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Abstract

Contrastive learning has played a pivotal role in the recent success of unsupervised

representation learning. It has been commonly explained with instance discrimination

and a mutual information loss, and some of the fundamental explanations are based

on mutual information analysis. An analysis based on mutual information, however,

can be misleading. First of all, an exact quantification of mutual information over a

real-world dataset is challenging. It has not been solved because we cannot access the

true joint distribution function of real-world dataset before. Second, previous studies

have equated the limitations of contrastive learning with them of mutual information

estimation in the absence of the rigorous investigation for a relationship between them.

Third, what information is actually being shared by the two views is overlooked. Without

carefully examining what information is actually being shared, the interpretation can

be completely misleading. In this work, we develop new methods that enable rigorous

analysis of mutual information in contrastive learning. We also evaluate the accuracy of

variational MI estimators across various data domains, including images and texts. Using

the methods, we investigate three existing beliefs and show that they are incorrect. Based

on the investigation results, we address two issues in the discussion section. In particular,

we question if contrastive learning is indeed an unsupervised representation learning

method because the current framework of contrastive learning relies on validation

performance for tuning the augmentation design.

Keywords: representation learning, information theory, mutual information, variational

bounds of mutual information, deep representations, contrastive learning
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Chapter 1. Introduction

Among the core concepts of information theory, Kullback–Leibler (KL) divergence

has been a popular ingredient for machine learning. KL divergence serves as a dis-

similarity measure between two probability distributions. Another core concept of

information theory is Mutual Information (MI). MI quantifies the shared Shannon infor-

mation between two random variables, and it can serve as a fundamental measure of

dependency (Cover 1999). MI has become increasingly popular in recent deep learning

studies, including generative models (Chen et al. 2016) and language representation

learning (Oord, Li, and Vinyals 2018; Wang et al. 2020). In particular, (Hjelm et al. 2018;

Bachman, Hjelm, and Buchwalter 2019; Chen et al. 2020a; Chen and He 2020;

Grill et al. 2020a) studied self-supervised learning and achieved promising results

using contrastive loss (Oord, Li, and Vinyals 2018; Chen et al. 2018), where contrastive

loss has a strong analogy to the mutual information.

While MI is an elegant concept with extensive use cases, its exact evaluation over

real-world datasets is almost always impossible because of the unknown p(x, y). Even

when the joint probability distribution is known, evaluation can be challenging because

the integration over p(x, y) is nontrivial. To account for these problems, variational

MI estimators have been developed (Belghazi et al. 2018; Poole et al. 2019; Song

and Ermon 2019; 2020; Cheng et al. 2020). The variational estimators are based on

two steps. First, an analytical bound is derived where the bound is based on a critic

function f(x, y). Second, the bound is made tight by optimizing for a supremum or an

infimum over f(x, y). In recent works, deep neural networks have been used to model

the critic function. When a proper loss function is chosen and the learning of f(x, y) is

successful, the variational estimations have been shown to be accurate for a toy dataset.

To assess an MI estimator, a Gaussian dataset based on a multivariate Gaussian

model has been used (Belghazi et al. 2018; Poole et al. 2019; Song and Ermon 2019;

1



2020; Cheng et al. 2020). The toy dataset is convenient because it offers a simple

analytical formula of the true MI, I(X;Y ). With the true MI, the characteristics of

the estimated MI, Î(X;Y ), can be assessed. For instance, accuracy, bias, and vari-

ance of variational MI estimators have been analyzed by comparing I(X;Y ) and

Î(X;Y ) (Belghazi et al. 2018; Poole et al. 2019; Song and Ermon 2019; 2020;

Cheng et al. 2020). The Gaussian dataset, however, is far from being representative of

real-world datasets, because its underlying structure is purely statistical. For real-world

datasets with strong manifold structures, it has been pointed out that variational MI

estimators might be inaccurate and misleading (Song and Ermon 2019). It would be

ideal if real-world datasets with known true MI were available. In the absence of such

datasets, (Song and Ermon 2019) proposed three types of self-consistency test and

found that none of the existing MI estimators passed all the test. The result, however,

is limited in that a direct assessment of estimator accuracy is missing. To address this

issue, we propose a same-class sampling for positive pairing (Chapter 3). The idea

is to pair two inputs to have the same class label such that the two inputs’ true MI is

determined at the time of positive pairing. With the same-class sampling, we can assess

the true MI for any type of dataset under a mild assumption. In fact, we can control

the true MI. To the best of our knowledge, this is the first trial to use a non-Gaussian

dataset with known true MI values.

Even though we could assess the true MI of non-Gaussian datasets, we still have an

obstacle to using the variational MI estimators for analyzing the deep representations.

We need to investigate how MI estimators work for various data domains. In Chapter 4,

we conduct various experiments to scrutinize the estimation accuracy of variational

approaches on three different data domains, namely multivariate Gaussian, images, and

sentence embeddings. After we verify the accuracy of variational MI estimators, we

can examine the role of mutual information in unsupervised representation learning

by estimating MI between representations. In fact, MI has many use-cases in deep

learning applications, including non-vacuous generalization bounds (Xu and Raginsky
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2017), understanding training dynamics (Tishby and Zaslavsky 2015; Achille and

Soatto 2018), censoring representations (Moyer et al. 2018), and representation learning

based on the InfoMax principle (Bell and Sejnowski 1995; Hyvärinen and Oja 2000;

Oord, Li, and Vinyals 2018; Hjelm et al. 2018). In this study, we focus on contrastive

learning (Oord, Li, and Vinyals 2018), one of the most successful approaches in

unsupervised representation learning.

Contrastive learning has achieved remarkable success in the field of unsupervised

representation learning (Oord, Li, and Vinyals 2018; Belghazi et al. 2018; Bachman,

Hjelm, and Buchwalter 2019; Henaff 2020; Chen et al. 2020b; Tian, Krishnan, and Isola

2020; He et al. 2020; Khosla et al. 2020; Chen et al. 2020c; Gao, Yao, and Chen 2021;

Xie et al. 2021; Sordoni et al. 2021; Purushwalkam and Gupta 2020; Wu et al. 2020a;

Mitrovic et al. 2020; Tsai et al. 2020). When there are no annotations, contrastive

learning generates multiple views of a given image and learns useful representations

by pursuing an invariance. For this pretext task of instance discrimination, it has

been empirically found that InfoNCE loss (Oord, Li, and Vinyals 2018; Gutmann

and Hyvärinen 2010) is an effective training objective for a variety of downstream

tasks. InfoNCE loss not only plays a key role in achieving a robust and outstanding

performance, but it also provides an elegant interpretation where the representation

learning can be understood as a Mutual Information (MI) maximization between the

two augmented views (X and Y ) of a given image (Oord, Li, and Vinyals 2018;

Hjelm et al. 2018; Bachman, Hjelm, and Buchwalter 2019; Tian, Krishnan, and Isola

2020; Sordoni et al. 2021). Numerous works have studied contrastive learning based

on the theoretical interpretation, and some have become fundamental and crucial for

understanding contrastive learning.

An analysis based on MI of X and Y , however, can be tricky and misleading. We

summarize the limitations of previous approaches as follow:
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Figure 1.1. Illustration of the motivation of this study. To explain the success of con-

trastive learning, some key factors are frequently referenced, e.g., instance discrimi-

nation and aggressive augmentation. Among the numerous key factors, we focus on

InfoNCE loss, which has a strong analogy with MI. To relate the success of contrastive

learning to maximizing MI, we require rigorous investigation. Note that we define

good representation as a representation with high downstream-task performance for the

purpose of study.

Can we believe the estimation values? First, precaution is needed to interpret the

estimated MI value because the variational MI estimator provides only the lower

bound of MI. We explicate using a toy example as shown in Figure 1.2. If we simply

regard the estimated MI (orange line) as equivalent to the true MI (gray line), we

might derive an invalid conclusion that maximizing MI is beneficial. Because the

estimated MI is only the lower bound of the true MI, we must utilize the true MI

values to evaluate the estimated values. Second, an exact evaluation of MI requires the

joint distribution function p(x, y), but p(x, y) is not directly accessible for practical
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problems. For practical problems with complex neural representations and intractable

p(x, y), the neural estimators based on variational bounds are known to be the most

reliable (Belghazi et al. 2018; Poole et al. 2019). The neural estimators, however, do

not guarantee a sound analysis because they can only provide estimates, and we cannot

tell if the estimates are sufficiently accurate for the analysis of interest. This problem

can be alleviated with a practical dataset with known true MI values, but many previous

works simply assumed the estimates to be exact in the absence of true MI values.

Figure 1.2. A simple example whereby the estimated MI Î(hX ;hY ) and true MI

I(hX ;hY ) exhibit a clearly different relationship with the downstream-task accuracy.

What information is being shared by the two views? Is this what we are interested

in? The choice of data augmentation determines the joint distribution function p(x, y),

and p(x, y) determines not only the shared information I(X;Y ) (and I(hX ;hY )) but

also what will be learned during training. Without carefully examining the information

actually being shared by the two views, the interpretation can be completely misleading.

This issue can be alleviated by introducing the specific type of augmentation to limit

the shared information to be task-relevant information only.

Can we regard the limitations for MI estimation equivalent to the limitations

for contrastive learning? The limitations of the MI estimators should be carefully

related to the limitations of what contrastive learning can learn. Because of the use of

InfoNCE loss as the objective of contrastive learning, where InfoNCE is also a popular
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Figure 1.3. The choice of augmentation method affects the joint distribution p(x, y),

and the joint distribution p(x, y) affects the shared information I(X;Y ). Thus, the

choice of augmentation method is critical when we evaluate the MI between two views.

MI estimator (Oord, Li, and Vinyals 2018; Poole et al. 2019; Song and Ermon 2019;

Tschannen et al. 2019), many previous works incorrectly assumed the limitations to be

the same for both MI estimation and contrastive learning.

In Chapter 5, we examine the role of mutual information in contrastive learning

based on the carefully designed experiments. MI has often been referred to as the impor-

tant factor for designing and analyzing contrastive learning. In existing works, however,

most naively used MI based on arbitrary augmentation and instance discrimination for

the analysis. For example, (Tschannen et al. 2019) defined two views as the top and

bottom parts of an MNIST image, and they estimated the MI between them. As a result,

they concluded that MI does not relate well with the downstream task performance.

However, this is due to the particular choice of augmentation and the resulting MI and

should not be considered as a general property of MI.

1.1. Contributions

In this study, we develop a set of rigorous methods for analyzing MI in contrastive

learning and show that the following three existing beliefs should be reconsidered.

1. A small batch size is undesirable for contrastive learning because of InfoNCE’s

O(logK) bound (Hjelm et al. 2018; Tian, Krishnan, and Isola 2020; Bachman,

Hjelm, and Buchwalter 2019; Wu et al. 2020a; Song and Ermon 2020; Chen et al.

2020b; Sordoni et al. 2021).

2. MI cannot measure how effective the representation is for the downstream task’s
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performance (Tschannen et al. 2019). Instead, other metrics, such as unifor-

mity (Wang and Isola 2020; Wang and Liu 2021), alignment (Wang and Isola

2020), tolerance (Wang and Liu 2021), and linear CKA (Nguyen, Raghu, and

Kornblith 2020; Song et al. 2012; Nguyen, Raghu, and Kornblith 2022), are more

relevant and useful than MI.

3. To design optimal views, task-irrelevant information must be discarded for a

better generalization (Tian et al. 2020; Tsai et al. 2020; Xiao et al. 2020; Chen,

Luo, and Li 2021).

For a rigorous investigation, in Chapter 3, we develop an analysis framework based

on three key elements. First, we clarify that the choice of augmentation design dictates

the shared information between the two views. While this may sound obvious, it is

a crucial step for cautiously investigating contrastive learning, because the choice of

augmentation design directly commands the joint distribution p(x, y); consequently,

p(x, y) decides the MI of learning, and ultimately the MI determines what will be

learned as the representation. A specific choice of augmentation, named same-class

sampling in our work, plays a pivotal role in our study. This is special because it only

shares class information between the two views and its true MI can be proven to be the

same as the class entropy H(C) under a mild assumption. Second, we use a dedicated

phase of MI estimation called post-training MI estimation. In previous works, MI

estimation was typically performed concurrently during the training phase, because

the InfoNCE can be conveniently used not only as the training loss but also as the

variational estimator. Separating MI estimation into a post-training phase allows us

to compare a wide scope of representation encoders because it is applicable to any

representation encoder (e.g., a basic supervised network learned with the cross-entropy

loss). Third, we introduce the CDP dataset that allows information to be embedded

in an image by varying color, digit, and position. Due to the way the CDP dataset is

constructed, the true MI value can be easily manipulated by controlling the dependency

among the three attributes over the two views. Using the CDP dataset, we were able
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to construct a few experiments without any ambiguity in interpretation. In addition,

we were able to confirm that the MI estimation values in our experiments are accurate.

This was made possible by comparing the theoretically derived true MI values with the

estimated MI values.

1. A small batch size limits the training loss, but it limits neither the information in

the learned representation nor the downstream-task performance.

2. The only metric (among the metrics that we have investigated) that is strongly

relevant to the downstream-task performance is the MI of the downstream-task

information itself.

3. Task-irrelevant information does not necessarily harm the generalization of the

downstream task.

Finally, we discuss two essential issues based on our investigation results. First, we

clarify that a properly chosen MI is an excellent metric for evaluating representations.

However, the same metric is not an effective training objective for successful represen-

tation learning. Second, we raise the question of whether contrastive learning is really

an unsupervised representation learning method. The current framework heavily relies

on a heuristic and extensive tuning of the augmentation design based on a validation

dataset. Apparently, it still remains open to developing a further advanced representation

learning framework compared to contrastive learning.
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Chapter 2. Background

In this chapter, we provide the background information related to contrastive represen-

tation learning, mutual information, and variational approaches to estimate MI. We first

introduce contrastive representation learning based on image cases. To clearly identify

the relationship between contrastive loss and MI, we provide detailed derivations, and

we show how minimizing contrastive loss is equivalent to maximizing MI. Then, we

provide a brief introduction for mutual information. Finally, we summarize variational

MI estimators and the limitations of them.

2.1. Contrastive representation learning

Figure 2.1. Illustration of contrastive representation learning for an image dataset.

InfoNCE loss has been a general choice for the loss function to pull together positive

pairs (two views generated from the same image) and to push apart negative pairs (the

other views in the same batch) simultaneously. 1
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Given a dataset D =
{
si|si ∈ Rm

}
, we can sample an image si, generate its views

with a family of augmentations T , and randomly select two of them to form a positive

pair (xi, yi). See Figure 3.1(b) for an example, where T is a family of SimCLR (Chen

et al. 2020b) augmentations. After repeating this K times, InfoNCE loss for a batch

can be calculated as

L =
1

2K

K∑
k=1

[l(2k − 1, 2k) + l(2k, 2k − 1)] (2.1)

with l(i, j) = − log
exp

(
zi,i/τ

)∑2K
k=1 1[k ̸=i] exp

(
zi,j/τ

) , (2.2)

where zi,j = sim(f(xi), f(yj)); f = fp ◦ fe with fe(·) as the encoder and fp(·) as

the projection head; sim(u, v) = uT v/||u||||v|| denotes the dot product between l2

normalized u and v (i.e. cosine similarity); τ denotes a temperature scalar; and K is the

batch size. We denote the encoded representation vector of an input X as hX = fe(X).

While the InfoNCE loss can be used for training, it can be slightly modified to the

following InfoNCE bound and used for MI estimation as well.

Î(hX ;hY ) = log (2K − 1)− L ≤ log (2K − 1) (2.3)

From Eq. (2.3), we can see that minimizing InfoNCE loss L is equivalent to maximizing

InfoNCE bound Î(hX ;hY ).

Detailed derivation of Eq. 2.3: The inequality is well-known as described in (Oord,

Li, and Vinyals 2018). We provide the derivation for a typical augmentation (SimCLR-

like augmentation) to make it clear that log (2K − 1), instead of log (K), is due to the

number of terms in the denominator.

K is the batch size and q(x|y) = p(x)
Z(y)e

sim(f(x),f(y))/τ , where

Z(y) = Ep(y)[e
sim(f(x),f(y))/τ ]; f = fp ◦ fe, where fe is the encoder network and fp

is the projection head; sim(u, v) = uT v/||u||||v|| denotes the dot product between l2

normalized u and v (i.e. cosine similarity); and τ denotes a temperature parameter.
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I(X;Y ) = Ep(x,y)

[
log

p(x|y)
p(x)

]
(2.4)

= Ep(x,y)

[
log

q(x|y)
p(x)

]
+ Ep(y)[KL(p(x|y)||q(x|y))] (2.5)

≥ Ep(x,y)

[
log

q(x|y)
p(x)

]
(2.6)

= Ep(x,y)

[
log

esim(f(x),f(y))/τ

Z(y)

]
(2.7)

≈ E

log esim(f(xi),f(yi))/τ

1
2K−1

∑2K
j=1 1[j ̸=i]e

sim(f(xi),f(yj))/τ

 (2.8)

= log (2K − 1) + E

log esim(f(xi),f(yi))/τ∑2K
j=1 1[j ̸=i]e

sim(f(xi),f(yj))/τ

 (2.9)

= log (2K − 1)− L (2.10)

≜ Î(X;Y ) (2.11)

The inequality in Eq. (2.6) is due to the non-negativeness of KL-divergence, and the

approximation in Eq. (2.8) is due to the replacement of the expectation with its empirical

mean. Finally, the negative loss −L(xi) in Eq. (2.10) is always negative because the

argument of the second log term in Eq. (2.9) is always between zero and one. Therefore,

Î(X;Y ) ≤ log (2K − 1).

2.1.1. Previous works to understand contrastive learning

Some studies have attempted to understand contrastive learning. (Arora et al. 2019)

presented a theoretical framework for analyzing contrastive learning by introducing

latent classes and showing provable guarantees on the performance of the learned

representations under some conditions. (Purushwalkam and Gupta 2020) aimed to

demystify unsupervised contrastive learning by emphasizing the relationship between

data augmentation and the corresponding invariances. (Tian et al. 2020) investigated

the task-dependent optimal views of contrastive learning from a mutual information
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perspective. (Wang and Isola 2020) attempted to understand contrastive learning with

the use of two important properties: alignment and uniformity. (Wang and Liu 2021)

suggested that contrastive loss is a hardness-aware loss function and that temperature

controls the strength of penalties on hard negative samples. Our study aims to widen the

understanding of contrastive learning by investigating the common beliefs on mutual

information.

2.2. Mutual Information

The concept of information is too broad to be captured by a single definition. However,

for any probability distribution, we define a quantity called entropy. Entropy has many

properties that agree with intuitive notions of what the measure of information should

be. This concept is extended to define mutual information, which measure the amount

of information one variable contains about another variable. Then, entropy becomes

the self-information of a random variable. As a special case of a more general quantity

called relative entropy and measures the distance between two probability distributions.

For a full review, see (Cover 1999).

Mutual Information (MI) is a well-known metric for estimating the relationship

between pairs of variables. MI is a reparameterization-invariant measure, so it can

capture even non-linear dependency. MI between two random variables X and Y is

defined as follows.

I(X;Y ) ≜ KL(p(x, y)||p(x)p(y)) = Ep(x,y) log

[
p(x, y)

p(x)p(y)

]
(2.12)
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The definition of MI I(X;Y ) can be rewritten as

I(X;Y ) =
∑
x,y

p(x, y) log
p(x, y)

p(x)p(y)

=
∑
x,y

p(x, y) log
p(x|y)
p(x)

= −
∑
x,y

p(x, y) log p(x) +
∑
x,y

p(x, y) log p(x|y)

= −
∑
x

p(x) log p(x)−

−∑
x,y

p(x, y) log p(x|y)


= H(X)−H(X|Y )

where H(X) is the entropy of X . Thus, I(X;Y ) can be interpreted as the reduction in

the uncertainty of X due to the knowledge of Y . By symmetry, it also follows that

I(X;Y ) = H(Y )−H(Y |X).

Thus, X says as much about Y as Y says about X .

Further, resulting from H(X,Y ) = H(X) +H(Y |X) (Cover 1999), we have

I(X;Y ) = H(X) +H(Y )−H(X,Y ).

Finally, self-information (the mutual information of a random variable with itself) is

equivalent to the entropy of the random variable.

I(X;X) = H(X)−H(X|X) = H(X)

We summarize the most frequently used properties of mutual information as follows.

• I(X;Y ) = H(X)−H(X|Y )

• I(X;Y ) = H(Y )−H(Y |X)

• I(X;Y ) = H(X) +H(Y )−H(X,Y )

• I(X;Y ) = I(Y ;X)
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Figure 2.2. Illustration of the relationship between entropy and mutual information.

(The figure was adapted from Figure 2.2 of (Cover 1999).)

• I(X;X) = H(X)

MI is often referenced as a useful metric or motivation for deep learning. For exam-

ple, (Xu and Raginsky 2017) derived non-vacuous generalization bounds, (Tishby and

Zaslavsky 2015; Achille and Soatto 2018) analyzed the neural network training dynam-

ics, (Moyer et al. 2018) encouraged representation invariance. (Bell and Sejnowski 1995;

Hyvärinen and Oja 2000; Oord, Li, and Vinyals 2018; Hjelm et al. 2018) suggested

InfoMax principle for improving the representation learning, based on MI.

Although MI has widespread usage, its exact evaluation over high-dimensional vari-

ables is almost always impossible because we cannot assess the true probability distribu-

tion and only a finite number of samples. There have been some efforts to approximate

the probability density function, such as simple binning (Fraser and Swinney 1986;

Shwartz-Ziv and Tishby 2017) (discretizing the input variable into a finite number of

bins) and non-parametric kernel-density estimators (Kraskov, Stögbauer, and Grass-

berger 2004). However, they still suffer from the curse of dimensionality and compu-

tation cost also largely increases with the data size. To make use of scalable mutual

information estimation, variational approaches are suggested as follows.
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2.3. Variational Mutual Information Estimators

When only a set of joint samples is available, the exact MI cannot be calculated but

an estimation can be made. Among the known MI estimation methods, variational

estimators based on variational bounds and DNN modeling have become dominant

for the complex datasets. In this paper, we summarize the variational MI estimators

following the unified framework of (Poole et al. 2019). For clarity, we follow most of

the mathematical descriptions in (Poole et al. 2019).

As an initial lower bound on mutual information, we can simply use the non-

negativity of the KL divergence as shown in (Barber and Agakov 2003).

I(X;Y ) = Ep(x,y)

[
log

q(x|y)
p(x)

]
+ Ep(y)

[
KL(p(x|y)||q(x|y))

]
≥ Ep(x,y)

[
log q(x|y)

]
+ h(X) ≜ IBA,

where h(X) is the differential entropy of X . The bound is tight when q(x|y) =

p(x|y). Unfortunately, we cannot assess h(X) and q(x|y) is also intractable, in general.

To derive tractable bounds that do not use h(X) and q(x|y), we can use unnormal-

ized distributions for the variational family of q(x|y). We consider an energy-based

variational family that uses a critic f(x, y) and is scaled by the data density p(x):

q(x|y) = p(x)

Z(y)
ef(x,y),

where Z(y) = Ep(x)

[
ef(x,y)

]
.

Then, we can establish the unnormalized version of IBA as

Ep(x,y)

[
f(x, y)

]
− Ep(y)

[
logZ(y)

]
≜ IUBA.

This bound is tight when f(x, y) = log p(y|x) + c(y), and c(y) is dependent on y

only. However, the log partition function, logZ(y), is still intractable. (Donsker and

Varadhan 1983) applied Jensen’s inequality to Ep(y)

[
logZ(y)

]
and obtained IDV as:

IUBA ≥ Ep(x,y)[f(x, y)]− logEp(y)[Z(y)] ≜ IDV.
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When we set the critic fθ(x, y) as the deep network with parameters θ and train

fθ(x, y) based on stochastic gradient descent with a mini-batch size of K, the gradient

becomes

ĜK = EK [▽θfθ]−
EK

[
▽θfθe

fθ
]

EK

[
efθ
] .

In the second term of ĜK , the expectations over the samples of a mini-batch K lead to

a biased estimation of the full batch gradient. To reduce the bias, (Belghazi et al. 2018)

(IMINE) replaced the estimate in the denominator using exponential moving average as

below.

Ĝ′
K = EK [▽θfθ]−

EK

[
▽θfθe

fθ
]

EK

[
efθ
] ∗

EK

[
efθ
]

EMA
[
efθ
] .

IMINE revises the gradients during training the critic network, while IDV is used for

estimation.

To derive a tractable lower bound, we can bound the log partition function, logZ(y),

using the inequality log (x) ≤ x
a +log (a)−1 for all x, a > 0. When we apply logZ(y)

in IUBA, we obtain a Tractable Unnormalized version of Barber and Agakov (TUBA)

lower bound on MI (Poole et al. 2019).

IUBA ≥ Ep(x,y)

[
f(x, y)

]
− Ep(y)

Ep(x)

[
ef(x,y)

]
a(y)

+ log (a(y))− 1

 ≜ ITUBA

This bound becomes tighter when we maximize ITUBA with respect to a(y) and f .

ITUBA holds for any a(y) > 0, and we can simplify the existed MI estimators by

adopting different a(y). When we set a(y) = e (constant), ITUBA recovers the bound

of INWJ (Nguyen, Wainwright, and Jordan 2010), also known as f -GAN KL (Nowozin,

Cseke, and Tomioka 2016) and MINE-f (Belghazi et al. 2018).

Ep(x,y)[f(x, y)]− e−1Ep(y)[Z(y)] ≜ INWJ

INWJ yields a unique optimal critic f∗(x, y) = 1 + log p(x|y)
p(x) .
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When we set a(y) = 1
K

∑K
i=1 e

f(xi,y) to be dependent on multiple samples of xi,

ITUBA recovers the bound of IinfoNCE (Oord, Li, and Vinyals 2018).

I(X;Y ) ≥ E

 1

K

K∑
i=1

log
ef(xi,yi)

1
K

∑K
j=1 e

f(xi,yj)

 ≜ IinfoNCE

where the expectation is over K independent samples from the joint distribution,

Πjp(xj , yj). The optimal critic for IinfoNCE is f∗(x, y) = log p(y|x)+ c(y), where c(y)

is any function that depends on y but not x (Ma and Collins 2018). IinfoNCE is known as

a high-bias low-variance bound because it is upper bounded by logK. Thus, when we

use IinfoNCE to estimate large MI, we require a large batch size.

For a variational MI estimator, a DNN is used for modeling the critic function

f(x, y), and there are two associated steps. The first is the optimization (or training)

step where the DNN parameters are learned. The second is the estimation step where

the actual MI values are inferred with the optimized DNN. Variational MI estimators

such as DV, NWJ, and infoNCE use a single loss function for both optimization and

estimation, and the loss function corresponds to the theoretical MI bound in use. Other

variational MI estimators, such as JS, MINE, and SMILE, adopt small modifications in

either optimization or estimation to improve the robustness or accuracy of the estimator.

The most popular variational MI estimators are summarized in Table 2.1. We also can

define the variational bounds of mutual information as follows.

Definition 1 (Variational bounds of MI (Poole et al. 2019)). Let X , Y be two random

variables taking values in X , Y , and D =
{
(xi, yi)

}N
i=1
∼ X,Y denotes the set of

samples drawn from a joint distribution over X and Y . The variational bounds of

I(X;Y ) are formulated as:

I(X;Y ) ≥ Î(X;Y )

= 1 + Ep(x,y)

[
log

ef(x,y)

a(y)

]
− Ep(x)p(y)

[
ef(x,y)

a(y)

]
where a(y) > 0 is any value or function of y. The MI estimators are defined by adopting

different a(y). For example, a(y) = e (constant) for ÎNWJ(X;Y ) (Nguyen, Wainwright,
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and Jordan 2010) (also known as f -GAN KL (Nowozin, Cseke, and Tomioka 2016) and

MINE-f (Belghazi et al. 2018)) and a(y) = 1
K

∑K
i=1 e

f(xi,y) for ÎinfoNCE(X;Y ) (Oord,

Li, and Vinyals 2018). (For a full review, see (Poole et al. 2019).)

Table 2.1. Summary of variational mutual information estimators. For the optimization

step, we find f∗(x, y) to maximize the optimization loss L(f(x, y)) for a given batch

size K. For the estimation step, we evaluate the MI values with the variational bounds.

Estimator Optimization Loss - L(f(x, y)) Estimate Evaluation - Î(X;Y )

DV LDV (f(x, y)) = ÎDV (X;Y ) = Ep(x,y)[f(x, y)]− logEp(x)p(y)[e
f(x,y)] (Donsker and Varadhan 1983)

NWJ LNWJ(f(x, y)) = ÎNWJ(X;Y ) = Ep(x,y)[f(x, y)]− e−1Ep(x)p(y)[e
f(x,y)] (Nguyen, Wainwright, and Jordan 2010)

infoNCE LinfoNCE(f(x, y)) = ÎinfoNCE(X;Y ) = EpB(x,y)

[
1
BΣB

i=1 log
f(xi,yi)

1
B
ΣB

j=1f(xi,yj)

]
(Chen et al. 2018)

JS

(Poole et al. 2019)
Ep(x,y)

[
−Softplus(−f(x, y))

]
− Ep(x)p(y)

[
Softplus(f(x, y)

]
ÎNWJ(X;Y )

MINE

(Belghazi et al. 2018)
Ep(x,y)[f(x, y)]−

Ep(x)p(y)[e
f(x,y)]

ExponentialMovingAverage(Ep(x)p(y)[e
f(x,y)])

ÎDV (X;Y )

SMILE

(Song and Ermon 2019)
LJS(f(x, y)) Ep(x,y)[f(x, y)]− logEp(x)p(y)[clip(ef(x,y), e−τ , eτ )]

2.3.1. Critic function

For a variational MI estimator, a DNN is used to model the critic function f(x, y),

and there are two associated steps. The first is the optimization (or training) step

where the DNN parameters are learned. The second is the estimation step where the

actual MI values are inferred with the optimized DNN. Variational MI estimators,

such as DV (Donsker and Varadhan 1983), NWJ (Nguyen, Wainwright, and Jordan

2010), and infoNCE (Oord, Li, and Vinyals 2018), use a single loss function for

both optimization and estimation, and the loss function corresponds to the theoretical

MI bound in use. Other variational MI estimators, such as JS (Nowozin, Cseke, and

Tomioka 2016), MINE (Belghazi et al. 2018), and SMILE (Song and Ermon 2019),

adopt small modifications in either optimization or estimation to improve the robustness

or accuracy of the estimator. The most popular variational MI estimators are summarized

in Table 2.1.
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Common choices for the critic function f(x, y) include (1) the inner product critic

finner(xi, yj) = xTi yj , (2) bilinear critic fbi(xi, yj) = xTi Wyj where W is trainable,

(3) separable critic fsep(xi, yj) = f1(xi)
T f2(yj), and (4) joint critic fjoint(xi, yj) =

f([xi, yj ]). Here f1, f2, f are typically shallow MLPs. Critic functions calculate the

relationship between all pairs of (xi, yj) ∀i, j ∈ [1,K], and the result is a matrix as

given below.

f(x, y) =


f(x1, y1) f(x1, y2) · · · f(x1, yK)

f(x2, y1) f(x2, y2) · · · f(x2, yK)
...

...
. . .

...

f(xK , y1) f(xK , y2) · · · f(xK , yK)


Variational bounds approximate MI by using the diagonal terms as the values from the

joint distribution p(x, y) and the off-diagonal terms as the values from the marginal

distribution p(x)p(y).

2.3.2. Limitations of the variational MI estimators

Variational MI estimators present some disadvantages because we typically have access

to samples, but not to the underlying distributions (Poole et al. 2019; Song and Ermon

2019; Paninski 2003; McAllester and Stratos 2020). Most estimators exhibit poor

performance, particularly when the batch size K is small and the MI is large. For

instance, infoNCE results in a high bias because it is upper bounded by logK (Oord,

Li, and Vinyals 2018). (McAllester and Stratos 2020) noted that any distribution-free

high-confidence lower bound on MI cannot be larger than O(logK). By contrast, most

estimators (except infoNCE) result in a variance that can increase exponentially with

true MI (Poole et al. 2019; Song and Ermon 2019; Xu et al. 2019). In previous studies,

the limitations of estimators have been assessed only for the Gaussian dataset. Although

(Song and Ermon 2019) defined a self-consistency test based on the MNIST and CIFAR-

10 datasets, they only evaluated the approximated metrics, not the estimation error itself.

In this study, we define three factors not considered in the previous studies, which can
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affect true MI and its estimation. Additionally, we empirically show how variational

approaches are accurate for estimating MI based on image and text datasets when their

true MI values are accessible.
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Chapter 3. Same-class Sampling for Positive Pairing

In contrastive learning, the chosen family of augmentations Taug plays the critical role of

implicitly determining the joint distribution p(x, y) and marginal distribution p(x)p(y).

For the actual training, however, we do not need to know the exact distributions. Instead,

we just need to be able to sample with the distributions. Therefore, the concept of

augmentation (Taug) can be expanded to the concept of positive pairing (T ), as shown in

Figure 3.1. Positive pairing can be performed with an augmentation function, as shown

in Figure 3.1(b), or without any augmentation function, as shown in Figure 3.1(c).

In our study, we heavily rely on a simple yet special positive pairing method called

same-class sampling, Tclass. As shown in Figure 3.1(c), same-class sampling only relies

on the downstream task’s label information and does not utilize any augmentation.

Same-class sampling is special because the only shared information between the two

(a) Positive pair-

ing

(b) An example of positive pairing using a family of augmentations

Taug. SimCLR augmentation (Chen et al. 2020b) is shown.

(c) Positive pairing with same-class sampling Tclass. Unlike the case

of using a family of augmentations Taug, only the downstream task’s

class information is used for positive pairing.

Figure 3.1. Positive pairing method implicitly determines the joint and marginal distri-

butions – p(x, y) and p(x)p(y) are determined by the choice of T .

21



(a) (b)

Figure 3.2. Illustration of same-class sampling. (a) The black solid arrows refer to

same-class sampling. We sample the positive pair (xi, yi) to share the information

source ci and no additional information. The blue dotted arrows refer to an assumption

of Theorem 2 whereby an error-free classification function hclass : X → C exists. (b)

An example of ImageNet.

views is the downstream task’s class information. In this case, the true MI for its joint

distribution pclass(x, y) can be proven to be upper bounded by the entropy of the class

distribution, H(C). We provide the proof below.

Theorem 1 (Same-class sampling for positive pairing). When we generate inputs X

and Y based on the information source C following the Markov process X ← C → Y ,

then I(X;Y ) ≤ H(C).

Proof. From the construction of same-class sampling, X ← C → Y , the dependency

is Markov equivalent to X → C → Y . Then,

I(X;Y ) ≤ I(X;C) = H(C)−H(C|X) ≤ H(C)

where the first inequality follows from the data processing inequality and the second

inequality follows from the positiveness of entropy for the case of discrete random

variable C.

We also provide a stronger result of an equality proof under a mild assumption.

Note that we could omit the anchor S when we generalize our statement to setups other

than contrastive learning.
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Theorem 2 (Same-class sampling for positive pairing (Equality)). When we generate

inputs X and Y based on the information source C following the Markov process

X ← C → Y , and there exists a perfect classification function fclass that outputs C

from X and Y (i.e. X → C and Y → C), then I(X;Y ) = H(C).

(a) (b)

Figure 3.3. Markov process of same-class-sampling, Tclass. S denotes the anchor image,

C denotes the image’s downstream task class label, and X and Y correspond to the

positive pair chosen for same-class-sampling of the image S. (a) The original Markov

process of same-class-sampling. (b) Equivalent Markov process of the same-class-

sampling.

Proof. The Markov dependency of Tclass can be summarized, as shown in Figure 3.3(a).

For the same-class-sampling, C is the common class label of S, X , and Y .

Assumption: ci = fclass(si) = fclass(xi) = fclass(yi), where fclass(·) is a

function that returns the class label information.

When we have an accurate classifier fclass(.) as described in the assumption,

H(C|X) = 0 and H(C|Y ) = 0. Due to the deterministic nature of each image’s class

label.

I(X;C) = H(C)−H(C|X) = H(C) (3.1)

I(Y ;C) = H(C)−H(C|Y ) = H(C) (3.2)

Because C can be perfectly determined from either X or Y , the Markov process in

Figure 3.3(a) can be alternatively expressed as S → C → X → C → Y → C, as

shown in Figure 3.3(b). Here, the first part of the new Markov process is the same as
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in Figure 3.3(a): we start from si, read its class label ci = fclass(si), and sample an

example xi using the class label ci. In Figure 3.3(b), however, we can alternatively read

xi’s class label without any uncertainty to recover ci = fclass(xi) = fclass(si) and

then use the class label to sample yi. Because ci = fclass(yi) can be recovered from

yi, the last part of dependency, Y → C, follows. For the equivalent Markov process in

Figure 3.3(b), we derive an upper bound and a lower bound to complete the proof.

Upper bound: We apply the data processing inequality (Cover 1999) to the Markov

dependency X → C → Y in the middle part of Figure 3.3(b).

I(X;Y ) ≤ I(X;C) (3.3)

= H(C)−H(C|X) (3.4)

= H(C) (3.5)

Eq. (3.3) is the data processing inequality, Eq. (3.4) is from the definition of MI, and

Eq. (3.5) is because of H(C|X) = 0 as in Eq. (3.1).

Lower bound: We apply the data processing inequality (Cover 1999) to the Markov

dependency C → X → C → Y → C part of Figure 3.3(b). The following directly

follows from the data processing inequality.

I(C;C) ≤ I(X;Y ) (3.6)

⇒H(C) ≤ I(X;Y ) (3.7)

Note that we have C in the beginning and at the end of the Markov dependency. The

first C in I(C;C) corresponds to the C in the beginning, and the second C in I(C;C)

corresponds to the C at the end of the Markov dependency. Eq. (3.7) is because I(C;C)

is the self-information that is the same as H(C).

Therefore, the true mutual information value of same-class-sampling, Iclass(X;Y ),

is the same as the class label’s entropy, H(C).

The calculation of H(C) is trivial for uniformly distributed class labels, and the

result indicates that the class information is the only meaningfully shared information
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between a pair of positive examples. We denote the true MI as Iclass(hX ;hY ) and its

estimate as Îclass(hX ;hY ).

The H(C) upper bound on same-class sampling reveals that the downstream-task in-

formation, with its entropy H(C), is the only meaningfully shared information between

a pair of positive examples. This result can be conveniently utilized in our empiri-

cal investigations because the calculation of H(C) is trivial for uniformly distributed

class labels. Note that same-class sampling is a supervised method because it utilizes

class information. We are introducing this supervised method only for the purpose of

theoretical study and empirical investigation, and we are not suggesting its use for a

practical purpose. We denote the true MI of same-class sampling as Iclass(hX ;hY ) and

its estimate as Îclass(hX ;hY ).

By introducing the same-class sampling, we can (1) examine how the estimations are

accurate based on the true MI value, and (2) make the views share only the downstream-

task relevant information.

Unlike the same-class sampling, MI of augmentation-based methods such as

TSimCLR (Chen et al. 2020b), TAutoAugment (Cubuk et al. 2018) and TRandAugment (Cubuk

et al. 2020) are intractable because the shared information is dependent on the par-

ticular choice of Taug whose joint distribution is unknown. Furthermore, the shared

information does not need to be relevant with the downstream-task performance. Let us

articulate on the example in Figure 3.4. When we use the general augmentation, the

true MI is not available because of the intractable joint distribution p(x, y), and the

shared information seems somewhat irrelevant to the label information. On the contrary,

when we use same-class sampling, the true MI is upper bounded as the entropy of the

label (or equivalent to the entropy of the label), and the shared information should be

relevant to the label information. In this study, we select TSimCLR as the representative

example of Taug because it has been widely used in previous works (Chen et al. 2020c;

Chen and He 2021; Caron et al. 2020; Grill et al. 2020b; Zbontar et al. 2021; Bardes,

Ponce, and LeCun 2021; Tomasev et al. 2022).
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Remark: Same-class sampling requires the discretized variable C. Even though

the same-class sampling provides the (upper bound of or the exact) true MI values

for any type of dataset, the discretized variable C is required. The use of C has a

clear trade-off. We first define the joint distribution p(x, y) depending on the specific

downstream task. In a later section, we utilize this property to examine some existing

beliefs to be corrected. Conversely, different choices of C result in different MI values.

Thus, our results should not be considered as the general property of MI, and it can

be largely dependent on the particular choice of positive pairing method. Thus, we

note that our analysis framework can be a guideline for utilizing mutual information in

understanding representation learning, but it also has some limitations.

Figure 3.4. While we have no access to the true MI value in the case of the general

augmentation methods, we can make use of true MI for any type of dataset in the case

of same-class sampling. Even though the assumption is not guaranteed, we have access

to the upper bound of true MI for any dataset.
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Chapter 4. Understanding the Accuracy of Variational

Mutual Information Estimators

In representation learning, Mutual Information (MI) has been a popular ingredient for

estimating the relationship between pairs of random variables. In particular, optimizing

the MI estimator as the loss function of unsupervised learning has improved the down-

stream task performance across various application domains. While MI is an elegant

concept with extensive use cases, its exact evaluation over real-world datasets is almost

always impossible because of the unknown p(x, y). Even when the joint probability

distribution is known, the evaluation is known as notoriously difficult when the two

variables are in high-dimensional space.

To work around these problems, variational MI estimators that can be efficiently

combined with deep learning methods have been developed (Belghazi et al. 2018; Poole

et al. 2019; Song and Ermon 2019; 2020; Cheng et al. 2020). Variational estimators are

based on two steps. First, an analytical bound is derived where the bound is based on a

critic function f(x, y). Second, the bound is made tight by optimizing for a supremum

or infimum over f(x, y). In recent works, DNNs have been used to model the critic

function. When a proper loss function is chosen and the learning of f(x, y) is successful,

the variational estimations have been shown to be accurate for a toy dataset.

Even though variational approaches have achieved an improvement in estimation

accuracy, they have only considered the Gaussian dataset for evaluation (Belghazi et

al. 2018; Poole et al. 2019; Song and Ermon 2019; 2020; Cheng et al. 2020). The

toy dataset is convenient because it offers a simple analytical formula for the true MI,

I(X;Y ). With the true MI, it becomes possible to assess the characteristics of the

estimated MI, Î(X;Y ). For instance, accuracy, bias, and variance of variational MI

estimators have been analyzed by comparing I(X;Y ) and Î(X;Y ) (Belghazi et al.

2018; Poole et al. 2019; Song and Ermon 2019; 2020; Cheng et al. 2020). The Gaussian
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dataset, however, is far from being representative of real-world datasets, because its

underlying structure is purely statistical. For real-world datasets with strong manifold

structures, it has been pointed out that variational MI estimators might be inaccurate

and misleading (Song and Ermon 2019). It would be ideal if real-world datasets with

known true MI were available. In the absence of such datasets, (Song and Ermon 2019)

proposed three types of self-consistency tests and found that none of the existing MI

estimators passed all the tests. The result, however, is limited in that a direct assessment

of estimator accuracy is missing. To address this issue, we adopt and modify a method

for generating image and text datasets with known true MI. In fact, we can easily

manipulate the true MI. The idea is to pair two inputs according to their labels, such

that the true MI is determined as the result of positive pairing.

In this chapter, we examine the accuracy of variational MI estimators under various

scenarios. While the previous studies have taken into account only a few factors affecting

MI estimation, such as the batch size and true MI, we additionally define three factors,

namely the number of information sources, dimension of representations, and nuisance

strength. Then, we examine how the individual factors affect the estimation accuracy of

variational approaches for a variety of data domains. In this study, we consider the three

types of data domains, including the multivariate Gaussian, the images as an example of

vision tasks, and the sentence embeddings as an example of NLP tasks. We summarize

the main takeaways of this chapter as follows:

1. We define three factors that can affect the true and estimated MI values.

2. We use same-class sampling to access the true MI for any dataset. In fact, we can

easily manipulate the true MI values. In this study, we consider the images as

an example of vision tasks and the sentence embeddings as an example of NLP

tasks.

3. We evaluate the accuracy of six MI estimators for various data domains, including

image and text. Because our evaluation is based on true MI, we can analyze the
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exact estimation error, instead of the approximation.

4. We summarize the empirical findings for individual factors. We found that several

results are not aligned with the previous beliefs, such as increasing the model

capacity for estimation does not always improve estimation accuracy.

5. We show how our method is applicable to a practical dataset based on the

ImageNet dataset. We can estimate MI with true values when we have a well-

trained encoder network that can predict the information sources from the given

images.

In conclusion, MI can be an excellent metric for understanding deep representations,

but some precautions are required to measure MI based on variational approaches com-

bined with deep networks. We expect our method and empirical results to become the

cornerstone of using mutual information for an in-depth understanding of representation

learning.

4.1. Datasets

In this study, we evaluate variational MI estimators across various data domains: (1)

multivariate Gaussian (DGaussian), corresponding to the most common case for evaluat-

ing MI estimation accuracy (Poole et al. 2019; Song and Ermon 2019; McAllester and

Stratos 2020); (2) an image dataset consisting of digits (Dvision), as an example of the

vision tasks; and (3) sentence embeddings consisting of the BERT embeddings of movie

review datasets (DNLP ), as an example of NLP tasks. We first introduce the general

formulation of a Gaussian dataset for MI estimation. Then, we define three factors

that can affect true MI and its estimation, which have not been considered previously.

Finally, we develop same-class sampling to make use of true MI without the limitation

that the probability distribution should be tractable.
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4.1.1. Gaussian dataset

Consider an observational dataset with K pairs of samples, where each pair (xi, yi) is

sampled from a joint distribution p(x, y). A variational MI estimator utilizes the dataset

as its input, and evaluates the estimated mutual information Î(X;Y ). If the estimation is

accurate, Î(X;Y ) should be close to the true mutual information I(X;Y ). In previous

studies, a Gaussian dataset associated with a multivariate Gaussian model was utilized

to assess the variational MI estimators (Belghazi et al. 2018; Poole et al. 2019; Song

and Ermon 2019; 2020; Cheng et al. 2020). The Gaussian dataset has Gaussian samples

with zero mean and component-wise correlation of ρ between X and Y . The true MI

is known and it can be expressed analytically as I(X;Y ) = −dg
2 log (1− ρ2), where

x ∈ Rdg and y ∈ Rdg .

4.1.2. Definitions of ds, dr, and Z

Among the numerous factors that can affect the mutual information I(X;Y ), we focus

on the number of information sources, dimension of representation, and nuisance factor.

For random variables X and Y with a joint distribution p(x, y), they can be defined as

follows.

Definition 2 (Number of information sources, ds). ds is the number of independent

scalar random variables used to form the mutually shared information between X and

Y .

Definition 3 (Dimension of representation, dr). dr is the size of the observational data.

When X and Y are of the same size, it is the length of the vector formed by flattening

either X or Y .

Definition 4 (Nuisance, Z). Nuisance to a random variable X is defined as an equal-

size random variable Z sharing no information with X . Mathematically, Z satisfies

I(X;Z) = 0. Nuisance to (X,Y ) can be defined similarly where Z is of the same size

as (X,Y ) and I(X,Y ;Z) = 0.
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Note that the definition of nuisance is similar to the definition in (Achille and Soatto

2018). Definition 4, however, is simpler because the concept of a task is not involved.

As an example of the above definitions, consider a Gaussian dataset; its number of

information sources ds is equal to dg, its dimension of representation dr is also equal to

dg, and the dataset contains no nuisance.

4.1.3. Details of generating datasets

Following Theorem 2, it is possible to assess the true MI for any dataset when we

draw the positive samples from the joint distribution p(x, y) that is dependent on

the information sources C only. Because there are too many options for generating

a dataset, we add the restrictions that ds, dr, and η are fixed and only the MI value

changes. We first consider the binary random variable C with p(0) = p(1) = 0.5. We

can design a simple stochastic function that maps C to X , where X is an image or

sentence embedding. To make use of the error-free classification function hclass(·) in

Theorem 2, we choose a dataset that easily achieves perfect classification accuracy with

a simple classifier (e.g., 1-layer MLP). We adopt the MNIST dataset (Deng 2012) for

Dvision and BERT (Devlin et al. 2018) fine-tuned sentence embeddings of the IMDB

dataset (Maas et al. 2011) for DNLP . In our implementation, x becomes a sample from

D of class 0 when c = 0, and a sample from D of class 1 when c = 1. We design a

mapping function from C to Y where a different image or text is drawn. For this basic

construction, it can be shown that I(X;Y ) = H(C) = 1 bit. We provide an image

example in Figure 4.2(a).

To construct a dataset with larger MI, two straightforward approaches can be used.

In Figure 4.2(b), we combine four samples of Figure 4.2(a) to create an image that is

four times larger, which means I(X;Y ) = 4. In Figure 4.2(c), we stack three pairs of

samples from Figure 4.2(a) and map them to RGB; hence, I(X;Y ) = 3. We can flexibly

use stratagems to generate a dataset that has a specific value of true MI. Similarly, we

generate the text dataset by concatenating the embedding vectors in 1D.
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To construct a dataset with non-integer MI value, binary symmetric channel (BSC)

is utilized (Cover 1999). Consider the case of Figure 4.2(a). If C is passed through a

BSC with crossover probability β, it can be shown that IBSC(X;Y ) = 1−H(β). Then,

the MI value can be controlled by adjusting β between 0 and 0.5. Extension to other

datasets is trivial, and in general, IBSC(X;Y ) = I(X;Y )× (1−H(β)).

Detailed description of binary symmetric channel (BSC): To construct a dataset

with a non-integer MI value, Binary Symmetric Channel (BSC) is utilized (Cover 1999).

Consider the case of the images where I(X;Y ) = 1 (Figure 4.2(a)). As shown in the

figure below, the transmission process of BSC for C → Y corresponds to a binary

channel where the input is complemented with probability β. H(Y |X) = H(Y |C)

because H(X|C) = 0. Then, the mutual information can be evaluated as follows.

Figure 4.1. Construction of image dataset with non-integer MI value by utilizing the

binary symmetric channel.

I(X;Y ) = H(Y )−H(Y |X)

= H(Y )−
∑

p(x)H(Y |X = x)

= H(Y )−
∑

p(x)H(β)

= H(Y )−H(β)

= H(Y ) + β log β + (1− β) log (1− β).

H(β) is symmetric because H(β) = −β log β − (1 − β) log (1− β) = H(1 − β).

Therefore, we consider β only for [0, 0.5], instead of [0, 1]. Extension to other datasets
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is trivial and IBSC(X;Y ) = I(X;Y )× (1−H(β)) in general.

For images, we can insert random samples from other datasets as nuisance to X

and Y to make the dataset more realistic without affecting the true MI value, as shown

in Figure 4.2(d). Because the source images remain on top without any occlusion, and

there is no fixed relationship between the background chosen for X and the background

chosen for Y , the nuisance Z does not affect the true I(X;Y ).

For Dvision and DNLP , it is trivial to identify the number of information sources

ds and the dimension of representation dr. The number of information sources ds is

always equal to I(X;Y ). For instance, Figure 4.2(b) has ds = 4. When using BSC, ds

is equal to I(X;Y ) that is calculated for α = 0. The dimension of representation dr is a

design parameter. As default, we have chosen dr = 642 for Dvision and dr = 768× 10

for DNLP .

Figure 4.2. Example of generating a dataset with known true MI value for images. X

and Y consist of random images drawn from the MNIST dataset. (a) Basic construction:

the digits appear together with probability 0.5 and I(X;Y ) = 1. (b) Concatenate four

samples in (x, y)-coordinates: four samples have independent labels and I(X;Y ) = 4.

(c) Concatenate three samples in channel dimension: three samples have independent

labels and I(X;Y ) = 3. (d) Adding nuisance: an independently chosen background

image from CIFAR-10 is inserted as the nuisance. Nuisance does not affect the true MI;

therefore, I(X;Y ) = 1.

4.2. Experimental setup

We follow the setup of the case of multivariate Gaussians (Belghazi et al. 2018;

Tschannen et al. 2019; Song and Ermon 2019; Poole et al. 2019). In general, the
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critic network f(x, y) is trained to maximize Î(X;Y ) with the real-time-generated

inputs X and Y . When the other factors are fixed, only the true MI (I(X;Y )) is con-

trolled during estimation. A complete estimation occurs over 20k steps, and we vary

the true MI (I(X;Y )) over time.

We provide the architecture details for the critic network as follows. We reference

the official code of (Tschannen et al. 2019; Song and Ermon 2019). For the separable

critic f(xi, yj) = f1(xi)
T f2(yj), we use the same architecture for f1 and f2 as a

2-layer MLP with 256 units and 32-dimensional outputs. For the concatenated critic

f(xi, yj) = f([xi, yj ]), we use 2-layer MLP with 256 units. To train the critic networks,

we set the batch size K as 64. We optimize the variational bounds of mutual information

using Adam (Kingma and Ba 2014) with a learning rate of 0.0005.

4.3. Experimental results

In this section, we conduct several experiments to examine how the suggested factors

affect the estimation accuracy of variational approaches across a variety of data domains.

4.3.1. Critic architecture

We first examine the effect of the choice of critic architecture, which has already been

investigated for the Gaussian datasets in (Poole et al. 2019; Song and Ermon 2019).

In (Poole et al. 2019), using a joint critic outperforms a separable critic for NWJ

and JS estimators, while the InfoNCE estimator is more robust to the choice of critic

architecture. For the SMILE estimator (Song and Ermon 2019), using a joint critic

outperforms a separable critic for a basic setup of the Gaussian dataset, while the trend

is reversed for a more complicated setup of the Gaussian dataset. In this study, we

inspect whether the previous findings can be applied to vision and NLP cases.

As shown in Figure 4.3, we found that the joint critic always outperforms the other

critics for NWJ and JS estimators for all data domains. However, the improvements
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become smaller for the NLP case than the Gaussian and the images. For the MINE

estimator, using a joint critic clearly outperforms using a separable or bilinear critic for

the Gaussian. On the contrary, for vision and NLP cases, the improvements become

much smaller, and using a separable critic also provides reasonable results. For the DV

estimator, using a joint critic does not result in the best estimation accuracy for the

Gaussian dataset. As claimed in (Song and Ermon 2019), the estimation variance can

increase exponentially depending on the true MI values. Meanwhile, we found that

using a joint critic results in accurate estimations for vision and NLP cases, and the

estimation variance does not increase exponentially even for large MI values. We also

found that the InfoNCE estimator is quite robust to the choice of critic architecture for

all cases because InfoNCE cannot estimate MI larger than O(logK). For the SMILE

estimator, we found some intriguing results: (1) using a bilinear critic does not result

in the lower estimator of MI for vision and NLP cases, while it provides the lower

estimator of MI with a high bias for the Gaussian; (2) the SMILE estimator is quite

robust to the choice of critic architecture among the joint critic and separable critic for

the Gaussian and NLP cases, but using a specific critic (joint critic for SMILE-1 and

separable critic for SMILE-5 and SMILE-inf) outperforms the other for the vision case;

and (3) the Gaussian and NLP cases are more robust to the choice of tuning parameters

for the SMILE estimator (i.e., clipping threshold, τ in Table 2.1) than the vision case.
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In addition to the case of two variables sharing the same data domain of image or

text, we test the case of two variables not sharing a domain, i.e., X is an image and Y is

text. The results are provided in Figure 4.4, and we observe similar results of the NLP

case.

4.3.2. Critic capacity

We observed that using a joint critic generally results in the best estimation accuracy

for most of the cases. In this section, we inspect whether increasing the critic capacity

of a joint critic could be more beneficial to improve estimation accuracy. In a previous

study (Tschannen et al. 2019), a larger critic capacity is known to improve the estimation

accuracy. In this study, we increase the critic capacity by increasing the depth of the MLP

network, and the results when the true MI is 2 bits are provided in Figure 4.5. Unlike a

previous study, we found no positive correlation between critic capacity and estimation

accuracy for any data domain. The Pearson’s correlation coefficient ρ between the

critic capacity and estimation accuracy was −0.007(DGaussian), 0.059(Dvision), and

−0.001(DNLP ). Overall, increasing critic capacity is not always beneficial.
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Figure 4.5. Mean squared error for the different depths of a joint critic function when true

MI is 2 bits. For all datasets and estimators, we found no distinguishable improvements

when increasing the depth of the critic fjoint.
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4.3.3. Choice of the variational MI estimator

Recently, there have been some efforts to suggest more accurate variational MI es-

timators (Poole et al. 2019; Song and Ermon 2019; McAllester and Stratos 2020;

Cheng et al. 2020). In particular, the SMILE estimator has been shown to efficiently

reduce the estimation variance of other classical estimators (Song and Ermon 2019).

Therefore, the SMILE estimator has been accepted as exhibiting better bias-variance

trade-offs. As shown in Figure 4.6, we found that the SMILE estimator outperforms the

other estimators slightly for the Gaussian case and quite largely for the NLP case. How-

ever, we found that the NWJ and MINE estimators outperform the SMILE estimator

for large true MI values for the vision case.
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Figure 4.6. Estimation results for three different datasets for different ground-truth MI

values. While the SMILE estimator provides a clear improvement for the Gaussian

dataset, the MINE and NWJ estimators provide better estimation accuracy for the image

dataset.

4.3.4. Number of information sources (ds)

In this section, we investigate how the number of information sources (ds), defined in

Section 4.1.2, affects the estimation accuracy. For each data domain, we increase ds

from 1 to 100. As shown in Figure 4.7, estimation fails when the number of information

sources ds is large, for all data domains. Evidently, variational estimators start to

fail roughly when ds is increased above 4 for the Gaussian, above 25 for the vision

case, and above 36 for the NLP case. The uniformly distributed classification problem
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Figure 4.7. Estimation fails when ds is large. Shades correspond to the standard devia-

tion of the estimations. For all datasets and estimators, the estimation fails when ds is

too large.

corresponds to the number of classes being larger than 10M. Thus, we expect it would

not be a limiting factor for practical uses.

4.3.5. Representation dimension (dr)

We also investigate the influence of representation dimension (dr), defined in Sec-

tion 4.1.2. Here, we only consider the vision case, and we increase the representation

dimension simply by increasing the output image size from 102 to 1002. As summarized

in Figure 4.8, we found that the representation dimension does not affect the estimation

accuracy.
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Figure 4.8. MI estimation results when representation dimension dr is increased.
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Figure 4.9. Estimation fails when too severe a nuisance is inserted. Although the

nuisance does not affect the true MI value, the estimation fails when η is greater than

0.4.

4.3.6. Nuisance

Real-world datasets can contain various types of nuisance variables, and the nuisance

variables do not share any information with the information source, following our

definition in Section 4.1.2. For a quantitative study of the influence of nuisance variables

for images, we conduct the experiments by increasing the nuisance intensity with the

parameter η ∈ [0, 1]. The image x is written over the scaled background image z · η.

Thus, η = 0 corresponds to the image without nuisance (Figure 4.2(a-c)), and η = 1

corresponds to the image with the most severe nuisance (Figure 4.2(d)). Inserting

nuisance does not affect the true MI values because we can still perfectly predict the

class labels given the images. The results are summarized in Figure 4.9. Although the

nuisance does not affect the true I(X;Y ), estimation fails when too severe a nuisance

is inserted for all types of variational estimators.

4.3.7. Deep representations

In this section, we investigate the estimation accuracy of variational MI estimators in the

case of deep representations (i.e., I(g(X); g(Y )) where g(·) is a deep network). We test

three invertible networks, namely MAF (Papamakarios, Pavlakou, and Murray 2017),

RealNVP (Dinh, Sohl-Dickstein, and Bengio 2016), and i-RevNet (Jacobsen, Smeulders,
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and Oyallon 2018) with random initialization. For the vision case, we additionally test

a non-invertible network of ResNet-50 pre-trained based on the same dataset. As shown

in Figure 4.10, estimation holds for the deep representations, regardless of which

architecture is used.
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4.4. Discussion: How can we make use of MI with practical

datasets?

Our observation that a strong nuisance hinders the accurate estimation of MI restricts

the usage of MI for analyzing the practical dataset and their representations, because

nuisance variables would be inevitable in most cases. To overcome this problem, we

suggest a method to train an additional encoder network g(·) and estimate MI for the

learned representations. g(·) is trained to learn a representation g(X) to predict the

information source C from the given image X .

We first investigate the case of MNIST images with a background nuisance of

CIFAR-10 with η = 1. We train g(·) to minimize the cross-entropy loss between

the predictions and labels. After training, we estimate the MI between the learned

representations of the penultimate layer of ResNet-50 as Î(g(X); g(Y )). The results

are provided in Figure 4.11. Evidently, the estimations become accurate if we use the

representations, rather than the raw inputs. In addition to the penultimate layer, we

investigate the representations of all hidden layers of g(·). We denote the representations

of the l-th layer of g(·) as gl(·) and l ∈ [1, L]. Due to the data processing inequality,

I(gL(X); gL(Y )) ≤ I(gL−1(X); gL−1(Y )) ≤ · · · ≤ I(X;Y ) = H(C) and the

estimated values correspond to the lower bound of the true MI. As shown in Figure 4.12,

the estimated MI values are significantly increased when the output size is changed,

and tight estimation is available only for the top layers for all types of estimators. We

attribute this result to learning task-specific features in the top layers (Kornblith et al.

2021), and it might be an interesting topic for future research.
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Figure 4.12. MI estimation results for hidden layers of ResNet-50. Dashed lines indicate

boundaries between stages. We found that the upper layer representations retain the

task-relevant information C. The transition clearly occurs when the output size changes.

Further, the top layers provide the tight bound of the true MI while the lower layers do

not.

Next, we consider the practical dataset, which does not satisfy our assumption

that we need an error-free classification function hclass : X → C, as in Theorem 2.

If such a function does not exist, we can establish only the upper bound of true MI

as I(X;Y ) ≤ H(C), rather than its equality. In this case, we cannot access the exact

ground-truth MI between two input variables, i.e., I(X;Y ). Instead, we can access

the ground-truth MI between the representations, i.e., I(g(X); g(Y )), when we train

the encoder network g(·) to guarantee the existence of an error-free classification

function h′class : g(X)→ C. We provide a more detailed explanation that the true MI is

accessible when the encoder network g is trained to minimize the cross-entropy loss

function between g(X) and C as follows.

Theorem 2 has an assumption that we need an error-free classification function

hclass : X → C. If such a function does not exist, we can establish only the upper
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Figure 4.13. MI estimation results for ImageNet-100 dataset. We test 30 pre-trained

models (16 for ResNet-50 and 14 for ViT). When the linear accuracy is close to 100%,

we can achieve accurate estimation of the true MI.

bound of true MI as I(X;Y ) = H(C) −H(C|X) ≤ H(C), instead of the equality.

The proof is similar with the part of the upper bound in Chapter 3. If an error-free

classification function hclass does not exist, we could minimize H(C|X) by training an

additional encoder network g(·) to minimize the cross entropy H(C, logit(X̂)), where

X̂ = g(X).

H(C, logit(X̂)) = H(C) +KL(C||logit(X̂))

= H(C) +KL(C||X)

= H(C|X) + I(C;X) +KL(C||X)

≥ H(C|X)

The first equality comes from the deterministic property of g. When we train g(·) to

have a sufficiently small cross-entropy loss, the conditional entropy H(C|X) will be

equally minimized. Finally, we establish the equality of I(X;Y ) = H(C) when we

have a well-trained g, instead of hclass.

Finally, we test the practical dataset ImageNet-100. In this case, Î(g(X); g(Y )) ≤

I(g(X); g(Y )) ≤ I(X;Y ) ≤ H(C) = log 100 = 6.64 bits. We use a variety of

pre-trained models loaded from (Goyal et al. 2021; Khosla et al. 2020; Wightman

2019). We inspect 16 pre-trained ResNet-50 models and 14 pre-trained ViT models. All
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models are pre-trained with the ImageNet-1k dataset. We load the pre-trained models

and evaluate the linear accuracy and InfoNCE estimator with a sufficiently large batch

size during estimation. The results are shown in Figure 4.13. We cannot only achieve

a tight estimation of the MI given by I(X;Y ) = H(C) when we have a sufficiently

accurate encoder network g(·), but the estimated MI values are also highly correlated

with the top-1 accuracy of deep representations (R2 = 0.907).

Although our analysis framework requires an assumption of the existence of a

perfect classifier hclass, this assumption is not necessary if we evaluate the representa-

tions based on the well-trained encoder network. Thus, MI estimated on the variational

approaches can be an excellent metric for analyzing deep representations when we have

a well-trained encoder network g(·).

4.5. Conclusion

In this chapter, we empirically examined the estimation accuracy of mutual information

for a variety of scenarios. For a rigorous investigation with full availability of the true

MI, number of information sources, representation dimension, and nuisance, we define

a particular set of datasets for vision and NLP tasks. We found that several previous

beliefs, including increasing that critic capacity is always beneficial for improving the

estimation accuracy, should be reconsidered to be generalized across the data domains.

Finally, we evaluated the estimation accuracy for practical datasets by training an

encoder network for a targeted downstream task related to the information sources, i.e.,

the true joint distribution p(x, y). In conclusion, it is necessary to access the true MI

values when we analyze the estimated MI values.
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Chapter 5. Examining Three Existing Beliefs on Mutual

Information in Contrastive Learning

A long list of studies has been completed in the field of contrastive learning with mutual

information. Some of the important topics that have been studied or implied can be

listed as the following: large MI is necessary for learning useful representations (Oord,

Li, and Vinyals 2018; Hjelm et al. 2018; Bachman, Hjelm, and Buchwalter 2019;

Tschannen et al. 2019; Tian, Krishnan, and Isola 2020; Tian et al. 2020; Sordoni et

al. 2021; Wu et al. 2020a); batch size (the number of negative samples) needs to be

large because InfoNCE bound cannot estimate MI larger than O(logK) where K is

the batch size (Poole et al. 2019; McAllester and Stratos 2020; Chen et al. 2020b;

Tian, Krishnan, and Isola 2020; Sordoni et al. 2021; Wu et al. 2020a; 2020b; Song and

Ermon 2020); the optimal views should include the task-relevant information while

discarding irrelevant information (Tian, Krishnan, and Isola 2020; Tian et al. 2020;

Mitrovic et al. 2020; Tsai et al. 2020). While the previous studies are enlightening,

we have also found that the investigation methods used in there can sometimes lead

to misleading or incorrect conclusions. This observation has motivated us to develop

the methods explained in Chapter 3 where the joint distribution p(x, y) is carefully

considered.

With the newly developed methods, we clarify how contrastive learning and mutual

information are connected. To be specific, we investigate the three existing beliefs on

mutual information in contrastive learning, focusing on the image classification as the

downstream task. The below are the three beliefs that we investigate.

1. MI can measure how effective the representations are for the downstream task.

2. Small batch size limits mutual information and contrastive learning.

3. For designing an optimal view, we need to discard the task-irrelevant dependency
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for a better generalization.

5.1. Method

We have summarized three key limitations to utilizing MI for analyzing the deep

representations in Chapter 1: (1) the variational bounds of MI only provide the lower

bound of MI, and it is not the true MI; (2) the choice of augmentation (positive pairing)

determines the joint distribution p(x, y), and the joint distribution determines the true

MI; (3) we cannot regard the limitations for MI estimation same as the limitations for

representation learning. In this study, we develop an analysis framework to overcome

these limitations. We first suggest the same-class sampling to make use of true MI

values and restrict the shared information between two views (corresponding to the

limitation (1) and (2)). In addition, we introduce CDP dataset that always satisfies the

assumption in Theorem 2. Thanks to the way CDP dataset is constructed, not only the

exact Iclass(X;Y ) is available, but also we can limit the shared and not to be shared

information between two views (corresponding to the limitation (1) and (2)). Finally,

we separate MI estimation into a post-training phase to overcome the limitation (3). We

provide the detailed descriptions as following.

5.1.1. Post-training MI estimation

As explained in Section 2.1, InfoNCE can be used as a training loss or as a bound for

MI estimation. Let’s consider the training first. As shown in Figure 5.1(Top), training is

not only dependent on the choice of loss but also on the choice of positive pairing T .

For brevity, we denote the loss as LSimCLR and Lclass when InfoNCE loss in Eq. (2.2) is

used with TSimCLR and Tclass, respectively. Because same-class sampling Tclass requires

class label, training with Lclass implies a supervised training.

Second, let’s consider MI estimation. Most, if not all, of the previous works have

estimated MI during the training. This imposes a limitation where T for training and T
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Figure 5.1. Training and MI estimation. (Top) Training: We train the encoder fe(·)

and the projection head fp(·) to minimize the InfoNCE loss L. (a) With unsupervised

positive pairing TSimCLR. (b) With supervised positive pairing Tclass. (Bottom) Post-

training MI estimation: We train the critic fc(·) to maximize the InfoNCE bound

Î(hX ;hY ) while fe(·) is frozen. (c) With unsupervised positive pairing TSimCLR. (d)

With supervised positive pairing Tclass.

for MI estimation cannot differ. Furthermore, the encoder weights are not fixed during

training and thus the MI of a moving target needs to be estimated. To overcome the

limitations, we propose post-training MI estimation that is illustrated in Figure 5.1(Bot-

tom). With our post-training MI estimation, we have the flexibility to estimate MI that

corresponds to any positive pairing and its joint distribution including pSimCLR(x, y) and

pclass(x, y). In other words, we can use LSimCLR for training (i.e. generally used unsu-

pervised contrastive learning) and estimate Îclass(hX ;hY ) for MI estimation. Also, we

have the flexibility to choose any network pre-trained in a supervised or unsupervised

way because the encoder network is kept frozen during the MI estimation phase. Overall,

we can examine either ÎSimCLR(hX ;hY ) or Îclass(hX ;hY ) of any pre-trained network

fe(·) using the post-training MI estimation process shown in Figure 5.1(Bottom). Also,

separating MI estimation into a post-training phase can improve the estimation accuracy
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(a) T color
class (b) T digit

class (c) T position
class (d) T all

class

Figure 5.2. Manipulating true MI with CDP dataset. When only one of color, digit, and

position is matched by same-class sampling as shown in (a), (b), and (c), the true MI is

2 bits (Iclass(X;Y ) = 2). When all three are consistently matched as shown in (d), the

true MI is 6 bits (Iclass(X;Y ) = 6).

because we can use a larger batch size for the estimation without affecting the choice

of batch size for training and the resulting learning dynamics of the encoder.

For training, a projection head fp(·) is used as shown in Figure 5.1(Top). For MI

estimation, a critic function fc(·) is used as shown in Figure 5.1(Bottom). We use

a common MLP network for both fp(·) and fc(·) to ensure a fair comparison. See

Supplementary 5.2 for the details. Again, the introduction of supervised Lclass is not for

a practical purpose but only for in-depth investigations.

5.1.2. CDP dataset

In the existing MI analyses that are related to practical contrastive learning, only the

estimated MI value has been studied simply because evaluating the true MI value

has not been possible. For a dataset that allow the class label to be clearly identified

for each image, however, the true MI value for same-class sampling can be proven

to be equal to the class label entropy, H(C). The proof is provided in Chapter 3.

To take advantage of this special case, we introduce a synthetic dataset named CDP

dataset. In CDP dataset, each image is constructed by uniformly choosing a color

ccolor from {Red,Green,Blue,White}, a digit cdigit from {2, 3, 4, 5}, and a position

cposition from {Upper left,Upper right,Lower left,Lower right}. The three attributes

are independently chosen for each image. Because of the uniform selection, the entropy
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of each class label is clearly H(Ccolor) = H(Cdigit) = H(Cposition) = 2 bits. Note that

random ImageNet examples are inserted in the background to make the dataset realistic.

(a) Without background nuisance (b) With background nuisance

Figure 5.3. An example of how to generate a CDP dataset. Detailed descriptions are

provided in the text.

For a better understanding, we provide an example of how to generate a CDP

dataset in Figure 5.3. We first define the label variable ci as the combination of three

independent attributes. Following ci = (Green, 4,Lower Left), we generate the image

as described in Figure 5.3(a). Note that we use the digit images from the MNIST dataset

after resizing and coloring. Obviously, there exists an error-free classification function

fclass which predicts the label information from the given image. In addition to these

plain images, we generate a more complex and realistic version of the CDP dataset,

still satisfying the assumption of fclass. To this end, we insert the randomly chosen

background image from ImageNet as shown in Figure 5.3(b). To satisfy the assumption

of fclass, we make the source images of Figure 5.3(a) on top without any occlusion.

Thus, we still guarantee that fclass exists after we insert the background nuisance.

(Tian et al. 2020; Hermann and Lampinen 2020; Chen, Luo, and Li 2021) have

suggested similar datasets but they focused on feature suppression or task-dependence

of optimal views, not mutual information. The RandBit dataset of (Chen, Luo, and Li

2021) is also similar, but it is far from practical images and provides only a loose bound

of MI. We also note that CDP dataset does not have object-centric bias addressed in
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(Purushwalkam and Gupta 2020) and can be easily controlled by enforcing dependencies

among the three information sources.

Thanks to the way the CDP dataset is constructed, the true MI under same-class

sampling can be easily manipulated as shown in Figure 5.2. If only the color attribute

is consistently chosen for each pair (Figure 5.2(a)), it corresponds to a downstream

task whose class label is the color information and the positive pairing is denoted

as T color
class . In this case, the true MI is Iclass(X;Y ) = H(Ccolor) = 2 bits. Similarly,

Iclass(X;Y ) = 2 bits for Figure 5.2(b) and Figure 5.2(c). When all three attributes are

consistently chosen for each pair (Figure 5.2(d)), it corresponds to a downstream task

whose class label is the combination of color, digit, and position information. Then, the

true MI is Iclass(X;Y ) = H(Ccolor) +H(Cdigit) +H(Cposition) = 6 bits. Note that the

entropies add up because looking at one of the pair provides the exact information of

the color, digit, and position of the other image.

Detailed example of the same-class sampling for CDP dataset: Because both

the same-class sampling and the CDP dataset are suggested for the first time in this

study, we provide a more detailed example of the same-class sampling for CDP dataset.

For a convenience, we fix the image xi as in Figure 5.3(b) and sample the yi de-

pending on the different label information for same-class sampling. Let’s start with

the T color
class , i.e. same-class sampling based on Ccolor. As described in Figure 5.5(a),

the positive pair (xi, yi) ∼ p(x, y) shares the color information only and the other

labels are determined independently. Obviously, there is no reason for the representa-

tions to learn the invariance for digit or position. In a similar way, T digit
class (same-class

sampling based on Cdigit, Figure 5.5(b)) and T position
class (same-class sampling based on

Cposition, Figure 5.5(c)) enforce the positive pair to share the targeted label information

only. Finally, for T all
class = Tclass (same-class sampling based on Call), the positive pair

(xi, yi) ∼ p(x, y) shares all the three attributes as shown in Figure 5.5(d). Note that the

background images are always selected to be different for the positive pairs and they do
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not affect the MI value.

CDP dataset vs. Practical dataset: We summarize the same-class sampling for

CDP dataset and the practical dataset as an example of ImageNet in Figure 5.4. CDP

dataset satisfies the assumption that an error-free classification function fclass exists.

Thus, the true MI value is accessible as Iclass(X;Y ) = H(C). On the other hand, it

is not trivial to guarantee that the practical dataset satisfies the assumption that an

error-free classification function fclass exists. Thus, the upper bound of Iclass(X;Y ) is

only available as H(C). Throughout our study, we use the CDP dataset when we need

a true MI value for the analysis, and we use the various practical dataset in addition to

the CDP dataset otherwise.

Figure 5.4. An example of applying same-class sampling for the CDP dataset and the

practical dataset (ImageNet-1k).
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(a) T color
class (b) T digit

class

(c) T position
class (d) T all

class

Figure 5.5. An example of same-class sampling for CDP dataset.

5.2. Experimental setups

5.2.1. Training

In our study, we train the encoder fe(·) of ResNet-18 and ResNet-50 and the projection

head fp(·) of 2-layer MLP with batch normalization for 100 epochs. We set the batch

size KTr as 256 for CDP and CIFAR-10, and 128 for ImageNet-100 and ImageNet-1k.

We set the temperature scalar τ as 0.5 for CIFAR-10 and 0.2 for other datasets. We

optimize the InfoNCE loss using SGD with learning rate of 0.001 and weight decay of

1e−4 for CDP and CIFAR-10, and with learning rate of 0.4 and weight decay of 0.00002

for ImageNet. We also use linear warm-up for the first 3 epochs (10 for ImageNet), and

decay the learning rate with the cosine decay schedule without restarts (Loshchilov and

Hutter 2016; Goyal et al. 2017). We carried out all the experiments using PyTorch on a

single Nvidia RTX 3090 GPU.
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5.2.2. Post-training MI estimation

The critic fc(·) can be flexibly chosen as explained in (Poole et al. 2019; Song and

Ermon 2019), but we set it identical in architecture and hyperparameters as the pro-

jection head fp(·) of the training stage. The estimation is performed with the epoch

size of 30. We have chosen the epoch size based on the learning curves of a variety of

post-training MI estimation results shown in Figure 5.6. We empirically found that 30

is sufficiently large for the estimations to converge. MI estimation aims to maximize

the lower bound of MI, and we define the final estimated MI as the average of the

last 1000 steps (as highlighted in the figures) to deal with the estimation variance. To

prevent the log (2KEst − 1) becoming a limiting factor of the MI estimation, we have

chosen the MI estimation batch size KEst to be sufficiently large. We set KEst as 256

for CDP and CIFAR-10 and 512 for ImageNet-100 and ImageNet-1k. Note that KEst is

independently chosen from KTr, the batch size of training. Unlike the training stage, MI

estimation is not affected by the temperature scalar τ , and we set τ = 0.1 throughout

our study.
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Figure 5.6. Examples of post-training MI estimation: (a) CDP, ÎSimCLR(hX ;hY ), (b)

CDP, Îclass(hX ;hY ), (c) CIFAR-10, ÎSimCLR(hX ;hY ), (d) CIFAR-10, Îclass(hX ;hY ),

(e) ImageNet-100, ÎSimCLR(hX ;hY ), (f) ImageNet-100, Îclass(hX ;hY ), (g) ImageNet-

1k, ÎSimCLR(hX ;hY ), (h) ImageNet-1k, Îclass(hX ;hY ). Note that the MI estimation

ÎSimCLR(hX ;hY ) in (a) is relatively smaller when compared to the Îclass(hX ;hY ) in (b).

This is an example where ÎSimCLR(hX ;hY ) does not properly reflect the downstream

task performance while Îclass(hX ;hY ) does.
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5.3. Results

5.3.1. A small batch size is a limiting factor for MI estimation but not for

contrastive learning.

Existing belief 1:

A small batch size is undesirable for contrastive learning because of InfoNCE’s

O(logK) bound (Hjelm et al. 2018; Tian, Krishnan, and Isola 2020; Bachman,

Hjelm, and Buchwalter 2019; Chen et al. 2020b; Sordoni et al. 2021; Wu et al.

2020a; Song and Ermon 2020).

Correction 1:

A small batch size limits the training loss, but it limits neither the information in

the learned representation nor the downstream-task performance.

It is a well-known fact that the estimated MI in Eq. (2.3) is upper bounded by

log (2KTr − 1) (Oord, Li, and Vinyals 2018; Sordoni et al. 2021; McAllester and Stratos

2020; Poole et al. 2019), where KTr is the batch size of training. See Section 2.1 for the

derivation. Because of the bound, it has been often believed that a small batch size affects

the contrastive learning negatively. To overcome this limitation, many of the previous

works have increased the batch size (Hjelm et al. 2018; Tian, Krishnan, and Isola 2020;

Bachman, Hjelm, and Buchwalter 2019) or have modified the InfoNCE loss (Sordoni et

al. 2021; Wu et al. 2020a; Song and Ermon 2020). The existing works, however, have

estimated MI concurrently during the training phase.

To examine whether the existing belief is always true and there is no counter-

example, we have performed experiments as summarised in Figure 5.7. Here we need

the true MI value, so we use CDP dataset and Îclass(hX ;hY ). For training, we decrease

the batch size KTr from 256 to 2. For MI estimation, we fix the batch size KEst as 256

to make sure we can estimate the true MI of 6 bits. If the existing belief is correct,

59



Figure 5.7. A summary of experimental setups. For both phases, we use same-class

sampling for positive pairing with CDP dataset. For training, we utilize the batch size

KTr from 2 to 256. For post-training MI estimation, we fix the batch size KEst as 256.

the result can be described in Figure 5.8. In other words, we cannot achieve a high

downstream-task accuracy for a small KTr and the learned representations cannot share

the information larger than O(logK).

We provide the results when we have performed two sets of experiments in Fig-

ure 5.9. Even though the estimated MI with the training loss is limited by log (2KTr − 1),

we can see that the post-training MI estimation is almost the same as the true MI (= 6

bits) and that the performance is over 96% for all the cases. Clearly, log (2KTr − 1)

bound is not necessarily harmful and a small batch size does not limit the representation

learning. We also note that Îclass(hX ;hY ) is almost identical to the ground-truth MI,

i.e., Îclass(hX ;hY ) ≈ 6bits = H(C). Thus, this result supports that the CDP dataset

satisfies Iclass(X;Y ) = H(C).
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Figure 5.8. If the existing belief is correct, the results should be as above. (Left) The

downstream-task accuracy should be improved when we increase the training batch

size. (Right) We cannot estimate the MI larger than O(logK).
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(b) ResNet-50

Figure 5.9. True MI, training MI (conventional estimating of MI at the time of training

using the training loss), and our post-training MI. For CDP dataset, we train two ResNet

models using Îclass(hX ;hY ) as the loss (as in Figure 5.1(b)). We evaluate Îclass(hX ;hY )

at the end of training (blue) and post-training (orange). During training, the MI is upper

bounded by log (2KTr − 1) (dashed lines of green color). After the training is complete,

the network is frozen and we evaluate the MI using a large batch size of KEst = 256.

Even though the training MI is limited by the log (2KTr − 1) bound, the post-training

MI turns out to be almost the same as the true MI (= 6 bits). Obviously, the trained

model can represent sufficiently large amount of information.
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5.3.2. Augmentation-based MI and other metrics are not effective, but

Îclass(hX ;hY ) is effective.

Existing belief 2:

• MI cannot measure how effective the representation is for the downstream

task’s performance (Tschannen et al. 2019).

• Instead, other metrics such as uniformity (Wang and Isola 2020; Wang and

Liu 2021), alignment (Wang and Isola 2020), tolerance (Wang and Liu 2021),

and linear CKA (Nguyen, Raghu, and Kornblith 2020; Song et al. 2012;

Nguyen, Raghu, and Kornblith 2022) are more relevant and useful than MI.

Correction 2:

The only metric (among the metrics that we have investigated) that is strongly

relevant to the downstream-task performance is the MI of the downstream-task

information itself.

The early contrastive learning studies (Oord, Li, and Vinyals 2018; Hjelm et al.

2018; Bachman, Hjelm, and Buchwalter 2019; Sordoni et al. 2021; Tian, Krishnan,

and Isola 2020) have regarded the minimization of InfoNCE loss to be equivalent to

the maximization of MI. The existing belief in Section 5.3.1 is an example. Then,

(Tschannen et al. 2019) empirically showed that the estimated MI does not correlate

well with the downstream-task performance. The analysis method in the work, however,

was not rigorous in that only a particular choice of augmentation and the corresponding

joint distribution paug(x, y) were studied. Without addressing exactly what information

is shared by paug(x, y), the analysis can be quite misleading.

Subsequent works have suggested a variety of metrics to evaluate and explain

the representation quality. Well-known metrics include alignment (Wang and Isola

2020), uniformity (Wang and Isola 2020; Wang and Liu 2021), tolerance (Wang and

Liu 2021), and linear CKA (Nguyen, Raghu, and Kornblith 2020; Song et al. 2012;
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Nguyen, Raghu, and Kornblith 2022). While the suggested metrics have become popular

because they are intuitive and enlightening, there has been no attempt to provide a

comprehensive analysis on how reliable the metrics are. We describe the metrics as

below.

Representation evaluation metrics

The metrics are summarized below. For the implementation, we either adopt the authors’

code (Wang and Isola 2020) or implement it by ourselves based on the equations in the

paper (Wang and Liu 2021; Nguyen, Raghu, and Kornblith 2020).

• Alignment (Wang and Isola 2020): expected distance between positive pairs

defined by Taug. Two views of positive pair should be mapped to nearby features,

and thus be (mostly) invariant to unneeded noise factors. Representations are

more aligned when the metric is smaller.

Alignment = E(x,y)∼ppos

[
||hx − hy||α2

]
• Uniformity (Wang and Isola 2020): the logarithm of the average pairwise Gaus-

sian potential. Feature vectors should be roughly uniformly distributed on the

unit hypersphere, preserving as much information of the data as possible. Repre-

sentations are more uniform when the metric is smaller.

Uniformity = logEx,y∼pdata

[
e−t||hx−hy ||22

]
• Tolerance (Wang and Liu 2021): mean similarity of samples of the same class. It

utilize the supervised information. Representations are more tolerant when the

metric is higher.

Tolerance = Ex,y∼pdata

[
(hTxhy)) · 1cx=cy

]
• Linear CKA (Centered Kernel Alignment) (Nguyen, Raghu, and Kornblith 2020;

Song et al. 2012; Nguyen, Raghu, and Kornblith 2022): the similarity between
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pairs of representations. We adopt the minibatch estimators and set the batch size

as 200. Representations are more similar when the metric is higher. It is defined

as

Linear CKA =
1

n(n− 3)

(
tr(K̃L̃) +

1T K̃11T L̃1

(n− 1)(n− 2)
− 2

n− 2
1T K̃L̃1

)
,

where K = XXT , L = Y Y T , K̃ and L̃ are obtained by setting the diagonal

entries of K and L to zero, and X and Y denote the representation matrix for

each view. This metric is not directly used to evaluate contrastive learning,

and we assume (x, y) ∼ pclass(x, y). Therefore, it also utilizes the supervised

information.

To investigate the existing beliefs, we have designed an experiment where the

representations of many pre-trained networks can be carefully compared. To better

understand the existing beliefs, we have followed the previous works and examined

the relationship between each metric and the downstream-task performance. The first

experiment’s results can be found in Table 5.1. By examining Pearson’s correlation and

Kendall’s rank correlation, the conclusion by (Tschannen et al. 2019) can be confirmed

for ÎSimCLR(hX ;hY ). For Îclass(hX ;hY ) whose joint distribution is directly related to

the downstream task’s class label information, however, the MI correlates very well

with the downstream-task performance. Therefore, we can see that it is misleading to

say that MI in general does not correlate well with the downstream-task performance.

Clearly, Îclass(hX ;hY ), the MI that is directly associated with the downstream task’s

class label information, correlates with the downstream-task performance very well.

The experiment was repeated for five other scenarios, and the summary of Pearson’s

correlation results can be found in Table 5.3. In the table, we are also showing the

results for the other metrics. Surprisingly, none of the known metrics shows a high cor-

relation. The only metric that consistently shows a high correlation is the Îclass(hX ;hY ),

implying that the downstream-task information itself (i.e. class label information) is the

only metric that correlates well with the downstream-task performance. Note that the
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Figure 5.10. A summary of experimental setups. To examine the good representations

has the optimal metric, we investigate six representation metrics. We do not need to

make use of the exact value of true MI, so we use various practical datasets, including

CIFAR-10 and ImageNet. Also, we do not need to consider how the encoder network is

trained, so we use lots of various pre-trained models. Then, we evaluate each metric in

post-training phase.

class label information is also utilized by tolerance and linear CKA. So, they are also

supervised metrics like Îclass(hX ;hY ), but they fail to achieve a high correlation. The

full experimental results of all the scenarios can be found in Supplementary A.2.
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Table 5.1. Post-training MI estimation results for ResNet-50 on ImageNet-100 and

ImageNet-1k. Sixteen pre-trained models are used to evaluate the effectiveness of

ÎSimCLR(hX ;hY ) and Îclass(hX ;hY ).

Algorithm
ImageNet-100 ImageNet-1k

Acc. (%) ÎSimCLR(hX ;hY ) Îclass(hX ;hY ) Acc. (%) ÎSimCLR(hX ;hY ) Îclass(hX ;hY )

SupCon

(Khosla et al. 2020)
94.40 7.889 6.100 78.72 8.722 7.783

Supervised pretrained 93.00 7.598 5.816 74.11 8.378 6.761

SwAV

(Caron et al. 2020)
92.52 8.541 5.560 74.78 9.428 6.214

DeepCluster-v2

(Caron et al. 2020)
92.38 8.540 5.559 73.65 9.416 6.232

DINO

(Caron et al. 2021)
92.22 8.443 5.539 74.22 9.313 6.133

Barlow Twins

(Zbontar et al. 2021)
90.80 8.528 5.513 72.82 9.407 6.157

PIRL

(Misra and Maaten 2020)
90.58 8.584 5.480 70.51 9.481 6.247

SeLa-v2

(Caron et al. 2020)
89.50 6.020 5.039 69.66 7.354 5.774

SimCLR

(Chen et al. 2020b)
89.40 8.669 5.546 69.12 9.580 6.277

MoCo-v2

(Chen et al. 2020c)
87.54 8.592 5.490 63.89 9.499 6.221

NPID++

(Misra and Maaten 2020)
79.60 8.190 4.792 56.60 9.009 4.692

MoCo

(He et al. 2020)
76.94 8.338 4.904 47.05 9.155 4.907

NPID

(Wu et al. 2018)
76.68 8.039 4.188 52.70 8.821 3.836

ClusterFit

(Yan et al. 2020)
75.66 8.016 4.155 48.81 8.773 3.915

RotNet

(Gidaris, Singh, and Komodakis 2018)
66.90 7.020 2.916 41.54 7.696 2.802

Jigsaw

(Noroozi and Favaro 2016)
56.74 6.339 2.510 30.85 7.155 2.583

Pearson’s ρ with Acc. 0.510 0.967 0.535 0.943

Kendall’s τK with Acc. 0.233 0.883 0.233 0.617
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Table 5.2. Post-training MI estimation results for ViT on ImageNet-100 and

ImageNet-1k. Fourteen pre-trained models are used to evaluate the effectiveness of

ÎSimCLR(hX ;hY ) and Îclass(hX ;hY ). Because of the computational budge, we exclude

the two largest models for ImageNet-1k.

Algorithm
ImageNet-100 ImageNet-1k

Acc. (%) ÎSimCLR(hX ;hY ) Îclass(hX ;hY ) Acc. (%) ÎSimCLR(hX ;hY ) Îclass(hX ;hY )

Swin-B

(Liu et al. 2021)
96.20 8.073 6.222 - - -

Supervised pretrained (ViT-B/16)

(Dosovitskiy et al. 2021)
95.36 8.252 5.977 78.93 9.199 7.208

PiT-B

(Heo et al. 2021)
94.62 7.895 6.398 - - -

DeiT (ViT-B/16)

(Touvron et al. 2021a)
94.30 7.799 6.287 78.34 8.679 8.009

CaiT (XXS-36/16)

(Touvron et al. 2021b)
93.90 7.492 5.795 75.67 8.373 6.795

PiT-S

(Heo et al. 2021)
94.62 7.895 6.398 76.81 8.513 7.543

DeiT (ViT-S/16)

(Touvron et al. 2021a)
93.42 7.435 6.021 75.59 8.278 7.280

CaiT (XXS-24/16)

(Touvron et al. 2021b)
93.28 7.488 5.690 74.09 8.315 6.547

MoCo(v3) (ViT-B/16)

(Chen, Xie, and He 2021)
93.12 8.594 5.654 75.51 9.524 6.658

DINO (ViT-B/16)

(Caron et al. 2021)
92.84 8.454 5.675 73.28 9.367 6.598

Supervised pretrained (ViT-S/16)

(Dosovitskiy et al. 2021)
92.70 6.863 5.515 72.85 7.572 6.233

DeiT (ViT-T/16)

(Touvron et al. 2021a)
90.12 7.186 5.365 68.67 7.874 5.883

Supervised pretrained (ViT-T/16)

(Dosovitskiy et al. 2021)
80.14 4.988 3.814 53.01 5.474 3.741

DINO (ViT-S/16)

(Caron et al. 2021)
76.54 6.868 3.525 51.11 7.426 3.316

Pearson’s ρ with Acc. 0.721 0.974 0.783 0.977

Kendall’s τK with Acc. 0.516 0.802 0.576 0.848
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Table 5.3. Summary of seven experiments. Except for Îclass(hX ;hY ) that directly

utilizes downstream class information in Tclass, all the other known metrics turn out to

be ineffective for assessing downstream task performance. In the case of alignment and

uniformity, smaller values indicate better representations, so we flipped the signs. Note

that the class label information is also utilized by tolerance and linear CKA.

Encoder Dataset
Metrics

Alignment Uniformity Tolerance Linear CKA ÎSimCLR(hX ;hY ) Îclass(hX ;hY )

Pearson’s Correlation Coefficient ρ with linear accuracy

ResNet-{18, 50} CDP −0.977 −0.058 0.956 0.992 −0.988 0.990

ResNet-{18, 50} CIFAR-10 −0.738 −0.319 0.121 −0.503 −0.041 0.634

ResNet-{18, 50} ImageNet-100 0.165 −0.197 0.214 0.410 0.085 0.805

ResNet-50(Pretrained) ImageNet-100 0.286 0.265 −0.227 0.722 0.510 0.967

ResNet-50(Pretrained) ImageNet-1k 0.175 0.157 −0.132 0.451 0.535 0.943

ViT(Pretrained) ImageNet-100 −0.102 0.623 −0.395 0.856 0.721 0.974

ViT(Pretrained) ImageNet-1k −0.077 0.561 −0.392 0.203 0.783 0.977

Average −0.181 0.147 0.021 0.447 0.229 0.899

Kendall’s Rank Correlation Coefficient τK with linear accuracy

ResNet-{18, 50} CDP −0.545 0.061 0.485 0.333 −0.727 0.545

ResNet-{18, 50} CIFAR-10 −0.600 −0.067 0.333 −0.467 −0.067 0.467

ResNet-{18, 50} ImageNet-100 −0.200 0.333 −0.067 0.467 0.067 0.467

ResNet-50(Pretrained) ImageNet-100 0.293 0.008 0.092 0.410 0.233 0.883

ResNet-50(Pretrained) ImageNet-1k 0.109 −0.059 0.109 0.243 0.233 0.617

ViT(Pretrained) ImageNet-100 −0.033 0.253 −0.055 0.626 0.516 0.802

ViT(Pretrained) ImageNet-1k 0.030 0.364 −0.061 0.152 0.576 0.848

Average −0.135 0.128 0.119 0.252 0.119 0.661

A short note on the recent theoretical bounds

Same-class sampling has been also utilized in recent theoretical works where theoretical

bounds are derived to connect contrastive learning and supervised learning (Arora et

al. 2019; Nozawa and Sato 2021; Ash et al. 2021; Bao, Nagano, and Nozawa 2022).

Unlike the practical and popular Taug, the supervised Tclass provides strong structures

and enables the deriving of meaningful results. All of the theoretical bounds, however,

fail to correlate well with the downstream-task performance (see Table 5.4). (Also,

ash2021investigating wrote “When using class information for sampling positives,
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however, the performance trends are somewhat unexpected.” in Section 4 Experiments

(Vision experiments, Figure 4).) Furthermore, contrastive training based on Tclass does

not guarantee a high performance as we will discuss in Section 5.4. Overall, the

theoretical works are insightful, but somewhat disconnected from the practical issue of

downstream-task performance.

Table 5.4. Theoretical upper bounds of the supervised loss for CDP dataset. All the

bounds are determined based on the same variables, including the batch size, the number

of class, and the contrastive loss. Since we fix the batch size and the number of classes,

only the contrastive loss affects the bounds. Thus, all bounds have the same correlation

coefficient of ρ = −0.409 and τK = −0.182. We follow the official implementation

codes of (Bao, Nagano, and Nozawa 2022).

Model Training loss Temperature Acc. (%) (Arora et al. 2019) (Nozawa and Sato 2021) (Ash et al. 2021) (Bao, Nagano, and Nozawa 2022)

ResNet-18 LSimCLR 0.1 42.64 -399.448 1.931 -911.233 0.807

ResNet-18 LSimCLR 0.2 46.27 4830.149 5.277 11018.672 2.447

ResNet-18 LSimCLR 0.3 49.90 7315.527 6.867 16688.383 3.226

ResNet-50 LSimCLR 0.1 44.45 213.227 2.323 486.419 0.999

ResNet-50 LSimCLR 0.2 50.01 5250.332 5.546 11977.204 2.579

ResNet-50 LSimCLR 0.3 46.80 7553.165 7.019 17230.492 3.301

ResNet-18 Lclass 0.1 99.15 -159.413 2.084 -363.658 0.883

ResNet-18 Lclass 0.2 99.26 1089.677 2.883 2485.801 1.274

ResNet-18 Lclass 0.3 99.13 3778.281 4.604 8619.119 2.117

ResNet-50 Lclass 0.1 98.60 -167.034 2.079 -381.042 0.880

ResNet-50 Lclass 0.2 97.21 1133.557 2.911 2585.902 1.288

ResNet-50 Lclass 0.3 93.04 4061.839 4.785 9265.980 2.206
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5.3.3. Minimizing task-irrelevant information (InfoMin) is not always

necessary.

Existing belief 3:

For designing optimal views, task-irrelevant information needs to be discarded

for a better generalization (Tian et al. 2020; Tsai et al. 2020; Xiao et al. 2020;

Chen, Luo, and Li 2021).

Correction 3:

Task-irrelevant information does not necessarily harm the generalization of the

downstream task.

The choice of augmentation is known to determine which type of invariance will be

learned during contrastive learning (Tian et al. 2020; Tsai et al. 2020; Xiao et al. 2020;

Chen, Luo, and Li 2021). tian2020makes formalized this idea into the InfoMin principle:

‘a good set of views are those that share the minimal information necessary to perform

well at the downstream task’. As shown in Figure 5.11, InfoMin claims that the choice of

augmentation is critical for improving the downstream-task performance and the optimal

augmentation strategy can be found by evaluating the mutual information. There are

three stages for the shared information between two views, i.e., I(X;Y ): (1) missing

information which leads to degraded performance due to I(X;Y ) < I(S;C); (2)

excess noise which worsens generalization due to additional noise I(X;Y ) > I(S;C);

(3) the sweet spot where the only information shared between two views is task-relevant

and such information is complete, i.e. I(X;Y ) = I(S;C).

As an example of CDP dataset, we can describe the InfoMin principle as follows.

We consider the case when the downstream-task is color (Ccolor). As shown in Fig-

ure 5.12(a), if we use the digit or position information for same-class sampling, the

color label should be independently chosen for the two views. So, the task-specific

information should be missing. On the contrary, as shown in Figure 5.12(c), if we use all
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Figure 5.11. A description of InfoMin principle. The figure is adapted from Figure 1 of

(Tian et al. 2020).

the information for same-class sampling in addition to the necessary color information,

the representations should learn the excessive information for the downstream task of

color. Finally, the optimal performance should be achieved when we utilize the positive

pairing method corresponding to the sweet spot as shown in Figure 5.12(b).

Same-class Sampling for Positive Pairing Tclass

In the first experiment, we have investigated the CDP dataset where T color
class , T digit

class ,

T position
class , and T all

class are considered for training and Ccolor, Cdigit, Cposition, and Call are

considered as the downstream task. The results are shown in Figure 5.14. As an example

for ResNet-18, it can be seen that when T digit
class is used for training, the performance

for classifying color is 80.6%. If the InfoMin holds strongly, we would expect only

the diagonal elements (same information for training and evaluation) to achieve a high

performance. But the result shows that there are many non-diagonal elements that

achieve a high performance. For instance, we can see that the performance of Cdigit is

higher when T all
class is used for training (99.2%; four types of information are retained

in the representation) than when T digit
class is used for training (98.9%). Post-training MI

estimation results are provided in Figure 5.15.

There is another interesting topic that can be noticed from Figure 5.14. When a

specific positive pairing is used for training (e.g. T color
class ), we would expect only the
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corresponding information (e.g. Ccolor) to be learned in the representation. The results

in Figure 5.14, however, show that task-irrelevant information is frequently learned in

the representation regardless of the positive pairing chosen for training. In particular,

position information is always learned in our example. This indicates that targeting only

for a specific type of information in contrastive learning might be quite challenging.

We conclude that the InfoMin principle is not always necessarily based on empirical

results. However, it does not completely ignore the potential of mutual information for

choosing the better data augmentation method because our results can be dependent on

the particular choice of dataset. By utilizing the CDP dataset, we can clearly control

the shared information between two views during training and evaluate the learned

information by linear evaluation for different target variables. However, the CDP

dataset is somewhat simple compared to the practical classification datasets. So, the

deep network might memorize all the information included in the inputs even though

the information is not shared between two views. Thus, for a complete understanding of

our results, we need more empirical investigation and theoretical discussion. We defer

them as future works.

Augmentation-based Positive Pairing Taug

As the second experiment, we expand our experiment to two well-known augmentations

of Taug. Following (Tian et al. 2020), we utilize color jittering and random resized

crop augmentations by varying the strength parameter. The results are provided in

Figure 5.16 and Figure 5.17. Considering that color jittering is not related to digit

task nor position task, the results in Figure 5.16 indicate that the peak in the middle

might not be relevant to InfoMin. Similar results can be found for random resized crop.

Considering that random resized crop might be less relevant to the color task than to the

digit task or position task, the results in Figure 5.17 indicate that the peak in the middle

might not be relevant to InfoMin either. Based on our results, aligning the positive

pairing method T and the downstream task C is not possible, and also it might not be
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always helpful. Finally, we achieve the same conclusions as in the first experiment can

be arrived.
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(a)

(b)

(c)

Figure 5.12. An example of InfoMin principle with CDP dataset.
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Figure 5.13. A summary of experimental setups. We first train the encoder network

based on same-calss sampling for positive pairing. Then, we evaluate the learned

representations for individual classification tasks.
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Figure 5.14. Linear evaluation performance of CDP dataset for task-dependent training.

The task in x-axis indicates the positive pairing T used for training. We choose one of{
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}
. The task in y-axis indicates the evaluated downstream
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Figure 5.15. Post-training MI estimation results for the experiment cases in Figure 5.14.
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Figure 5.16. Linear evaluation performance when T ColorJitter
aug is used for training. We

have tuned the strength of color jittering in a way similar to (Tian et al. 2020). While

we have found a similar result for the downstream task of color classification, the peak

in the middle was found also for the other three tasks. Considering that color jittering is

not related to digit task or position task, our result indicates that the peak in the middle

might not be relevant to InfoMin.
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Figure 5.17. Linear evaluation performance when T RandomResizedCrop
aug is used for training.

We have tuned the minimum scale parameter of random resized crop in a way similar

to (Tian et al. 2020).
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5.4. Discussion

It has been common to analyze contrastive learning with MI, where MI is estimated

for the paug(x, y) that corresponds to the unsupervised positive pairing Taug (the aug-

mentation scheme applied during the training) (Oord, Li, and Vinyals 2018; Tschannen

et al. 2019; Bachman, Hjelm, and Buchwalter 2019; Tian, Krishnan, and Isola 2020;

Tian et al. 2020; Tsai et al. 2020). As shown in Section 5.3.2, however, there is no

obvious reason for the commonly used MI to have a strong and consistent relationship

with the downstream task performance. It will be more prudent to perform an analysis

based on the post-training MI, Îclass(hX ;hY ). Because Îclass(hX ;hY ) is associated

with pclass(x, y) that is dependent on the downstream task’s class information only, it

is an adequate metric for investigating the factors that can affect the downstream task

performance.

Downstream task’s MI is an excellent performance metric, but it is not an effective

learning objective.

Because we have observed in Section 5.3.2 that Îclass(hX ;hY ) is the most effective

metric for downstream task’s linear evaluation performance, it is reasonable to ask if the

corresponding lossLclass in Figure 5.1(b) can learn a superior representation and achieve

a better performance. A quick answer for this question is ‘no’. Our experimental results

are summarized in Table 5.5. Surprisingly, a carefully designed unsupervised learning

can outperform a supervised contrastive learning that is based on the downstream-task

information only. Here, a careful design basically means a well-crafted augmentation

where the augmentation may have been designed in a heuristic manner or through an

extensive tuning. We can see that the supervised loss Lclass is outperformed by carefully

designed unsupervised losses for two out of three cases. Even though Îclass(hX ;hY ) is

a superior performance metric, the corresponding Lclass is not necessarily a superior

loss for learning representation. Furthermore, it is surprising to note that Lclass is a
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supervised loss while the compared losses are unsupervised losses. Despite using the

exact task information for the training, Lclass performs worse than the carefully designed

unsupervised learning methods.

A possible explanation can be related to the fact that Lclass utilizes the minimum

amount of information that is related to the task. While a high performing network

must have its representation express the downstream-task information very well as

we have shown in Section 5.3.2, the training of such a network requires additional

learning signals on top of the basic downstream-task information. This explanation is

also supported by the well known supervised loss LSupCon that is proposed in (Khosla

et al. 2020). Even though not shown in Table 5.5, the popular supervised loss LSupCon

easily outperforms the Lclass. In general, LSupCon outperforms the unsupervised losses

as well. LSupCon is a supervised loss just like Lclass, but it experiments with known

unsupervised augmentations and choose the high-performing augmentations to be used

in addition to the class information.

Overall, we can conclude the followings for learning representation. (1) Using

downstream-task information only (supervised) can be outperformed by a careful use of

well-designed learning signals (unsupervised). (2) When supervised learning is allowed,

both downstream-task information (i.e., class label) and well-designed learning signals

(e.g., high-performance augmentations) should be used together to achieve the best

performance.

Additionally, we would like to make it clear how our result is different from the

work of (Tschannen et al. 2019). It has been already pointed out by (Tschannen et

al. 2019) that MI alone might not be sufficient for learning effective representations

for downstream tasks. The analysis method in the work, however, was not rigorous in

that only a particular choice of augmentation and the corresponding joint distribution

paug(x, y) were studied. Without addressing exactly what information is shared by

paug(x, y), the analysis can be quite misleading. Furthermore, only Laug was considered

as the training objective in the work. As we have shown in Section 5.3.2, any analysis
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based onLaug can be misleading because the information corresponding to the paug(x, y)

might not be sufficiently relevant to the downstream-task information anyway. In our

work, we have considered Lclass that is definitely related to the desired downstream-

task information. While we also conclude that MI is not sufficient for a successful

representation learning, our result is different and broadens the results in (Tschannen et

al. 2019) because we have developed and applied rigorous methods for analyzing MI in

contrastive learning.

Table 5.5. Comparison of linear evaluation performance for a set of loss functions. Per-

formance with ∗ indicates values reported in the existing works. Despite the superiority

of Lclass as a metric, generally it does not outperform the best known unsupervised

losses.

Loss Lclass LSimCLR Laug,best-known

CIFAR-10 93.1 93.0 94.1∗ (SWD (Chen, Luo, and Li 2021))

ImageNet-100 87.4 77.8 84.5∗ (MoCo-v2+MoCHi (Kalantidis et al. 2020))

ImagNet-1k 75.2 69.1∗ (Chen et al. 2020b) 76.4∗ (HCA (Xu et al. 2020))

Negative sampling for effective contrastive learning does not need to follow the

marginal distribution

Recently, the limitations of MI-based contrastive learning have been becoming clear.

Many of the recent works have developed non-contrastive learning methods that can

outperform MI-based contrastive learning (Caron et al. 2020; Grill et al. 2020b; Zbontar

et al. 2021). Even for contrastive learning, small modifications in the loss function have

been shown to be useful (Yeh et al. 2021), indicating that the loss function’s deviation

from an exact MI formulation can be advantageous. Here, we additionally show that the

viewpoint of Noise Contrastive Estimation (NCE) in (Gutmann and Hyvärinen 2010)

can be more relevant for enhancing the performance of unsupervised representation

learning than the viewpoint of InfoNCE.
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For the contrastive learning to be equivalent to an MI maximization, the negative

term (the denominator in Eq. (2.2)) normalized by (2K − 1) needs to be an asymptotic

estimation of the partition function Z(y)(= Ep(y)[e
f(x,y)]) (Poole et al. 2019). This

requirement can be fulfilled by drawing the negative samples with a uniform distribution

over the entire training dataset. In practice, the negative samples in Eq. (2.2) are chosen

as the samples in the mini-batch, primarily for the computational efficiency.

In contrast to the viewpoint of MI maximization, the viewpoint of Noise Contrastive

Estimation (NCE) in (Gutmann and Hyvärinen 2010) does not require the negative

samples to be drawn from the marginal distribution. Instead, the negative samples can

be drawn from any reasonable distribution including random noise such as Gaussian

noise. Interestingly, both viewpoints were addressed in the original CPC work (Oord,

Li, and Vinyals 2018), but the relationship between the two viewpoints was not clarified.

Here, we provide an experiment to show that the negative samples do not need to

be drawn from the marginal distribution. In fact, we can enhance the performance of

contrastive learning by carefully manipulating the negative sampling.

Before proceeding, we define four new datasets. CIFAR-5A and CIFAR-5B are

disjoint datasets created from CIFAR-10. CIFAR-5A contains all the examples of the

first five classes of CIFAR-10 and CIFAR-5B contains all the examples of the last five

classes of CIFAR-10. CIFAR-50A and CIFAR-50B are created in a similar way from

CIFAR-100 (first fifty classes of CIFAR-100 and last fifty classes of CIFAR-100).

The experimental results are shown in Table 5.6. The positive pairs are always drawn

from the original dataset D (CIFAR-5A or CIFAR-50A), but the negative samples are

drawn from the negative sampling dataset D−. As expected, performance degradation

can be observed when D− is one of PACS-(cartoon, art, photo, and sketch) (Li et al.

2017) or uniform random noise. When D− is CIFAR-5B, however, the performance

is improved by 1.92%. The same observations can be made for CIFAR-50A, with

the improvement of 0.77%. The experiment results indicate that we can improve the

linear evaluation performance by carefully choosing D− for negative sampling. In our
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Table 5.6. The effect of negative sampling dataset D−. Linear evaluation performance

can be affected by choosing negative samples from a related or an unrelated dataset.

(a) CIFAR-5A: For contrastive learning of CIFAR-5A dataset, the best performance

is achieved by choosing the negative samples from CIFAR-5B dataset (i.e., not from

CIFAR-5A dataset). (b) CIFAR-50A: For contrastive learning of CIFAR-50A dataset,

the best performance is achieved by choosing the negative samples from CIFAR-50B

dataset (i.e., not from CIFAR-50A dataset).

(a) D = CIFAR-5A

D− CIFAR-5A (Baseline: InfoNCE loss) CIFAR-5B PACS-C PACS-A PACS-P PACS-S Uniform random

Accuracy (%) 85.70 87.62 83.14 81.98 81.14 80.86 79.80

(b) D = CIFAR-50A

D− CIFAR-50A (Baseline: InfoNCE loss) CIFAR-50B PACS-C PACS-A PACS-P PACS-S Uniform random

Accuracy (%) 59.56 60.34 49.52 51.16 50.44 43.40 33.92

experiments, the performance was enhanced by choosing a dataset whose distribution

slightly diverges from the true marginal distribution (CIFAR-5B and CIFAR-50B are

not the marginals but at least they come from the same source datasets of CIFAR-10

and CIFAR-100).

While a high performing network must have its representation express the downstream-

task information very well as we have shown in Section 5.3.2, the training of such a net-

work requires additional learning signals regardless of the presence of the downstream-

task information. All the cases discussed above strengthen the idea that MI of down-

stream task is an outstanding metric but clearly not an excellent learning objective.

Combining Laug and Lclass

We observed that MI of downstream tasks is an outstanding metric but clearly not an

excellent learning objective. Then, we could ask if there should be an improved strategy
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by combining two metrics. A similar approach has already been investigated in (Khosla

et al. 2020), called SupCon. SupCon optimizes the InfoNCE loss when the positive

pairs are defined based on the supervised labels. This loss is exactly what we used

as Lclass. However, they have used additional augmentation methods. Based on the

results of SupCon, we expect that we can improve the downstream-task performance

by combining Laug and Lclass.

Rethinking contrastive learning - is it really an unsupervised learning method?

If the only metric that is truly effective for predicting downstream task’s performance

is the downstream-task information itself as we have shown in Section 5.3.2, how is

it possible to learn effective representations in an unsupervised way? First of all, it

is crucial to recognize that the augmentation design is not completely unsupervised

because the validation performance (linear evaluation performance) is used for the

selection of augmentation design. The validation data does not directly affect the

network parameters (i.e., no gradient descent with the validation data), but it indirectly

affects the network parameters because the selection of augmentation design affects

the joint distribution p(x, y), in turn p(x, y) defines the MI of the learning, and the MI

affects the goal of learning as well as the learning dynamics.

The success of contrastive learning methods, and the closely related non-contrastive

learning methods, seem to be due to two main reasons. First, compared to the early

techniques such as pretext learning (Doersch, Gupta, and Efros 2015; Pathak et al. 2016;

Noroozi and Favaro 2016; Gidaris, Singh, and Komodakis 2018), augmentation design

can be successfully and efficiently completed within a limited design search space.

Typically, effective augmentation techniques for supervised learning are already known

for each application area, and properly combining the known techniques is a good start

for achieving a high performance with an unsupervised contrastive learning. Second,

the learned representation seems to generalize better than the traditional methods. This

seems to be surprisingly true for the popular benchmark problems, but a careful study
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is still needed to confirm it for a wider set of applications and datasets.

Despite the amazing success of contrastive learning, it still remains open to develop

a further advanced representation learning framework where a heuristic search of

augmentation design per application area can be avoided.

5.5. Conclusion

In this work, we have examined three existing beliefs on mutual information in con-

trastive learning. For a rigorous investigation, we made use of same-class sampling,

post-training MI estimation, and CDP dataset. We have empirically shown that the three

existing beliefs are incorrect or misleading, and provided adequate corrections. We

discussed how maximizing the MI of downstream task’s information is necessary but

not sufficient for an unsupervised representation learning. A limitation of our study is

that we have focused on image classification as the only downstream task. Our study

can be extended to other downstream tasks such as object detection and to other datasets

such as NLP datasets.
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Chapter 6. Conclusion

In this dissertation, we have examined the role of mutual information in contrastive

representation learning by developing a rigorous investigation method. To access the

true MI values for real-world datasets, such as image and text datasets whose probability

distribution is intractable, we suggested a same-class sampling for positive pairing.

Based on the same-class sampling, we first evaluated the accuracy of the variational

MI estimators under various scenarios. As a result, we found that variational MI

estimators do not provide the same behavior for images and texts compared to the

toy dataset drawn from the multivariate Gaussian distribution. Thus, it is necessary

to have access to the true MI value when we use MI as the metric for the purpose of

analysis. Finally, we examined three existing beliefs on MI in contrastive learning. To

make use of the exact true MI values for the image datasets, we proposed the CDP

dataset satisfying the assumption for the equality condition for same-class sampling.

In addition, we define the post-training MI estimation phase to prevent the effect of

the encoder network on the estimated MI values. Based on the analysis framework,

we found that (1) a small batch size limits the training loss, but it limits neither the

information in the learned representation nor the downstream-task performance, (2)

the only metric that is strongly relevant to the downstream-task performance is the

MI of the downstream-task information itself, and (3) task-irrelevant information does

not necessarily harm the generalization of the downstream task. Overall, we found

that there are a few fundamental problems that need to be addressed for the current

framework of unsupervised contrastive learning. Any change in augmentation design

affects the joint distribution p(x, y). In turn, the shared information between X and Y

(i.e., MI value) is affected, and eventually the learning is affected. Because the whole

process is based on validation performance, where the augmentation design with a

high downstream task performance is manually chosen as in any hand-tuning, there are
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issues that need to be carefully addressed.

In summary, our results claim that MI of downstream-task is an outstanding metric

but clearly not an excellent learning objective. Even, the learning objective does not

need to follow the MI formulation at all. It highlights the previous approaches that

interpret or design contrastive learning from the perspective of maximizing MI are

highly misleading. Certainly, contrastive loss follows the formulation of the InfoNCE

estimator. However, it only provides the estimation of mutual information between the

learned representations. Thus, we need an elaborate analysis framework to understand

how MI is related to contrastive learning, instead of simply evaluating the estimated

values. When we have the estimated values without the true values, we cannot make any

scientific conclusion because the estimated values can be erroneous. Even though we

have a theoretical bound for the generalization gap between the estimation and ground-

truth values, DNN-based methods are known as not satisfying the bounds because of

the complex optimization process. Despite these issues, previous studies have focused

on the mathematical equivalence of the contrastive loss and InfoNCE estimator only,

and they overlooked carefully examining what role mutual information plays in the

success of contrastive learning.

Our study has been motivated by this fundamental question — “Is minimizing con-

trastive loss equivalent to maximizing MI? Can we attribute the success of contrastive

learning to maximizing MI?”. Even though we found no clear answer to this question,

mutual information has been referred to as the key factor for improving contrastive rep-

resentation learning. Based on the carefully designed analysis framework, we showed

the previous beliefs related to the role of mutual information in contrastive learning are

highly misleading and a rigorous investigation must be conducted before setting the

assumptions. Our results suggest mutual information does not contribute to the success

of contrastive learning, and the loss function or augmentation design does not need to

follow the formulation of MI. Finally, we expect unsupervised learning could result a

much better representations when we are not stuck in the frame of mutual information.
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6.1. Limitations

In Chapter 4, we found that true MI and MI estimation are not available when the

dataset includes too much nuisance. As such, MI would not be a proper choice when we

want to analyze the dataset itself. Variational MI estimators only provide meaningful

results when we have a well-trained encoder g(·).

In Chapter 5, we focused on image classification as the downstream task. Our

analysis framework can be extended for investigating other downstream tasks, such as

object detection or other datasets in other application fields.

We examined some particular existing beliefs related to MI and contrastive learning

in Chapter 5. Even though we have considered the major topics, some items have not

been discussed in this study. For example, (Chen, Luo, and Li 2021) observed the

feature suppression effect.

Throughout this study, we largely depend on the specific choice of positive pairing,

called same-class sampling. While same-class sampling allows us to make use of

the true MI values for any datasets under a mild assumption, it requires the label

information, and we cannot use this method when we have no proper discretized

labels. In addition, same-class sampling provides the exact MI value only if the dataset

satisfies the assumption. In this study, we avoid these limitations by adopting image

classification for the downstream task and defining a synthetic dataset that has an

error-free classification function.

6.2. Future works

In our study, we have raised a counterargument for the common beliefs on mutual

information in contrastive representation learning. In conclusion, we believe that MI-

motivated design principles might not work well for improving the representation

learning itself, but MI could be a good metric for analyzing the deep representations.

As a future work, we plan to use MI to explain the effectiveness of deep networks, such
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as residual connection and pre-training.
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Appendices

A. Implementation details of Chapter 5

A.1. SimCLR augmentation (TSimCLR)

As a representative case of unsupervised positive pairing Taug, we adopt the SimCLR

augmentation (Chen et al. 2020b). The details of the code implementation of each

dataset are provided here. We use PyTorch and torchvision library.

CDP dataset

img_size = 32; strength = 0.5

color_jitter = torchvision.transforms.ColorJitter(

brightness=0.8 * strength, contrast=0.8 * strength,

saturation=0.8 * strength, hue=0.2 * strength)

transform = torchvision.transforms.Compose([

torchvision.transforms.RandomResizedCrop(size=img_size),

torchvision.transforms.RandomHorizontalFlip(),

torchvision.transforms.RandomApply([color_jitter], p=0.8),

torchvision.transforms.RandomGrayscale(p=0.2),

torchvision.transforms.ToTensor()])

For Table 5.5, We empirically found the Taug shown below by searching for the

performance.

transform = torchvision.transforms.Compose([

torchvision.transforms.RandomResizedCrop(

size=img_size, scale=(0.5, 1.0)),

torchvision.transforms.RandomApply([color_jitter], p=0.5),

torchvision.transforms.ToTensor()])
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CIFAR-10

img_size = 32; strength = 0.5

color_jitter = torchvision.transforms.ColorJitter(

brightness=0.8 * strength, contrast=0.8 * strength,

saturation=0.8 * strength, hue=0.2 * strength)

transform_train = torchvision.transforms.Compose([

torchvision.transforms.RandomResizedCrop(size=img_size),

torchvision.transforms.RandomHorizontalFlip(),

torchvision.transforms.RandomApply([color_jitter], p=0.8),

torchvision.transforms.RandomGrayscale(p=0.2),

torchvision.transforms.ToTensor(),

torchvision.transforms.Normalize(

mean=[0.4914, 0.4822, 0.4465],

std=[0.2023, 0.1994, 0.2010])])

ImageNet

img_size = 224; strength = 1.; ksize = 23

color_jitter = torchvision.transforms.ColorJitter(

brightness=0.8 * strength, contrast=0.8 * strength,

saturation=0.8 * strength, hue=0.2 * strength)

transform = torchvision.transforms.Compose([

torchvision.transforms.RandomResizedCrop(

size=img_size, scale=(0.2, 1.0)),

torchvision.transforms.RandomHorizontalFlip(),

torchvision.transforms.RandomApply([color_jitter], p=0.8),

torchvision.transforms.RandomGrayscale(p=0.2),

GaussianBlur(kernel_size=ksize),

torchvision.transforms.ToTensor(),
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torchvision.transforms.Normalize(

mean=[0.485, 0.456, 0.406],

std=[0.229, 0.224, 0.225])])

A.2. Full results of Table 5.3

In Table 5.3, the summary of seven experiments is provided. Here, we report the full

results of the seven experiments. For alignment and uniformity, a smaller value is better

(↓). For tolerance and linear CKA, a higher value is better (↑). Note that class label

information is utilized by tolerance, linear CKA, and Îclass(hX ;hY ).

CDP, CIFAR-10, ImageNet-100 with three different temperatures

For CDP, CIFAR-10, and ImageNet-100, we train the encoders of ResNet-18/50 from

scratch following the setups in Section 5.2.1. We test three temperature parameters for

each dataset. The results are shown below.

Table A.1. Metrics evaluated on CDP dataset.

Model Temperature Acc. (%) Alignment ↓ Uniformity ↓ Tolerance ↑ Linear CKA ↑ ÎSimCLR(X;Y ) Îclass(X;Y )

ResNet-18 0.1 42.64 0.196 -0.941 0.776 0.056 5.960 3.179

ResNet-18 0.2 46.27 0.227 -1.074 0.743 0.052 5.387 3.060

ResNet-18 0.3 49.90 0.218 -1.041 0.747 0.017 4.938 2.957

ResNet-50 0.1 44.45 0.184 -0.685 0.834 0.005 5.663 3.374

ResNet-50 0.2 50.01 0.226 -0.784 0.820 0.051 5.107 3.547

ResNet-50 0.3 46.80 0.214 -0.723 0.829 0.000 4.498 2.936

Pearson’s ρ with Acc. 0.977 0.058 0.956 0.992 -0.988 0.990

Kendall’s τK with Acc. 0.545 -0.061 0.485 0.333 -0.727 0.545
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Table A.2. Metrics evaluated on CIFAR-10 dataset.

Model Temperature Acc. (%) Alignment ↓ Uniformity ↓ Tolerance ↑ Linear CKA ↑ ÎSimCLR(X;Y ) Îclass(X;Y )

ResNet-18 0.1 90.03 0.380 -2.735 0.399 0.287 8.063 2.717

ResNet-18 0.3 91.11 0.449 -3.147 0.321 0.293 7.912 2.874

ResNet-18 0.5 90.97 0.427 -2.839 0.427 0.452 7.730 2.756

ResNet-50 0.1 92.06 0.403 -2.351 0.458 0.227 8.117 2.806

ResNet-50 0.3 92.97 0.562 -2.950 0.328 0.224 7.954 2.902

ResNet-50 0.5 93.01 0.467 -2.432 0.467 0.267 7.879 2.803

Pearson’s ρ with Acc. 0.738 0.319 0.121 -0.503 -0.041 0.634

Kendall’s τK with Acc. 0.600 0.067 0.333 -0.467 -0.067 0.467

Table A.3. Metrics evaluated on ImageNet-100 dataset.

Model Temperature Acc. (%) Alignment ↓ Uniformity ↓ Tolerance ↑ Linear CKA ↑ ÎSimCLR(X;Y ) Îclass(X;Y )

ResNet-18 0.1 72.60 0.291 -2.265 0.497 0.329 8.364 3.394

ResNet-18 0.2 76.42 0.352 -2.593 0.438 0.375 8.375 3.907

ResNet-18 0.3 75.66 0.315 -2.268 0.515 0.405 8.313 3.857

ResNet-50 0.1 74.08 0.038 -0.270 0.941 0.272 8.412 3.967

ResNet-50 0.2 75.52 0.037 -0.277 0.943 0.332 8.347 4.186

ResNet-50 0.3 77.80 0.056 -0.408 0.914 0.338 8.403 4.263

Pearson’s ρ with Acc. -0.165 0.197 0.214 0.410 0.085 0.805

Kendall’s τK with Acc. 0.200 -0.333 -0.067 0.467 0.067 0.467
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Evaluations over pre-trained encoders: ImageNet-100 and ImageNet-1k

We additionally test a variety of pre-trained models loaded from (Goyal et al. 2021;

Khosla et al. 2020; Wightman 2019). We inspect 16 pre-trained ResNet-50 models and

14 pre-trained ViT models. All models are pre-trained by ImageNet-1k dataset. We load

the pre-trained models and evaluate the linear accuracy and the metrics. The results are

shown below.

Table A.4. Metrics evaluated on ImageNet-100 dataset using pre-trained ResNet-50

models.

Algorithm Acc. (%) Alignment ↓ Uniformity ↓ Tolerance ↑ Linear CKA ↑ ÎSimCLR(X;Y ) Îclass(X;Y )

SupCon (Khosla et al. 2020) 94.40 0.107 -2.600 0.489 0.439 7.889 6.100

Supervised pretrained 93.00 0.701 -3.173 0.380 0.403 7.598 5.816

SwAV (Caron et al. 2020) 92.52 0.296 -1.659 0.636 0.282 8.544 5.560

DeepCluster-v2 (Caron et al. 2020) 92.38 0.244 -1.308 0.709 0.254 8.544 5.560

DINO (Caron et al. 2021) 92.22 0.433 -1.829 0.592 0.277 8.443 5.539

Barlow Twins (Zbontar et al. 2021) 90.80 0.477 -2.415 0.458 0.316 8.528 5.513

PIRL (Misra and Maaten 2020) 90.58 0.388 -3.387 0.361 0.452 8.584 5.480

SeLa-v2 (Caron et al. 2020) 89.50 0.208 -1.098 0.752 0.302 6.020 5.039

SimCLR (Chen et al. 2020b) 89.40 0.519 -3.032 0.336 0.425 8.669 5.546

MoCo-v2 (Chen et al. 2020c) 87.54 0.321 -2.820 0.497 0.413 8.592 5.490

NPID++ (Misra and Maaten 2020) 79.60 0.745 -2.637 0.423 0.303 8.190 4.792

MoCo (He et al. 2020) 76.94 0.701 -3.174 0.380 0.403 8.338 4.904

NPID (Wu et al. 2018) 76.68 0.745 -2.637 0.423 0.201 8.039 4.188

ClusterFit (Yan et al. 2020) 75.66 0.706 -3.019 0.321 0.199 8.016 4.155

RotNet (Gidaris, Singh, and Komodakis 2018) 66.90 0.625 -1.927 0.561 0.166 7.020 2.916

Jigsaw (Noroozi and Favaro 2016) 56.74 0.220 -0.486 0.888 0.076 6.339 2.510

Pearson’s ρ with Acc. -0.286 -0.265 -0.227 0.722 0.510 0.967

Kendall’s τK with Acc. -0.293 -0.008 0.092 0.410 0.233 0.883
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Table A.5. Metrics evaluated on ImageNet-1k dataset using pre-trained ResNet-50

models.

Algorithm Acc. (%) Alignment ↓ Uniformity ↓ Tolerance ↑ Linear CKA ↑ ÎSimCLR(X;Y ) Îclass(X;Y )

SupCon (Khosla et al. 2020) 78.72 0.697 -2.560 0.479 0.302 8.722 7.783

Supervised pretrained 74.11 0.704 -3.169 0.369 0.373 8.378 6.761

SwAV (Caron et al. 2020) 74.78 0.298 -1.637 0.634 0.228 9.428 6.214

DeepCluster-v2 (Caron et al. 2020) 73.65 0.247 -1.284 0.708 0.177 9.416 6.232

DINO (Caron et al. 2021) 74.22 0.434 -1.802 0.590 0.225 9.313 6.133

Barlow Twins (Zbontar et al. 2021) 72.82 0.485 -2.394 0.454 0.240 9.407 6.157

PIRL (Misra and Maaten 2020) 70.51 0.400 -3.378 0.345 0.375 9.481 6.247

SeLa-v2 (Caron et al. 2020) 69.66 0.209 -1.064 0.756 0.218 7.354 5.774

SimCLR (Chen et al. 2020b) 69.12 0.536 -2.991 0.329 0.397 9.580 6.277

MoCo-v2 (Chen et al. 2020c) 63.89 0.333 -2.801 0.480 0.399 9.499 6.221

NPID++ (Misra and Maaten 2020) 56.60 0.845 -2.634 0.335 0.289 9.009 4.692

MoCo (He et al. 2020) 47.052 0.704 -3.169 0.369 0.373 9.155 4.907

NPID (Wu et al. 2018) 52.70 0.761 -2.634 0.417 0.192 8.821 3.836

ClusterFit (Yan et al. 2020) 48.81 0.710 -3.004 0.313 0.171 8.773 3.915

RotNet (Gidaris, Singh, and Komodakis 2018) 41.54 0.627 -1.913 0.553 0.143 7.696 2.802

Jigsaw (Noroozi and Favaro 2016) 30.85 0.221 -0.479 0.888 0.091 7.155 2.583

Pearson’s ρ with Acc. -0.175 -0.157 -0.132 0.451 0.535 0.943

Kendall’s τK with Acc. -0.109 0.059 0.109 0.243 0.233 0.617
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Table A.6. Metrics evaluated on ImageNet-100 dataset using pre-trained ViT models.

Algorithm Acc. (%) Alignment ↓ Uniformity ↓ Tolerance ↑ Linear CKA ↑ ÎSimCLR(X;Y ) Îclass(X;Y )

Swin-B (Liu et al. 2021) 96.20 0.787 -3.663 0.502 0.559 8.073 6.222

Supervised pretrained (ViT-B/16) (Dosovitskiy et al. 2021) 95.36 0.565 -3.843 0.450 0.538 8.252 5.977

PiT-B (Heo et al. 2021) 94.62 0.880 -3.694 0.497 0.520 7.895 6.398

DeiT (ViT-B/16) (Touvron et al. 2021a) 94.30 0.833 -3.761 0.507 0.499 7.799 6.287

CaiT (XXS-36/16) (Touvron et al. 2021b) 93.90 0.644 -3.745 0.566 0.414 7.492 5.795

PiT-S (Heo et al. 2021) 93.76 0.820 -3.763 0.491 0.448 7.664 6.151

DeiT (ViT-S/16) (Touvron et al. 2021a) 93.42 0.789 -3.774 0.513 0.436 7.435 6.021

CaiT (XXS-24/16) (Touvron et al. 2021b) 93.28 0.662 -3.784 0.532 0.379 7.488 5.690

MoCo(v3) (ViT-B/16) (Chen, Xie, and He 2021) 93.12 0.130 -1.275 0.796 0.390 8.594 5.654

DINO (ViT-B/16) (Caron et al. 2021) 92.84 0.408 -3.610 0.475 0.510 8.454 5.675

Supervised pretrained (ViT-S/16) (Dosovitskiy et al. 2021) 92.70 0.886 -3.482 0.505 0.528 6.863 5.515

DeiT (ViT-T/16) (Touvron et al. 2021a) 90.12 0.797 -3.813 0.471 0.336 7.186 5.365

Supervised pretrained (ViT-T/16) (Dosovitskiy et al. 2021) 80.14 1.047 -3.211 0.438 0.303 4.988 3.814

DINO (ViT-S/16) (Caron et al. 2021) 76.54 0.295 -0.728 0.818 0.182 6.868 3.525

Pearson’s ρ with Acc. 0.102 -0.623 -0.395 0.856 0.721 0.974

Kendall’s τK with Acc. -0.033 0.253 -0.055 0.626 0.516 0.802

Table A.7. Metrics evaluated on ImageNet-1k dataset using pre-trained ViT models.

Because of the computational budget, we exclude the two largest models.

Algorithm Acc. (%) Alignment ↓ Uniformity ↓ Tolerance ↑ Linear CKA ↑ ÎSimCLR(X;Y ) Îclass(X;Y )

Supervised pretrained (ViT-B/16) (Dosovitskiy et al. 2021) 78.93 0.563 -3.889 0.432 0.365 9.199 7.208

DeiT (ViT-B/16) (Touvron et al. 2021a) 78.34 0.842 -3.834 0.482 0.234 8.679 8.009

PiT-S (Heo et al. 2021) 76.81 0.820 -3.833 0.472 0.198 8.513 7.543

CaiT (XXS-36/16) (Touvron et al. 2021b) 75.67 0.637 -3.840 0.550 0.228 8.373 6.795

DeiT (ViT-S/16) (Touvron et al. 2021a) 75.59 0.789 -3.852 0.498 0.209 8.278 7.280

MoCo(v3) (ViT-B/16) (Chen, Xie, and He 2021) 75.51 0.130 -1.297 0.792 0.268 9.524 6.658

CaiT (XXS-24/16) (Touvron et al. 2021b) 74.09 0.661 -3.864 0.516 0.205 8.315 6.547

DINO (ViT-B/16) (Caron et al. 2021) 73.28 0.411 -3.646 0.465 0.375 9.367 6.598

Supervised pretrained (ViT-S/16) (Dosovitskiy et al. 2021) 72.85 0.889 -3.506 0.494 0.428 7.572 6.233

DeiT (ViT-T/16) (Touvron et al. 2021a) 68.67 0.791 -3.872 0.462 0.197 7.874 5.883

Supervised pretrained (ViT-T/16) (Dosovitskiy et al. 2021) 53.01 1.044 -3.203 0.437 0.267 5.474 3.741

DINO (ViT-S/16) (Caron et al. 2021) 51.11 0.157 -0.702 0.881 0.193 7.426 3.316

Pearson’s ρ with Acc. 0.077 -0.561 -0.392 0.203 0.783 0.977

Kendall’s τK with Acc. -0.030 -0.364 -0.061 0.152 0.576 0.848
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