAgger methods, as i increased, the number of times that πi avoided the driv-

ing of πadv10 decreased. πi trained with the proposed method (middle plots with

red bar in Figure 5.6) showed a lower number of collisions than the original

method (left plots with black bar in Figure 5.6). This could be seen both in
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the trained environment (see Figure 5.6(a)1) as well as in the untrained envi-

ronment (see Figure 5.6(b)2 and 5.6(c)3). In particular, although the parking

situation (Figure 5.6(c)) was quite different from the trained environment, the

proposed method showed fewer collisions. This is because the adversarial agent

policy acted the extreme behavior of blocking the ego agent, and the ego agent

had learned to cope with it.

5.5 Conclusion

This chapter proposes the DAgger training framework that uses the adversar-

ial agent policy to deal with dynamic environments. The proposed adversarial

agent policy competes with the ego agent and is trained to block the driving of

the ego agent. Therefore, training data for various situations in which the ego

agent was not trained in the previous DAgger steps can be automatically gener-

ated without the need to model dynamic situations. Besides, the ego agent can

be trained gradually from easy to difficult situations. In the autonomous driv-

ing experiments in dynamic environments, the performance of the ego agent

and adversarial agent policy was gradually improved. The proposed method

shows a lower number of collisions than a method trained without using the

adversarial agent policy in trained and untrained environments. In the future,

a sim-to-real method will be studied to apply the policy trained by our method

in the simulation to the real environment.

1Result of Figure 5.6(a): https://youtu.be/OEbXnNJts88
2Result of Figure 5.6(b): https://youtu.be/e_7JpmM0eFs
3Result of Figure 5.6(c): https://youtu.be/LF5nrRQREoI
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Chapter 6

CONCLUSIONS

This thesis involves autonomous driving technologies for semi-structured envi-

ronments with static and dynamic obstacles such as parking lots or alleyways. In

such environment, the drivable area of width and curvature vary with no lanes,

and obstacles are unknown in advance and existed in various forms. The pro-

posed methods deal with research on learning-based navigation that can ensure

safety through enough training and practical application in real environments.

These methods use vision sensor and a simple topological map constituting in-

tersections and roads, and do not use the expensive HD-map and localization

data that may be inaccurate in the semi-structured environment.

Specifically, the proposed multi-task network obtains an input data for

motion-planning algorithms that do not consider intersections. It detects not

only the drivable area but also the branch roads at an intersection only with

vision data, and the drivable area with one branch road is obtained according

to the navigation information. The proposed method obtained higher accuracy

than the model-based branch road recognition method in actual parking lots,

and successful navigation was possible. To drive towards the drivable area, im-
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itation learning is used, and the proposed imitation learning method selects

the look-ahead point on the drivable area. Even when the vehicle is controlled

with a trained network action (even in human-loop-loop design), a human ex-

pert can easily select the optimal action without a separate joystick device, so

DAgger can be applied to actual autonomous driving. As a result of testing in

actual parking lots where the width and curvature of the drivable area change

significantly and shadows exist, the vehicle using DAgger with look-ahead point

navigated more safely than the model-based motion planning algorithm. In ad-

dition, a WeightDAgger algorithm is proposed to more accurately imitate the

expert behavior in unsafe or near-collision situations. The proposed algorithm

can train the policy with a high learning rate on data having low accuracy.

By applying WeightDAgger to the existing DAgger algorithm, a policy similar

to that of the expert could be obtained with fewer DAgger iterations and less

human effort. In order to apply such algorithms to dynamic environments, a

DAgger training framework is proposed by modeling dynamic obstacles as the

adversarial policy agent competing with the agent. Both agents are trained to

perform progressively higher, the agent avoids various and increasingly difficult

dynamic situations. In untrained parking and oncoming driving situations, the

proposed method showed a lower collision rate than DAgger without using the

adversarial policy agent.

The proposed methods are used when the autonomous vehicle enters a semi-

structured environment with the topological map without lanes, after driv-

ing with existing commercialized technology in a structured environment with

lanes. Although these methods focus on the semi-structured environment, they

can be applied to any autonomous driving system that has an input with a form

of the 2D occupancy grid map in any environment, and can also be used to any

vehicles and various mobile robots. However, if the accuracy of the occupancy

grid map is low or the vehicle drives at un-trained environments, the proposed
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methods may not handle well and danger situations will be occurred. Thus,

further studies to address these problems are needed to propose a repetitive

training framework by automatically collecting additional perception and driv-

ing data for various real environments. Furthermore, by generating additional

training data with a small distribution from the data collected while performing

DAgger, human effort required for data collection can be reduced.
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Appendix A

FAST AND ACCURATE VISION-BASED
AUTONOMOUS PARKING
This appendix introduces methods for performing autonomous parking using

only vision. The overall system is described in Sec. A.1. In particular, methods

for performing accurate parking (Sec. A.1.1 and Sec. A.1.2) and for quickly

generating a parking path (Sec .A.2) are explained in detail.

A.1 Vision-based Re-plannable Autonomous Park-

ing System

The system architecture of the vision-based autonomous parking system is

shown in Figure A.1. Cameras are mounted on the front, rear, left, and right

sides of the vehicle. These are converted into a bird’s-eye-view image with the

distortion correction using the Scaramuzza library [119] and integrated into

one image. This image is used to recognize the parking spot and distinguish

between drivable/non-drivable areas. The position and direction of the parking

spots are detected by three methods, which are described in Sec. A.1.1. The

drivable/non-drivable area perception is used for collision-free path generation.

The parking path planner generates a path avoiding obstacles while considering

110



(a)

(b) (c) (d)

Figure A.1: Vision-based autonomous parking system.
(a) Vision-based parking spot detection methods, (b) Open-loop parking sys-
tem, (c) close loop parking system (re-planning).

non-holonomic constraints. A detailed explanation of a method to quickly plan

the path is introduced in Sec. A.2. The localization data, which is the position

and direction of the vehicle relative to the parking path, is used to track the

parking path. The dead reckoning method is used as odometry to obtain local-

ization data using 4 wheel speed. The Kanayama algorithm [120] for tracking

the parking path by reducing the relative position and direction errors between

paths simultaneously.
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A.1.1 Parking Spot Detection

Three parking spot detection methods are developed, and their advantages and

disadvantages are analyzed. The first method is the bounding box detection

method using the YOLO network [46] (see the blue box and the red arrow in

Figure A.1(b)). A rectangle containing the lines of the parking area is trained

as a bounding box. The center of this box becomes the position of the parking

spot. To find the direction of the parking spot, the longest line inside the box

is detected as the Houghline transform function.

The second method is to use corner points [121]. The point where the paral-

lel/vertical lines of the parking spot intersect is the corner point. This point is a

training method by labeling this point with a bounding box. It is classified into

two points: near (‘OUT’, the white points) and far (‘IN’ the black points). If

two or more points are recognized among these points, the pose of the parking

spot can be obtained according to a positional relationship between the vehicle

and points. This is indicated in the light blue arrow Figure A.1(b).

Depending on the result of segmenting the parking line, the corner point

may not be recognized accurately. To deal with this, a shape that is the set

of yellow dots in Figure A.1(b) is defined. The position and direction most

matching between this shape and the parking line are searched greedily. To

save time, only the parking lines that exist between corner points are searched.

The pose of the parking spot is obtained according to the position and direction

of the vehicle and shape, as shown in the yellow arrow in Figure A.1(b).

The advantages and disadvantages of each method are shown in Table A.1.

Overall, the second method using the corner point had relatively high accuracy

for overall parking situations.
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Table A.1: Comparison of Parking Spot Detection Methods
pros cons

Bounding Box 90 % < accuracy - < 92 % accuracy
- Reverse parking X

Corner Points Accuracy: 95 % ± 2 < 97 % accuracy

Shape Matching Perfect perception result
→ 100%

- Not real-time
- Accuracy: 93 % ± 7

*Note Accuracy is a qualitatively assessed value.

(a) (b)

Figure A.2: Results with (a) and without (b) re-planning method.

A.1.2 Re-planning Method

As shown in Figure A.1(c), the open-loop parking system generates and tracks

the parking path only once after detecting the parking spot, which has sev-

eral limitations. It is difficult to accurately detect a parking spot because cor-

recting the image distortion and segmenting parking lines are not precise (see

Figure A.1(b)). Thus, performing accurate parking is impossible. In addition,

when localization is conducted by dead reckoning, errors occur because the ve-

hicle model cannot be accurately reflected and external factors such as friction

arise. In this case, even if there is no tracking error, it is difficult to accurately

perform parking. A position error of 0.07 to 0.15 m occurred between the center

of the parking spot and the vehicle (see Figure A.2(a)).
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To deal with this, the re-planning method of the parking path is proposed,

after stopping in a specific situation while tracking the initially planned path.

Here, there are 4 specific situations: i) At the forward/backward switching point

(the moment the vehicle is stopped); ii) Moments of increased risk of collision;

iii) Moment the tracking error becomes large; iv) The vehicle gets closer to the

parking spot (only done once).

Even if the above conditions are satisfied, there are exceptions in which re-

planning is not performed: i) If the parking point is not detected (the parking

path cannot be generated); ii) If it is detected but far from the parking point

(due to the presence of detection error); iii) When the difference in distance

between the initially recognized parking spot and the newly detected parking

spot is less than 0.05 m (no need to plan a new parking path);

Before re-planning the path, the parking spot is re-recognized and the lo-

calization is reset. Accordingly, it is possible to detect the parking spot at a

location close to it and reduce the error of initial detection at a distant point.

In addition, the dead reckoning error can be reset, so the accumulated local-

ization error can be removed. The results are as shown in Figure A.2(b). The

large sedan (Genesis, G80) reached the parking spot without collision during

10 tries, and the distance error was within about 0.05 m.
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A.2 Biased Target-tree* with RRT* Algorithm for

Fast Parking Path Planning

A.2.1 Introduction

For autonomous parking, it is necessary to plan a collision-free path taking

into account a vehicle’s non-holonomic constraint. As a method of parking

path planning, researches have been conducted in the following categories; an

optimization-based method for searching a path that satisfies an objective func-

tion and constraints [122]; a grid search-based method that extends a tree into

a grid, such as the hybrid-A∗ algorithm [123]; a sampling-based method that

extends a tree with randomly selected samples.

Among these methods, RRT∗ [124], the representative algorithm of the

sampling-based method, has been used for parking [59, 125–128]. This is be-

cause it can plan a path that is closer to the shortest path faster than other

methods, even in complex parking situations. Besides, it is possible to find the

path relatively quickly even when many forward/reverse switching are required

due to a large minimum turning radius and a narrow parking environment. The

path can be searched with a small number of tree expansions without searching

for all path sets or all branches for the tree extension in all grids. Nevertheless,

if the search space or the parking goal is tight, RRT∗ may take large planning

time.

A target-tree algorithm [126] is used together with RRT∗ to further reduce

the planning time compared to using RRT∗ alone. It pre-generates a set of the

backward paths around the parking spot, called a target-tree. At the initial pose,

a path is extended through RRT∗, and this extension is stopped when it reaches

the target-tree. Hence, a search range of the RRT∗ path is reduced to the target-
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(a) (b) (c) (d)

Figure A.3: Process and limitations of target-tree∗ algorithm with RRT∗.
(a) The target-tree is generated at the initial step. (b) The RRT∗ path is ex-
tended in the entire map, and the target-tree samples qtar are sampled within
the target-tree. (c) The RRT∗ path is reached to the target-tree through the
connected random sample qcon. The RRT∗ path prrt∗ and the target-tree path
ptar are aggregated as the parking path, ppark. (d) After the planning time,
several parking paths are generated, and the shortest parking path is returned.

tree rather than the parking spot. Furthermore, the target-tree∗ algorithm with

RRT∗ [129] has been proposed in our previous study to increase the probability

of obtaining a shorter parking path than the target-tree algorithm [126]. It

searches multiple paths connecting the RRT∗ path and the target-tree, and

selects the shortest one. Given sufficient planning time, the shortest parking

path can be found.

However, if the planning time is not sufficient, the target-tree∗ algorithm

[129] may be difficult to plan the shortest path. This is because a sample con-

nected between the RRT∗ path and the target-tree is randomly searched from

the entire range of the target-tree. Due to this randomness, the connected ran-

dom sample can be selected far from the shortest parking path. Besides, the

RRT∗ path length ratio may be high in the entire parking path. Moreover,

the percentage of RRT∗ path lengths in total parking paths can be high. This

reduces the effect of using the target-tree, and the planning time is increased.
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To find the shortest path faster than the target-tree∗ algorithm [129], this

paper proposes a biased target-tree∗ algorithm that additionally defines a biased

range over which the connected random sample is mainly searched through

deep learning. This range is around of an optimal connected sample where the

shortest parking path can be planned as fast as possible. Thus, the probability of

obtaining the shortest path becomes higher than that of the connected random

samples are searched in the entire target-tree range. This network is trained with

an occupancy grid map as the input data and the optimal connected random

sample’s location as the label data.

A.2.2 Proposed Method

The proposed algorithm, the biased target-tree∗, searches the shortest parking

path faster than the target-tree∗ algorithm [129] by adding the data-driven

method to the target-tree∗ algorithm. It can also further reduce the deviation

of the path length, and increase the probability of searching the shortest path

to reach the parking spot.

The biased target-tree∗ algorithm defines a biased region in which the target-

tree sample qtar is sampled with a high probability. This range is around the

shortest (optimal) parking path. With this biased range, qtar is not sampled

randomly over the entire range of the target-tree, but is randomly sampled closer

to this biased range with a higher probability. The biased range is obtained once

after the target-tree initialization, and this range is used when sampling qtar at

each step of extending the RRT∗ path such as Figure A.3(b) and Figure A.3(c).

Thus, the connected random sample qcon between the RRT∗ path and the target-

tree is also searched close to the biased range.

In order to obtain the biased range, a deep neural network is used, and it is
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(a) (b) (c)

Figure A.4: Process of collecting label data of network, µ∗; and process of biased
target-tree∗ algorithm.
(a) The target-tree∗ algorithm with RRT∗ is conducted with enough time and
iterations, and searches for paths that are close to the shortest path. According
to the connected random samples, qcon, length ratios of the RRT∗ path to
the total parking path are different. (b) To minimize RRT∗ expansion, the
location of qcon in a path having the smallest length ratio (0.4) of the RRT∗

path becomes µ∗. (c) The deep neural network takes the occupancy grid map
and returns the biased range’s (red area) center point µ and variance σ2

µ∗ . The
darker the target-tree sample, the higher the probability that the target-tree
sample qtar is sampled.

trained through supervised learning. One of the network outputs is the center

point of the biased range, µ∗ ∈ {x, y}, which is the label data of the network.

To obtain µ∗ for training, the target-tree∗ algorithm with RRT∗ is conducted N

times during an each given planning time (T ). Among the generated N paths,

the location of the connected random sample qcon of the path is designated as

µ∗ through the following method.

First, nshort paths are found with a sufficient planning time T . Due to

T , a path close to the shortest length is likely to be included in nshort. (see

Figure A.4(a), e.g. nshort is 4, the path, prrt∗
2
∪ ptar2 , is the shortest.); In

detail, among the generated N paths, nshort paths are selected in ascending

order from the shortest length.

Second, one path is selected that can be searched as quickly as possible

118



among the obtained nshort paths; This path has the smallest prrt∗ length ratio,

which is shown in Figure A.4(b). Even if nshort are short enough, length ratios

between the RRT∗ path (prrt∗) and the target-tree path (ptar) in the entire path

(ppark) may differ depending on where qcon is selected. As shown in A.4(a), the

positions of qcon1 and qcon2 are different, and the ratio of path by qcon2 is lower

than that by qcon1 . The shorter prrt∗ reduces RRT∗ extension time to reach the

target-tree, so the path planning time is shortened. Furthermore, the shorter

prrt∗ reduces the time required to rewire RRT∗ to reduce the length of prrt∗ .

A.2.3 Experiments

(a) (b)

Figure A.5: (a) Autonomous vehicle (provided by PHANTOM AI) and collision
checking range and (b) Parking situations for data collection.

System Setup: The path planning algorithms including the proposed algo-

rithm were implemented based on the C++ version of the open motion planning

library (OMPL). These algorithms were tested in the real environment with a

Hyundai Genesis G80 vehicle (see Figure A.5(a)). An MSI GE 76 Raider laptop

computer was used to implement and execute these algorithms, and specifica-

tions are as follows; CPU: i9-11980HK (2.6GHz) octa-core / GPU: GeForce

RTX 3080 / Memory: DDR4 32 GB. The operating system of this computer is

Ubuntu, and the middleware is Robot operating system (ROS Noetic) was used

for communication with programs for the autonomous parking experiment.
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Occupancy Grid Map (OGM) Setup: In order to obtain OGM, im-

ages obtained from left, right, front, and rear cameras were transformed to a

composite bird’s eye view by using the Cam2World function in the Scaramuzza

library [119]. This image’s size was 17.5 m × 17.5 m with 200 × 200 resolution,

and it was divided into 25× 25 grids (see Figure A.5(b)). A deep neural network

was used to segment the drivable area, the obstacle area, the parking spaces,

and the parking line. To obtain the parking spot, cross points between the long

and short parking lines, were recognized through the YOLO network [121] (see

the white and black dots on the pink parking line Figure A.5(b)).

Path Planner Setup: The closest parking spot was regarded as the goal of

the path planner, and the center of the rear wheel was set to the initial pose. The

minimum turning radius of the vehicle was 7.0 m. The hybrid curvature [130]

steering function was used to extend the RRT∗ path to the random sample,

qrrt∗ or qtar. Through this function, a continuous curvature path (except for

the forward/backward switching point) can be planned.

Twelve collision check circles were configured to cover all areas of the ve-

hicle to ensure that the extended trees do not collide with obstacles (see Fig-

ure A.5(a)). The number of backward paths in the target-tree was 21 from

−κmax to κmax, and the interval between each sample in the path is 0.01 m.

Network Training Setup: To collect the label data µ∗ (the center point

of the biased range), the target-tree∗ algorithm with RRT∗ [129] was conducted

N = 100 times with T = 100.0 sec, and nshort was set to 5. These N , T , and

nshort parameters were set to sufficiently find the shortest (optimal) parking

path in the range of OGM and found experimentally. We gathered training data

for two parking situations (see Figure A.5(b)). At the same time, OGM, initial

pose, and parking spot data were collected at 0.5 m intervals, and a total of

67 data were collected. The multi-variate Gaussian log-likelihood loss function
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LGaui [79] was used to predict µ∗ and its variance σ2
µ∗ The Adam optimizer with

a 10−5 learning rate was used, whereas pre-training weights were not used. The

epochs were set to 10 k, and the batch size was 8.

Results: The sampling-based path planning algorithms for parking were

compared; Informed RRT∗ [131] (INF), Bi-directional RRT∗ [132] (BID), Target-

tree algorithm with RRT∗ [126] (TT ), Target-tree∗ algorithm with RRT∗ [129]

(TTS), Biased Target-tree∗ algorithm with RRT∗ (proposed, BTTS). The path

planning was conducted 100 times in 4 parking situations (all un-trained en-

vironments) according to each path planning time. The conducted planning

times were set to 0.01, 0.1, 1.0, and 10.0 sec. Here, TT, TTS, BTTS using

the target-tree had the target-tree initialization time of about 3 msec. The suc-

cess rate, which is the number of paths planned to the goal, was measured.

Besides, the path length’s minimum, maximum, mean, standard deviation were

also calculated.

The network outputs and the planning results are shown in Figure A.6

(a) (b) (c) (d)

Figure A.6: Path planning results in un-trained environments using biased
target-tree∗ algorithm with RRT∗.
The above paths are the shortest path among 100 paths planned in 0.01 sec.
The blue path is the RRT∗ path, and the orange path is the target-tree path.
The red area is the biased range obtained by the deep neural network, and
the darker it is, the lower the variance. The orange arrows are the target-tree
samples, and the darker they are, the more likely they are selected.
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Table A.2: Result for Figure A.6(a)
Success

Rate
Min.
[m]

Max.
[m]

Mean
[m]

STDEV
[m]

0.01
sec

INF 0/100 - - - -
BID 4/100 20.33 49.78 40.20 11.63
TT 37/100 13.93 38.41 16.51 4.38
TTS 34/100 13.93 24.90 16.75 3.29

BTTS 98/100 13.93 15.04 14.13 0.22

0.1
sec

INF 0/100 - - - -
BID 82/100 35.84 83.00 51.42 8.80
TT 96/100 13.93 73.76 25.90 17.58
TTS 95/100 13.93 70.57 21.68 14.40

BTTS 100/100 13.93 13.93 13.93 0.0

1.0
sec

INF 10/100 15.87 72.76 54.16 19.20
BID 100/100 15.75 65.00 48.20 6.52
TT 100/100 13.93 86.43 27.91 20.30
TTS 100/100 13.93 75.84 16.73 9.51

BTTS 100/100 13.93 13.93 13.93 0.0

10.0
sec

INF 16/100 19.80 69.21 48.10 16.24
BID 100/100 25.74 60.75 45.85 4.76
TT 100/100 13.93 72.46 25.31 16.51
TTS 100/100 13.93 14.66 14.10 0.17

BTTS 100/100 13.93 13.93 13.93 0.0

Video Link: https://youtu.be/q7yETLi7g88

Table A.3: Result for Figure A.6(b)
Success

Rate
Min.
[m]

Max.
[m]

Mean
[m]

STDEV
[m]

0.01
sec

INF 2/100 16.25 20.78 18.51 2.26
BID 64/100 17.30 50.68 28.80 6.97
TT 73/100 14.00 33.88 19.20 5.58
TTS 74/100 14.00 40.78 17.73 5.46

BTTS 95/100 14.00 22.30 14.33 1.16

0.1
sec

INF 14/100 15.66 40.41 25.21 8.52
BID 99/100 15.91 41.96 23.94 4.90
TT 100/100 14.00 38.00 19.61 6.40
TTS 100/100 14.00 30.70 15.47 2.87

BTTS 100/100 14.00 14.14 14.00 0.20

1.0
sec

INF 32/100 16.50 91.39 28.40 14.19
BID 100/100 16.28 37.14 23.30 3.52
TT 100/100 14.00 47.61 20.57 7.36
TTS 100/100 14.00 15.42 14.12 0.20

BTTS 100/100 14.00 14.60 14.00 0.0

10.0
sec

INF 51/100 14.14 57.00 18.80 6.41
BID 100/100 15.22 34.49 21.20 3.67
TT 100/100 14.00 38.00 19.73 6.30
TTS 100/100 14.00 14.14 14.10 0.30

BTTS 100/100 14.00 14.60 14.00 0.0

Video Link: https://youtu.be/unns1N4U8Ok

and Table A.2, A.3, A.4, A.5. In all situations, the proposed algorithm BTTS

had the highest path planning success rate regardless of the planning time.

Especially at 0.01 sec planning time, BTTS had 86.9, 25.3, 2.45, and 2.3 times

higher success rate than INF, BID, TT, and TTS, respectively. This value is the

average of the success rates for 4 situations. Moreover, the minimum, maximum,

mean and standard deviation path length of BTTS was shorter than these

of other algorithms. Exceptionally in Figure A.6(d) parking situation, TTS

planned shorter path, and lower mean and deviation than BTTS, but the

differences were small (see Table A.5).

BTTS had the highest probability of planning a path close to the shortest

path. The shortest path was defined as the shortest path among 100 paths

obtained by TTS with 100.0 sec. Figure A.7 is a graph of the probability of

generating a path close to the shortest path in the 4 parking situations. This

probability was defined as the ratio of the number of paths showing a difference

from the shortest distance was less than 0.05 m among 100 paths. The reason for
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Table A.4: Result for Figure A.6(c)
Success

Rate
Min.
[m]

Max.
[m]

Mean
[m]

STDEV
[m]

0.01
sec

INF 0/100 - - - -
BID 0/100 - - - -
TT 15/100 14.22 24.38 18.80 3.87
TTS 19/100 14.22 24.38 19.55 3.69

BTTS 74/100 14.22 32.86 14.47 2.15

0.1
sec

INF 1/100 15.55 15.55 - -
BID 3/100 31.80 33.24 32.43 0.59
TT 66/100 14.22 66.54 22.20 8.30
TTS 68/100 14.22 36.56 20.73 6.12

BTTS 96/100 14.22 21.67 14.35 0.93

1.0
sec

INF 1/100 25.50 25.50 25.50 -
BID 4/100 24.74 68.68 41.72 16.59
TT 92/100 14.22 72.40 24.18 10.48
TTS 94/100 14.22 41.28 18.12 5.22

BTTS 100/100 14.22 14.22 14.22 0.0

10.0
sec

INF 3/100 19.76 68.35 37.65 21.80
BID 9/100 31.50 55.99 41.84 7.99
TT 97/100 14.22 67.18 22.73 7.97
TTS 99/100 14.22 88.96 16.50 7.61

BTTS 100/100 14.22 14.22 14.22 0.0

Video Link: https://youtu.be/S46hWSfwCLQ

Table A.5: Result for Figure A.6(d)
Success

Rate
Min.
[m]

Max.
[m]

Mean
[m]

STDEV
[m]

0.01
sec

INF 0/100 - - - -
BID 71/100 10.80 35.92 26.57 5.69
TT 97/100 7.25 17.83 9.50 2.40
TTS 98/100 7.21 20.67 8.49 1.87

BTTS 100/100 7.22 9.73 8.52 1.50

0.1
sec

INF 9/100 10.75 25.12 14.72 3.92
BID 100/100 10.32 59.52 24.20 6.53
TT 100/100 7.25 20.67 9.58 2.62
TTS 100/100 7.21 8.79 7.53 0.26

BTTS 100/100 7.22 9.59 7.29 0.37

1.0
sec

INF 28/100 10.30 71.18 18.23 11.8
BID 100/100 11.40 44.52 20.94 5.15
TT 100/100 7.25 20.67 9.58 2.61
TTS 100/100 7.21 7.65 7.30 0.80

BTTS 100/100 7.22 7.22 7.22 0.0

10.0
sec

INF 54/100 9.66 62.39 15.63 11.74
BID 100/100 10.67 41.95 19.29 4.91
TT 100/100 7.25 33.16 9.83 3.51
TTS 100/100 7.21 7.41 7.24 0.3

BTTS 100/100 7.22 7.22 7.22 0.0

Video Link: https://youtu.be/nJB8vaM23U0

Figure A.7: Probability of Planning Shortest Path for Planning Time

this definition is that the shortest path is returned in multiple path generations,

and the shortest path is more likely to be generated if a path close to the shortest

length is frequently generated. In 0.01 sec planning time, the probability of

BTTS was more than 70 % averagely. BTTS had 100 % probability over 1.0

sec, and had the highest probability with all given planning times.
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초 록

본 학위논문은 자율주행 차량이 주차장에서 위상지도와 비전 센서로 내비게이

션을 수행하는 방법들을 제안합니다. 이 환경에서의 자율주행 기술은 완전 자율

주행을 완성하는 데 필요하며, 편리하게 이용될 수 있습니다. 이 기술을 구현하기

위해, 경로를 생성하고 이를 현지화 데이터로 추종하는 방법이 일반적으로 연구

되고 있습니다. 그러나, 주차장에서는 도로 간 간격이 좁고 장애물이 복잡하게

분포되어 있어 현지화 데이터를 정확하게 얻기 힘듭니다. 이는 실제 경로와 추종

하는 경로 사이에 틀어짐을 발생시켜, 차량과 장애물 간 충돌 가능성을 높입니다.

따라서 현지화 데이터로 경로를 추종하는 대신, 낮은 비용을 가지는 비전 센서로

차량이 주행 가능 영역을 향해 주행하는 방법이 제안됩니다.

주차장에는 차선이 없고 다양한 정적/동적 장애물이 복잡하게 있어, 주행 가

능/불가능한 영역을 구분하여 점유 격자 지도를 얻는 것이 필요합니다. 또한, 교

차로를 내비게이션하기 위해, 전역 계획에 따른 하나의 갈래 도로만이 주행가능

영역으로 구분됩니다. 갈래 도로는 회전된 바운딩 박스 형태로 인식되며 주행가능

영역 인식과 함께 multi-task 네트워크를 통해 얻어집니다. 주행을 위해 모방학

습이 사용되며, 이는 모델-기반 모션플래닝 방법보다 파라미터 튜닝 없이도 다양

하고 복잡한 환경을 다룰 수 있고 부정확한 인식 결과에도 강인합니다. 아울러,

이미지에서 제어 명령을 구하는 기존 모방학습 방법과 달리, 점유 격자 지도에서

차량이 도달할 look-ahead point를 학습하는 새로운 모방학습 방법이 제안됩니

다. 이 point를 사용함으로써, 모방 학습의 성능을 향상시키는 data aggregation
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(DAgger)알고리즘을별도의조이스틱없이자율주행에적용할수있으며,전문가

는 human-in-loop DAgger훈련과정에서도최적의행동을잘선택할수있습니다.

추가로, DAgger 변형 알고리즘들은 안전하지 않거나 충돌에 가까운 상황에 대한

데이터를샘플링하여 DAgger성능이향상됩니다.그러나,전체훈련데이터셋에서

이상황에대한데이터비율이적으면,추가적인 DAgger수행및사람의노력이요

구됩니다.이문제를다루기위해,가중손실함수를사용하는새로운 DAgger훈련

방법인WeightDAgger알고리즘이제안되며,더적은 DAgger반복으로앞서언급

것과 유사한 상황에서 전문가의 행동을 더 정확하게 모방할 수 있습니다. DAgger

를 동적 상황까지 확장하기 위해, 에이전트와 경쟁하는 적대적 정책이 제안되고,

이정책을 DAgger알고리즘에적용하기위한훈련프레임워크가제안됩니다.에이

전트는 이전 DAgger 훈련 단계에서 훈련되지 않은 다양한 상황에 대해 훈련될 수

있을뿐만아니라쉬운상황에서어려운상황까지점진적으로훈련될수있습니다.

실내외 주차장에서의 차량 내비게이션 실험을 통해, 모델-기반 모션 플래닝

알고리즘의 한계 및 이를 다룰 수 있는 제안하는 모방학습 방법의 효용성이 분

석됩니다. 또한, 시뮬레이션 실험을 통해, 제안된 WeightDAgger가 기존 DAgger

알고리즘들 보다 더 적은 DAgger 수행 및 사람의 노력이 필요함을 보이며, 적대적

정책을 이용한 DAgger 훈련 방법으로 동적 장애물을 안전하게 회피할 수 있음을

보입니다. 추가적으로, 부록에서는 비전 기반 자율 주차 시스템 및 주차 경로를

빠르게 생성할 수 있는 방법이 소개되어, 비전기반 주행 및 주차를 수행하는 자율

발렛 파킹 시스템이 완성됩니다.

주요어: 비전-기반 내비게이션, 룩-어헤드 포인트, 다중-작업 네트워크, 모방 학습,

데이터 집계 알고리즘, 가중 데이터 집계 알고리즘, 적대적 에이전트 정책

학번: 2016-26039
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