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Abstract

Conditional generation of musical components (CGMC) creates a part of music

based on partial musical components such as melody or chord. CGMC is benefi-

cial for discovering complex relationships among musical attributes. It can also

assist non-experts who face difficulties in making music. However, recent stud-

ies for CGMC are still facing two challenges in terms of generation quality and

model controllability. First, the structure of the generated music is not robust.

Second, only limited ranges of musical factors and tasks have been examined

as targets for flexible control of generation. In this thesis, we aim to mitigate

these two challenges to improve the CGMC systems. For musical structure, we

focus on intuitive modeling of musical hierarchy to help the model explicitly

learn musically meaningful dependency. To this end, we utilize alignment paths

between the raw music data and the musical units such as notes or chords. For

musical creativity, we facilitate smooth control of novel musical attributes us-

ing latent representations. We attempt to achieve disentangled representations

of the intended factors by regularizing them with data-driven inductive bias.

This thesis verifies the proposed approaches particularly in two representative

CGMC tasks, melody harmonization and expressive performance rendering. A

variety of experimental results show the possibility of the proposed approaches

to expand musical creativity under stable generation quality.

Keywords: Music generation, symbolic music, conditional music generation,

melody harmonization, performance rendering, musical structure, musical hier-
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Chapter 1

Introduction

Music is a representative content that entertains our daily lives and inherits

human creativity. It can be created through an intelligent process by both hu-

man composers and instrument performers. Human composers utilize musical

components to build structural and expressive ideas based on deterministic

rules and personal inspiration [1, 2]. Furthermore, written music is delivered

as sound by human performers who express their own understanding of music

through behavioral skills [3]. Music generation encompasses these creative pro-

cesses by composers and performers, as illustrated in Fig. 1.1. Automatic music

generation is the attempt to mimic the music generation process of humans

using computational methods [4, 5]. Recent studies have actively tackled music

generation by mitigating the challenges in various applications in this field [6].

Applications of music generation can be divided into two categories by the

target domain: symbolic music content and audio content. Symbolic music con-

tent primarily appears as a visual expression that demonstrates high-level mu-

1



Performer Listener

Musical Score

Composer

Sound

Introduction | Background

 Music Generation (MG)?

4 / 44

Fig. 1.1 Concept of music generation.

sical concepts such as pitch and rhythm. Examples include a musical score

produced by a composer, such as those often seen in high school classes, or com-

putational data in the form of a Music Instrument Digital Interface (MIDI). On

the other hand, audio music content is an actual sound conveyed by a vibrating

signal, and it is a complex manifold of low-level attributes that can be directly

understood by the human ear [5]. Attempting to generate both symbolic music

and audio in sequence is analogous to conducting the entire process of music

generation from scratch, as illustrated in Fig. 1.2 [5, 7].

Among these two different domains, this thesis focuses on generating sym-

bolic music. Generating the waveform of music may be more friendly to real-

world use cases as it would not need any additional rendition process to convey

the sound [8]. Nonetheless, a deep investigation of symbolic content is also

significant for building an elaborate, domain-based system that can create co-

herent music. In particular, symbolic music content directly represents musical

attributes that can help researchers constructively explore the organization of

2
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Fig. 1.2 Diagram of music generation process.

music that can be generally understood by humans [9].

The generation of symbolic music includes two stages: score generation and

performance generation. According to Fig. 1.2, the first stage generates a musi-

cal score which provides basic information about the musical notes. As a music

passage is composed of musical notes that are connected in both horizontal and

vertical relationships, score generation needs to model complex relationships

among structural attributes of the notes, such as pitch, rhythm, or chord. Some

corresponding tasks include generating a monophonic melody [10, 11], percus-

sive sequence [12], polyphonic music [13, 14], and multi-track music [15]. The

second stage is generating an expressive music performance based on the score.

The musical score should be conveyed to an actual sound to be heard by hu-

mans [7]. This conversion can be executed by a human performer who physically

delivers the loudness and timing of each note in a musical piece. Hence, music

performance generation aims to imitate this highly complex mechanism of a

human performer that is connected to human perception and understanding of

music [3]. Conventional studies have sought to model expressive dynamics [16]

and expressive timing [17], and to generate a realistic performance [18], from

3



given Western musical scores.

Each stage of symbolic music generation can be further divided according to

whether the music is generated with constraints [6]. Music generation without

any constraints, or from scratch, refers to an end-to-end production of low-

level musical components that form an entire piece of music [5]. On the other

hand, music generation with constraints requires the imposition of an additional

condition to generate the music. This type of generation has been referred to

as conditional music generation. Conditional music generation is useful in that

it can satisfy a listener’s needs, taking into account the nature of music that

is consumed based on one’s preference. For example, a listener may desire to

listen to music in a bright mood that is suitable for a sunny afternoon. The

condition would be the label of the corresponding mood, "bright", and the

model is constrained to generate music that matches with the label. Fig. 1.3

illustrates the concept of conditional music generation and the usage of the

corresponding system.

Conditional music generation finds or generates appropriate music under

certain constraints. Constraints are given to the system as additional inputs that

represent the meta-information or specific components of music. The constraints

of meta-information, including emotion [19, 20], style [21, 22], or instrument

[23, 24], fundamentally determine a taxonomy of music. On the other hand, the

constraints of musical components, including melody [25, 26, 27, 28], or chord

[29, 30, 31] provide the least boundary that the remaining part of the music can

develop coherently. There are also other components that derive from other do-

mains such as lyrics or image [32, 33]. In this thesis, we focus on the conditional

generation of symbolic music given the musical components. This research topic
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aims to generate the remaining musical components given certain musical com-

ponents as the explicit condition of the generative model. We abbreviate this

topic as CGMC, representing "conditional generation of musical components"

for simplicity throughout this thesis. The following chapter is organized as fol-

lows. Chapter 1.1 demonstrates the necessity of investigating CGMC. Chapter

1.2 introduces definitions and keywords that are frequently used to represent

musical components in a musical score and performance. Chapter 1.3 describes

the main goal of the thesis with respect to the challenges in CGMC. Chapter

1.4 explains the methodologies that are utilized to achieve the main goal of the

thesis. Finally, Chapter 1.5 summarizes the outline of the thesis.

1.1 Motivation

Conditional generation of musical components (CGMC) requires finding the

remaining parts that musically match the given components of the target music.
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Fig. 1.4 Academic and commercial purposes for developing CGMC systems.

This framework may be less challenging than generating music from scratch,

as the conditional inputs may reduce the uncertainty that the system must

overcome. Nonetheless, CGMC has received active attention from a number of

studies due to two reasons, as illustrated in Fig. 1.4.

Firstly, conditional generation of music focuses on discovering complex re-

lationships among musical components [1]. Real-world music is composed of

multiple components that are interrelated with each other to complete a pleas-

ant sound. Therefore, it is necessary for the system to understand a complex

manifold of these components to understand and reconstruct realistic music. In

particular, the musical components are connected not only temporally but also

vertically, weaving complex textures [34]. Hence, this framework can factorize

such manifold in music by attempting to mathematically imitate the way that

humans leverage each musical component. Thus, it has been often investigated

as a downstream task of generating entire music from scratch [14, 35, 34].

Another reason is that conditional music generation given musical compo-

nents can reduce barriers to creating music for users with less expertise [1]. Due
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Fig. 1.5 The overall taxonomy of CGMC. Dark blue boxes are the particular

area that this thesis focuses on, which are demonstrated in Section 1.4.3.

to the complex nature of music, a person who has not been trained may face

difficulty at any level in making the whole music at once, either in the form of

a musical score or performance. For example, some people can instantly create

melody lines by humming themselves or can find famous common chords that

are easy to access online. However, they may need help to complete their mu-

sic by determining appropriate harmonies for the melody or filling in missing

tracks [36]. The systems for conditional music generation can support users who

desire to create music by their own tastes by providing the remaining parts of

the music based on the elements given by the users.

CGMC has regarded various musical components derived from either a musi-

cal score or an expressive performance as the target outputs. Fig. 1.5 illustrates

the overall taxonomy of the CGMC field that starts from the conditional SMG.

For creating a musical score, a part of the score such as melody, chord, surround-

ing bars, or track of music have been given to the system. When a melody is

7



given, the corresponding tasks are melody harmonization tasks [36, 26], or ac-

companiment generation tasks [37, 28]. Chord-conditional generation creates a

melody [30], polyphonic music [38], or multi-track music [39] that follows the

given chord progression. A music infilling task aims to fill in the missing bars

of music given the surrounding bars [40]. Finally, a single track of music can be

provided as the condition for multi-track generation [15].

In the case of rendering an expressive music performance, an entire musical

score can be given to the system [41]. We use the term "rendering" distinguish-

ing it from the term "generating" which can denote an end-to-end generation of

a music with expressiveness from the scratch [7]. The musical score contains a

structure of musical notes, a symbol that represents a sound, as well as various

instructions for how to convey the corresponding music [2]. Hence, it is analo-

gous to a text-to-speech (TTS) task where an actual sound should be derived

from static symbols that appear as a text. The target parameters for render-

ing the music performance include expressive dynamics [16, 42, 43, 44], timing

[45, 17], or the entire parameters to render the whole performance [46, 47, 48].

1.2 Definitions

Prior to describing the main goals of this thesis, we introduce definitions of mu-

sical concepts that this thesis mainly considers. The descriptions are presented

according to whether the corresponding concepts are from a musical score or

an expressive performance.

Concepts for Musical Score. The concepts that describe a single musi-

cal note are as follows: Pitch is a perceptual attribute that is derived by the

8



periodicity, or fundamental frequency (F0), of sounds [49]. It is distinguished

in the way that a sound is perceived high or low. Pitch can be represented by

a combination of two attributes: pitch-class and octave. Pitch-class denotes

12 symbolized classes for the perceived height of a sound, quantized by equal

temperament. The classes are "C", "C#", "D", "E", "F", "F#", "G", "G#",

"A", "A#", and "B". While the pitch-class represents the harmonic color of the

sound, octave denotes the absolute level of height that increases or decreases

by every 12 semi-tone intervals. Onset and offset are the time when a note

starts and ends, respectively. Duration is the length of a note’s sustain, which

is also the distance from the onset to the offset of the note. Inter-onset in-

terval (IOI) is the time interval between two note onsets. An IOI of a target

note can be computed based on either the previous or adjacent note of the

target note. Higher-level concepts than a single note are as follows: Melody

is a monophonic sequence of musical notes that a listener may perceive and

remember as the primary contour or essence of the entire music [50]. Chord is

a group of notes that are heard simultaneously [51]. Within a chord, the notes

inherit vertical relationships among each other. Depending on the literature, a

chord can represent roughly two concepts: the notes that are hit simultaneously

by one or more voices or instruments [52], or a harmony that musically fits the

melody and forms a background of the music [1].

Concepts for Expressive Performance. The common concepts for music

expression are as follows: Dynamics is the loudness of a note, which determines

how loud or soft the note is perceived [53]. Thus, a group of notes shapes the

overall loudness of the music. The overall loudness can also vary over time:

dynamics getting louder over time is called crescendo, and vice versa is called

9



diminuendo. In contrast, dynamics can vary for a single note to emphasize the

note. This is called an accent. Articulation denotes how short or long the

note is played compared to the distance between two successive notes [54]. The

note is considered to be in stronger staccato if the silence gets longer between

the two notes. Tempo is how fast a note is performed. The overall tempo is

determined by the density of the temporal grid on which the notes are played.

Tempo can also change locally for individual notes when a performer intensifies

the expressivity [54, 7]. This technique is called rubato.

1.3 Tasks of Interest

In this section, we introduce the tasks of interest that we tackle throughout

this thesis. Concretely, we focus on improving CGMC systems in a way their

products can be consumed and utilized as much as human-composed music.

Recent studies for CGMC have achieved promising results in generating relevant

musical components with respect to the conditional component. Nonetheless,

these studies have left room for creating realistic, innovative music beyond

mimicking the existing data [9]. To this end, we tackle two challenges with

respect to enhancing the inner quality and creativity of the generated music.

1.3.1 Generation Quality

One challenge in CGMC is to increase quality of the generated music. Improving

generation quality involves choosing appropriate model architecture and data

representations that can help the computational model effectively learn the

structure of music. Conventionally, music has been considered to be sequential
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data along with language [55]. Hence, a number of music generation studies

have leveraged language models or other sequential models to achieve good

performance in generating both short-term and long-term music [10, 7, 31].

However, music is in fact distinguishable from natural language in that it

inherits vertical relations forming multi-dimensional textures [34]. Therefore, all

musical notes cannot be simply serialized into a 1-dimensional sequence, where

the entries should be grouped differently according to whether they are con-

nected temporally or harmonically. Moreover, most data representations have

not been intuitive to reflect meaningful musical concepts. Some common rep-

resentations are pianoroll-based and event-based, where each entry describes a

quantized time or a single event for playing a note [5]. In other words, multiple

entries should be associated to completely represent a musical note. Such repre-

sentations can be hardly intuitive when sequentially modeling between adjacent

musical notes.

Furthermore, most CGMC studies have not deeply investigated an explicit

method to capture the structuredness of music. Some studies have proposed

novel methods to capture regular metrical structures or hierarchies in musi-

cal attributes [56, 57]. Nonetheless, these methods are built based on sequen-

tial models that fall short of reproducing the repetitive patterns, such as a

hidden Markov model or a recurrent neural network [56, 58]. Some CGMC

systems have employed Transformer-architecture [59], and they may have im-

proved structuredness of the generated music [35]. However, they have still used

the less-intuitive data representations that can weaken the model strength to

encode proper musical structure.
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1.3.2 Controllability

Another challenge in CGMC is to improve the controllability of generated music.

Controllability of music can deeply satisfy listeners or music makers who desire

to create music that reflects their specific tastes. The output can be controlled

through conditional inputs, ranging from high-level attributes such as genre to

low-level attributes such as a note sequence itself [9]. These conditional inputs

determine the boundaries of the output distribution, therefore the representa-

tion of the output is strongly entangled with the condition. If the conditional

input is the only method given to the model to control the output, the output

may not be modified further to maintain the bond with the condition.

A user may wish to control various attributes of a piece of music, indepen-

dent of the specified conditions. For example, a user may desire to increase the

rhythm density of a created melody, while maintaining its chord progression,

as specified by the condition [60]. This level of control is achievable when the

system is able to independently manipulate particular attributes of the data

without disrupting other attributes that are connected to the condition [61].

In a deep learning framework, this independent control can be implemented

with semantic representations learned from the training data and the condi-

tional inputs. Representations can be semantic when certain axes are mean-

ingful with respect to high-level attributes that are understandable to humans

[62]. Achieving good representations is often analogous to learning disentangled

representations, where each representation is sensitive to a specific factor of the

target data, while not being sensitive to others [63, 64]. In various domains such

as images or speech, recent studies have attempted to build generative models

that can learn disentangled representations from the hidden attributes of the
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data and meaningfully control the outputs [62, 65, 61].

Music generation studies have concurred with this trend and proposed gen-

erative models that can learn meaningful representations of musical attributes

[66, 15, 31]. These attempts have facilitated the flexible modification of certain

attributes, such as rhythm or pitch contour, leading to an enhancement of mu-

sical creativity [67, 60]. Certain CGMC systems have also successfully achieved

controllability through meaningful latent representations [29, 57]. However,

these attempts are still in their infancy [68], and only a limited range of musical

attributes and tasks have been explored as controllable factors and target tasks,

respectively. Some of the most common attributes that have been studied as

controllable factors include rhythmic pattern or density [67, 31], note density

[69, 60], chord and texture [29, 70]. Furthermore, controllable generation using

the latent representations has been applied to various tasks including melody

generation [67, 71], style transfer [29, 72, 69], music inpainting [40, 73], and

polyphonic music generation [60].

1.4 Approaches

In this section, we introduce concrete approaches that we use to tackle the task

of interest. The first subsection demonstrates how we improve the structured-

ness of the generated music using intuitive perspectives in terms of musical con-

cepts. The second subsection describes the existing approaches that we choose

to achieve semantic representations for the target attributes for enhancing the

controllability of CGMC systems. Lastly, the third subsection introduces two

target tasks that we deal with throughout this thesis.
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Fig. 1.6 An example of musical hierarchy derived from a music excerpt.

1.4.1 Modeling Musical Hierarchy

Musical structure is deeply related to the hierarchy of music, as human perceives

the structure of the musical passage by grouping it into higher-level units such

as motives, phrases, and sections [74]. The musical hierarchy includes elaborate

relationships among multiple semantic units of sound that represent common

musical concepts, as illustrated in Fig. 1.6. The smallest unit in musical score

may be a note, which is represented as a black oval drawn on the 5-line staff. On

the other hand, the highest unit can be a part or phrase representing a passage

of sufficient length that is analogous to a sentence or paragraph in language.

In contrast, the music generation field considers the smaller unit than the

note for representing the raw music data: a temporal frame or an event [5]. As

described in Section 1.3.1, musical data has been often parsed as a sequence of

event-based tokens or a 2-dimensional piano roll. In particular, event-based to-

kens represent musical events such as playing a note, stopping a note, temporal
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shift, dynamics, etc [7]. Furthermore, recent studies have adopted variants of

this representation that utilizes additional information such as position, tempo,

instrument, and chord [39, 28, 75]. Meanwhile, the piano-roll is a matrix with

two axes which represent the MIDI pitch number and time, and its non-zero

entries represent the presence of note in the corresponding pitch [76, 15, 77].

The aforementioned representations are not intuitive for the generative model

to learn dependency in musically meaningful units.

Inspired by recent studies that have addressed this issue [69, 78, 18], we

propose to learn the hierarchical information by the effective encoding of the

data representation. To this end, we use an alignment path between the raw

representation and a sequence of meaningful units. If we know how the data

representation is mapped to higher-level units such as notes or chords, we can

make a binary matrix that reflects a hard alignment path. This matrix can be

directly multiplied by the embeddings of the input data to produce an out-

put where each timestep represents the target high-level unit: a vector in each

15



timestep reflects accumulated information of the corresponding range of the in-

put data. Then, this output can be divided by the number of aggregated inputs

to reflect the average information for each target unit. The entire process is

illustrated in Fig. 1.7.

Using this approach, the model can directly learn temporal dependency be-

tween notes, chords, and other meaningful units represented by the embeddings.

This approach is expected to improve generation quality through capturing the

explicit structure configured by the musical units and the clear relationship

among the multi-level units.

1.4.2 Regularizing Latent Representations

To expand the controllability of the CGMC system, we use methods that regu-

larize latent representations to align them with the desired factors. In particular,

these methods are based on unsupervised or self-supervised learning frameworks

that utilize the features derived from the data itself, instead of human-labored

annotations within the musical data. These features can be directly used for

supervision as the target labels, or they can implicitly provide the inductive

bias that gives some information bottleneck to the model. These kinds of reg-

ularization frameworks have been often employed in various domains together

with recent stochastic models, such as variational autoencoder, that map the

hidden attributes of the data to the continuous latent space [79, 80].

As numerous attributes of music and human behaviors are entangled with

each other, some kinds of inductive bias should be needed to achieve the in-

tended representation from real-world music [64]. The inductive bias can be

often given as annotations or labels for supervision. However, common annota-
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Fig. 1.8 Overview of the approach regularizing a latent representation to control

musical components.

tions provided by human labor have been limited to meta information of music

such as genre or artist. Especially, it would be hard to find the existing an-

notations that precisely represent the behavior of the target attributes when

we want the system to control certain attributes of music in a non-static way.

Therefore, it can be more effective to extract the desired features directly from

the music data or force the latent representation with the inductive bias ap-

parently derived from the data. Recent music generation studies have chosen

this kind of regularization framework that utilizes the domain knowledge to

disentangle certain factors related to musical characteristics. [67].

Achieving semantic representations allows the model to get controllability

where the target attributes can be flexibly modified in the continuous space

[66]. That is, the attributes can be either interpolated or modulated by time

using the latent representation as if a user "slides a knob" of the DJ mixer [60].

To enable this continuous control of the attribute, we particularly refer to the

methods by Pati et al. [68, 81, 82]. Pati et al. have proposed algorithms for

disentangling latent dimensions by restricting them to be aligned with certain

musical attributes. Using this approach, the latent dimensions can function as
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knobs for disentangled attributes. Modifying the value in each dimension can

result in a change of the aligned attribute toward the expected direction. In

addition to this approach, we employ some auxiliary tasks to promote the dis-

entanglement of latent representations For example, we conduct prediction tasks

where the target latent representations are directly used with the self-derived

pseudo labels [80]. The overall procedure of regularizing a latent representation

to control a desired musical factor is demonstrated in Fig. 1.8.

1.4.3 Target Tasks

We choose two target tasks to attempt the aforementioned approaches: melody

harmonization and performance rendering. These two tasks are selected for two

reasons. First, controllable generation has not been widely explored in these

tasks. Second, they have been the representative downstream tasks with respect

to the musical score and expressive performance, respectively, in the music gen-

eration field. By studying how to improve performances on these downstream

tasks, we expect to build basic knowledge on developing music generation sys-

tems that can create real music.

Melody Harmonization. One of the main goals of this task is to find a

coherent chord sequence that harmonically matches to the given melody. The

aforementioned challenges have not been deeply tackled especially in this task.

Chords are the high-level attributes that significantly determines the semantics

in a musical passage. Hence, the melody harmonization task has been one of the

common downstream tasks in music generation. This leads to an importance

of tackling this task: improving the chord structure at downstream task can be

crucial for enhancing the generation quality of music generation systems that
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particularly need explicit chord information. Moreover, it can also promote

musical creativity by modifying the harmonic texture of music.

Performance Rendering. This task mainly aims to generate an relevant

set of expressive attributes, such as dynamics, articulation, and tempo, from a

written musical score. Exploring this task is important as it focuses on discover-

ing relationships between a static score and human behavior of delivering music

[41]. Particularly in the case of music generation, it has been a challenging issue

to evaluate most of the systems as their new music should be delivered with

the actual sound for evaluation [7]. Hence, this task is an essential downstream

task for developing music generation systems. We also target all expressive at-

tributes at once for the effective rendering of expressive performance, rather

than generating only a part of the attributes. This can facilitate controllability

in all attributes, different from the previous studies.

1.5 Outline of the Thesis

This section summarizes the outline of this thesis as the following studies. Fig.

1.9 also demonstrates how these studies correspond to the tasks of interest

aforementioned in Section 1.3.

Chapter 2 provides backgrounds and literature for the task of interest and

the core concepts considered throughout this thesis. In the first section, we in-

troduce previous studies for the target tasks, which are melody harmonization

and expressive performance rendering. The next section describes the attempts

to solve the first challenge which is improving the musical structure. The third

section introduces the concept and types of disentanglement learning, which
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is related to solving the second challenge, and the corresponding studies. Fi-

nally, we describe the studies for controllable music generation that uses the

framework of regularizing latent representations.

Chapter 3 discusses methods to improve structuredness and controllability

of melody harmonization system. Recent deep learning approaches for melody

harmonization have achieved remarkable performance by overcoming the un-

even chord distributions of music data. However, most of these approaches

have not attempted to capture an original melodic structure and generate struc-

tured chord sequences with appropriate rhythms. Hence, we use a Transformer-

based architecture that directly maps lower-level melody notes into a semantic

higher-level chord sequence. In particular, we encode the binary piano roll of a

melody into a note-based representation. Furthermore, we address the flexible

generation of various chords with Transformer expanded with a VAE frame-

work. We propose three Transformer-based melody harmonization models: 1)

the standard Transformer-based model for the neural translation of a melody

to chords (STHarm), 2) the variational Transformer-based model for learning
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the global representation of complete music (VTHarm), and 3) the variational

Transformer-based model that is regularized for the controllable generation of

chords (rVTHarm). Experimental results demonstrate that the proposed models

generate more structured, diverse chord sequences than LSTM-based models.

Chapter 4 presents a novel system for rendering a symbolic piano perfor-

mance with flexible musical expression. It is necessary to actively control mu-

sical expression for creating a new music performance that conveys various

emotions or nuances. However, previous approaches were limited to following

the composer’s guidelines of musical expression or dealing with only a part of

the musical attributes. We aim to disentangle the entire musical expression and

structural attribute of piano performance using a conditional VAE framework. It

stochastically generates expressive parameters from latent representations and

given note structures. In addition, we employ self-supervised approaches that

force the latent variables to represent target attributes. Finally, we leverage a

two-step encoder and decoder that learn hierarchical dependency to enhance the

naturalness of the output. Experimental results show that our system can sta-

bly generate performance parameters relevant to the given musical scores, learn

disentangled representations, and control musical attributes independently of

each other.
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Chapter 2

Background

In this chapter, we introduce conventional attempts related to the target tasks

and frameworks that we focus on throughout this thesis. Concretely, we explore

previous efforts that aimed to generate realistic chord sequences and expressive

performance. Moreover, we revisit recent studies in music generation tasks that

have addressed the two challenges: improving generation quality and controlla-

bility of the generative models. To this end, we compose this chapter by four

categories: music generation tasks; approaches to enhance structure in music

generation; disentanglement learning; and controllable music generation. As we

aim to tackle two challenges with respect to generation quality and controlla-

bility, we demonstrate backgrounds according to these two topics.

This chapter is organized as follows. The first section introduces the exist-

ing approaches for the two target tasks. The second section provides concrete

attempts to enhance structure in music generation. In the third section, we ex-

plain common definition of disentanglement learning and introduce studies for
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unsupervised, supervised, and self-supervised learning. Lastly, we present stud-

ies for controllable music generation that mostly use self-supervised framework.

2.1 Music Generation Tasks

In this chapter, we demonstrate previous approaches for generating the two

musical components: chord label and expressive parameters. The corresponding

tasks have been called as melody harmonization and expressive performance

rendering, respectively. We explore these conventional studies to revisit the

limitations with respect to the two challenges that we are tackling in this thesis.

First subsection introduces the conventional studies of melody harmonization

that employed various methods from the rule-based to the recent deep learning

methods. In the second subsection, we also introduce a brief history of the

approaches for expressive performance rendering.

2.1.1 Melody Harmonization

Melody harmonization generally aims to find musically plausible chord sequence

given a sequence of melody. A target chord sequence can be represented as chord

labels or polyphonic voices that form a Bach’s Chorale with four polyphonic

voices [1]. In the latter case, a given melody is mostly analogous to the topmost

voice of the Chorale, or Soprano. Conventional studies have tackled both tasks

with various approaches, starting with the rules from Western classical music

related to harmonic grammar.

Rule-based studies aim to simulate structural chord progressions carefully

using linguistic techniques and heavy domain knowledge [83, 84, 85, 86]. Generic
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algorithms (GAs) were early probabilistic solutions that were combined with

rule-based constraints [87, 88]. Machine learning approaches such as hidden

Markov models (HMMs) demonstrate the use of probabilistic modeling to assess

temporal dependency in music [36]. However, due to the inability of a standard

HMM to capture elaborate harmonic functions, the HMM-based model was

improved with domain knowledge [89] or tree-structured Markov models based

on probabilistic context-free grammar [56, 90].

Lim et al. [26] utilized a stacked bidirectional long short-term memory

(BLSTM) model to predict a chord for each bar of a given melody that was

aggregated into a pitch-class histogram. This LSTM-based approach success-

fully improved model robustness for the skewed distribution of commonly used

chords. Recently, Yeh et al. [25] revisited a sufficient number of conventional

methods and consequently proposed MTHarmonizer, a deep multitask model

that predicts chords with correct phrasings by directly supervising harmonic

functions. Canonical metrics for assessing the coherence and diversity of the

created chord sequence were also proposed. Sun et al. [91] used the orderless

neural autoregressive distribution estimation (NADE) and the blocked Gibbs

sampling method to approximate the complex joint probability among chords

given a melody. They provided the model with a masked chord sequence so that

the model could predict masked entries and leveraged class weights to efficiently

balance the uneven distribution of chords.

These LSTM-based models shared the same data representation and model

architecture. In particular, the models by Yeh et al. and Sun et al., which

improved the musical grammar or the diversity of chord types, were extensions

of the model by Lim et al.. However, we assume that the LSTM-based approach
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is limited to modeling a serialized chord sequence without capturing the realistic

pattern of chords from an unintuitive encoding of the melody structure. In this

thesis, we investigate the intrapatterns and interrelationship of the melody and

chords.

2.1.2 Expressive Performance Rendering

The conventional studies on computational modeling of music performance have

aimed to connect the physical parameters of the performance, such as loudness

or timing, to the symbolic attributes of the music scores. One of the early

approaches was to construct the algorithmic models based on some theories

in music performance and to validate the models by listening to the model-

generated performances [92]. The KTH rule system following this approach

intensively confirmed the various rules that reflect the previous findings in the

music cognition studies as well as the musical domain knowledge [92, 93].

With the advance of machine learning techniques, the rules of music per-

formance were computationally extracted from the actual data to simulate the

human performance. YQX system used a simple Bayesian model to find the

relationships between the musical score context and target performance pa-

rameters related to timing, dynamics and articulations [46, 54]. An ensemble

learning method was also used to discover the general principles in expressive

music performance [94]. Gaussian process (GP) regression simplified the para-

metric rules to predict the expressive parameters [95]. A Markov model with

switching Kalman filter was applied to parse the musical interpretation with the

discrete and continuous parameters that represent expressive timing [96]. Linear

and non-linear basis models were deeply investigated as a new paradigm for pre-
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dicting the expressive dynamics and timing [16, 42]. Conditional random fields

(CRFs) were used for stochastic generation of expressive piano performance [97].

Shunji was a feed-forward system based on the case-based reasoning paradigm,

which stored the performance segments and found the most similar segment

to the new score input [98]. Furthermore, deep learning methods such as a

recurrent neural network (RNN) and a graph neural network (GNN) encour-

aged the generative models to intuitively encode a large number of performance

sequences and to create more realistic piano performances [99, 100].

More recently, deep probabilistic models such as variational autoencoder

(VAE) have facilitated the stochastic generation of the performance parame-

ters. In performance generation, some studies used conditional VAE (CVAE)

that adapted the score attributes as the condition. Maezawa et al. initially at-

tempted to use CVAE to render the piano performance from aligned score data

in note-level [48]. Jeong et al. further showed a breakthrough achievement in

generating the professional piano performance using CVAE which was improved

with hierarchical recurrent architectures [18]. Most of these recent approaches

have focused on reproducing realistic expressive performances that correspond

well to the given score. The given musical score has provided rich information

intended by the composers on how the score should be musically expressed.

In other words, there has been less room for any potential listeners to control

performance attributes flexibly beyond the existing classical scores.
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2.2 Structure-enhanced Music Generation

In this section, we present recent attempts to improve structure in the gener-

ated music. We introduce them into two streams in terms of the type of the

framework. The first subsection explains various approaches that modify or add

model architectures within the existing frameworks such as Markov chain. The

second subsection introduces recent studies using the current powerful frame-

work, Transformer [59], which is empowered with attention mechanism. This

trend has been initiated with the common supposition that music is a sequential

data analogous to language.

2.2.1 Hierarchical Music Generation

Although it has been challenging to embed concrete structure in the generated

music, a number of studies attempted to reproduce realistic music considering

its temporal nature. Conventional studies have often utilized sequential models,

such as Markov models or recurrent neural network, to learn musical progres-

sion in the way to learn the linguistic grammar. More recently, Transformer has

become one of the most common framework for various music generation tasks,

as it has shown powerful generation performance in the natural language pro-

cessing (NLP) field [59]. While these frameworks could be effective on modeling

temporal dependency, other approaches have also been employed to effectively

learn musical hierarchy.

Some studies in melody harmonization attempted to improve chord struc-

tures by using auxiliary algorithms. Tshshima et al. exploited probabilistic

context-free grammar (PCFG) to explicitly train hierarchical structure of func-

27



tional harmony, while Markov models learned harmonic rhythms and generated

the corresponding melody sequence [56, 90]. In melody generation task, Wu et

al. proposed hierarchical RNN composed of three subnetworks modeling bar,

beat, and note-level structure using long short-term memory (LSTM) modules

[101]. Robert et al. also proposed MusicVAE where a Conductor module gen-

erates bar-level representation prior to the note-level decoder. This model was

further developed for multi-track generation by Simon et al., expanding the

architecture to encode and decode track-level representations [102]. MuseGAN

by Dong et al. enhanced the original generative adversarial network (GAN) by

adding a module to encode bar-level representation to create semantic multi-

track music [15].

Recent Transformer-based models also improved their generation quality by

using VAE that learns bar-level representations [78, 69]. In performance render-

ing task, Jeong et al. proposed to learn measure-level representations from the

serialized data of polyphonic piano performances using hierarchical attention

network (HAN) composed of LSTM modules [18]. This enabled the model to

effectively encode and decode musical hierarchy of long-term polyphonic piano

performances, also saving the computational cost.

2.2.2 Transformer-based Music Generation

Transformer architecture has been widely exploited for various music genera-

tion tasks, as it has shown powerful performance in capturing and generating

patterns within a sequential data [59]. In particular, multi-head self-attention

mechanism in Transformer has intensively helped the model grasp structures of

multiple levels in unsupervised way. Music Transformer, introduced by Huang et
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al. [14], was one of the most successful models for generation of long-term sym-

bolic music. It was based on a novel event-based representation that effectively

encoded polyphonic real-world music with expression [7].

LakhNES used the extended Transformer architecture, Transformer-XL, to

generate plausible multi-instrumental game sound chips [103]. Pop Music Trans-

former also used Transformer-XL and a novel data representation called “re-

vamped MIDI-derived events (REMI)" was proposed to consider the metrical

structure for generating polyphonic pop music [39]. Jazz Transformer adapted

REMI to jazz music to create long-term coherent jazz lead sheets [104]. More

recently, chord conditioned melody transformer (CMT) leveraged Transformer

decoders to generate a grid-based melody given a chord progression [30]. This

work attempted to create a melody with proper rhythms that were well aligned

with the given chords. This work was similar to the current interest of our study.

Furthermore, Choi et al. [35] proposed a Transformer-based autoencoder

that achieved global representation for the musical contexts of polyphonic pi-

ano performance data. Jiang et al. [78] introduced a hierarchical Transformer

VAE to learn context-sensitive melody representation with self-attention blocks,

enabling the model to control the melodic and rhythmic contexts.

2.3 Disentanglement Learning

The generative models in the various domains have explored the way to find

good representations to increase robustness and task performance of the model

[63, 64]. Most of these approaches have aimed to make a disentangled represen-

tation, in which the representation should be sensitive to variation of a certain
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factor while invariant to other factors of the observed data [63]. It has been

widely accepted by studies for generative models that achieving disentangled

representation of a certain factor is analogous to getting controllability of that

factor [105, 106, 82]. In the rest of this section, we present a concept of dis-

entanglement learning and the corresponding approaches in three categories:

unsupervised, supervised, and self-supervised approaches.

2.3.1 Unsupervised Approaches

The unsupervised approaches have used several methods to discover meaningful

axes that represent the data distribution: enhancing the information bottleneck

of the latent representation [107, 62], explicitly encouraging the independence

among the latent variables [108, 109], or increasing the mutual information

between the representation and data [110]. In particular, the unsupervised ap-

proaches attempted to factorize the observed sequential data into the time-

invariant and time-variant factors. Text-to-speech generation models separated

the acoustic attributes into linguistic and timbre-related factors using their

architecture or distinctive objectives [65, 105, 111]. Video data was often de-

composed into the content and motion factors by model architectures that differ

by temporal dependencies of the factors [112, 61].

2.3.2 Supervised Approaches

The supervised methods have utilized the static labels to effectively constrain

the latent representations. This is for capturing the target attributes that are

hidden in the complex manifold of the data [64, 113]. A number of studies
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in the visual domain applied the supervised approaches that use the existing

annotations [113, 114, 115] or the other inductive bias in data [116, 117, 118].

For text generation, Hu et al. enabled the semi-supervised training with partial

annotations for sentence sentiment to disentangle the observed text into the

sentiment and the remaining factors of the sentence data [119]. Some text-to-

speech (TTS) generation tasks applied full or partial supervision to disentangle

the global attributes of speech, such as age or emotion [120, 121, 122, 123].

2.3.3 Self-supervised Approaches

Limitations of the supervised approaches have led the recent studies for gen-

erative models to investigate the self-supervised learning framework. The su-

pervised approaches have revealed poor robustness of the model from the noisy

labels and the huge cost in human power [124]. In general, self-supervised learn-

ing methods have aimed to solve various pretext tasks such as image coloriza-

tion [125], Jigsaw puzzles [126], and classification using self-generated labels

[127, 128]. These self-derived labels, or pseudo labels, can be imposed by the

domain knowledge related to the known factors of the data. They have as-

sisted the model to discover the concrete boundaries of the data clusters and

increase robustness in representation learning [124]. An example of the pseudo

labels in dialogue generation can be the supervisory signals of topic or speaker

which were extracted by the trainable modules for representation learning [79].

Some video generation studies decoupled motion factors from data by using the

extracted keypoints [129] or the additional video data with the target motion

[130]. S3VAE attempted to control both dynamic and static factors of sequential

data by using the triplet loss and self-derived labels [80]. The multi-modal sys-
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tems also applied the self-supervised framework to disentangle representations

for video and audio. Nagrani et al. decomposed the speech data into speaker

identity and linguistic content by using inter- and intra-track constraints from

the speaking face tracks to promote speaker identification [131]. Rouditchenko

et al. enabled audio-visual co-segmentation by predicting audio of the selected

video from the mixed audio of two video streams [132].

2.4 Controllable Music Generation

In this section, we introduce recent approaches in music generation that have

attempted to control musical attributes with disentangled representations. We

first present the previous studies that aimed to flexibly generate components

in a musical score. Those studies mostly have focused on disentangling latent

representations that correspond to common musical attributes. In the next sub-

section, we explain several recent studies for rendering expressive performances.

They also aimed to factorize real-world piano performance data into meaningful

attributes.

2.4.1 Score Generation

In symbolic music generation, an increasing number of the systems have em-

ployed the discriminative learning frameworks that use self-supervision and

domain knowledge. Pati and Lerch suggested a method for disentanglement

learning that forces a latent variable to be monotonically related to one musical

attribute [68]. EC2-VAE decoupled rhythm and pitch attributes of a melody by

achieving the rhythm representation through an intermediate supervision [31].
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ExtRes applied the domain-based algorithms to extract musical features from

data for learning the structured latent code [67]. MeasureVAE attempted to

solve a "musical score inpainting" problem for melody generation by employing

multiple VAEs learning the latent representations of the surrounding measures

[40]. SketchNet also aimed to generate a missing measure by decoupling the

latent representation of each surrounding measure into the factors of the pitch

and rhythm [73]. FaderNet attempted to achieve the latent representations that

bridge between music and the high-level attribute, arousal level, by learning the

low-level attributes from the data-driven annotations [60]. Wang et al. used the

hierarchical structure of music to disentangle chord and texture attributes from

the polyphonic music [29]. Lastly, PianoTree VAE aimed to achieve the latent

representation of the tree-structured musical syntax where the simultaneous

notes were considered as a higher-level unit [38].

2.4.2 Performance Rendering

The recent studies in music performance generation have followed a similar

trend. Maezawa et al. exploited the conditional variational recurrent neural

network (CVRNN) framework to decouple a performer’s interpretation from

the corresponding musical score [57]. This study focused on the fact that the

performer’s interpretation could be affected by the piece-specific factors of the

given music [133, 134, 135, 136]. The conditional priors that depended on the

previous state of the RNN, were independent of the score attributes. The study

validated that this assumption for the prior could support the model to capture

the abstract representation of a performer’s unique interpretation. Tan et al., on

the other hand, aimed to disentangle temporal dynamics and articulation of the
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performance data using the conditional priors and the intermediate predictions

of the target factors [137]. The conditional priors for the two factors were derived

from the trainable lookup tables that corresponded to the factors [105]. They

also used the pseudo label sequences representing the onset-wise dynamics and

articulation. The onset-roll, the matrix where the entries for the onset time

were 1 and the remaining entries were 0, was provided as the condition of the

system by the paired performance MIDI data.

2.5 Summary

In this chapter, we have provided an review of literature backgrounds that

are closely related to our following studies. First of all, we have reviewed pre-

vious approaches that directly tackled melody harmonization and expressive

performance rendering, which are the main tasks in our studies. Then, we have

introduced the methods that recent music generation studies have exploited

to enhance the musical structure of their products. We also have explained

disentanglement learning that can expand the controllability of the generative

model. We have presented the unsupervised, supervised and self-supervised ap-

proaches to learn disentangled representations. Finally, we have arranged the

recent approaches that use stochastic models to disentangle and control the

musical attributes of the generated music.

In the following chapters, we will discuss two main studies in detail. In Chap-

ter 3, we describe three systems for melody harmonization that are improved on

structuredness, diversity, and flexibility of the generated chords. In Chapter 4,

we introduce a system for rendering expressive piano performances where novel
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factors of piano performance are hierarchically modeled and flexibly controlled

by multiple latent representations. These two studies have a common goal of

solving the two challenges of improving generation quality and controllability.
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Chapter 3

Translating Melody to Chord:
Structured and Flexible
Harmonization of Melody with
Transformer

3.1 Introduction

Automatic melody harmonization, which finds a coherent chord sequence that

fits the given notes in a melody, is an essential topic in music generation. This

task, which imitates the harmonizing process, is important for understanding

human composition [1]. It is also practical for commercial use since it can reduce

barriers to creating music without expertise [138, 36].

A melody harmonization task requires capturing the long-term dependen-

cies in music since a constrained sets of chord progressions can consistently

interact with a given melody [84]. This has motivated the use of linguistic tech-

niques such as context-free grammar [83], genetic algorithms [88], or hidden
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Markov models (HMMs) [36, 89, 56]. Recently, deep learning approaches with

bidirectional long short-term memory (BLSTM) showed robust performance

by effective nonlinear sequential modeling of bar- or half-bar-based melody and

chords [26, 25, 91]. Moreover, these studies successfully overcame the uneven

chord distributions that are in common musical data.

Nevertheless, these LSTM-based studies had limitations in generating con-

crete chord structures. First, the models were unable to encode an original

melodic structure despite their sequential architectures [84]. The notes in a

melody were aggregated within a chord duration into a pitch-class histogram

before being fed to the model. Second, the models did not explicitly consider

capturing the patterns of chord progressions. Chord labels correspond to the

constant time grids (e.g., a bar or half-bar). Sequential modeling of grid-based

chord labels is likely to result in ambiguous patterns or hierarchies of the gen-

erated outputs [56].

Hence, we attempt to utilize a recent language model, Transformer, for

structured melody harmonization. Transformer directly encodes inter- and

intra-structures between two sequential data in dynamic length [59]. Thus, with

Transformer, we can approach melody harmonization as the translation between

two different languages, melody notes and chord labels, which share a semantic

musical context.

However, conventional Transformer-based studies encoded music as a se-

ries of musical events [14]. Using event-based representations differs from how

humans perceive a rendered or score-written melody for harmonization [141].

Instead, a grid-based melody representation can be more intuitive for modeling

melodic patterns synchronized with chord labels [84, 39, 30]. In our work, we
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convert a melody into a more intuitive note-based representation, where each

frame represents one note. To this end, we use a novel time-to-note compression

method to map a binary piano roll representation into a note-based embedding.

In addition, we expand the conventional chord prediction task to a flexible

harmonization task using a variational autoencoder (VAE) [142]. A melody can

introduce diverse interpretations from multiple perspectives toward its musical

structure or the arrangers’ personalities [87, 25]. Therefore, it is more intuitive to

sample chords from the proper distribution of real-world music. Current music

generation systems have also leveraged VAE-based methods to produce creative

outputs from the latent space [66]. However, most previous studies of melody

harmonization have aimed at the static generation of chords with fixed model

parameters. Thus, we utilize the VAE setting, which explicitly approximates

the general chord distribution, for stochastic harmonization.

We concretely use the variational Transformer inspired by Lin et al. [143].

They used a Transformer-based model extended by a conditional VAE frame-

work to generate a response from a conditional context. We leverage this seq2seq

architecture to achieve a variational neural machine translation (VNMT) from

a given melody to the chords [144, 145, 146]. To the best of our knowledge,

we are the first to apply the VNMT approach to music generation. In particu-

lar, our approach is different from previous music generation studies using the

variational Transformer, which mostly served as an autoencoder [35, 78].

Furthermore, we attempt to regularize the variational Transformer for con-

trolling the chord outputs through a disentangled representation. Generating

arbitrary sets of chords may not satisfy users who would like to create music

based on their own tastes. In terms of building interactive music generation
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systems as well as learning a good representation for sequential data, control-

lable generation with the VAE framework has mainly been approached by re-

cent studies. These studies have aimed to learn disentangled representations for

high-level musical features, such as pitch, rhythm, harmony, context, or arousal,

through supervised learning [31, 67, 60, 38]. Inspired by these studies, we use

domain-specific inductive bias to achieve a disentangled representation for the

well-summarized context of the target melody and chords. In particular, we

exploit an auxiliary regularization method proposed by Pati et al. [68] to force

the target representation to be related to the musical attribute. We set the

number of unique chords in a chord progression as a controllable attribute of

the generated chords.

In this paper, we propose three Transformer-based models for structured

and flexible chord generation from a given melody. These models are based

on three types of Transformer architecture: 1) the Standard Transformer

for structured Harmonization (STHarm), 2) the Variational Transformer

for flexible Harmonization (VTHarm), and 3) the regularized Variational

Transformer for controllable Harmonization (rVTHarm). Table 3.1 summa-

rizes additional details on how the proposed models differ from the LSTM-

based approaches in terms of experimental settings and objectives. Our con-

tribution also lies in the substantial evaluations of each model’s performance

using multiple datasets. One dataset is a benchmark dataset of popular mu-

sic that is used for the direct comparison with previous approaches. The other

dataset contains music from the contemporary genre, such as jazz, which pos-

sesses relatively higher musical tension than popular music. These datasets

also differ by whether a key signature is normalized. Therefore, we assess the
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harmonization models in various dataset settings. The experimental results

support that STHarm, VTHarm, and rVTHarm can capture structured con-

texts within and between melody and chord sequences, increase chord diver-

sity, and explicitly control chord outputs, respectively, compared to LSTM-

based models. The source code for the proposed methods is available at

https://github.com/rsy1026/harmonizers_transformer.

3.2 Proposed Methods

We propose three models based on Transformer targeting structured and flexible

melody harmonization. The first model uses the standard Transformer model to

translate a melody to a chord sequence. The second model uses the variational

Transformer to learn a global latent representation of the complete music [143].

The last model regularizes the representation of the variational Transformer

to control harmonic attributes. We name these models STHarm, VTHarm, and

rVTHarm, respectively. In each model, the Transformer encoder receives a given

melody, and the decoder generates a chord sequence according to the attention

weights computed between the melody and chords. The overall structures of

the proposed models are illustrated in Fig. 3.1.

3.2.1 Standard Transformer Model (STHarm)

STHarm generally follows the original Transformer model, except that the input

and output representations are not event-based [59]. Instead, we use a binary

melody piano roll and serialized chord labels instead of musical event tokens.

Each frame of the melody piano roll represents the same temporal length.
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Let x1:T ∈ {0, 1}T×|P | be a one-hot vector sequence of a given melody, where

T is the length of the melody, |P | is the number of pitches, and t is a time index

by the length of a sixteenth note. The encoder receives the input x1:T to capture

the notewise melodic context as follows:

e
(S)
T = Embedding(x1:T )

e
(S)
N = TimeToNote(e(S)T + wT ,M)

Enc(x1:T ) = Self-AttBlocks(e(S)N + wN )

(3.1)

where eT , eN , S, and N denote the time-level embedding vectors, note-level

embedding vectors, STHarm, and the number of melody notes, respectively,

Embedding and Self-AttBlocks denote the embedding layer and L multihead

self-attention blocks that are identical to the vanilla Transformer, respectively

[59], w∗ denotes a sinusoidal positional embedding scaled by a trainable weight

[147], and TimeToNote is a novel method that we propose to convert the time-

wise embedding to the notewise embedding to capture the note patterns in a

melody.

In the Time2Note procedure, we add the scaled positional embedding wT to

e
(S)
T . Then, we transfer it to the notewise embedding e

(S)
N with average pooling by

an alignment matrix M ∈ {0, 1}T×N as (3.2), where M indicates the alignment

path between a piano roll and a series of notes. This process enables each frame

of the notewise embedding to preserve the information of the original note

duration:

TimeToNote(e,M) = Linear

(
MT · e∑T
t=1Mt,1:N

)
(3.2)

where Linear denotes a fully connected layer. The compressed embedding e
(S)
1:N

is added to another scaled positional embedding wN and passes through the L
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multihead self-attention blocks.

The decoder receives the right-shifted target chords and computes attention

with the encoder output Enc(x1:T ) to predict the chords as follows:

e
(S)
O = Embedding(y0:O−1)

é
(S)
O = AttBlocks(e(S)O + wO,Enc(x1:T ))

p(ỹ1:O) = Softmax(Linear(é(S)1:O))

(3.3)

where y0:O−1 ∈ {0, 1}O×|C| is a sequence of one-hot vectors for the right-shifted

target chords, O is the length of the chord sequence, |C| is the number of chord

classes, and AttBlocks denotes L loops of the Transformer attention blocks. The

final probabilities are estimated by a final linear layer with softmax activation.

3.2.2 Variational Transformer Model (VTHarm)

The proposed architecture of VTHarm is inspired by [143]. VTHarm has an

additional probabilistic encoder for a latent variable z, where z represents the

global attribute of the aggregated melody and chords. We denote this encoder as

the context encoder. We add a global key signature label as a conditional input

token to the model. The key signature is essential for an arbitrary melody

to obtain a certain harmonic context [148]. The key signature token can aid

the model in specifying the latent space and sampling the outputs from the

constrained chord distributions. In contrast, STHarm does not use this token

since it finds the mean distribution for chords that best fit a given melody.

The encoder used in VTHarm is identical to the encoder used in STHarm,

except that the conditional token c is concatenated at the beginning of the
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note-based melody embedding e
(V)
N as follows:

e
(V)
N+1 = Concats(c, e

(V)
N )

Enc(c, x1:T ) = Self-AttBlocks(e(V)
N+1 + wN+1)

(3.4)

where Concats denotes the concatenation over the sequence dimension. The

self-attention block can connect c and the remaining parts of the embedding

and convey any constraints to the whole embedding.

The context encoder infers the latent representation z from the encoder

output, chord input y, and conditional token c as follows:

e
(V)
O+1 = Concats(c,Embedding(y1:O))

é
(V)
O+1 = Self-AttBlock(e(V)

O+1 + wO+1)

r = Concatd(Pool(Enc(c, x1:T )),Pool(é(V)
O+1))

[µ, σ] = Linear(r) z ∼ N (µ, σ)

(3.5)

where V denotes VTHarm, Concatd denotes the concatenation over the feature

dimension, Pool denotes the average pooling over time, and self-AttBlock de-

notes only one loop of the self-attention block. The context encoder maps the

chord input y1:O into the embedding e
(V)
O . Then, c is concatenated at the be-

ginning of e(V)
O over the sequence dimension before the multihead self-attention

blocks. The self-attention output contains the harmonic context according to

the key information. It is mean-aggregated over time so that it represents the

global information of the chords [35]. The encoder output E(c, x1:T ) is also

mean aggregated over time to represent the global attribute of a melody. These

two aggregated vectors are concatenated over the feature dimension and pass

through the bottleneck, resulting in two parameters, µ, and σ. The latent code

z is inferred from µ and σ through the reparameterization trick, and its prior
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is assumed to be the normal distribution [142].

The decoder reconstructs the target chords from the right-shifted chord

input and encoder output, conditioned by c and the latent variable z as follows:

e(V)
o = Concats(z + c,Embedding(y1:O−1))

é
(V)
O = AttBlocks(e(V)

O + wO,Enc(x1:T ))

p(ỹ1:O) = Softmax(Linear(é(V)
O ))

(3.6)

The right-shifted chord input is first encoded with the same lookup table from

the context encoder. The latent variable z and the key signature token c are

added to the beginning, which corresponds to the “start-of-sequence" part of

the chord embedding. The following attention network transfers the aggregated

information from z and c to all frames of the embedding. The rest of the Trans-

former decoder reconstructs the target chords.

3.2.3 Regularized Variational Transformer Model (rVTHarm)

Training VTHarm alone cannot guarantee a disentangled representation of the

desired aspect. Therefore, rVTHarm aims to achieve a disentangled representa-

tion to control the generated chord outputs. We use the auxiliary loss by Pati

et al. [68] to directly supervise the latent representation z. In this study, we

choose the number of unique chords in the progression, or chord coverage, as a

naive attribute for the chord complexity [25].

The regularization function from Pati et al. assumes that the target dimen-

sion of the latent representation can be disentangled by its monotonic rela-

tionship with a specific attribute [68]. For example, the target attribute value

should increase when the constrained latent dimension is modulated toward a
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positive direction. To this end, the difference between the attribute values of

an arbitrary pair of two samples is forced to be the same sign as that between

the corresponding latent representations. Let ai and aj be the target attribute

values of the ith and jth batches, respectively, where i, j ∈ [1, B] and B is the

batch size. Similarly, let zri and zrj be the rth dimension values of the latent

variables of the ith and jth batches, respectively. A distance matrix Dr is com-

puted between all pairs of zri and zrj in the mini-batch. The corresponding Da

is computed in the same way between all pairs of ai and aj . We minimize the

difference between Dr and Da as follows:

LReg = MSE(tanh(Dr), sign(Da)) (3.7)

where MSE is the mean squared error. In this paper, we regularize the first

dimension of z, so r = 1.

3.2.4 Training Objectives

The main objective for STHarm is maximizing the log likelihood of the esti-

mated chord sequence y given the melody x:

LST = E[− log pθ(y|x)] (3.8)

where θ are the model parameters of STHarm.

In VTHarm, the main goal is to approximate the marginal distribution of y

through the objective of negative evidence lower bound (ELBO) by minimizing

the losses for the reconstruction and Kullback-Leibler divergence (KLD) [142].

The chord probability pθ(y) and posterior distribution qϕ(z) are conditioned by

the melody input x and key signature token c, whereas the prior pθ(z) is the
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normal distribution following the conditional VAE framework [149]:

LVT = Eqϕ(z|x,y,c)[− log pθ(y|x, z, c)]

+ λKLKL(qϕ(z|x, y, c)∥pθ(z))
(3.9)

where qϕ is the posterior distribution of z parameterized by ϕ, and λKL is a

hyperparameter for balancing the KLD loss term [107, 66].

This training objective is expanded in rVTHarm by the explicit regulariza-

tion of the latent space. Therefore, rVTHarm shares the overall objective with

VTHarm except for the added regularization term as follows:

LrVT = LVT + λRegLReg (3.10)

where λReg is a hyperparameter for balancing the auxiliary loss term.

To generate chords, VTHarm and rVTHarm autoregressively sample the

chord output y1:O from the melody input x1:T , latent variable z, and conditional

token c as follows:

pθ(y|x, z, c) =
∏
O

pθ(yo|x1:t, y0:o−1, z, c) (3.11)

where z is sampled from the normal prior N (0, 1).

3.3 Experimental Settings

We conduct objective and subjective evaluations for the three proposed meth-

ods. In this section, we explain the settings for the corresponding experiments.

We first introduce the two datasets used for the experiments. Next, we summa-

rize the baseline models, model settings, and metrics for the evaluations.
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3.3.1 Datasets

We set |P | = 13 for the 12 pitch classes and rest. We convert all chords into

one of the 72 chords, which are triad chords in major, minor, diminished, and

seventh chords in major, minor, dominant, so that |C| = 72. Each note and

chord are quantized by lengths of sixteenth note and a half-measure for all

datasets, respectively. The length of each batch is a maximum of 8 measures.

We only use songs with a time signature of 4/4 and all songs are set to 120

BPM. The training, validation, and test sets for each dataset are divided into

approximately an 8:1:1 ratio. We construct batches by slicing each song into

excerpts of 8-measures where 2-measures overlap. For each test, we extract 8-

measure excerpts without an overlap. We use two public datasets that differ in

some experimental settings as well as musical characteristics: the Chord Melody

Dataset (CMD) and the Hooktheory Lead Sheet Dataset (HLSD).

The Chord Melody Dataset (CMD). CMD [140] is composed of 473

songs in contemporary genres such as jazz and pop. The songs in this database

are only in the major key, and most of them are transposed to all 12 keys.

We choose this dataset to examine the model performance from the complex

chords in various keys with nontrivial tensions. The lead sheets are in the music

extensible markup language (MusicXML) format, where the melody and chord

labels are manually annotated and are parsed with the existing MusicXML

parser [150, 47]. We use 389 songs for the training set and the rest for the

validation and test sets (48 songs each). As a result, we use 36,528, 1,756, and

165 samples for the training, validation, and test sets, respectively.

The Hooktheory Lead Sheet Dataset (HLSD). HLSD [139] is an on-

line database of melody and chord annotations that cover various genres, such
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as the pop, new age, and original soundtracks. This dataset has been con-

structed on a crowdsourcing platform called TheoryTab 1, in which users have

transcribed a large number of high quality melodies and chords. This dataset

contains the raw annotations of melodies and chords in XML format, JSON

data of the symbolic features of melodies and chords, and piano-roll figures de-

picting the melody and chords. We use the JSON data for 9,218 songs divided

into 13,335 parts. We also normalize all songs into C major or C minor, as in

previous studies [25, 91]. Following Sun et al. [91], we use 500 parts for the test

set and the other 500 parts for the validation set. As a result, we use 32,619,

1,346, and 809 samples for the training, validation, and test sets, respectively.

3.3.2 Comparative Methods

We use two baseline models and one ground truth for our study. BLSTM by

Lim et al. [26] is composed of two stacked layers of bidirectional LSTM. This

model has been a base for most of the recent deep learning approaches [25,

91]. We use BLSTM to compare the stacked RNN structure with Transformer.

ONADE by Sun et al. [91] uses the orderless NADE and Gibbs sampling.

This model represents a BLSTM-based model with randomness and improved

chord diversity. For the ground truth, we use the original progressions from the

datasets. We denote the ground truth as Human.

3.3.3 Training

The embedding sizes of the melody and chord are 128 and 256, respectively. We

use a hidden size of 256, attention head size of 4, number of attention blocks L
1https://www.hooktheory.com/theorytab

50



of 4, and size of the latent variable z of 16. A dropout layer is used after every

scaled positional encoding at a rate of 0.2. We use an Adam optimizer [151]

with an initial learning rate of 1e-4, which is reduced to 95% after every epoch.

We train the proposed models for 100 epochs with a batch size of 128. To select

the value of λKL, we refer to several studies on VAE-based music generation in

which a scaling weight smaller than 1 encourages better reconstruction [66, 21].

Then, we empirically set λKL and λReg to be 0.1 and 1, respectively, which

results in the best performance.

The models are implemented and evaluated in Python 3 and the PyTorch

deep learning framework of version 1.5.0. For training each model, we use one

NVIDIA GeForce GTX 1080 Ti. We mostly refer to the previous implementa-

tions [152, 147] when implementing the vanilla Transformer. For implementing

and training BLSTM and ONADE, we use the original settings [26, 91]. The

gradients are all clipped to 1 for the learning stability during training of all

models. VTHarm, rVTHarm, and ONADE are assessed with 10 test samples

per melody due to their randomness. Other models are evaluated with the sam-

ples in maximum probabilities. We use the truncation trick with a threshold of

3 for VTHarm and rVTHarm in qualitative and subjective tests [153].

3.3.4 Metrics

We introduce three categories of metrics for evaluating the proposed models:

chord coherence and diversity, harmonic similarity, and subjective evaluation.
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Chord Coherence and Diversity

We use six canonical metrics proposed by Yeh et al. that have been leveraged by

recent studies [25, 91]. In brief, chord histogram entropy (CHE) and chord

coverage (CC) measure chord diversity. Chord tonal distance (CTD) mea-

sures the coherence of the chord transition. Chord tone to non-chord tone

ratio (CTR), pitch consonance score (PCS), and melody-chord tonal

distance (MTD) measure the coherence between the melody and chords:

• Chord histogram entropy (CHE). This metric computes the entropy

from the histogram of |C| bins that counts the occurrences of the chord

classes within the chord sequence:

CHE = −
|C|∑
i=1

pi log pi (3.12)

where pi denotes the probability of the ith bin of the histogram.

• Chord coverage (CC). This metric is the number of unique chord labels

that occur in the chord sequence.

• Chord tonal distance (CTD). This metric is the Euclidean distance

between two 6-D tonal centroid vectors that respectively represent the

two adjacent chords. Each tonal centroid vector ζn(d) is calculated from

the pitch class profile (PCP) features as follows [154, 155]:

ζn(d) =
1

∥cn∥1

11∑
l=0

Φ(d, l)cn(l)
0 ≤ d ≤ 5

0 ≤ l ≤ 11

(3.13)

where n is the chord index, d is one of the dimension indices of the 6-D

tonal space, cn is the PCP vector of the nth chord, where the number
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of entries for the chord tones is 1 (cn ∈ {0, 1}), l denotes one of the 12

entries of the PCP vectors, where each entry corresponds to each pitch

class, and ϕ(d, l) denotes the dth basis of the 6-D tonal space for the lth

entry of the PCP vector. Each basis is defined as follows:

ϕl =



Φ(0, l)

Φ(1, l)

Φ(2, l)

Φ(3, l)

Φ(4, l)

Φ(5, l)


=



r1 sin l
7π
6

r1 cos l
7π
6

r2 sin l
3π
2

r2 cos l
3π
2

r3 sin l
2π
3

r3 cos l
2π
3


0 ≤ l ≤ 11 (3.14)

where ϕl is the complete transition matrix of the 6-D feature vector for

the lth entry of the PCP vector, r1, r2 and r3 are the radii of the three

circles that represent the 6-D tonal space. They are set to 1, 1, and 0.5,

respectively, as in Harte et al. [155]. We compute the average of the CTD

values for all pairs of adjacent chords in each progression.

• Chord tone to non-chord tone ratio (CTR). Originally named CT-

nCTR, this metric is the ratio of the number of chord tones compared to

the number of nonchord tones and proper nonchord tones, which have a

maximum of 2-semitone intervals to the right-after note:

CTR =
nc + np

nc + nn
(3.15)

where nc, nn, and np denote the number of chord tones, nonchord tones,

and proper nonchord tones, respectively, that are computed from the

melody notes and corresponding chord labels.
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• Pitch consonance score (PCS). This metric is a consonance score

based on pitch intervals between the melody note and corresponding chord

notes. The pitches of the melody notes are assumed to always be higher

than those of the chord notes. According to the pitch interval, PCS is

one of {-1, 0, 1}: 1 for perfect 1st and 5th, major/minor 3rd and 6th; 0

for perfect 4th; and -1 for other intervals. The PCS values within each

sixteenth-note window are aggregated into the average. We compute the

total average of the aggregated PCS for all windows over time.

• Melody-chord tonal distance (MTD). Originally named MCTD, this

metric is the tonal distance between each melody note and its correspond-

ing chord label. It is calculated in the same way as CTD. Each MTD value

is weighted by the duration of the corresponding melody note. We average

the MTD values for all of the melody notes and their chord labels.

Harmonic Similarity

We measure the similarity between the generated and human-composed chords

with three metrics and assume that the chord progressions in the human-

composed music inherit hierarchical and metrical structures [141, 156]. Hence,

we set the human-composed music as the ground truths of the structured har-

monization. Concretely, a system that generates chord progressions similar to

human-composed music is assumed to achieve more structured harmonization

[90].

Briefly, the Levenshtein edit distance (LD) is the global matching score

between two chord sequences. The tonal pitch step distance (TPSD) and

directed interval class distance (DICD) measure the distance between two
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chord progressions:

• Levenshtein edit distance (LD). LD is the Levenshtein edit distance

between the generated chord labels and the ground-truth labels [90]. It

measures the extent to which the generated chords are substituted for

human-composed chords.

• Tonal pitch step distance (TPSD). TPSD computes the geometrical

dissimilarity between the generated chords and the ground-truth chords

in terms of the tonal pitch space (TPS) chord distance rule [157]. The

TPS between chord x and chord y is computed as follows:

TPS(x, y) = j + k (3.16)

where j is the least number of steps in one direction from the chordal root

of x to that of y according to the circle-of-fifths rule. In the circle-of-fifths

rule, all pitch classes are arranged in intervals of either perfect fifth or

fourth [158]. The variable k is the number of unique pitch class indices

in the four levels (root, fifths, triadic, diatonic) within the basic space of

y compared to x [157]. That is, if the pitch class index is shared by y

and x, it is not counted. We compute the TPS values between all pairs

of adjacent chords within each progression, resulting in a step function.

TPSD is calculated as the area between the two step functions derived

from the two chord progressions.

• Directed interval class distance (DICD). DICD computes the city

block distance between the directed interval class (DIC) representation

vectors for the chord transitions [159]. DIC is the histogram vector of the
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directional pitch interval classes, ranging from -5 to 6, computed between

all pairs of chord notes from the two adjacent chords. We calculate each

pitch interval from each note of the first chord to all notes of the second

chord. DICD indicates both the tonal distance and direction between the

two successive chords.

Subjective Evaluation

We expand the conventional criteria [25, 91] for deeper analysis of human judg-

ment. Harmonicity measures how coherent the chords are with a given melody.

Unexpectedness measures how much the chords deviate from expectation.

Complexity measures how complex chord progression is perceived to be. Pref-

erence measures personal favor for chord progression [26].

3.4 Evaluation

In this section, we introduce the experimental results of the objective and sub-

jective evaluations into several categories as follows. First, we compare the

results of the proposed models in chord coherence and diversity with

the baseline models. Next, we measure harmonic similarity to human-

composed music for all models to examine whether the proposed models can

result in structured harmonization. Then, we check with the controllability

of rVTHarm for the intended factor compared with VTHarm. In addition,

we introduce the results for the subjective evaluation and discuss the cor-

responding results. Moreover, we illustrate some qualitative results for all

models to verify the strength of the proposed model. Last, we show an abla-

tion study to investigate the influence of the information of the key signature
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Dataset Chord Melody Dataset
Category Diversity Coherence
Metric CHE↑ CC↑ CTD↓ CTR↑ PCS↑ MTD↓
BLSTM 1.380 5.297 0.497 1.170 0.543 1.302
ONADE 1.389 5.482 0.502 1.220 0.497 1.362
STHarm 1.349 5.030 0.443 1.213 0.428 1.396
VTHarm 1.877 7.523 0.631 1.225 0.374 1.428
rVTHarm 1.705 6.202 0.508 1.227 0.394 1.419
Human 1.618 6.412 0.580 1.301 0.389 1.408
Dataset Hooktheory Lead Sheet Dataset
Category Diversity Coherence
Metric CHE↑ CC↑ CTD↓ CTR↑ PCS↑ MTD↓
BLSTM 0.928 3.262 0.609 1.146 0.639 1.328
ONADE 1.123 4.243 0.467 1.136 0.470 1.392
STHarm 0.994 3.193 0.446 1.150 0.522 1.396
VTHarm 1.543 5.356 0.696 1.147 0.459 1.435
rVTHarm 1.440 4.678 0.536 1.146 0.445 1.447
Human 1.356 4.686 0.626 1.180 0.497 1.400

Table 3.2 Evaluation results for chord coherence and diversity. CHE and CC
measure the chord diversity, whereas the remaining four metrics measure the
chord coherence: CTD measures the coherence of the chord progression itself.
CTD, CTR, PCS, and MTD measure how harmonic the chord progression is
with the given melody.

added to the variational models.

3.4.1 Chord Coherence and Diversity

We evaluate the overall coherence and diversity of the generated chords. Table

3.2 shows the results for all models. VTHarm and rVTHarm show higher CHE

and CC than the baseline models in both datasets. This result indicates that

these models have higher chord diversity than the baseline models. STHarm,

on the other hand, reveals the lowest CTD and the lowest CHE and CC for

all datasets except for CHE on HLSD. This implies that STHarm can gener-

ate smoother and simpler chord transitions than other models [91]. BLSTM
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and ONADE show better PCS and MTD but lower chord diversity than the

proposed models.

Meanwhile, Human shows worse scores for chord coherence than STHarm for

the following reasons. 1) The human-composed samples from CMD and HLSD

include 72 different chord types with various amounts of musical tensions. 2)

STHarm may generate common chords more frequently from the average chord

distribution than the human-composed music, as shown in the lower diversity

scores. Concretely, the most frequent chords in real-world music are diatonic

chords such as the C, G, and F major chords in the C major key [26]. Since

these chords have relatively less musical tension with respect to a melody, they

are close to the melody under a music-theoretical space. Thus, these chords may

obtain better coherence scores than other chords with more musical tension.

Moreover, Human shows lower diversity scores than the variational mod-

els. We assume that this is because these models can produce some infre-

quent chords far from the mean distribution of real-world music. The nature

of stochastic generation models draws samples from the normal distribution

[153]. Some of the generated chords may violate the given key signature but in-

crease the information outside the certain harmonic context. Hence, they may

contribute to higher chord diversity than human-composed music.

Consequently, the overall results reflect a trade-off between chord coherence

and diversity [88, 25]. Additionally, Human cannot serve as the upper bound

for the six metrics in both datasets. Therefore, these metrics cannot function

as complete criteria for determining the good harmonization but only show the

model tendencies in the music-theoretical perspective [25, 91]. Hence, we are

inspired to use additional criteria to evaluate the generated outputs with respect
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Dataset Chord Melody Dataset
Metric LD↓ TPSD↓ DICD↓
BLSTM 0.75(±0.20) 2.63(±1.11) 116.45(±42.98)
ONADE 0.85(±0.17) 2.80(±1.06) 128.10(±41.51)
STHarm 0.80(±0.21) 2.43(±1.35) 107.68(±44.86)
VTHarm 0.86(±0.14) 2.72(±1.02) 121.08(±36.82)
rVTHarm 0.86(±0.15) 2.71(±1.17) 118.01(±36.59)
Dataset Hooktheory Lead Sheet Dataset
Metric LD↓ TPSD↓ DICD↓
BLSTM 0.62(±0.21) 2.48(±1.11) 85.39(±35.22)
ONADE 0.90(±0.14) 2.75(±1.17) 116.16(±39.67)
STHarm 0.65(±0.25) 2.17(±1.55) 75.54(±40.81)
VTHarm 0.77(±0.16) 2.54(±1.15) 98.55(±33.53)
rVTHarm 0.79(±0.16) 2.32(±1.26) 91.63(±34.92)

Table 3.3 Evaluation results for the chord similarity metrics. Lower scores cor-
respond to higher human composition similarity.

to human-composed chords.

3.4.2 Harmonic Similarity to Human

We investigate the harmonic similarity between the human-composed and gen-

erated chords. We use the samples from Human as the ground truth. This

explicit comparison with Human can provide insight into whether the gener-

ated chords from each model are as well-structured as human-composed music

[56].

The harmonic similarity results are shown in Table 3.3. BLSTM shows the

lowest LD compared to the proposed models, whereas ONADE shows the high-

est LD in all datasets. This indicates that BLSTM is better than the proposed

models at providing the right chords to the melody. However, the better match-

ing of individual chords does not correspond to the higher similarity of the chord

sequence in terms of musical structure [157].
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For TPSD and DICD, STHarm shows the lowest scores in all datasets.

This implies that STHarm can generate chord patterns that is more similar

to Human than other models. VTHarm and rVTHarm show higher LD scores

than BLSTM but better similarity scores than ONADE. This indicates that the

VT models tend to have higher substitution probabilities between chords than

BLSTM [157]. This is possible because the VT models are trained to induce

some infrequent chords that are far from the mean distribution of real-world

chords. Nonetheless, the VT models are better than ONADE at creating more

human-like chord patterns, even with a larger variety of chord types. Moreover,

rVTHarm shows better TPSD and DICD scores than VTHarm in both dataset.

It implies that explicit regularization of the latent representation can encourage

the model to generate structured chords.

3.4.3 Controlling Chord Complexity

We verify the monotonic relationship between the chord attribute and z from

rVTHarm. We use VTHarm and rVTHarm to infer z from the test melodies and

chords. Then, the dimension of z is reduced by two with t-stochastic neighbor

embedding (tSNE) [60]. When visualizing, we use the chord coverage value as

the third dimension (hue). The tSNE results and two dimensions, the first and

third, of the original z are illustrated in Fig. 3.2. This figure shows that the

tSNE results of rVTHarm are grouped by the attribute compared to VTHarm.

The first dimension of z from rVTHarm is also shown to be monotonically

related to the attribute [68].

In addition, we examine the attention maps of rVTHarm with different

values of α. We randomly sample z, where α is set to be one of {−3, 0, 3}, and
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(a) (b)

Fig. 3.2 Visualization of (a) tSNE results and (b) two dimension values from
z. The top (purple) and bottom (indigo) rows represent the CMD and HLSD,
respectively. The hue of each plot represents the chord coverage value.

(a) (b) (c)

Fig. 3.3 The generated results from rVTHarm in the piano-rolls (top) and the
corresponding attention matrices (bottom). (a), (b), and (c) represent the re-
sults from different values of a ∈ {−3, 0, 3}.
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Dataset CMD HLSD
VTHarm -0.1132 0.0805
rVTHarm 0.5332 0.4512

Table 3.4 Pearson’s correlation coefficients between α and CC of the generated
outputs from VTHarm and rVTHarm. CMD and HLSD are the Chord Melody
Dataset and Hooktheory Lead Sheet Dataset, respectively.

generate the chords from z and the test melodies. We sum the attention matrices

along the head dimension to see the aggregated weights. Fig. 3.3 shows that

the attention weights become balanced and diagonal when α increases from -3

to 3. This implies that the decoder of rVTHarm tends to focus on more melody

notes when α increases.

Furthermore, we compute Pearson’s correlation coefficients between α and

the CC scores of the corresponding chord outputs. Table 3.4 shows that

rVTHarm reveals higher correlation coefficients than VTHarm for all datasets.

This confirms that rVTHarm derives a meaningful representation for the in-

tended chord attribute compared to VTHarm.

3.4.4 Subjective Evaluation

We conduct a listening test for subjective evaluation. We extract the samples

in 8-measure length from the arbitrary parts of each melody. For rVTHarm, we

sample z by setting a to randomly be {−3, 0, 3}. The listening test comprises

ten trials, where each trial contains six samples of all comparative methods for

one melody. A participant2 grades four metrics, Harmonicity (H), Unexpect-

edness (U), Complexity (C), and Preference (P), on a five-point Likert scale
2Every experimental protocol was approved by the Institutional Review Board (IRB) of

Seoul National University. Written consent forms were collected from the participants, and
the study was conducted according to the ethical standards outlined in the 1962 Helsinki
Declaration.
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Condition With Melody Awareness
Metric H U C P
BLSTM 3.29(±1.00) 2.67(±1.04) 2.42(±0.98) 2.88(±1.11)
ONADE 2.91(±1.03) 2.98(±1.07) 2.89(±1.01) 2.69(±1.07)
STHarm 3.44(±1.01) 2.33(±0.99) 2.33(±1.08) 3.11(±1.16)
VTHarm 2.95(±1.04) 3.23(±1.01) 3.05(±0.98) 2.83(±1.07)
rVTHarm(α = −3) 3.02(±1.27) 2.98(±1.00) 2.56(±0.80) 2.67(±1.23)
rVTHarm(α = 0) 3.33(±1.02) 2.72(±0.97) 2.72(±0.90) 3.17(±1.26)
rVTHarm(α = 3) 3.20(±1.04) 3.17(±0.93) 3.44(±0.88) 3.10(±1.16)
Human 3.41(±1.13) 2.93(±1.05) 2.92(±1.00) 3.33(±1.17)
Condition Without Melody Awareness
Metric H U C P
BLSTM 2.87(±1.05) 2.96(±1.02) 2.68(±0.95) 2.51(±1.10)
ONADE 2.76(±1.03) 3.09(±1.01) 2.90(±1.05) 2.57(±1.12)
STHarm 3.20(±1.15) 2.68(±1.00) 2.65(±1.01) 2.92(±1.18)
VTHarm 2.87(±1.11) 3.18(±1.02) 2.97(±0.95) 2.65(±1.06)
rVTHarm(α = −3) 2.94(±1.14) 2.72(±1.00) 2.38(±1.02) 2.53(±1.13)
rVTHarm(α = 0) 2.90(±1.01) 2.99(±1.00) 3.01(±0.97) 2.57(±0.99)
rVTHarm(α = 3) 2.56(±1.03) 3.56(±0.98) 3.28(±0.98) 2.42(±1.02)
Human 3.15(±1.15) 2.96(±1.04) 2.97(±1.08) 3.00(±1.19)

Table 3.5 Subjective evaluation results for the six methods according to whether
the participants have known the given melody.

for each method [25, 91]. We denote these metrics as “H", “U", “C", and “P"

for simplicity. We collect answers on whether a participant is familiar with a

given melody as in Lim et al. [26]. A total of 37 participants were involved in

the listening test: 3 participants had degrees in music. Thirty-two participants

indicated that they had musical backgrounds, and 25 participants mentioned

that they usually listened to popular music.

Table 3.5 shows that the results mainly support the quantitative evaluation

results. We report rVTHarm according to different values of α to investigate the

affect of intentionally controlled chord complexity. In particular, STHarm shows

the highest H and P scores, except that it receives the second-highest P score

from the participants with melody awareness. This suggests that STHarm tend
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to output more plausible chords to listen to than the baseline models. For U and

C, VTHarm and rVTHarm with three settings of α generally show higher scores

than the other models. On the other hand, these variational models show lower

harmonicity and preference scores than STHarm in most cases. We assume that

the variational models tend to generate more chords far from the mean distri-

bution of the learned music data than STHarm. Such unique chords can reveal

more inharmonicity than the frequent chords, and it may have provided the

participants with unpleasant feelings. In addition, most participants listened to

popular music, where common chords with less musical tension are used. There-

fore, it may have led the participants providing poorer scores on preference as

well as harmonicity. Nevertheless, VTHarm and rVTHarm mostly show better

H and P scores than ONADE which is a comparable model with similar U and

C scores. It means that the outputs from VTHarm and rVTHarm are more

plausible and persuasive than the baseline model with similar unexpectedness

and complexity.

We also analyze the subjective results according to melody awareness. The

results for the two-way analysis of variance (ANOVA) show that melody aware-

ness and method type significantly affect all metric scores (p < 0.05). All mod-

els achieve higher P scores with melody awareness. In particular, VTHarm and

rVTHarm (α >= 0) show higher H and P scores than ONADE, and rVTHarm

(α >= 0) especially outperforms BLSTM in H and P. This implies that the

samples from the VT models in moderate or high chord complexity are likely

to be perceived as more plausible than the baseline models by participants who

know the given melodies. Comparing VTHarm and rVTHarm, rVTHarm shows

higher H and P scores than VTHarm except for the P score from rVTHarm
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Model H B O S V R(-3) R(0) R(3)
P(aware) -0.17 -0.09 -0.04 0.01 -0.08 -0.20 -0.28 -0.46
C(aware) 0.47 0.65 0.56 0.49 0.53 0.02 0.38 0.41
P(unaware) -0.21 -0.22 -0.03 -0.10 -0.16 -0.21 0.19 -0.11
C(unaware) 0.56 0.47 0.45 0.60 0.44 0.44 0.49 0.30

Table 3.6 Pearson’s correlation coefficients of U score with P and C scores
for Human (H), BLSTM (B), ONADE (O), STHarm (S), VTHarm (V), and
rVTHarm (α = n) (R(n)) according to the melody awareness.

(α = −3). In particular, rVTHarm with α = 0 shows the best P score and the

second-highest H score among the other models. It indicates that rVTHarm

with average chord coverage can generate chords that are preferable and unex-

pected at the same time under the known melody compared to other models. In

other words, regularizing the latent representation may be beneficial to increase

generation power for the desired harmonization of the given melodies.

When the melody is unaware, BLSTM and rVTHarm obtain significantly

lower P scores compared to when the melody is aware (p < 0.001). We further

compute Pearson’s correlation coefficient of U with C or P scores, as shown

in Table 3.6. As a result, rVTHarm reveal strong negative correlations of U

with both C and P scores when the melody is aware, compared to VTHarm

which shows the highest U score with melody awareness. On the other hand,

rVTHarm with α = −3 shows the smallest correlation between U and C. This

indicates that 1) the unexpected chords generated from rVTHarm may harm

their preference to a larger extent than VTHarm when the melody is known,

and 2) some factors other than complexity seem to cause the unexpectedness

in rVTHarm with α = −3. However, the mean preference scores of rVTHarm

significantly increase with melody awareness compared to those without melody

awareness. One of the presumptions is that the familiarity of the melody may
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Condition With Melody Awareness
Metric rH rU rC rP
rVTHarm(α = −3) -0.2806 0.0040 -0.0286 -0.1823
rVTHarm(α = 0) -0.2768 0.1391 0.0320 -0.1337
rVTHarm(α = 3) -0.1173 0.1977 0.2598 -0.0299
Condition Without Melody Awareness
Metric rH rU rC rP
rVTHarm(α = −3) -0.0756 0.0750 0.1505 -0.0955
rVTHarm(α = 0) 0.0869 -0.1023 -0.0961 0.0887
rVTHarm(α = 3) -0.2021 -0.0011 0.0331 -0.0992

Table 3.7 Pearson’s correlation coefficients between the scores for each metric
in rVTHarm (α ∈ {−3, 0, 3}) and the mismatch among α and the original chord
coverage values of the test samples. r* denotes the correlation coefficient with
respect to each metric. Bolded values denote those with the largest magnitude
among the three models.

strongly compensate for the high unexpectedness of the chords generated by

rVTHarm.

The main difference between rVTHarm and the other proposed models is

that the generated chords are arbitrarily controlled by chord coverage, regard-

less of the harmonic rhythm inherited by the given melodies. Therefore, melody

awareness by the participants can influence their perception of some mismatches

between the original chord coverage for the melody and the controlled chord

coverage. We investigate whether such mismatches can actually affect the met-

ric scores of the listening test. To this end, we additionally compute Pearson’s

correlation coefficient between each metric score and the mismatch in chord

coverage. Each mismatch is defined as the absolute difference between α and

the chord coverage values normalized into [−3, 3].

According to Table 3.7, knowing the melody generally derives a larger mag-

nitude of the correlation coefficients than not knowing the melody. Concretely,

the participants who know the melody are more likely to perceive decreasing
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H and P for the generated chords when mismatches in chord complexity are

increasing. In contrast, the participants can recognize higher U and C when the

mismatches get larger. Furthermore, when α = −3, the correlation is the most

negative for H and P, while it gets the most positive in U and C scores when

α = 3. It suggests that H and P become lower when the chord coverage is lower

than the original, while U and C become higher when the chord coverage is

higher than the original. On the other hand, the participants without melody

awareness are less likely to be affected by the mismatches in chord coverage

than those with melody awareness. Interestingly, a tendency of the results is

almost reversed from that with melody awareness: rVTHarm with α = 3 shows

the most negative correlations for H and P, while α = −3 leads to the most

positive correlations for U and C. Moreover, rVTHarm in average chord cover-

age shows opposite directions of correlation from other models. Overall, these

results reveal the significant influence of melody awareness on the evaluation

metrics. Hence, these phenomena need to be deeply investigated in the future

to improve the robustness of controllable melody harmonization.

3.4.5 Qualitative Results

Figs. 3.4 and 3.5 show some of the actual samples from the listening test for

all five models as well as the human-composed music. These samples reveal the

strengths of the proposed models. First, Fig. 3.4 mainly shows that the proposed

models tend to reproduce the binary metrical structure of the chords compared

to the baseline models. The binary metric structure is close to real-world mu-

sic, most of which has been composed of four beats and strongly influenced by

metrical boundaries [156]. In contrast, the chords generated from the baseline
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Fig. 3.4 The generated samples of the five models and the human-composed
chords given the melody from the song "Stella by Starlight." The orange box
emphasizes the results from the three proposed models in which the harmonic
rhythms follow the binary metrical structure. In contrast, the baseline models
show the syncopated rhythms for some chords.
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Fig. 3.5 The generated samples of the five models and the human-composed
chords given the melody from the song "Shiny Stockings". The orange box
focuses on the results from the three proposed models in which the chord roots
progress along the circle-of-fifths rule. The red arrows indicate the chromatic
progressions where the chord notes descend or ascend by intervals of a major
or minor second. These progressions are related to the given melody, where a
certain pattern also develops chromatically.
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models show some syncopated rhythms, which can weaken the metrical bound-

aries. Fig. 3.5 illustrates another advantage of the proposed models, which is

that the majority of the chord roots tend to shift in intervals either of perfect

fourth or fifth according to the circle-of-fifths rule. This aspect reflects conven-

tional Western music theory, which serves as domain knowledge for modeling

real-world music [158, 155]. Moreover, the proposed models are shown to gen-

erate some natural chromatic progressions according to the given melody. On

the other hand, the baseline models show some short transitions on the circle-

of-fifths at arbitrary spots, in contrast to the melody with regular phrasings.

We also take a closer look on some attention maps between the melody

inputs and their corresponding chord outputs. Figs. 3.6 and 3.7 illustrate two

attention matrices that are extracted from rVTHarm after it generates two se-

quences of chords from the latent representations regularized by α = −3 or

α = 3, respectively. These attention matrices are summed along their heads.

According to the figures, each chord is generated by attending to certain parts

of the melody notes. Although some of the focused parts do not precisely repre-

sent the right chord notes for the corresponding chord labels, it can be implied

that the transformer-based architecture allows the model to pick important

parts of the key for the query. This is different from the previous RNN-based

methods, where every entry within a unit (e.g. bar) is aggregated into a his-

togram and directly mapped to a chord label. Moreover, the figures reveal a

visual difference induced by varying a value of α. When α = −3, the focused

parts tend to maintain the same regardless of the chord labels. When α = 3, on

the other hand, the attention varies more often by chord labels. Consequently,

the transformer-based models can be beneficial for extracting the focal elements
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Fig. 3.6 The attention map extracted from rVTHarm where the latent represen-
tation is regularized with α = −3. The given melody is from the song "Liza".
Black vertical lines denote the boundaries of the bars, and the color denotes
the values of the attention weights.
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Fig. 3.7 The attention map extracted from rVTHarm where the latent repre-
sentation is regularized with α = 3. The given melody is from the song "Liza".
Black vertical lines denote the boundaries of the bars, and the color denotes
the values of the attention weights.
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Dataset Chord Melody Dataset
Metric LD↓ TPSD↓ DICD↓
VT w/o c 0.90(±0.12) 2.76(±1.02) 122.75(±36.91)
VT w/ c 0.86(±0.14) 2.72(±1.02) 121.08(±36.82)
rVT w/o c 0.93(±0.10) 2.86(±1.32) 124.14(±35.79)
rVT w/ c 0.86(±0.15) 2.71(±1.17) 118.01(±36.59)
Dataset Hooktheory Lead Sheet Dataset
Metric LD↓ TPSD↓ DICD↓
VT w/o c 0.79(±0.15) 2.53(±1.13) 100.02(±33.35)
VT w/ c 0.77(±0.16) 2.54(±1.15) 98.55(±33.53)
rVT w/o c 0.80(±0.16) 2.39(±1.21) 93.90(±34.65)
rVT w/ c 0.79(±0.16) 2.32(±1.26) 91.63(±34.92)

Table 3.8 Evaluation results of the chord similarity metrics according to adding
the condition token c. VT and rVT denote VTHarm and rVTHarm, respec-
tively.

of the melody to predict its harmonic structure, different from the RNN-based

approaches, and the focused elements can vary according to how fine or coarse

the harmonic structure is.

3.4.6 Ablation Study

We conduct an ablation study to verify the benefit of adding the conditional

token c to VTHarm and rVTHarm. We assume that c provides key signature in-

formation that can efficiently constrain the latent space to a concrete harmonic

context, improving the chord structuredness and reconstruction performance of

the model. We compute the chord similarity metrics between the ground truth

and generated chords from the VT models according to the presence of c. The

results are demonstrated in Table 3.8. This table shows that the VT models

without c mostly obtain worse scores for all similarity metrics than the models

with c. This indicates that adding key signature information to the VT models

in most cases not only enhances the one-by-one accuracy but also improves the
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structure of the generated chords to be more human-like.

3.5 Conclusion and Future Work

In this paper, we have proposed melody harmonization models using the stan-

dard Transformer (STHarm), variational Transformer (VTHarm), and regu-

larized variational Transformer (rVTHarm). We show that STHarm can cre-

ate structured chords that are more human-like than LSTM-based models.

VTHarm and rVTHarm can also generate more plausible chords than the base-

line models with the comparable chord diversity, especially when the melody is

familiar. Furthermore, rVTHarm can control chord outputs with the disentan-

gled representation for the intended attribute. These transformer-based models

can also effectively provide insights on which part of melody is important for

the harmonic context, with their attention mechanism. This can further be

developed into a tool for extracting a harmonic skeleton of a musical passage

which can correspond to the music summarization methods. One of the com-

mon methodologies for this objective is the Schenkerian analysis which parses

a musical structure according to chord grammar and chord significance [160].

Hence, they can be more beneficial than the previous RNN models in that the

proposed models can be more interpretable in terms of music theories. More-

over, the proposed models allow conditional inputs, which currently are the

key-signature information or latent representation, at the beginning of the de-

coder input. Hence, the objectives of the proposed models can be expanded to

melody harmonization conditioned by a composer or genre by allowing to add

prefixes representing various meta information.

Our study has several limitations that need to be investigated in the fu-
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ture. First, STHarm and VTHarm are not verified on the controllability of the

representation which is the second task of interest in this thesis. Specifically,

STHarm may only satisfy our first aim of improving generation quality from

the previous approaches. Further study of the controllability of these models is

necessary to fully verify the transformer-based architecture: we need to examine

whether the representations can reflect aspects related to the musical attributes,

even without direct regularizations. Also, our study is still limited to the shal-

low investigation of the connection between controllable attributes and melody

awareness. Therefore, we plan to deeply explore the effect of melody awareness

for more persuasive melody harmonization. Additionally, a definition of "chord

complexity" is naive within this study. Thus, we need to deeply consider which

aspect of music can derive harmonic complexity and how we should extract the

corresponding attribute from the chord sequence [161]. The chord complexity

itself should also be verified in terms of its suitability as a controllable element,

as implicated by the listening test. The controllable element should fundamen-

tally satisfy any user who wants to get plausible chords with the given melody.

Furthermore, the dataset used in this study is limited to contemporary genres,

which are either jazz or pop. We can expand the dataset to Western Classical

music, to not only help the music makers but also to deeply examine the role

of the proposed models as the analysis tools for musicologic studies. We can

further compare the models with the Schenkerian analysis methods.
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Chapter 4

Sketching the Expression: Flexible
Rendering of Expressive Piano
Performance with Self-supervised
Learning

4.1 Introduction

Computational modeling of expressive music performance focuses on mimicking

human behaviors that convey the music [3, 41]. For piano performance, one

common task is to render an expressive performance from a quantized musical

score. It aims to reproduce the loudness and timing of musical notes that fits

to the given score. Most of the conventional studies have used musical scores of

Western piano music that includes sufficient amount of guidelines for musical

expressions [46, 97, 16, 42]. Recent studies using deep learning methods have

successfully rendered plausible piano performances that are comparable to those

of professional pianists from the given Classical scores [48, 18, 100].
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More recently, it has increased attention to controlling music performance

by manipulating one or more disentangled representations from a generative

model. These representations are sensitive to the variation of certain factors

while invariant to other factors [63]. Maezawa et al. aimed to control a per-

former’s interpretation through a conditional variational recurrent neural net-

work (CVRNN) [57]. They intended to disentangle a time-variant representation

of the personal interpretation. In the acoustic domain, Tan et al. proposed a

generative model based on a Gaussian mixture variational autoencoder (GM-

VAE) that separately controlled dynamics and articulations of the notes [137].

Their novelty lied in learning multiple representations of high-level attributes

from the low-level spectrogram.

However, these studies have constrained musical creativity. Maezawa et al.

controlled musical expression only through quantized features from the musical

scores. Tan et al. did not consider controlling tempo or timing with a latent

representation. These methods may have restricted any potential for rendering

piano performances with flexible musical expression. Musical creativity can be

expanded not only by composers but also by performers who can elastically

choose various strategies to highlight multiple nuances or emotions [162, 163,

164]. Moreover, the music generation field can be also broadened if static music

created by automatic composition systems can be easily colored with realistic

and elastic expression [7].

Therefore, we attempt a new approach that renders piano performances

with flexible musical expressions. We disregard a typical assumption from pre-

vious studies that a performer must follow a composer’s intent [2, 92, 54, 97].

According to the literature, performers learn to identify or imitate "expressive
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models", or explicit planning, of existing piano performances [165]. We focus on

this attribute, defining it as a higher-level sketch of the expressive attributes

(i.e. dynamics, articulation, and tempo [166]) that the performer draws based

on a personal interpretation of the musical piece [165, 97, 57]. We also as-

sume that the remaining attribute represents common performing strategies

that are connected to certain musical patterns, while these strategies slightly

differ across performers [167, 168]. We call this attribute as a structural attribute

that belongs to given note structures of a musical piece.

In this study, we propose a generative model that can flexibly control

the entire musical expression, or the explicit planning, of symbolic piano

performance. Our system is based on a conditional variational autoencoder

(CVAE) that is modified for sequential data [80, 57]. The system generates

multiple parameters of piano performance from a note structure of a musi-

cal passage, using disentangled representations for the explicit planning and

structural attribute. The source code of our system is available at https:

//github.com/rsy1026/sketching_piano_expression.

We employ a self-supervised learning framework to force the latent repre-

sentations to learn our target attributes [64, 124, 80]. In addition, we facilitate

independent control of the three expressive attributes–dynamics, articulation,

and tempo–by utilizing an existing method that aligns the latent code with a

target attribute [81, 60]. Finally, we design a novel mechanism that intuitively

models a polyphonic structure of piano performance. In particular, we insert

intermediate steps for chordwise encoding and decoding of the piano perfor-

mance to our encoder-decoder architecture, where a chord denotes a group of

simultaneous notes.
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Our approach has several contributions as follows: 1) Our system aims to

control musical expression while maintaining any characteristics induced by a

given musical structure; 2) We use self-supervised learning where new supervi-

sory signals are involved in regularizing the latent representations effectively;

3) Our system aims to control multiple expressive attributes independently of

each other; 4) Lastly, we leverage an intermediate step that projects a notewise

representation into the chordwise in the middle of our system to intuitively

model the polyphonic structure of piano performance.

4.2 Proposed Methods

We aim to build a generative model that factorizes expressive piano perfor-

mance as the explicit planning and structural attribute. The model is based

on a conditional variational autoencoder (CVAE) that reproduces performance

parameters based on a given musical structure.

4.2.1 Data Representation

We extract features that represent a human performance and the corresponding

musical score, following the conventional studies [54, 169, 57].

Performance Features. We extract three features that represent the ex-

pressive attributes of each performed note, respectively: MIDIVelocity is a

MIDI velocity value that ranges from 24 to 104. IOIRatio represents an in-

stantaneous variation in tempo. We compute an inter-onset-interval (IOI) be-

tween the onset of a note and the mean onset of the previous chord for both a

performed note and the corresponding score note. Then, a ratio of performed

IOI to score IOI is calculated, clipped between 0.125 and 8, and converted into
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a logarithmic scale [97]. Articulation represents how much a note is shortened

or lengthened compared to the instantaneous tempo. It is a ratio of a performed

duration to an IOI value between the onset of a note and mean onset of the next

chord [54]. It is clipped between 0.25 and 4 and converted into a logarithmic

scale.

Score Features. The features for a musical score represent eight categori-

cal attributes for how the notes are composed: Pitch is a MIDI index number

that ranges from 21 to 108. RelDuration and RelIOI are 11-class attributes

of a quantized duration and IOI between a note onset and a previous chord,

respectively. They range from 1 to 11, and each class represents a multiple of

a 16th note’s length with respect to a given tempo [170, 15]. IsTopVoice is a

binary attribute of whether the note is the uppermost voice. It is heuristically

computed regarding pitches and durations of surrounding notes. PositionIn-

Chord and NumInChord are 11-class attributes of a positional index of a

note within its chord and the total number of notes in that chord, respectively,

that range from 1 to 11. An index 1 for PositionInChord denotes the most bot-

tom position. Staff is a binary attribute of the staff of a note, either of the

G clef or F clef. IsDownbeat is a binary attribute of whether a note is at a

downbeat or not.

4.2.2 Modeling Musical Hierarchy

Inspired by previous studies [97, 100, 18, 69], we build a two-step encoder and

decoder: An encoder models both notewise and chordwise dependencies of the

inputs, and a decoder reconstructs the notewise dependency from the chord-

wise representation and the notewise condition. We denote a chord as a group
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of notes that are hit simultaneously, regardless of the staff, so that they sound

together at an instant time [38]. Thus, learning the chordwise dependency is

analogous to direct modeling of the temporal progression of the piano perfor-

mance. Let M ∈ RC×N be a matrix that aligns serialized notes to their poly-

phonic structure, where C and N are the number of chords and the number of

notes, respectively. Within the encoder, the notewise representation is sequen-

tially average-pooled by M with dynamic kernel sizes where each size represents

the number of notes in each chord. We denote this operation as N2C. In this

way, we can directly model chord-level dependency of the note-level expressive

parameters [69]. In contrast, the decoder extends the chordwise representation

from the encoder back to the notewise using the transposed alignment matrix

MT , of which process we denote as C2N. Along this, the notewise embedding

of the score features replenishes the notewise information for the output. Con-

sequently, notes in the same chord share any information of their corresponding

chord, while maintaining their differences by the conditional score features:

N2C(e) =
M · e∑N

n=1Mn,1:C

, C2N(e) = MT · e (4.1)

where e denotes a notewise or chordwise representation.

4.2.3 Overall Network Architecture

Our proposed network is generally based on the conditional VAE framework

[142, 149]. Concretely, we use the sequential VAE that is modified for generation

of sequential data [61, 80, 57]. Let x = {xn}Nn=1 be a sequence of the performance

features, and y = {yn}Nn=1 be a sequence of the conditional score features. Our

network has two chordwise latent variables z(pln) = {z(pln)
c }Cc=1 ∈ RC×d(pln) and

z(str) = {z(str)c }Cc=1 ∈ RC×d(str) that represent explicit planning and structural
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Fig. 4.1 Overall architecture of the proposed system. The orange box includes
the auxiliary tasks only for training.

attribute, where d(pln) and d(str) are the sizes of z(pln) and z(str), respectively.

Our network generates notewise performance parameters x from these latent

variables and given score features y. The overall architecture of our proposed

system is illustrated in Fig. 4.1.

Generation

A probabilistic generator parameterized by θ produces the note-level perfor-

mance parameters x from the two latent variables z(pln) and z(str) with the

given condition y. We note that the latent variables are in chord-level. This de-

creases a computational cost and also enables intuitive modeling of polyphonic

piano performance where each time step represents a stack of notes and the
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simultaneous notes share common characteristics [18]:

pθ(x, y, z
(pln), z(str)) =pθ(x|z(pln), z(str), y)

pθ(z
(pln))

C∏
c=1

pθ(z
(str)
c |z(str)<c , y

(chd)
≤c )

(4.2)

where y(chd) = N2C(ey) is the chordwise embedding, and ey is the notewise

embedding for y. We assume that the prior of z(pln)
c is a standard normal dis-

tribution. In contrast, z
(str)
c is sampled from a sequential prior [171, 61, 80],

conditioned on both previous latent variables and chordwise score features:

z
(str)
c ∼ N (µ(prior),diag(σ(prior)2), where [µ(prior), σ(prior)] = f (prior)(z

(str)
<c , y

(chd)
≤c ),

and f (prior) is a unidirectional recurrent neural network. The latent representa-

tions and y(chd) pass through the decoder as shown in Fig. 4.1. During train-

ing, the model predicts the intermediate chordwise output that is computed as

N2C(x). This is to enhance reconstruction power of our system, propagating

accurate information of chord-level attributes to the final decoder. The interme-

diate activation is then extended to the notewise through the C2N operation.

The note-level parameters are generated autoregressively based on this acti-

vation and the notewise score feature. We use teacher forcing during training

[172].

Inference

A probabilistic encoder parameterized by ϕ approximates the posterior distibu-

tions of the latent representations z(pln) and z(str) from the performance input

x and conditional score input y:

qϕ(z
(pln), z(str)|x, y) =qϕ(z

(pln)|x(chd))

C∏
c=1

qϕ(z
(str)
c |x(chd)

≤c , y
(chd)
≤c )

(4.3)

83



where x(chd) = N2C(ex) is the chordwise embedding, and ex is the notewise em-

bedding for x. The posterior distributions of z(pln)
c and z

(str)
c are approximated

by distribution parameters encoded by f (pln)(x(chd)) and f (str)(x(chd), y(chd)),

where f (pln) and f (str) are bidirectional and unidirectional recurrent neural net-

works, respectively. We note that z(pln) is independent of the score features

y. This allows a flexible transfer of the explicit planning among other musi-

cal pieces. On the other hand, z(str) is constrained by y since the structural

attributes are dependent on the note structure.

Training

We train the models pθ and qϕ by approximating marginal distributions of the

performance features x conditioned on the score features y. This requires to

maximize negative evidence lower bound (ELBO) that includes regularization

force by Kullback–Leibler divergence [142]:

LVAE = Eqϕ(z(pln),z(str)|x,y)

[
log pθ(x|z(pln), z(str), y)

]
+ Eqϕ(z(pln),z(str)|x,y)

[
log pθ(k|z(pln), z(str), y)

]
− KL(qϕ(z(pln)|x)∥pθ(z(pln)))

−
C∑
c=1

KL(qϕ(z(str)c |x(chd)
≤c , y

(chd)
≤c )∥pθ(z(str)c |z(str)<c , y

(chd)
≤c ))

(4.4)

where k = N2C(x) is the chordwise performance features.

4.2.4 Regularizing the Latent Variables

We enhance disentanglement of the latent representations z(pln) and z(str) using

four regularization tasks [80].
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Prediction Tasks

We extract new supervisory signals for additional prediction tasks from the in-

put data [80]. We define a signal of explicit planning I(pln) as a set of smoothed

contours of the expressive parameters. It is extracted as a polynomial function

predicted from the chordwise performance parameters k. We also derive a signal

of structural attribute as I(str) = sign(k − I(pln)) which represents normalized

directions of the performance parameters. We train two discriminators D(pln)

and D(str) that directly receive z(pln) and z(str), respectively. D(pln) is com-

posed of A sub-discriminators where each discriminator D(pln)
a predicts a signal

I
(pln)
a for each expressive attribute a from z

(pln)
a ∈ RC×(d(pln)/A), where z

(pln)
a

is a constituent part of z(pln), and A is the number of expressive attributes.

This setting is for a clear disentanglement among the expressive attributes.

On the other hand, D(str) predicts the signal I(str) at once for all expressive at-

tributes that belong to the same musical structure. All discriminators are jointly

trained with the generative model, and the costs Lpln and Lstr are minimized

as Lpln = 1
A

∑
a MSE(D(pln)

a (z
(pln)
a ), I

(pln)
a ) and Lstr = MSE(D(str)(z(str)), I(str)),

respectively.

Factorizing Latent Variables

We further constrain a generator to guarantee that z(pln) delivers correct in-

formation regardless of z(str) [119]. During training, we sample a new out-

put x̃ using z(pln) ∼ qϕ(z
(pln)|x) and z̃(str) ∼ pθ(z

(str)). Then, we re-infer

z̃(pln) ∼ qϕ(z̃
(pln)|x̃) to estimate the superversory signal I(pln). This prediction

loss is backpropagated only through the generator:

Lfac =
1

A

∑
a

MSE(D(pln)
a (z̃(pln)

a ), I(pln)
a ) (4.5)
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Aligning Latent Variables with Factors

Finally, we enable the "sliding-fader" control of the expressive attributes [60].

To this end, we employ the regularization loss proposed by Pati et al. [81] that

aligns specific dimensions of z(pln) with the target expressive attributes. This

method assumes that a latent representation can be disentangled through its

monotonic relationship with a target attribute. Let di and dj be a target di-

mension d of ith and jth latent representations, respectively, where d ∈ z
(pln)
a ,

i, j ∈ [1,M ], and M is the size of a mini-batch. A distance matrix Dd is com-

puted between di and dj within a mini-batch, where Dd = di − dj . A similar

distance matrix Da is computed for the two target attribute values ai and aj .

We minimize a MSE between Dd and Da as follows:

Lreg = MSE(tanh(Dd), sign(Da)) (4.6)

4.2.5 Overall Objective

The overall objective of our proposed network aims to generate realistic per-

formance features with properly disentangled representations for the intended

factors:

L = LVAE + λplnLpln + λstrLstr + λfacLfac + λregLreg (4.7)

where λpln, λstr, λfac, and λreg are hyperparameters for balancing the importance

of the loss terms.
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4.3 Experimental Settings

4.3.1 Dataset and Implementation

We use Yamaha e-Competition Dataset [18] and Vienna 4x22 Piano Corpus

[173]. From these datasets, we collect 356 performances of 34 pieces by Frédéric

Chopin, which have been representative research subjects for analyzing the

Western musical expression [167, 174, 42, 17]. We use 30 pieces (108,738 batches)

for training and the rest for testing. To verify the generality of model perfor-

mances, we also collect the external dataset from ASAP dataset [175]. We use

116 performances for 23 pieces by 10 composers who represent various eras of

Western music. For subjective evaluation, we collect 42 songs of non-Classical

songs from online source1 which are less constrained to written expression than

most Classical excerpts.

We basically follow Jeong et al. [18] to compute the input features from the

aligned pairs of performance and score data. We set MIDI velocities and Beat

Per Minute (BPM) of all notes in the score data to be 64 and 120, respectively.

We also remove any grace notes for simplicity and manually correct any errors.

The performance features are further normalized into a range from -1 to 1 for

training. We compose each batch by slicing an entire piece into short excerpts

where notes for maximum 16 chords are contained and 12 chords overlap. Thus,

a length of each batch varies from 16 to 114. We set a degree of the polynomial

function computing I(pln) as 4 through an ablation study.

The embedding sizes of the performance input x and score input y are 256

and 128, respectively. The sizes of z(pln), z(str), and hidden dimension are 12

and 64, and 256, respectively. We use an ADAM optimizer [151] with an initial
1http://www.ambrosepianotabs.com/page/library
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learning rate of 1e-5, which is reduced by 5% every epoch during backprop-

agation. We empirically set λpln, λstr, λfac, and λreg to be 1000, 100, 1, 10,

respectively. We train all models for 100 epochs (170,000 iterations) with a

batch size of 64. For quantitative evaluation, each model repeatedly generates

20 samples for the same inputs considering the randomness of each result. For

subjective and qualitative evaluations, all models generate the samples using

the truncation trick with a threshold of 2 [176].

4.3.2 Comparative Methods

To the best of our knowledge, there is no existing method that does not inten-

tionally follow the written guidelines in the musical score. Therefore, we use

variants of our proposed network as comparing methods that differ in model

architecture: Notewise denotes the proposed model without the hierarchical

learning. CVAE denotes a variant of Notewise where z(pln) is substituted with

the supervisory signal I(pln). We also conduct an ablation study that investi-

gates necessity of the four loss terms.

4.4 Evaluation

We evaluate the proposed network in terms of four criteria: the generation

quality, disentanglement of the latent representations, ability to control the ex-

pressive attributes, and subjective quality from human listeners. For all figures

presenting the performance features, if no explanation is present, we visualize

Articulation and IOIRatio in the linear scales for convenient comparison among

the features.
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Dataset Internal External
Metric Rrecon Rx|pln Rx|pln0

Rrecon Rx|pln Rx|pln0

Notewise 0.870 0.392 0.203 0.875 0.479 0.177
CVAE 0.730 0.338 0.223 0.741 0.399 0.216
Lpln 0.627 0.357 0.229 0.687 0.414 0.220
Lpln + Lstr 0.770 0.325 0.181 0.837 0.398 0.195
w/o Lfac 0.774 0.289 0.176 0.838 0.354 0.173
w/o Lreg 0.737 0.437 0.224 0.793 0.502 0.216
Ours 0.737 0.427 0.231 0.789 0.498 0.203

Table 4.1 Evaluation results for the generation quality. The higher score is the
better.

4.4.1 Generation Quality

We compute Pearson’s correlation coefficients between the reconstructed or

generated samples and human piano performances [54, 42, 100, 57]. We first

measure the reconstruction quality of the test samples ("Rrecon"). Then, we

evaluate the samples generated from z̃(str) ∼ pθ(z
(str)) and either of : 1) z(pln) ∼

qϕ(z
(pln)|x) ("Rx|pln") and 2) z

(pln)
0 ∼ qϕ(z

(pln)
0 |x0) ("Rx|pln0

"), where x0 is a

zero matrix.

The results are shown in Table 4.1. Notewise shows the best scores in both

datasets, and our method outperforms CVAE in Rrecon. It indicates that our

proposed architecture where a latent representation is used instead of a direct

condition is generally good at reconstructing the human data. When using

the randomly sampled z̃(str), our method and the model without Lreg show

stable scores compared to other baseline models. The model without Lreg also

shows the highest scores in Rx|pln for both datasets. It indicates that Lreg may

contribute the least to generation power among other loss terms. CVAE and

the model only with L(pln) also show high scores in Rx|pln0
. This may be due

to the posterior collapse that makes the decoder depends mostly on the score
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Dataset Internal External
Metric MSEp MSEs MSEp MSEs
Notewise 0.003 0.006 0.022 0.028
CVAE 0.034 0.045 0.085 0.092
Lpln 0.028 0.036 0.074 0.077
Lpln + Lstr 0.012 0.015 0.022 0.027
w/o Lfac 0.018 0.023 0.021 0.025
w/o Lreg 0.002 0.004 0.014 0.022
Ours 0.001 0.002 0.012 0.020

Table 4.2 Evaluation results for the disentanglement of the latent representa-
tions.

condition [107], which is demonstrated in the supplementary material.

4.4.2 Disentangling Latent Representations

We verify whether the latent representations are well-disentangled by appro-

priate information[80]. To this end, each model infers the latent represen-

tations z(pln) and z(str) from the test sets. Each model also randomly sam-

ples z̃(str) and infers z
(pln)
0 ∼ qϕ(z

(pln)|x0). We use z
(pln)
0 to measure the

structural attribute, since z
(pln)
0 represents a flat expression where the struc-

tural attribute can be solely exposed. Each model generates new outputs as

x(pln) ∼ pθ(x
(pln)|z(pln), z̃(str), y) and x(str) ∼ pθ(x

(str)|z(pln)
0 , z(str), y). Then,

we compute a new signal Ĩ(pln) from x(pln) using the polynomial regression.

The MSE values are calculated as MSEp = MSE(Ĩ(pln), I(pln)) and MSEs =

MSE(x(str), k − I(pln)).

Table 4.2 shows that our method achieves the best scores in all metrics for

both datasets. This confirms that our proposed system can learn the latent

representations that reflect the intended attributes. Notewise and the model

without Lreg also show the robust scores compared to other baseline models. It
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indicates that using the notewise modeling alone is still relevant for achieving

appropriate representations. It also implies that Lreg may not contribute to the

disentanglement as much as other loss terms.

4.4.3 Controllability of Expressive Attributes

We sample a new input x̄ where entries of each feature are constant across

time. Then, each model infers z̄(pln) ∼ qϕ(z̄
(pln)|x̄). We control each attribute

by varying dimension values of z̄(pln) following Tan et al. [60] and examine

the new samples generated from z̄(pln). We leverage the existing metrics to

measure the controllability of each model [60]: Consistency ("C") measures

consistency across samples in terms of their controlled attributes; restrictiveness

("R") measures how much the uncontrolled attributes maintain their flatness

over time; and linearity ("L") measures how much the controlled attributes are

correlated with the corresponding latent dimensions.

For controlling each attribute, each model first infers z(pln) for all test sam-

ples. Then, we compute the maximum and minimum values of the target di-

mension d(attr) = {d(attr)
t }Tt=1, where T ∈ {N,C}. Then, we set a dimension

value of each timestep as d
(attr)
t = min(d(attr)) + t

T (max(d(attr))− min(d(attr))).

If an expressive attribute is controlled by z(pln) in the appropriate way, the cor-

responding attribute should only change along with the target dimension values

while the other attributes maintain their status. In the case of controlling dy-

namics of the samples, the metrics are computed as follows [60]:

Consistency = 1− 1

T

T∑
t=1

σ
t
(v1...M,t) (4.8)
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Dataset Internal External
Metric C R L C R L
Notewise 0.782 0.916 0.632 0.775 0.914 0.656
CVAE 0.798 0.812 0.620 0.773 0.802 0.649
Lpln 0.693 0.852 0.323 0.694 0.834 0.324
Lpln + Lstr 0.633 0.882 0.253 0.639 0.865 0.277
w/o Lfac 0.831 0.846 0.789 0.832 0.831 0.847
w/o Lreg 0.804 0.955 0.653 0.808 0.946 0.657
Ours 0.942 0.953 0.976 0.944 0.945 0.977

Table 4.3 Evaluation results for the controllability of the expressive attributes.
C, R, and L denotes consistency, restrictiveness, and linearity, respectively. Each
score is the average score for the expressive attributes.

Restrictiveness = 1− 1

2M

(
M∑

m=1

σ
m
(am,1..T ) + σ

m
(im,1..T )

)
(4.9)

Linearity = R2(S(p1...M )) (4.10)

where v, a, and i are respectively the values of MIDIVelocity, Articulation,

and IOIRatio of the generated output, S is a linear regression model, pm =

{(d(attr)
t , vm,t)|t ∈ [1, T ]}, and M is the number of samples. We average over the

three expressive attributes–dynamics, articulation, and tempo–into one score

for each metric.

Table 4.3 demonstrates that our system shows the best scores in consis-

tency and linearity in both internal and external datasets. This indicates that

our proposed method can robustly control the latent representation z(pln) in

intended way. The model without Lreg outperforms our method in restrictive-

ness. It indicates that the uncontrolled attributes by this model are the least

interfered by the controlled attribute. However, its scores on consistency and

linearity are lower than ours. It confirms that Lreg promotes linear control of

the target attributes.
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Dataset Internal
Metrics KLDp KLDs
Notewise 1.2601(±0.3141) 0.5294(±0.0850)
CVAE - 0.0225(±0.0052)
Lpln 0.9139(±0.1274) 0.0268(±0.0049)
Lpln + Lstr 0.9468(±0.1210) 0.6041(±0.0441)
w/o Lfac 1.1374(±0.4421) 0.5127(±0.0395)
w/o Lreg 0.8856(±0.1759) 0.6597(±0.0545)
Ours 1.4338(±0.7836) 0.6298(±0.0495)
Dataset External
Metrics KLDp KLDs
Notewise 1.1671(±0.4194) 0.4559(±0.1084)
CVAE - 0.0188(±0.0055)
Lpln 1.0053(±0.2099) 0.0278(±0.0061)
Lpln + Lstr 1.0528(±0.2610) 0.6260(±0.0539)
w/o Lfac 1.4065(±0.6481) 0.5329(±0.0474)
w/o Lreg 0.9773(±0.2403) 0.6688(±0.0602)
Ours 1.7641(±0.9871) 0.6337(±0.0581)

Table 4.4 Evaluation results for the KL divergence loss.

4.4.4 KL Divergence

Table 4.4 shows the results for the KL divergence of z(pln) and z(str) which we

denote as "KLDp" and "KLDs", respectively. It shows that our method reveals

the highest KL divergence of both latent variables in both datasets. In contrast,

the model without Lreg and CVAE shows the lowest values for KLDp and KLDs,

respectively. In particular, CVAE and the model only with Lpln show abrupt

decreases in KLDs compared to other models. It shows that these models have

extremely small regularization power: it may have led to the posterior collapse

of any information that z(str) should carry and allowed the decoder to become

mostly dependent on the deterministic condition of the score features [107].
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Dataset Internal External
Metrics Rrecon Rx|pln Rx|pln0

Rrecon Rx|pln Rx|pln0

dI(pln) = 1 0.735 0.298 0.218 0.784 0.330 0.214
dI(pln) = 2 0.717 0.348 0.225 0.769 0.394 0.204
dI(pln) = 4 0.737 0.427 0.231 0.789 0.498 0.203
dI(pln) = 8 0.719 0.546 0.197 0.786 0.650 0.211

Table 4.5 Evaluation results for the generation quality according to the degree
of the polynomial function. The higher score is the better.

Dataset Internal External
Metrics MSEp MSEs MSEp MSEs
dI(pln) = 1 0.0013 0.0150 0.0021 0.0229
dI(pln) = 2 0.0024 0.0149 0.0028 0.0243
dI(pln) = 4 0.0013 0.0115 0.0021 0.0196
dI(pln) = 8 0.0017 0.0127 0.0022 0.0172

Table 4.6 Evaluation results for the disentanglement of the latent representa-
tions according to the degree of the polynomial function.

4.4.5 Ablation Study

We also conduct an ablation study for the degree of the polynomial function to

compute I(pln). We investigate the cases where the degree dI(pln) is 1, 2, 4, or 8.

Tables 4.5 and 4.6 show the results for the metrics of the generation quality and

disentanglement of the representations, respectively. In the generation quality,

dI(pln) = 4 receives the best scores for the three metrics out of the six, compared

to other models. In particular, dI(pln) = 4 shows the highest reconstruction

scores in both datasets, whereas dI(pln) = 8 shows the best scores for Rx|pln in

both datasets. dI(pln) = 4 also shows the best score for Rx|pln0
in the internal

dataset. However, dI(pln) = 1 is the highest for Rx|pln0
in the external dataset

instead of dI(pln) = 8. In the disentanglement metrics, nonetheless, our method

with dI(pln) = 4 shows the best scores for most metrics. The model with dI(pln) =

1 shows the best scores for MSEp in both datasets but relatively low scores for
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MSEs. According to these results, we determine the degree of the polynomial

function for I(pln) to be 4 in this study.

4.4.6 Subjective Evaluation

We conduct a listening test to compare the proposed model architecture to

Notewise and CVAE. We qualitatively evaluate the base quality of the samples

that have flat expressions, so that quality judgments are independent of any

preference of arbitrary explicit planning. We generate each sample using z
(pln)
0 .

A listening test is composed of 30 trials where each participant chooses a more

"human-like" sample out of the generated sample and its plain MIDI [100].

Both samples have the same length which is a maximum of 15 seconds, ren-

dered with TiMidity++2 without any pedal effect. Human-likeness denotes how

similar the sample is to an actual piano performance that commonly appears

in popular music. A total of 28 participants are involved, and 6 participants are

professionally trained in music.

The results are demonstrated in Table 4.7 and Fig. 4.2. We first measure a

winning rate, a rate of winning over the plain MIDI. Winning rate is computed

for each model as a ratio of the number of winning the plain MIDI to the total

number of trials per each participant. We also compute a top-ranking rate, a

rate of being the highest rank among the three models in terms of winning

rate. Top-ranking rate is calculated as a ratio of the number of participants

who choose the corresponding model most frequently among the three models to

the total number of participants in each group. Concretely, the number of being

top-ranked by each participant is counted by 1/numModel, where numModel

2https://sourceforge.net/projects/timidity/
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Metric Winning Rate (Human-likeness)
Group T UT Overall
Notewise 0.317(±0.223) 0.541(±0.316) 0.493(±0.309)
CVAE 0.467(±0.356) 0.477(±0.342) 0.475(±0.338)
Ours 0.417(±0.256) 0.555(±0.256) 0.525(±0.258)

Table 4.7 Evaluation results for the winning rate in terms of human-likeness.
T, UT, and Overall denote musically trained, untrained, and all groups, respec-
tively.

Fig. 4.2 Evaluation results for the top-ranking rate. T, UT, and Overall denote
musically trained, untrained, and all groups, respectively.

denotes the number of models that are being top-ranked at the same time.

The results show that musically trained ("T") and untrained ("UT") groups

show the different tendency of each other: in the trained group, CVAE shows

the best winning rate, and our method gets the best top-ranking rate; in the

untrained group, our method shows the highest winning rate, whereas Note-

wise is top-ranked most frequently. We note that our system reveals smaller

variances than those of CVAE and Notewise of the musically trained and un-

trained groups in the winning rate, respectively. Moreover, our system receives

the highest overall scores for both metrics. It indicates that our system can

be stably perceived more human-like than the plain MIDI compared to other

baseline models.
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4.4.7 Qualitative Examples

Our system can render new piano performances from the scratch given a musical

score. It can directly generate expressive parameters from the randomly sampled

z̃(pln) ∼ pθ(z
(pln)) and z̃(str) ∼ pθ(z

(str)). We note that z̃(pln) does not have

temporal dependency: each z̃
(pln)
c is sampled independently of z̃(pln)

c−1 . Hence, we

need to insert specific values {α(c)}Cc=1, which we call as "smooth sketches", into

the target dimensions of z(pln) if any temporal dependency of explicit planning is

necessary. Fig. 4.3 shows that the controlled parameters are greatly correlated

with α, while their local characteristics follow those of the ground truth. In

addition, the black and orange lines together demonstrate granular variety in the

parameters induced by different z̃(str) for the same musical structure. Moreover,

Fig. 4.4 shows that our system can estimate explicit planning from arbitrary

human performances, indicating that our system can derive relevant information

on explicit planning from the unseen data.

Lastly, we show the results generated by interpolating between the latent

representations of two performance samples, where only one expressive attribute

differs from each other. A pair of the samples is created by increasing or de-

creasing the original attribute values of each attribute linearly by ±30%. We

sample each pair for a condition that is either {loud, quiet}, {staccato, legato},

or {fast, slow} by modifying only dynamics, articulation or tempo, respec-

tively. Next, {z(pln)
a , z

(pln)
b } is inferred from each pair. We interpolate between

{z(pln)
a , z

(pln)
b } and produce its mixture as z(pln)

a,b = z
(pln)
a × 0.5+ z

(pln)
b × 0.5. Fig.

4.5 shows the results that are generated from {z(pln)
a , z

(pln)
a,b , z

(pln)
b } for each con-

dition pair. All results are based on the same z̃(str) that is randomly sampled.

They generally show that only the target attribute changes along the direction
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(a) (b) (c)

Fig. 4.4 Qualitative results for estimating the explicit planning from raw piano
performances. Pink and gray lines denote the estimated contours and raw per-
formance parameters, respectively. The results in (a), (b), and (c) are from the
same excerpts for (a), (b), and (c) in Fig. 4.3, respectively.

(a) (b) (c)

Fig. 4.5 Qualitative results for interpolating between the latent representations
of two piano performances in paired condition. The results in (a), (b), and (c)
are from the condition sets for dynamics, articulation, and tempo, respectively.
Gray lines denote the original performance parameters, while pink, red, and
black lines denote the parameters controlled by z

(pln)
a , z(pln)

a,b , and z
(pln)
b , respec-

tively. The excerpt is Haydn’s Keyboard Sonata, Hob. XVI:39, 3rd movement,
mm. 53-56.
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of interpolation, while other attributes maintain their positions. It demonstrates

that z(pln) from our model carries appropriate information with respect to the

explicit planning and is well disentangled by the expressive attributes.

Demo and more qualitative samples are introduced in the online page 3

4.4.8 Extent of Control

Lastly, we examine an extent of control for each expressive attribute to observe

how much the target attributes can be modified differently along with the vari-

ation of α. To this end, we conduct the following procedure. First, we randomly

sample {z̃(pln). For each latent dimension aligned with each expressive param-

eter, we set values as α = c, where c is a constant sampled from the uniform

distribution that ranges from [-2, 2]. We generate the performance features from

this {z̃(pln) and take an average of the feature values over the time axis. Then,

we conduct a linear regression between the averaged feature values for each

attribute and the corresponding values of α. We also compute Spearman’s rank

correlation coefficients between them. We note that Articulations and IOIRatio

are trained in logarithmic scale to regard human perception [177]. Therefore,

we compare three features by collectively converting them into both linear and

logarithmic scales.

Fig. 4.6 illustrates that the three expressive attributes show the different

extents in the correlation between α and the resulting feature. Fig. 4.6 shows

that IOIRatio shows a larger slope of the regression line compared to the other

two performance features regardless of the feature scale. This may lead to more

abrupt changes in tempo than other attributes even if α linearly increases or
3https://free-pig-6c6.notion.site/DEMO-c20a1fea7a0844468a05b971c3b9ef3c
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(a) Three features converted in the linear scales

(b) Three features converted in the logarithmic scales

Fig. 4.6 Spearman’s rank correlation coefficients (r) and slopes of the regression
lines between α and values of the three performance features. Red lines denote
the regression lines.
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decreases. In other words, the listeners may perceive tempo variation much more

than variation in other characteristics of the piano performance generated with

arbitrary sketches. Balancing the extent of control during training the model in

the future is necessary for more precise control of perceived musical expressions.

It is particularly important when a user desires to express emotions by varying

the attributes, as the effects of variations in dynamics and tempo are different

in terms of conveying emotional expressiveness [178].

4.5 Conclusion

We propose a system that can render expressive piano performance with flex-

ible control of musical expression. We attempt to achieve representations for

the explicit planning and structural attribute through self-supervised learning

objectives. We also leverage the two-step modeling of two hierarchical units for

an intuitive generation. Experimental results confirm that our system shows

stable generation quality, disentangles the target representations, and controls

all expressive attributes independently of each other. Future work can be im-

proving our system using a larger dataset for various genres and composers. We

can also deeply investigate new supervisory signal Ip with respect to whether it

can be utilized to identify a performing style of music performance. Moreover,

we can further compare our system with recent piano-rendering models [18]

to investigate any connections between a performer’s explicit planning and a

composer’s intent.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

The main objective of this thesis is to improve CGMC systems in terms of

generation quality and controllability. The nature of music has led us to as-

sume that generation quality can be enhanced by explicit learning of musical

structure. Furthermore, the flexible control with the latent representation can

help the generation systems expand musical creativity. However, the previous

attempts in CGMC have not deeply investigated these two challenges: the data

representations and model architectures have not been intuitive for modeling

multi-dimensional music, and the former studies for controlling CGMC systems

have been mostly limited to dealing with narrow ranges of controllable factors

and tasks.

Therefore, on the basis of the literature backgrounds (Chapter 2), we apply

several practical methods to address these challenges. For the generation qual-

ity, we provide effective ways for generative models to encode musical structure
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from the raw data. Concretely, we directly utilize alignment paths between the

data representations and the target units for which we want to model the ex-

plicit structure. For the controllability, we attempt smooth control of musical

attributes that are novel in the target tasks. To this end, we exploit methods to

regularize latent representations in the way they are disentangled by desirable

attributes. In particular, we adapt these approaches to a task of generating

chord labels from the given melody (Chapter 3) and a task of generating ex-

pressive performance parameters from the given musical score (Chapter 4).

The major contributions of this thesis can be summarized as follows:

• Input encoding framework: We propose to encode the raw form of

input data representations into the embeddings of musically-meaningful

units. We use the alignment path to directly map the input data to a

sequence of vectors where the information of each vector corresponds to

the target unit. This method does not require any complex computation or

adding model architecture such as attention modules. Nonetheless, it has

been shown that such a simple operation enables the sequential models to

capture temporal dependencies in a natural way. It has led to the improved

performance of reconstructing structures in both chord and polyphonic

piano performance.

• Generation framework: We also extend the generation framework in

the target CGMC tasks. In the first study, we newly apply the VNMT

framework to the melody harmonization task, proposing VTHarm and

rVTHarm that use a variational Transformer to discover the connection

between two sequences in dynamic length. In the second study, we apply

two-step decoders that autoregressively generate the notewise parameters
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from the chordwise latent representations. The experimental results from

the two studies show that these novel approaches can enhance the power

of creating musically plausible outputs.

• Controllable factors: We have attempted to control novel factors in

both CGMC tasks. The controllable factors have been limited to a few

attributes such as rhythm or note density. In the first study, we attempt

to smoothly control the chord coverage, which has not been deeply in-

vestigated in this field, using rVTHarm. In the second study, we propose

to control novel attributes of expressive piano performance. Concretely,

we extract new inductive biases from the raw data using the domain

knowledge in music performance. The extensive evaluation of the pro-

posed model and controlling framework reveal that our systems can gen-

erate stable, creative piano performances having musical expression that

can be controlled independently of the given musical score.

• Extensive evaluation with multiple datasets: We have employed

multiple datasets for quantitative or qualitative evaluations of the pro-

posed systems to certify the models’ robustness and generality. In the

first study, we add a new dataset to the common benchmarking dataset,

the HLSD dataset, which the baseline studies have used. This dataset ad-

ditionally assesses how the models work on the transposed melodies and

the data with high musical tension. In the second study, the proposed

model is evaluated by various external datasets in addition to the train-

ing data from Chopin’s pieces. In particular, we evaluate the model with

the dataset for various composers and non-Classical music to generalize
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the model performance. As a result, these various datasets have verified

the proposed methods from multiple points of view, proving that they

could learn meaningful representations without being overfitted.

5.2 Future Work

Although we have provided some contributions to the CGMC field, our works

still have limitations in terms of the following reasons. First, we have not deeply

assessed the controllable factors themselves. Despite their novelty and feasibility

earned by the literature backgrounds, we need more extensive investigation

on correspondence between the factors and the extracted annotations, or the

pseudo labels. Second, we need more analysis of the qualitative results. We need

to deeply investigate various external variables that can be derived from the

collected participants to get clearer insights into the proposed model. Finally,

the datasets used in this thesis are still limited to small sizes and small sets of

genres or styles. Using shallow datasets may be useful to reduce human labor or

reduce some time on preprocessing procedures. However, the generative models

can be more improved in their representing power and generality by increasing

the scale of the datasets. In this section, we suggest some future directions

in detail to mitigate the aforementioned limitations and further develop the

CGMC field.

5.2.1 Deeper Investigation of Controllable Factors

We can additionally explore the factors that we already have considered in this

thesis or search for more novel factors to expand musical creativity. In the first

study, we can arrange more experiments to define the "chord complexity". We
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have naively defined it as chord coverage which represents the number of unique

chords. However, chord complexity is actually entangled with human perception

and a number of musical attributes including harmonic rhythm or dissonance

[161]. Hence, we may need to further factorize this property into sub-factors

and investigate whether these sub-factors can be beneficial for clearer disen-

tanglement of the representations. Moreover, we can also seek other attributes

of chord progression such as bass or inversion. In the second study, we can

further explore how the "explicit planning" and the remaining "structural at-

tribute" should be clearly represented. We have chosen polynomial regression

as a method for extracting the smooth sketch of planning from the performance

data. However, this method may have not been helpful for balancing the ex-

pressive power of the latent representations for the two factors. We can examine

other methods that can more clearly reveal the structural attribute, and dis-

cover more abstract attributes of music performance such as a player’s style

that is independent of the explicit planning.

5.2.2 More Analysis of Qualitative Evaluation Results

It has been evident from this thesis that the musical background can be a sig-

nificant factor that influences human perception of the generated music. Hence,

future studies can arrange additional qualitative tests to discover the correla-

tion of the participant groups with the particular pattern of the results. In the

first study, we can investigate how melody awareness is connected to preference

and the model type, especially rVTHarm. In the second study, we can deeply

explore the reason why the tendency is largely distinctive between musically

trained and untrained groups when listening to the generated piano perfor-
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mances. Furthermore, we can also compare the proposed rendering model to

the conventional method such as VirtuosoNet by Jeong et al. [18]. This may

be beneficial to get useful insights into the perceived quality of the generated

performances that follow an intention by the composers and the performances

that are controlled to violate the intention.

5.2.3 Improving Diversity and Scale of Dataset

Despite the extensive evaluations conducted in this thesis, the genres or styles of

the datasets are limited to small ranges. In the first study, we can use Classical

or more unique genres other than jazz or pop. In the second study, we can

train the model with datasets of various composers that span various eras, and

the non-classical datasets for the listening test can be further studied by sub-

genres, such as OST, blues, or pop. Furthermore, the size of the datasets can be

extended for both tasks. For melody harmonization, we can append polyphonic

music datasets where the chord annotations are aligned with single or multiple

tracks. Such datasets can be often found in different music generation tasks,

such as pop music generation or accompaniment generation, particularly where

[39]. For the performance rendering task, we can substantially augment the

piano performance dataset by modifying tempo, dynamics, or transpositions

[14].
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초 록

음악적 요소를 조건부 생성하는 분야인 CGMC는 멜로디나 화음과 같은 음악의

일부분을 기반으로 나머지 부분을 생성하는 것을 목표로 한다. 이 분야는 음악적

요소 간 복잡한 관계를 탐구하는 데 용이하고, 음악을 만드는 데 어려움을 겪는

비전문가들을 도울 수 있다. 최근 연구들은 딥러닝 기술을 활용하여 CGMC 시스

템의 성능을 높여왔다. 하지만, 이러한 연구들에는 아직 생성 품질과 제어가능성

측면에서 두 가지의 한계점이 있다. 먼저, 생성된 음악의 음악적 구조가 명확하지

않다. 또한, 아직 좁은 범위의 음악적 요소 및 테스크만이 유연한 제어의 대상으

로서 탐구되었다. 이에 본 학위논문에서는 CGMC의 개선을 위해 위 두 가지의

한계점을 해결하고자 한다. 첫 번째로, 음악 구조를 이루는 음악적 위계를 직관적

으로 모델링하는 데 집중하고자 한다. 본래 데이터와 음, 화음과 같은 음악적 단위

간 정렬 경로를 사용하여 모델이 음악적으로 의미있는 종속성을 명확하게 배울 수

있도록 한다. 두 번째로, 잠재 표상을 활용하여 새로운 음악적 요소들을 유연하게

제어하고자한다.특히잠재표상이의도된요소에대해풀리도록훈련하기위해서

비지도 혹은 자가지도 학습 프레임워크을 사용하여 잠재 표상을 제한하도록 한다.

본 학위논문에서는 CGMC 분야의 대표적인 두 테스크인 멜로디 하모나이제이션

및 표현적 연주 렌더링 테스크에 대해 위의 두 가지 방법론을 검증한다. 다양한 실

험적 결과들을 통해 제안한 방법론이 CGMC 시스템의 음악적 창의성을 안정적인

생성 품질로 확장할 수 있다는 가능성을 시사한다.

주요어: 음악 생성, 화음 생성, 연주 생성, 음악 구조, 잠재 표현 학습

학 번: 2015-31346
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