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Abstract

LiDAR (Light Detection And Ranging), which is widely used as a sensing

device for autonomous vehicles and robots, emits laser pulses and calculates

the return time to sense the surrounding environment in the form of a point

cloud. When recognizing the surrounding environment, the most important part

is recognizing what objects are nearby and where they are located, and 3D ob-

ject detection methods using point clouds have been actively studied to perform

these tasks.

Various backbone networks for point cloud-based 3D object detection have

been proposed according to the preprocessing method of point cloud data. Al-

though advanced backbone networks have made great strides in detection per-

formance, they are largely different in structure, so there is a lack of compat-

ibility with each other. The problem to be solved in this dissertation is “How

to improve the performance of 3D object detectors regardless of their diverse

backbone network structures?”. This dissertation proposes two general methods

to improve point cloud-based 3D object detectors.

First, we propose a part-aware data augmentation (PA-AUG) method which

maximizes the utilization of structural information of 3D bounding boxes. Since

the 3D bounding box labels fit the object’s boundaries and include the orienta-

tion value, they contain the structural information of the object in the box. To

fully utilize the intra-object structural information, we propose a novel part-

aware partitioning method which separates 3D bounding boxes with character-

istic sub-parts. PA-AUG applies newly proposed data augmentation methods

at the partition level. It makes various types of 3D object detectors robust and
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brings the equivalent effect of increasing the train data by about 2.5×.

Second, we propose a mixture-density-based 3D object detection (MD3D).

MD3D predicts the distribution of 3D bounding boxes using a Gaussian mixture

model (GMM). It reformulates the conventional regression methods as a den-

sity estimation problem. Thus, unlike conventional target assignment methods,

it can be applied to any 3D object detector regardless of the point cloud prepro-

cessing method. In addition, as it requires significantly fewer hyper-parameters

compared to existing methods, it is easy to optimize the detection performance.

MD3D also increases the detection speed due to its simple structure.

Both PA-AUG and MD3D can be applied to any 3D object detector and

shows an impressive increase in detection performance. The two proposed meth-

ods cover different stages of the object detection pipeline. Thus, they can be

used simultaneously, and the experimental results show they have a synergy ef-

fect when applied together.

keywords: 3D Object Detection, LiDAR, Point cloud, Data augmentation,

Mixture density networks, Autonomous driving

student number: 2017-23640
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Chapter 1

Introduction

3D Object Detection is the task of predicting the positions, sizes, orientations,

and classes of the target objects with 3D bounding boxes in a given scene. It is an

essential perception task for autonomous vehicles, robots, and surveillance sys-

tems. The most frequently used sensing devices for object detection are RGB

cameras and Light Detection and Ranging (LiDAR). Each sensing device has

advantages and disadvantages. As shown in Figure 1.1, the images obtained

from RGB cameras contain rich texture information but lack depth information.

Contrarily, the point clouds obtained from LiDAR have 3D positional informa-

tion but lack texture information. Therefore, they are suitable for 2D and 3D

object detection, respectively.

Many 3D object detectors utilize a monocular image as input [77, 8, 6, 50,

78] by estimating the depth values and the 3D poses of the target objects. How-

ever, the limited accuracy of the estimated values makes the detection unstable.

Some stereo camera-based methods [10, 40, 88, 57, 58] have been proposed for

better accurate depth estimation, but they showed poor performance with tex-

tureless regions. [2] The ideal case would be the detectors that utilize both the

1



Figure 1.1: Illustrations of the 2D and 3D Object Detection. (a) The 2D bound-

ing boxes consist of the 2D center coordinates (xc, yc) and 2D sizes (w, h). (b)

The 3D bounding boxes consist of the 3D center coordinates (xc, yc, zc), 3D

sizes (l, w, h), and yaw angle (θ). The roll and pitch angles are ignored. Addi-

tionally, both two tasks predict the classes of the target objects.

RGB images and the point clouds [54, 11, 52, 42, 64]. They can detect objects

using texture information and accurate depth values. However, it is not easy to

exploit both modalities due to their different unique characteristics. Also, the

detectors using multi-modal inputs are too slow to utilize in real-world environ-

ments.

In this dissertation, we mainly focus on 3D object detection using only point

clouds obtained from LiDAR, which is the most balanced setting in real-world

environments for autonomous vehicles and robots. The purpose of this disser-

tation is to propose two novel methods to enhance LiDAR-based 3D object de-

tection. The first one is a novel data augmentation method. Data augmentation
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plays an important role in boosting the performance of 3D models. However,

3D data augmentation has not been explored much compared to 2D’s. So, we

propose a part-aware data augmentation (PA-AUG) method which utilizes rich

structural information of 3D labels. It has the equivalent effect of increasing

the train data by about 2.5×. The second one is a novel anchor-free detection

head which adopts the mixture density networks [4]. Unlike image-based 2D

anchors, 3D anchors must be placed in a 3D space and determined differently

for each class of different sizes. This imposes a significant burden on the design

complexity. Therefore, we proposed a mixture-density-based 3D object detec-

tion (MD3D) method to predict the distribution of 3D bounding boxes using a

Gaussian mixture model (GMM). With an anchor-free detection head, MD3D

requires few hand-crafted design factors and eliminates the inefficiency of sep-

arating the regression channel for each class, thus offering both latency and

memory benefits.

1.1 Problem Definition

The overall pipeline of LiDAR-based 3D object detection is similar to image-

based 2D object detection. Nevertheless, their internal components are signifi-

cantly different. As shown in Figure 1.2, the basic one-stage LiDAR-based 3D

object detectors consist of three stages.

The first stage is data augmentation and preprocessing. Data augmentation

is a method to artificially increase the amount of train data to enhance detection

performance. The raw point cloud L obtained from LiDAR is represented as a

set of point vectors L ∈ RN×(3+c) (3D coordinates and LiDAR features). The

number of points N is different for each scene. Thus it is necessary to preprocess

3



Figure 1.2: Illustration of the basic LiDAR-based 3D Object Detection Pipeline.

the point cloud to perform batch inference. The simplest preprocessing method

is sampling the raw point cloud with a predefined number of points. This repre-

sentation preserves most of the original data, but due to its unordered point set,

it is hard to know nearby points without calculating distances for each point.

Therefore 3D voxelization is a widely used method to encode point clouds into

a 3D grid format. With this encoding, the time-consuming distance calculation

is not needed to find nearby points. As well as 3D voxelization, projecting point

clouds into 2D grids, such as bird’s-eye view (BEV) or front view (FV), is also

a widely used encoding method. Both of the grid encoding methods make point

clouds structurally formatted. However, they lose much information by raster-

izing original point clouds. There are other encoding methods, such as a graph,

but those mentioned above are the most widely used.

The second stage is the backbone network. Due to the various point cloud

encoding methods, there are many backbone networks according to the encod-

ing methods. The sampled point cloud is featurized using the multi-layer per-

ceptron (MLP) or Transformer [73], which are suitable for point sets. This rep-

resentation needs to calculate the distances between each other. Hence, a lo-

cal grouping method, such as k-nearest neighbor (kNN) or ball query, must be

conducted before featurizing the sampled point clouds. The voxelized 3D grid

4



Encoding Advantages Disadvantages

Sampled

Point cloud

• preserves almost all of

the raw data

• fast preprocessing time

(random sampling)

• needs to calculate the

distances between points

from each other to find lo-

cal neighboring points

Voxelized

3D grid

• easy to aggregate local

features using 3D conv.

• preserves more data than

2D grid

• heavy backbone network

(3D CNNs)

Projected

2D grid

• fastest inference time

• can use 2D object detec-

tors’ backbone networks

• loses a lot of original

data due to rasterizing ef-

fect

Table 1.1: Comparison of the point cloud encoding methods.

uses 3D convolutional neural networks (CNNs) to featurize it. The point clouds

obtained from LiDAR are concentrated in close regions; thus, the 3D grid is

inherently sparse. Therefore, sparse convolution [26] and submanifold sparse

convolution [27] are used instead of the normal 3D convolution operation to

boost computation time. They calculate only the occupied voxels using a hash

table which is utilized at indexing active input and output voxel positions. The

2D grids projected as FV adopts the normal 2D CNNs, but the BEV 2D grids

use 2D sparse CNNs. Each encoding method has trade-offs between detection

accuracy and latency. As well as the single encoding-based backbone networks,

multiple backbone networks are used to exploit the advantages of different types

5



of features by fusing their output features. [96, 84, 59, 60, 28, 11, 45, 48]

The last stage is the detection head. The detection heads are classified into

two groups; anchor1-based and anchor-free methods. Anchor-based detectors

detect target objects by predicting offsets from nearby anchors for each class.

The anchors make the training stable, but a lot of anchor-related hyper-parameters

are predefined. Many anchor-free detectors use the 2D projected grid as a point

cloud encoding method, and they predict target objects with a heatmap estima-

tion.

In this dissertation, we aim to solve a question: How to improve the detection

performance regardless of the backbone network architectures? Due to the vari-

ous types of point cloud encoding methods, 3D object detectors have very differ-

ent architectures. We propose two methods that can be applied to any 3D object

detector. The first method is part-aware data augmentation (PA-AUG) [16],

a novel data augmentation method that utilizes rich structural information of 3D

bounding boxes. The second method is mixture-density-based 3D object de-

tection (MD3D) [15], a novel detection head that reformulates predicting target

objects as a density estimation problem.

1.2 Challenges

Utilizing structural information of 3D bounding boxes

Many 3D object detectors [59, 76, 7, 29] apply data augmentation, such as trans-

lation, flipping, shifting, scaling, and rotation, directly extending typical 2D data

augmentation methods to 3D. These existing methods are effective in improv-
1anchor or anchor box is a set of predefined 3D boxes which are tiled across the scene to make

the bounding box regression easy

6



ing performance. However, they did not fully utilize the 3D information. 3D

ground-truth boxes have much richer structural information compared to 2D

ground-truth boxes as they perfectly fit the object along with each direction. For

example, since the 2D boxes have no structural information about the objects,

they cannot tell which part of the car is the ‘wheel’. However, we can be aware

the wheels are located near the bottom corners using the intra-object part loca-

tion information of 3D boxes. Utilizing the unique characteristics of 3D boxes

enables more sophisticated and effective augmentation which 2D augmentation

cannot do. In this dissertation, we propose a novel data augmentation method

utilizing structural information of 3D bounding boxes.

Various feature encoding methods

Point cloud-based 3D object detectors adopt various data preprocessing meth-

ods: sampling point clouds with a predefined number, voxelization, projection,

and their hybrid methods. Therefore, the types of feature encodings differ sig-

nificantly. Hence, there are a lot of different training strategies and detection

heads, which are designed for a specific feature encoding type. It is very hard

to unify them with a single training strategy owing to the different character-

istics of the feature encodings. In this dissertation, we propose a novel training

strategy predicting 3D bounding boxes with mixture density networks. By refor-

mulating the 3D bounding box regression with a density estimation problem, we

could train various types of 3D object detectors with a single training method.

Anchor-based 3D Object Detection

The existing 3D object detectors have mostly adopted anchor-based detection

methods. However, anchor-based detectors suffer from a fatal problem; they

7



must predefine many anchor-related hyper-parameters: 1) anchor size, 2) anchor

direction, 3) stride that determines anchor placement, and 4) target assignment

policy. Each of these factors dominantly influences the performance and latency

of the detectors. Thus, they must be defined separately for each class. In this

dissertation, we propose a novel anchor-free detection head which requires few

hand-crafted design factors.

1.3 Contributions

The major contribution of this dissertation is that our proposed methods improve

the 3D object detection performance regardless of the backbone network archi-

tectures. To achieve general usability, we focus on two stages of the 3D object

detection pipeline: data augmentation and detection head. As well as the two

proposed methods show impressive improvements on detection performance,

the combination of them brings a much greater increase in accuracy. In this

section, we demonstrate the contributions of them in detail.

1.3.1 Part-Aware Data Augmentation (PA-AUG)

Conventional data augmentation methods for 3D object detection are applied to

a whole scene or individual objects. For example, translation, flipping, shifting,

scaling, and rotation are applied to a whole scene or each object. The proposed

PA-AUG divides objects into predefined partitions. Then, we stochastically ap-

ply five data augmentation methods for each partition, not for each object. The

partition-level data augmentation method allows the network to recognize intra-

object relations as it learns individual variations in an intra-object part. It is com-

patible with existing point cloud data augmentation methods and can be used

8



universally regardless of the detector’s architecture. PA-AUG has improved the

performance of state-of-the-art 3D object detector for all classes of the KITTI

dataset and has the equivalent effect of increasing the train data by about 2.5×.

We also show that PA-AUG not only increases performance for a given dataset

but also is robust to corrupted data.

1.3.2 Mixture-Density-based 3D Object Detection (MD3D)

Many bounding box regression methods for 3D object detection come from

2D object detectors. Among them, the most widely used regression method is

anchor-based regression. The design factors of anchor boxes, such as shape,

placement, and target assignment policy, greatly influence the performance and

latency of the 3D object detectors. Unlike image-based 2D anchors, 3D anchors

must be placed in a 3D space and determined differently for each class of differ-

ent sizes. This imposes a significant burden on the design complexity. To tackle

this issue, various studies have been conducted on how to set the anchor form.

However, for practical reasons, anchor-based methods select the anchor design

by compromising between performance and latency. Consequently, only objects

that are similar in shape and size to an anchor can obtain high accuracy.

We propose MD3D which predicts the distribution of 3D bounding boxes

using a Gaussian Mixture Model (GMM). With an anchor-free detection head,

MD3D requires few hand-crafted design factors and eliminates the inefficiency

of separating the regression channel for each class, and thus offering both la-

tency and memory benefits. MD3D is designed to utilize various types of feature

encoding; therefore, it can be applied flexibly by replacing only the detection

head of the existing detectors. Experimental results on the KITTI and Waymo

open datasets show that the proposed method outperforms its counterparts that
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are based on the conventional anchor-based detection head in its overall perfor-

mance, latency, and memory.

1.3.3 Combination of PA-AUG and MD3D

Both PA-AUG and MD3D are designed to be utilized in any 3D object detec-

tors. Thus, they can be applied to a single object detector simultaneously. The

combination of them makes detectors robust, efficient, and parameter-free. The

experimental results on anchor-based and anchor-free detectors show that the

combination of them improves detection performance much more than when

PA-AUG and MD3D are applied separately. It means they affect different as-

pects of detection performance and have synergy when they are applied together.

1.4 Outline

In the following chapters, this dissertation is composed as follows. In Chapter 2,

we describe previous works on data augmentation methods, LiDAR-based 3D

object detectors, and mixture density networks utilized in the field of computer

vision. In Chapter 3, we propose a novel data augmentation method, PA-AUG.

In Chapter 4, we propose a novel detection head, MD3D. In Chapter 5, we

present the experimental results on the combination of PA-AUG and MD3D.

Finally, Chapter 6 summarizes this dissertation and discusses limitations and

future works.
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Chapter 2

Related Works

2.1 Data augmentation for Object Detection

2.1.1 2D Data augmentation

It has been demonstrated that data augmentation leads to gains in 2D image tasks

such as classification and object detection [94, 34, 69]. Especially, patch-based

data augmentation methods that utilize patches cut and pasted among training

images boosted performance. Image patches are zeroed-out in [19], which en-

courages the model to utilize the full context of the image, on the other hand,

deleted regions become uninformative. Cutmix [90] replaces deleted regions

with a patch from another image and maximizes the proportion of informative

pixels. These methods, when applied to CIFAR and ImageNet datasets, greatly

improve the performance. Such improvements were also shown in low-level

vision tasks. Cutblur [86] cuts a low-resolution patch and replaces it with the

corresponding high-resolution image region and vice versa. It has the same ef-

fect as making the image partially sparse and enables the model to learn both

“how” and “where” when super-resolves the image.
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Figure 2.1: Examples of 2D Data Augmentation

In our work, the 2D image patch is extended to 3D partition. Using the

3D partition, we extend cutout [19], cutmix [90], and cutblur [86] to 3D point

clouds. Five proposed augmentation methods are simultaneously applied to the

partitions which gives robustness to the model and significantly improves per-

formance.

2.1.2 3D Data augmentation

Considering the limited size of datasets for 3D object detection including KITTI

datasets, data augmentation is one of the ways to alleviate overfitting and boost

performance. The works [59, 76, 7] which showed the improved performance

on 3D object detection adopted data augmentation methods such as translation,

random flipping, shifting, scaling and rotation. Oversampling was also used to

address foreground-background class imbalance problem [81, 59, 29].

Despite their effectiveness on the models, existing data augmentation meth-

ods do not fully utilize richer information of point clouds compared to the coun-

terparts for 2D images. We propose part-aware data augmentation which takes
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Figure 2.2: Examples of Instance-level 3D Data Augmentation.

full advantage of spatial information unique in 3D datasets.

Recently, automated data augmentation approaches have been actively stud-

ied. [13] narrowed down the search space with an evolutionary-based search

algorithm and adopted the best parameters discovered. [41] jointly optimized

augmentor and classifier via an adversarial learning strategy. These approaches

could be incorporated with our proposed part-aware data augmentation to fur-

ther enhance the performance.

2.2 LiDAR-based 3D Object Detection

As point clouds provide accurate geometric scene information, point cloud-

based methods have achieved high performance in 3D object detection. [20, 38,

89, 3, 51] However, the inherent properties of irregular and sparse point clouds

impose difficulties in data processing. Therefore, various forms of point cloud

representations have been proposed. SECOND [81] groups the point clouds into

voxels and utilizes spatially sparse convolution, thereby reducing the compu-

tational burden of the 3D convolution. PointPillars [36] encodes point clouds
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into stacked pillars and operated all processes with only 2D convolutions, re-

moving the bottleneck of 3D convolutions. PointRCNN [61] directly learns rep-

resentations from raw point clouds using PointNet++ [55, 56] as a backbone

network and generates bounding box proposals efficiently by taking advantage

of point segmentation, which provided a powerful clue to 3D object detection.

VoteNet [53] also uses PointNet++ as a backbone and detects objects using a

deep Hough voting method. PV-RCNN [59] utilizes both voxel-based and point-

based operations to encode multi-scale features and provide accurate location

information efficiently. A graph method is adpoted in [67, 82] to detect objects.

The latest point cloud-based methods [33, 44, 75, 74, 80] compensate for the

limitations of the existing detectors and significantly improve the accuracy and

latency. Focal sparse convolution [12] predicts the importance of features in per-

forming sparse convolution and selectively computes high importance features.

IA-SSD [92] reduces the computational overhead of raw point-based detectors

by using a learnable downsampling strategy. SST [21] improves the detection

accuracy by introducing a single-stride backbone network that utilizes trans-

former blocks. Although the latest works have improved many aspects of the

existing detectors, most have focused on improving the backbone structure.

Most anchor-free 3D object detectors [23, 32, 7, 85, 39] use a classification

method based on heatmap estimation, which is primarily adopted in 2D object

detection [37, 95, 71]; hence, they can only be used for 2D-projected features.

In addition, the heatmap-based heads still have many hand-crafted design fac-

tors, such as, the Gaussian radius of the heatmap and the foreground assignment

policy for regression. Because the proposed method does not require a GT as-

signment policy for regression, the design factors can be significantly reduced.

There is no restriction on the input features, so the proposed method can be
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flexibly applied to various types of point cloud features.

2.3 Mixture Density Networks in Computer Vision

Originally, mixture density networks (MDN) [4] was proposed to predict a con-

tinuous quantity under uncertainty. The MDN has recently attracted consider-

able attention, especially in object detection tasks because capturing uncertain-

ties and coping with mislocalization have become critical issues. He et al. [31]

measured the uncertainties of bounding boxes to deal with challenging cases,

such as occlusion, while Feng et al. [22] extended it to LiDAR 3D vehicle de-

tection. The MDN was also utilized to model the multi-modal nature of object

detection and human pose estimation [72], and to address active learning for

object detection [14].

We address the problem of complex anchor design that restricts both per-

formance and latency in 3D object detection and apply MDN to overcome this

limitation. The proposed MD3D is inspired by MDOD [87], which reformulated

the 2D object detection task as a density estimation problem, and it reduced the

complex processing and heuristics in the training. We extend their works to the

3D object detection task and improve the existing detectors in a plug-and-play

manner with a flexible detection head that is compatible with any representation

of point clouds. Unlike images, point clouds have various feature forms (BEV,

FV, voxel, point, etc.). MD3D can be flexibly applied to these different types of

features and easily replace the detection heads of existing detectors.
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2.4 Datasets

In this dissertation, we focus on outdoor scene datasets which include point

cloud scene data obtained from LiDAR and oriented 3D bounding box labels.

There are some indoor datasets with point clouds and 3D bounding boxes. [65,

1, 17] However, their labels are axis-aligned or highly overlapped, which are not

suitable for our proposed methods. The most widely used outdoor scene datasets

for autonomous driving are the KITTI [24] and Waymo open datasets [68]. This

section describes the details of the two datasets used for evaluation.

2.4.1 KITTI Dataset

The KITTI dataset [24] is the most widely used dataset for 3D object detection

research. It contains 6 hours of traffic scenarios captured in the metropolitan

area of Karlsruhe, Germany, during the daytime. The sensors used to collect the

dataset are two grayscale cameras, two color cameras, and one Velodyne HDL-

64E rotating 3D laser scanner (field of view: 360◦horizontal, 26.8◦vertical, range:

120m, 10Hz). We only use the point clouds obtained from the LiDAR device

to detect target objects. The points consist of a 3D position (x, y, z) and a re-

flectance value (r). The number of points in a scene is not constant; it has about

120,000 points on average. The total size of the raw data is 180 GB.

The object annotations in the form of a 3D bounding box are not fully

provided to the raw data. The KITTI dataset for 3D object detection consists

of 7,481 training samples and 7,518 testing samples, where the training sam-

ples are generally divided into train split with 3,712 samples and val split with

3,769 samples. It contains around 80,000 annotated 3D bounding boxes encoded

as 7-DOF (xc, yc, zc, l, w, h, θ), representing the center 3D coordinate, length,
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Figure 2.3: Samples of the KITTI dataset

width, height, and yaw angle, respectively. The roll and pitch angles are ig-

nored. Because the KITTI dataset contains only 90◦annotation, we clipped the

scenes into (0, 70.4)m, (-40, 40)m, and (-3, 1)m for the X, Y, and Z axis ranges.

The labels are classified into ‘Car’, ‘Van’, ‘Truck’, ‘Pedestrian’, ‘Person (sit-

ting)’, ‘Cyclist’, ‘Tram’ and ‘Misc’ (e.g., trailers, segways). However, we train

and evaluate only three classes (‘Car’, ‘Pedestrian’, and ‘Cyclist’) following the

conventional detection methods. Moreover, it includes three levels for difficulty
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Figure 2.4: Samples of the Waymo open dataset

ratings, ‘Easy’, ‘Moderate’, and ‘Hard’, according to the height, occlusion, and

truncation of GTs.

2.4.2 Waymo Open Dataset

The Waymo open dataset [68] is one of the largest public 3D object detection

datasets. It contains 6.4 hours of diverse scenarios captured in multiple cities:

San Francisco, Phoenix, and Mountain View. The sensors used to collect the

dataset are five high-resolution pinhole cameras and five LiDAR sensors. The

five LiDAR sensors are installed at the top, front, rear, side left, and side right.

The top LiDAR sensor has [-17.6◦, 2.4◦] vertical field of view (VFOV) and 75m
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range. And the other LiDAR sensors have [-90◦, 30◦] VFOV and 20m range.

The points consist of a 3D position (x, y, z), intensity (r), and elongation (e).

The elongation with intensity is useful for recognizing spurious objects, such as

dust, fog, and rain. The number of points in a scene is not constant; it has about

177,000 points on average. The total size of the dataset is 1.2 TB.

The Waymo open dataset includes 798 training sequences with approxi-

mately 160k samples, 202 validation sequences with 40k samples, and 150 test-

ing sequences with 30k samples. It contains around 12M annotated 3D bounding

boxes encoded as 7-DOF (xc, yc, zc, l, w, h, θ), which is the same as the KITTI

dataset. Because of limited resources, we trained the models with 20% samples

at regular intervals for each sequence, using a total of 32k training samples.

The Waymo open dataset contains a complete 360◦annotation, and we clip the

scenes into (-75.2, 75.2)m, (-75.2, 75.2)m, and (-2, 4)m for the X, Y, and Z axis

ranges. The labels are classified into ‘Vehicle’, ‘Pedestrian’, and ‘Cyclist’. And

it includes two levels for difficulty ratings: ‘LEVEL 2’ which seems hard ex-

amples for labelers or has ≤ 5 points inside the box and ‘LEVEL 1’ which is

the rest of the ‘LEVEL 2’.

2.5 Evaluation metric

2.5.1 Average Precision (AP)

Precision and recall are calculated as follows:

Precision =
TP

TP + FP
, Recall =

TP

TP + FN
(2.1)

where TP, FP, and FN refer to true positives, false positives, and false negatives.
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A threshold must be predefined to classify the predicted boxes as positives

or negatives. Intersection over union (IoU) is used as the threshold and is defined

as follows:

IoU =
Area(PredBox ∩GTBox)

Area(PredBox ∪GTBox)
(2.2)

The predicted and GT boxes are 3D bounding boxes. Thus, the area of their

intersection and union can be calculated in several ways: 2D (FV), BEV, and

3D. 2D and BEV IoU are calculated with 2D projected bounding boxes in front

view and bird’s eye view. 3D IoU is calculated with 3D bounding boxes as they

are.

Average precision (AP) is the most commonly used evaluation metric in ob-

ject detection research. AP is calculated using a precision-recall (PR) curve. As

changing the detector’s confidence score threshold, precision and recall change.

Lowering the threshold increases recall but decreases precision. Precision and

recall change oppositely according to the threshold. Thus, AP is measured by

calculating the area under the PR curve to represent its varying scores.

AP =

∫ 1

0
p(r)dr (2.3)

where r and p(r) represent recall and precision.

Most object detectors do not calculate AP as in Equation 2.3. They use in-

terpolated AP to facilitate calculation. It divides the recall into equally spaced

values. (e.g., 11 recall points: 0, 0.1, ..., 1.0) Then, the AP is approximated by

averaging their interpolated precision values, as shown in Figure 2.5.
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Figure 2.5: Precision-recall (PR) curve

AP =
1

11

∑
r∈{0,0.1,...,1.0}

pinterp(r) (2.4)

pinterp(r) = max
r̃:r̃≥r

p(r̃) (2.5)

where pinterp(r) denotes the interpolated precision at a recall point r.

The AP is calculated for each class. The mean average precision (mAP) is

the average of APs of all classes.

mAP =
1

C

C∑
k=C

APk (2.6)

where C is the number of classes.

2D, BEV, and 3D AP are calculated using 2D (FV), BEV, and 3D bounding

boxes. Among them, 3D AP is the most precise metric to measure localiza-
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tion accuracy. However, 3D AP cannot distinguish the bounding boxes at the

same location with opposite orientations. To mitigate this problem, the KITTI

and Waymo open datasets use the average orientation similarity (AOS) and the

average precision weighted by heading (APH), respectively.

2.5.2 Average Orientation Similarity (AOS)

The AOS [25] is used to measure the accuracy of orientation predictions in the

KITTI dataset and is defined as follows:

AOS =
1

11

∑
r∈{0,0.1,...,1.0}

max
r̃:r̃≥r

s(r̃) (2.7)

s(r) =
1

|D(r)|
∑

i∈D(r)

1 + cos∆
(i)
θ

2
1i (2.8)

where s(r) ∈ [0, 1] and D(r) represent the orientation similarity and the set

of all detections at recall r. ∆(i)
θ is the difference of the orientation between

prediction i and its assigned GT. 1i is set to 1 if ith detection is assigned to GT

(exceeds predefined IoU threshold) and 0 if it is not assigned.

2.5.3 Average Precision weighted by Heading (APH)

The APH [68] is devised to incorporate heading information into AP and is

defined similarly to AP:

APH =

∫ 1

0
max{h(r′)|r′ ≥ r}dr (2.9)

h(r) = min(|∆θ|, 2π − |∆θ|)/π × p(r) (2.10)
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The only difference in APH is the weighting by heading accuracy as in

Equation 2.10. The heading difference |∆θ| is represented in radians within

[0, 2π].
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Chapter 3

Part-Aware Data Augmentation (PA-AUG)

3.1 Introduction

Although 3D object detection research has been largely conducted, most of the

works focus on architectures suitable for 3D point clouds [36, 83, 30, 76, 46, 59].

Meanwhile, data augmentation plays an important role in boosting the perfor-

mance of 3D models. 3D labeling is much more time-consuming compared to

2D labeling, which leads to most of the 3D datasets having a limited amount of

training samples. Yet, 3D data augmentation has not been much explored.

Many works in 3D object detection apply data augmentation, such as trans-

lation, random flipping, shifting, scaling and rotation, directly extending typ-

ical 2D augmentation methods to 3D [59, 76, 7, 29]. These existing methods

are effective in improving performance. However, they did not fully utilize the

3D information. 3D ground-truth boxes have much richer structural informa-

tion compared to 2D ground-truth boxes as they perfectly fit the object along

with each direction. For example, the 2D label may contain other instances and

background in the box, so the provided information contains much noise. On
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Figure 3.1: Comparison between 2D and 3D bounding box. Top - Instance

separation: Unlike 2D, 3D has separate instances in the box and rarely con-

tains background points. Bottom - Intra-object Part location: Unlike 2D, the

corners in 3D boxes can be assigned to a specific order using the heading direc-

tion of the object and using this order the information of the part location of the

object can be obtained (different color represents different corners).

the other hand, 3D boxes provide sufficient information of a single object that

is even occluded and have little background noise (Figure 3.1, First row). Also,

since the 2D boxes have no structural information about the objects, they cannot

tell which part of the car is the ‘wheel’. However, we can be aware the wheels

are located near the bottom corners using the intra-object part location informa-

tion of 3D boxes (Figure 3.1, Second row). Utilizing the unique characteristics

of 3D boxes enables more sophisticated and effective augmentation which 2D

augmentation cannot do.

In this chapter, we propose a part-aware data augmentation method robust

to various extreme environments by using structural information of 3D ground-

25



truth boxes. The network can be aware of intra-object relation as it learns in-

dividual variation in an intra-object part. Our part-aware augmentation divides

3D ground-truth boxes into 8 or 4 partitions depending on the object type. It

stochastically applies five augmentation methods to each partition, such as in-

ternal points dropout, cutmix [90], cutmixup [86], sparse sampling, and random

noise generation. The internal points dropout removes partitions stochastically

and leaves the corner of an object. It enables the network to find the entire box

when only some parts of the object are given. Cutmix and cutmixup respectively

replace and mix points in the partition with other points from the same class and

same partition location, which give the network a regularization effect. Sparse

sampling samples point clouds from a dense partition, sparsifying the partition

from which the network can learn more information of distant objects. Random

noise generation allows the network to learn situations of severe occlusion.

Note that [90, 86] apply cutmix and cutmixup to an image region with a

patch from another class that the network could learn a relation across examples

of different classes. In our work, however, points from the same class are mixed

to give a regularization effect for intra-class examples. This reflects the task

characteristics of 3D object detection that requires accurate localization while

classifying 3 to 23 classes [24, 68, 5] centered on car, pedestrian and cyclist

compared to [90, 86] which classify 1000 classes of ImageNet.

Our proposed part-aware data augmentation improves KITTI [24] Cyclist

3D AP of the PointPillars baseline [36] up to 8.91%p. Also, part-aware data aug-

mentation enables the model to be robust in poor but inevitable environments,

such as severe occlusion, low resolution, and inaccuracy due to snow or rain. In

those situations, our work shows much less drop in accuracy than the baseline.

In addition, part-aware augmentation performs well when data is insufficient,
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which has the equivalent effect of increasing the train data by about 2.5×. As

our work divides 3D box according to its structure and applies augmentation

methods individually on the partitions, multiple augmentation methods are al-

lowed to be used simultaneously without interference with each other. This can

enhance the regularization effect a lot.

Our main contributions are:

• As well as a partitioning method utilizing the structural information of

3D labels, we propose five partition-based 3D LiDAR data augmentation

methods which significantly enhance performance when they are used

together.

• Our work is compatible with existing LiDAR data augmentation methods

and boosts conventional detectors’ performance with negligible cost.

• We show that proposed part-aware augmentation not only improves the

recognition accuracy of given datasets but also obtains the robustness to

corrupted data.

3.2 Methods

3.2.1 Part-Aware Partitioning

We propose a part-aware partitioning method that divides the object into parti-

tions according to intra-object part location to fully utilize the structural infor-

mation of 3D label. The term ‘intra-object part location’ used in [62] means a

relative location of the 3D foreground points with respect to the corresponding

bounding boxes and exploring the object part location improves performance.

Part-aware partitioning is necessary to separate the characteristic sub-parts of
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Figure 3.2: Illustration of the part-aware partitioning.

an object and it enables more diverse and efficient augmentation than existing

methods. Because the location of characteristic parts for each class is different,

Car, Pedestrian and Cyclist are divided into 8, 4 and 4 partitions respectively

(Figure 3.2). When using partition-based augmentation, instead of applying the

same augmentation to the entire object, different augmentations can be applied

to each intra-object sub-parts.

3.2.2 Part-Aware Data Augmentation

Point cloud L can be expressed by the union of foreground points FP and back-

ground points BP as below:

L = FP ∪BP (3.1)

FP = ∪N
i=1B

(i), B(i) = ∪T
j=1P

(i)
j , (3.2)

where B is the points in a 3D box, and N is the number of boxes in a scene. P

is the internal points in a partition, and T is the number of partitions in the box.
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Figure 3.3: Illustration of the part-aware data augmentation (PA-AUG). The

first column shows the original point cloud and part-aware partitioning method

for Car, Pedestrian, and Cyclist classes. The other columns show examples of

the proposed five partition-based augmentation methods and PA-AUG. The aug-

mented partitions are marked with colors. Because Swap and Mix operations

fetch points from different instances, the imported objects are also shown to-

gether.

The set of augmented foreground points FPaug can be represented as

FPaug = ∪N
i=1B̂

(i), B̂(i) = ∪T
j=1P̂

(i)
j . (3.3)

Here, the bounding boxes and the partitions to which augmentation is applied

are denoted as B̂ and P̂ respectively.

Dropout Partition

Dropout [66] was first used in the feature-level to increase the regularization

effect of the network by randomly making the activation of some nodes zero.

After that, it was shown that dropout could be effectively applied to the input
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in the 2D image classification task [19]. Inspired by the previous works, we

propose a partition-based dropout method that can be used effectively in 3D

point clouds as below.

B̂(i) =


B(i) if ri = 0

∪T
j ̸=dP

(i)
j if ri = 1

where ri ∼ Ber(pD). (3.4)

In Eq. (3.4), Ber(·) indicates Bernoulli distribution, and dropout is applied

to each bounding box with a probability of pD. The index d indicates a randomly

selected dropout partition among T partitions. Dropout using a predefined par-

tition can remove characteristic sub-parts of an object, making learning more

robust.

Swap Partition

CutMix [90], which is used in 2D image recognition, proposed an augmentation

method that swaps random regions extracted from training samples. It can be

applied to different classes by mixing class labels and has been shown effective

for regularization. Inspired by the work, we propose a swap partition operation

that utilizes intra-object part location information of 3D labels. The difference

from CutMix is that our method swaps partitions of the same class and the same

location in an object as follows.

B̂(i) =


B(i) if ri = 0

∪T
j ̸=kP

(i)
j ∪ P̂

(i)
k if ri = 1 and | P (i)

k |≠ 0

where ri ∼ Ber(pW ), 1 ≤ k ≤ T.

(3.5)

P̂
(i)
k = P

(i′−>i)
k (3.6)

30



P
(i′−>i)
k = AffineTransformi(P

(i′)
k ) (3.7)

for i ̸= i′, 1 ≤ i′ ≤ N and | P (i′)
k |̸= 0.

As in the Eq. (3.5) - (3.7), after selecting a box i to swap with a probability

of pW for all boxes, we swap a randomly selected non-empty kth partition in

box i with the kth partition in box i′. When swapping partitions, the partitions

of different boxes have different scales, directions, and locations. So after trans-

forming P
(i′)
k to the canonical coordinate system, we resize it to the scale of P (i)

k

and transform it back to the coordinate system of P (i)
k . As a result, P (i′−>i)

k is

created and the kth partition in box i is replaced with it.

Because CutMix swaps patches of random areas, object can be swapped to

the background area. And it could have a bad effect on learning. However, our

partition-aware swap has no such problem and maximizes the effect of intra-

class regularization by swapping only between the same class.

Mix Partition

CutMixup [86], a combination of CutMix [90] and Mixup [91], blends random

areas of the training images, which is a quite effective data augmentation method

in the task of image super-resolution. We applied it to our partition-based aug-

mentation and call it Mix partition. The detailed method is almost identical to

the Swap partition except that Eq. (3.6) is replaced by

P̂
(i)
k = P

(i)
k ∪ P

(i′−>i)
k (3.8)

for i ̸= i′, 1 ≤ i′ ≤ N , | P (i′)
k |≠ 0 and ri ∼ Ber(pM ).

The partition to mix is selected in the same way as the Swap operation.

Likewise, the same partition transformation process is applied. The only differ-
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ence is that it merges P (i)
k and P

(i′−>i)
k when creating augmented partition P̂

(i)
k

rather than P
(i)
k is replaced by P

(i′−>i)
k .

Sparsify Partition

The density of LiDAR points decreases cubically as the distance of the box in-

creases. As the point density decreases, the shape of the object cannot be fully

recognized, which is one of the most significant factors in reducing the perfor-

mance of LiDAR-based detectors. We propose sparsifying partitions as an aug-

mentation method which makes some dense partitions sparse to improve distant

objects’ recognition. The detail is as the following.

P̂
(i)
j =


P

(i)
j if rj = 0

S
(i)
j if rj = 1 and | P (i)

j |> CS

where rj ∼ Ber(pS).

(3.9)

As in Eq. (3.9), it selects partitions to augment with the probability of pS

among the dense partitions with the number of points over CS . Then, CS points

of the partition are sampled using Farthest Point Sampling (FPS) and it is de-

noted as S(i)
j ⊂ P

(i)
j .

Add Noise to Partition

Since the RGB-image-based detectors are greatly influenced by the illuminance

of the surrounding environment, the augmentation methods that change the

brightness and color help improve performance. Likewise, LiDAR-based detec-

tors are vulnerable to weather changes such as rain or snow that can cause noise

and occlusion in point cloud data. We propose a partition-based augmentation
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method to be robust to noise caused by various reasons as follows:

P̂
(i)
j =


P

(i)
j if rj = 0

P
(i)
j ∪ Pnoise if rj = 1

where rj ∼ Ber(pN ) (3.10)

As in Eq. (3.10), it selects partitions to augment with the probability of

pN . Then, it adds randomly generated CN noise points Pnoise to the selected

partition P
(i)
j .

PA-AUG

The five augmentation methods using part-aware partitioning introduced above

can be used individually, but because the methods are independent, different

augmentation methods can be applied to an object multiple times. Therefore

various combination of augmentations can be created, applying each operation

independently so that different operations can be applied to one partition. How-

ever, if all augmentations are used without a specific order, interference may

occur between operations. In order to minimize this, we apply Dropout-Swap-

Mix-Sparse-Noise in order. We call it PA-AUG, which stochastically applies five

operations. It can take advantage of each and show a strong regularization effect.

3.3 Experiments

3.3.1 Results on the KITTI Dataset

Settings

The KITTI object detection benchmark dataset [24] consists of 7,481 training

samples and 7,518 testing samples. In order to verify the effectiveness of PA-

AUG, we separated the training dataset into 3,712 training samples and 3,769
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Method
Car 3D (IoU=0.7) Cyc. 3D (IoU=0.5) Ped. 3D (IoU=0.5)

mAP
Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

PointPillars [36] 80.29 68.68 66.59 61.97 40.75 38.49 54.47 49.48 45.38 56.23

PointPillars + Dropout 80.89 72.23 68.03 66.00 44.19 41.89 55.10 50.38 45.63 58.26

PointPillars + Swap 81.45 68.60 66.85 66.66 44.94 42.62 56.92 51.97 47.32 58.59

PointPillars + Mix 81.79 70.21 67.87 62.78 40.45 38.42 59.98 54.60 48.87 58.33

PointPillars + Sparse 82.56 69.83 67.27 66.88 44.37 42.00 58.47 53.62 48.64 59.29

PointPillars + Noise 82.03 68.37 65.81 66.44 44.31 41.79 57.81 52.55 47.73 58.54

PointPillars + PA-AUG 83.70 72.48 68.23 70.88 47.58 44.80 57.38 51.85 46.91 60.42

PV-RCNN [59] 89.15 80.43 78.48 85.54 71.21 65.42 66.08 59.48 55.22 72.33

PV-RCNN + PA-AUG 89.38 80.90 78.95 86.56 72.21 68.01 67.57 60.61 56.58 73.42

Table 3.1: Performance comparison on the KITTI-val set. The results are the

average values of three repeated experiments.

validation samples [9]. Since our augmentation methods are applied stochasti-

cally, we report the average values of 3 repeated experiments in Table 3.1.

PointPillars [36] uses two separate networks for Car and Cyclist/Pedestrian

classes. We use a batch size of 2 for Car network and 1 for Cyc/Ped network.

And we train 160 epochs for Car and 80 epochs for Cyc/Ped network.1 PV-

RCNN [59] uses a single network for all classes. We train the network with

batch size 8 for 80 epochs. The parameters of the proposed augmentation meth-

ods are shown in Table 3.2. The left values of ‘/’ are parameters of the Car

network, and the right values are parameters of the Cyc/Ped network. Basic data

augmentations such as ground-truth oversampling [81], rotation, translation, and

flipping are used before applying our partition-based augmentations. For other

parameters not mentioned, the settings of each original paper are used.
1default parameters in https://github.com/traveller59/second.pytorch
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Method
Parameters

pD pW pM CS pS CN pN

Dropout 1.0/0.3 - - - - - -

Swap - 1.0/0.7 - - - - -

Mix - - 0.3/1.0 - - - -

Sparse - - - 40/50 0.3/0.3 - -

Noise - - - - - 5/10 0.3/0.1

PA-AUG 0.2/0.2 0.2/0.2 0.2/0.2 40/40 0.1/0.1 10/10 0.1/0.1

Table 3.2: Parameters used in the KITTI experiments.

Results

Table 3.1 shows the effect of each partition-based augmentation methods and

PA-AUG. Precision and recall curves are computed using 11 points. All the pro-

posed standalone augmentation methods performed better than the baseline al-

gorithms without our data augmentation (PointPillars [36] and PV-RCNN [59])

in most cases. We have found that the cases in which each operation significantly

increases are different. For example, Dropout does not improve the Easy score of

Car a lot, but it does for Mod. and Hard cases. Other operations, on the contrary,

increase the Easy score a lot compared to Mod. and Hard scores. For the Cy-

c/Ped network, Mix operation achieves the highest scores for Pedestrian class,

but scores for Cyclist class are remarkably low. Interestingly, PA-AUG achieves

the highest performance improvement on average through even improvements

for all scores, which means the proposed partition-based augmentations have

synergy effects when used together. Also, PA-AUG improves all the scores of

PV-RCNN [59], one of the current state-of-the-art LiDAR-based detectors.
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Augmentation
Dataset

KITTI KITTI-D KITTI-S KITTI-J

Baseline 67.35 58.91(-8.44) 56.89(-10.46) 56.66(-10.69)

+ Dropout 68.05 64.09(-3.96) 62.27(-5.78) 57.11(-10.94)

+ Swap 66.69 60.84(-5.85) 59.55(-7.14) 54.90(-11.79)

+ Mix 67.91 63.13(-4.78) 63.42(-4.49) 56.03(-11.88)

+ Sparse 67.59 62.73(-4.86) 62.90(-4.69) 40.02(-27.57)

+ Noise 65.99 58.67(-7.32) 59.64(-6.35) 58.25(-7.74)

+ PA-AUG 67.74 63.61(-4.13) 64.20(-3.54) 57.91(-9.83)

Table 3.3: Robustness Test. The 3D APHard (IoU=0.7) on KITTI-val are re-

ported. The values in parentheses are the performance decrease of each cor-

rupted dataset compared to KITTI-val. The baseline model is PointPillars [36].

3.3.2 Robustness Test

Settings

We evaluate the robustness of our proposed augmentations using three corrupted

KITTI-val datasets, KITTI-D, KITTI-S, and KITTI-J. KITTI-D (Dropout) is a

dataset in which some of the foreground points are removed by dropping out a

portion of all objects. For fairness, not making it the same as the dropout used for

our proposed augmentation, a random dense area with many points is selected

for the part to be dropped out. KITTI-S (Sparse) is a dataset that leaves only 30%

of points using Farthest Point Sampling (FPS) across the point cloud. Finally,

KITTI-J (Jittering) is a dataset that adds Gaussian noise X ∼ N (0, 0.12) for all

points. Each corrupted dataset is designed to closely simulate the actual scenario
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Figure 3.4: Qualitative results on the corrupted KITTI datasets. The upper

row shows the PointPillars results, and the lower row shows the PointPillars +

PA-AUG results. The ground-truth and predicted boxes are shown in blue and

red, respectively.

of the cases when occlusion is severe, LiDAR has a low resolution, or LiDAR

is incorrect. Some examples with detection results are shown in Figure 3.4.

Results

In Table 3.3, the 3D APHard(IoU=0.7) scores on the KITTI-val and its corrupted

datasets are reported. The values in parentheses are the performance decrease of

each corrupted dataset compared to KITTI-val (leftmost). In the table, the best

performance on each dataset is denoted in bold. Dropout, Swap, Mix, and Sparse

operations all showed less performance decrease on the KITTI-D and KITTI-

S datasets than the baseline. However, the performance decreased significantly
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Figure 3.5: Data Efficiency Test. The graphs show the 3D APEasy scores on

KITTI-val according to the size of the training data subsets. All other data aug-

mentations except PA-AUG are not used.

on the KITTI-J dataset. On the other hand, Noise operation showed a smaller

decrease than the baseline on every corrupted dataset. PA-AUG takes advantage

of each operation evenly and shows the most robust performance for corrupted

datasets.

3.3.3 Data Efficiency Test

We downsample the KITTI datasets, taking subsets with number of 20%, 40%,

60%, 80% training examples to verify how PA-AUG performs under very little

data. Green and orange dots in Figure 3.5 show the performance of PA-AUG

with the full datasets and four subsets, respectively indicating Car and Pedes-

trian categories. Cyan and yellow dots in Figure 3.5 show the results of the

baselines. In these experiments, all other data augmentations except PA-AUG

are not used to verify the effectiveness of PA-AUG alone. The results show that

PA-AUG is effective not only in the full dataset, but also in data subsets. PA-
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Method
KITTI-val 3D APEasy

Car@0.7 Cyclist@0.5 Pedestrian@0.5

Random 80.64 62.42 55.60

Part-aware 83.70 70.88 57.38

Table 3.4: Comparison of partitioning methods.

# Partitions
KITTI-val 3D APEasy

Car@0.7 Cyclist@0.5 Pedestrian@0.5

2 80.85 68.81 57.14

4 80.67 70.88 57.38

8 83.70 67.87 52.94

Table 3.5: Comparison of the number of partitions.

AUG using only 40% of examples achieves 3D AP comparable with the base-

lines using full datasets in both Car and Pedestrian. That is, PA-AUG is about

2.5× more data-efficient.

We notice that the performance drop in PA-AUG is steeper than the baseline

as the size of the datasets decreases. This phenomenon is due to the relative lack

of information of original objects in PA-AUG since modified and augmented

datasets are provided where the original data itself is highly insufficient. The

performance drop may slow down when smaller augmentation parameters are

applied. Even so, PA-AUG shows the higher performances in full datasets and

all subsets than the baseline since the improvement is much more significant.
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3.3.4 Ablation Study

Partitioning Method

To verify the need for the part-aware partitioning method, we randomly create

partitions without part information. The random partitions are created with the

same number and the same direction as the part-aware partitions, but the scales

and positions are randomly generated for each object. We apply the proposed

partition-based augmentations equally to the random partitions and the part-

aware partitions. As shown in Table 3.4, random partition-based augmentation

has significantly less performance improvement than part-aware partition for all

classes. From this result, it can be seen that the part information plays a critical

role in applying the proposed partition-based augmentations.

The Number of Partitions

Since we roughly know the location of the characteristic sub-parts for each class,

we defined a different number of partitions for each class using this prior knowl-

edge. In order to check whether the number of partitions defined is actually the

most effective, we experiment varying the number of partitions. As shown in

Table 3.5, the best performance can be achieved by using 8, 4 and 4 partitions

for Car, Cyclist and Pedestrian classes. From these results, it can be seen that

if the number of partitions is too large or too small, the effect on the original

data becomes too small or too large, thus weakening the regularization effect

and reducing the performance.
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Figure 3.6: Failure samples of the wrong partitioning methods.

3.4 Discussion

We have defined part-aware partitioning in Section 3.2.1. It divides Car, Pedes-

trian, and Cyclist into 8, 4 (front view), and 4 (side view) partitions with differ-

ent views. It may seem quite confusing and heuristic but there are two funda-

mental rules for it: 1) the partitions should divide characteristic sub-parts, i.e.,

wheels and body for Car, arms and legs for Pedestrian, wheels and human for

Cyclist, 2) the partitions should contain only a single characteristic sub-part. Ap-

plying the proposed PA-AUG using wrong partitioning methods which violate

the rules, would generate inappropriate data samples.

Figure 3.6 shows some wrong partitioning examples and their failure sam-

ples. If we divide Car with 4 (side view) partitions, the lower partitions contain

two wheels simultaneously, which violates rule 2. Thus, it can overly dropout
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important sub-parts or swap almost the whole upper body. If Pedestrian and Cy-

clist are divided into 4 (side view) and 4 (front view) partitions, the partitions do

not contain the characteristic sub-parts, which violates rule 1. Therefore, they

can generate Pedestrian samples with 3 or 4 arms and legs or Cyclist samples

with two humans and 3 or 4 wheels. These failure samples would hamper de-

tection performance.

3.5 Conclusion

We have presented PA-AUG which makes better use of 3D information of point

clouds than the conventional methods. We divide the objects into 8 or 4 parti-

tions according to intra-object part location and apply five separate augmenta-

tion methods which can be used simultaneously in a partition-based way. The

proposed data augmentation methods can be universally applied to any archi-

tecture, and PA-AUG further improves one of the SOTA detectors on KITTI

dataset. Experimental results show that PA-AUG can improve robustness to cor-

rupted data and enhance data efficiency. Because of the generality of the pro-

posed methods, we believe that it can be used in any tasks utilizing 3D point

clouds such as semantic segmentation and object tracking. However, there are

some limitations in applying PA-AUG to other 3D datasets. The bounding box

must be oriented and objects must not overlap too much. These limitations make

it difficult to apply our method to indoor datasets such as ScanNet [65, 1, 17].
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Chapter 4

Mixture-Density-based 3D Object Detection (MD3D)

4.1 Introduction

Raw point clouds obtained by LiDAR sensors have noisy sparse representation

with an imbalance sampling problem, which causes many occluded surfaces to

be without any points. Therefore, methods have been devised to compensate for

the weaknesses of point clouds at various levels. Several methods have been

proposed to enhance the performance of object detectors at the input level [16,

79]. At the feature level, there are various representation forms, such as raw

points [55, 56, 61, 49], voxels [81, 93, 35, 18], graphs [63], and their hybrids

[59, 30, 47]. Two streams of works based on the presence or absence of anchor

boxes have been proposed at a higher level. The former is known as an anchor-

based method [36, 81, 59, 18, 83, 30], and the latter is an anchor-free method

[61, 85, 23, 32, 7, 39].

The existing 3D object detectors have mostly adopted anchor-based detec-

tion methods. In this study, we present the anchor or anchor box as a set of

predefined 3D boxes for each object class by using the scale and aspect ra-
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Figure 4.1: Problems caused by hand-crafting factors of anchor boxes. (a)

shows the BEV of a point cloud with the equally spaced anchors and ground

truth (GT) boxes of the car class. The values under each GT represent the max-

imum IoU with anchors. (b) shows the IoU value with the best-matched anchor

box for all GT boxes in KITTI-train data. The farther the size of the GT box

is from the mean size (0), the lower the maximum IoU of the box. Dotted lines

represent foreground IoU thresholds for each class. If the maximum IoU of a

GT box does not exceed the threshold, at least one anchor box with the highest

IoU value is forced to be assigned for each GT. (c) the average number of as-

signed anchors for each GT box size group. It shows how the number of anchors

assigned to foregrounds varies by class and size.

tio of the class. Anchors are tiled across the scene (gray boxes in Figure 4.1

(a)), and anchor-based detectors detect target objects by predicting offsets from

nearby anchors for each class. However, anchor-based detectors suffer from a

fatal problem; they must predefine many anchor-related hyper-parameters: 1)

anchor size, 2) anchor direction, 3) stride that determines anchor placement,

and 4) target assignment policy. Each of these factors dominantly influences the

performance and latency of the detectors. Thus, they must be defined separately

for each class.
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Existing anchor-based methods usually set their default anchor size as the

average of all ground truth (GT) bounding boxes with 0 and 90 degrees rota-

tions. Unifying the anchor size as a representative value, i.e., the average size

of objects in the training data, would be a good compromise in the trade-off

between speed and performance. However, objects with significant deviations

from the default anchor size inevitably tend to be overlooked. Another hyper-

parameter that biases a detector is the stride between neighboring anchors. The

spatial dimensions of the last feature map determine the anchor stride. For ex-

ample, in the KITTI dataset [24], a typical compact detector has a 200×176

feature map; the anchor-to-anchor interval is about 0.4m, which is relatively

narrow for large objects such as Car. Contrastingly, for small objects, such as

Pedestrian and Cyclist, it is too wide to cover all GTs. Accordingly, the IoU

value between an anchor and a GT varies significantly for each object class, and

hence the foreground threshold is inevitably set differently for each class. In ad-

dition, calculating the IoU in a 3D space can result in extremely low IoU values,

leading to multiple placements of anchors on the z-axis (vertical direction). To

mitigate this problem, conventional methods ignore the z-axis using Bird’s Eye

View (BEV) 2D IoU.

Figure 4.1 shows the problems caused by hand-crafting factors in the anchor-

based detection methods in detail. Notably, the average number of assigned an-

chors for Car with an extreme size (XS in (c)) is much smaller than the average-

sized Car. Consequently, outlier objects with extreme sizes show low recogni-

tion rates compared to objects within the normal range because of an insufficient

number of assigned anchors. Moreover, regardless of the GT box size, the num-

ber of foreground anchors for Car is overwhelmingly larger than those for the

other two classes. This is because the strides of the anchors cannot be assigned
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differently for each class. A relatively larger stride for Pedestrian and Cyclist is

likely to cause the objects belonging to these classes to be unable to match with

any of the anchor boxes. Therefore, an unsuitable anchor box with a low IoU

value, which is also the highest among the other anchor boxes, is forcibly as-

signed to avoid the zero assignment. Through this, it can be pointed out that it is

not the number of GT boxes or other biases in the training data but the inherent

structural limitations of the anchor-based detection methods that severely affect

the inferior detection performance of Pedestrian and Cyclist.

Our proposed Mixture Density network for 3D Object Detector (MD3D) is

a method of estimating the distribution of 3D bounding boxes in point clouds

with a Gaussian Mixture Model (GMM), which is free from the problems expe-

rienced by anchor-based detectors mentioned above. Another significant merit

of the MD3D is that it is free from the discrepancy between classification and

regression loss. Most 3D object detectors use the focal loss [43] for a classifica-

tion loss to adjust their weights according to the estimation accuracy, allowing

them to learn well about data with fewer samples. By contrast, regression loss

treats the anchors assigned as the foreground equally. Therefore, with typical re-

gression loss, it is inevitable that classes whose GT box shapes are concentrated

close to the mean, i.e., Cars in the KITTI dataset, have superior performance.

Our MD3D estimates the 3D bounding box in a distribution form throughout

the scenes without any process of assigning the GT during regression learning

and without distinguishing classes or box sizes. Thus, it can reduce heuristic

design factors and cover a wider variety of data samples. The contributions of

this study are as follows.

• Among point-cloud-based 3D object detectors, we first propose an anchor-
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free detection method that estimates the density of bounding boxes and no

longer requires a heuristic ground truth assignment.

• Our proposed MD3D is applicable to any type of point cloud feature en-

coding methods that enables it to be plugged and played easily to the

existing detectors.

• MD3D shows superior performance and latency compared to the exist-

ing detection heads and facilitates learning by minimizing hand-crafted

design factors.

4.2 Methods

4.2.1 Modeling Point-cloud-based 3D Object Detection with Mix-

ture Density Network

In point cloud-based 3D object detection, the input point cloud can be expressed

as L ∈ RN×(3+c) (3D coordinates and point cloud features), and the posi-

tion, size, and direction of an object can be expressed as a 3D bounding box

B ∈ RNgt×7. Here, N represents the number of points in the scene, and Ngt

is the number of GT boxes. To regress object B from input L, we estimate the

conditional probability distribution p(B|L).

A mixture density network (MDN) [4] is a neural network, whose target is

to learn the probability density function (pdf). We applied MDN to point cloud-

based 3D object detection to predict the distribution of multiple bounding boxes

for a given scene (point cloud), and estimate the target 3D bounding box B for

the input point cloud L as a mixture model. We use the conventional GMM as

the target pdf, which can be expressed as:
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p(B|L) =
K∑
k=1

ϕk ×N (B|µk,Σk) (4.1)

N (B|µk,Σk) =
exp

(
−1

2(B − µk)
⊤Σ−1

k (B − µk)
)√

(2π)7|Σk|
(4.2)

where K is the number of mixture components, which is determined by the

spatial resolution of the BEV feature or the number of point features N , and ϕk

is the mixing coefficient. For the efficiency of the model, we assume that each

element of µk ∈ R7 is independent and the covariance matrix is diagonal, that

is, Σk = diag(σ2
k) where σ2

k ∈ R7, rather than dealing with a full covariance

matrix Σk ∈ R7×7.

B is composed of the center position, box dimension, and yaw angle, so

Borigin = {xc, yc, zc, l, w, h, θ}. We encode the Borigin as Bcorner = {Cflt,

Cbrb, w} ∈ R7, which consists of the front-left-top corner Cflt = {x, y, z}flt,

the back-right-bottom corner Cbrb = {x, y, z}brb, and width w. Among the var-

ious ways to encode bounding box B, encoding it with two opposite corners

and width can result in a more accurate regression for the bounding box. This

can be attributed to the nature of the point clouds obtained by LiDAR, in which

the points are not in the center of an object but are concentrated in one corner.

The corner on the hindside without points can be easily regressed using periph-

eral point features owing to the symmetry of the target object. As part of the

post-processing, we decode the Bcorner back to the Borigin.

Existing anchor-based regression methods learn several B’s separately in L,

where each anchor’s design and matching algorithm become critical elements in

training. However, because our method learns by representing the distribution

of multiple B’s as one mixture model with the conditional distribution p(B|L),
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Figure 4.2: The overall architecture of MD3D. Regardless of the encoding

types and feature forms, MD3D is applicable to existing detectors in a plug-

and-play manner. MD3D predicts the mixture parameters ϕ, µ, and σ2 from a

regression branch which compose the distribution of multiple bounding boxes

for a given point cloud. A classification branch predicts class probability p for

each class c ∈ [Nc].

unnecessary heuristic design can be eliminated.

4.2.2 Network Architecture

The MD3D consists of a regression branch that predicts three mixture parame-

ters ϕk, µk, and σ2
k for k ∈ [K], and a classification branch that predicts class

probability p. The backbone of the existing 3D object detectors, which encodes

the feature of a point cloud, remains unchanged. We apply the MD3D to most

commonly used forms of head features, BEV-type features, and point-type fea-
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tures. Their structures are shown in Figure 4.2; MD3D can be applied to any

form and is compatible with many different methods of encoding point cloud

features.

The MD3D for BEV features has a structure similar to that of MDOD

[87], an MDN-based 2D object detector. The BEV feature has the shape of

H × W × C, where H , W , and C represents the height, width, and number

of channels, respectively. Accordingly, the number of mixture components K

becomes H ×W , and the mixing coefficient ϕ ∈ RH×W×1 is forced to satisfy∑
k ϕk = 1, using softmax for the feature output. As shown in Figure 4.3 (a),

µ ∈ RH×W×7 does not predict Bcorner directly but predicts the offsets from

the center coordinates of each feature Mxy. For z and w, we use the raw output

rather than the offset. The process is formulated as follows:

µBEV = (Mx +∆xflt,My +∆yflt, zflt,

Mx +∆xbrb,My +∆ybrb, zbrb, w).

(4.3)

σ2 ∈ RH×W×7 predicts values greater than zero using softplus activation.

p ∈ RH×W×Nc predicts the classification probability for each class using sig-

moid activation, where Nc denotes the number of classes which is set to 3 (Car,

Pedestrian, Cyclist) in our experiments.

Existing anchor-based regression methods use anchors defined differently

per class, and generally they use anchors in the two directions of 0 and 90 de-

grees. Therefore, the number of output boxes is H×W×Nc×2, which is Nc×2

times higher than that of our MD3D. Consequently, MD3D has advantages in

terms of the number of parameters, inference time, and post-processing time.

The MD3D for the point feature has some minor modifications from that

of the BEV feature because the input shape is slightly different. Because the

point feature has the form of N × C, where N is the number of points in a
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Figure 4.3: Illustration of corner regression. MD3D does not predict the cor-

ners (Cflt and Cbrb) of bounding boxes directly but rather predicts the offsets

(∆(x, y, z)flt and ∆(x, y, z)brb) from Mxy or Mxyz , the center coordinates of

the BEV feature or point feature, respectively.

scene, the number of mixture components becomes K = N . Accordingly, it

becomes ϕ ∈ RN×1, µ ∈ RN×7, σ2 ∈ RN×7, and p ∈ RN×Nc . Furthermore, as

shown in Figure 4.3 (b), the reference point Mxyz becomes the original (x, y, z)

coordinates of the point, and µ predicts an offset from Mxyz , except for w:

µpoint = (Mx +∆xflt,My +∆yflt,Mz +∆zflt,

Mx +∆xbrb,My +∆ybrb,Mz +∆zbrb, w).

(4.4)

At inference time, because the values of µ are highly likely to be close to the

local maximum of the predicted GMM, we use µ of each mixture component as

an independent output box. To improve the inference speed, σ2 is not used and

ϕ is used to filter out unnecessary boxes. In addition, the mixing coefficient ϕ is

very low for the location where no object exists, as in the example in the Figure
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4.2, hence many output boxes can be filtered out. Then, using non-maximum

suppression (NMS), boxes in which p is the local maximum are finally extracted.

4.2.3 Loss function

LMDN , the regression loss, is used to learn the GMM parameters ϕ, µ, and σ2

with a negative log-likelihood as follows:

LMDN = − 1

Ngt

Ngt∑
n=1

log

(
K∑
k=1

ϕk ×N (Bn|µk,Σk)

)
. (4.5)

Here, Ngt is the number of GT bounding boxes in the scene.

For classification loss, we use the most commonly used focal loss [43], as

shown below:

Lfocal = −αt(1− pt)
γlog(pt)

where pt =


p for foreground box

1− p otherwise.

(4.6)

Among the boxes predicted in the regression branch, when the 3D IoU of a

box exceeds 0.5, we assign it to the foreground; otherwise, we assign it to the

background. We use αt = 0.25 and γ = 2.

The loss of the MD3D head is the sum of the MDN loss and focal loss, as

follows:

LMD3D = LMDN + β · Lfocal. (4.7)

For one-stage detectors, we use MD3D loss as a final loss, and for two-stage

detectors, we replace the region proposal network (RPN) loss with MD3D loss

because the MD3D head is utilized in the RPN. We use β = 500.
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4.3 Experiments

4.3.1 Datasets

We evaluated the proposed method on the KITTI dataset [24], one of the most

popular datasets for 3D object detection for autonomous driving. It consists of

7,481 training samples and 7,518 testing samples, where the training samples

are generally divided into train split with 3,712 samples and val split with 3,769

samples. Because the KITTI dataset contains only 90-degree annotation, we

clipped the scenes into (0, 70.4)m, (-40, 40)m, and (-3, 1)m for the X, Y, and Z

axis ranges. We also experimented on a large-scale Waymo open dataset [68] to

verify whether the performance of the MD3D improved regardless of the data

size. The Waymo dataset includes 798 training sequences with approximately

160k samples and 202 validation sequences with 40k samples. Because of lim-

ited resources, we trained the models with 20% samples at regular intervals

for each sequence, using a total of 32k training samples. The Waymo dataset

contains a complete 360-degree annotation, and we clip the scenes into (-75.2,

75.2)m, (-75.2, 75.2)m, and (-2, 4)m for the X, Y, and Z axis ranges. We primar-

ily focused on outdoor scene datasets whose target objects are occlusion-free in

the BEV.

4.3.2 Experiment Settings

We conducted the experiments with the same factors as the existing 3D object

detectors, except that the detection head was replaced with MD3D. Most of the

configurations are from OpenPCDet [70], one of the most commonly used code-

bases for 3D object detection. The detailed network structures of each detector

are shown in Tables 4.8, 4.9, and 4.10. The baseline detectors may differ slightly
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Method
Car 3D AP (IoU=0.7) Ped 3D AP (IoU=0.5) Cyc 3D AP (IoU=0.5)

mAP
Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

Anchor-based

PointPillars [36] 86.63 76.83 75.04 55.86 50.18 46.45 80.62 62.71 59.24 65.96

PointPillars+MD3D 87.78 77.37 75.33 53.47 44.90 42.40 84.30 67.65 63.41 66.29

SECOND [81] 88.13 78.34 77.10 55.45 51.28 47.09 80.49 65.98 61.62 67.28

SECOND+MD3D 89.12 78.85 77.18 64.41 57.07 50.79 87.00 72.10 65.66 71.35

PV-RCNN [59] 89.31 83.04 78.76 64.65 57.96 53.68 85.50 71.61 68.14 72.52

PV-RCNN+MD3D 89.09 81.33 78.41 65.33 58.87 54.70 86.29 71.55 67.47 72.56

Anchor-free

CenterPoint [85] 85.25 77.45 76.09 56.72 52.79 49.66 82.71 67.43 62.97 67.90

CenterPoint+MD3D 89.10 78.88 77.60 63.42 55.96 50.02 86.93 70.35 65.53 70.86

PointRCNN [61] 88.14 78.12 77.43 66.79 61.90 56.29 86.33 71.83 68.93 72.86

PointRCNN+MD3D 86.75 77.17 75.65 70.59 62.61 57.14 86.54 72.27 68.50 73.02

Table 4.1: Performance comparison on the KITTI-val set. The results were

evaluated by the AP with 11 recall positions, and the average values of three

repeated experiments were reported for each AP.

in performance owing to the gap between the settings of the original paper. As

MD3D is plugged and played with the existing detectors, the only modification

in the MD3D experimental setting is the detection head for one-stage detectors,

and RPN head for two-stage detectors.

4.3.3 Results on the KITTI Dataset

As shown in Table 4.1, we conducted the KITTI-val dataset experiment to com-

pare the performance of the baselines, three anchor-based detectors, and two

anchor-free detectors. We mark ‘+MD3D’ when the proposed method, MD3D,

is applied. We calculated the average precision (AP) by creating a precision-
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recall curve along with changes to the confidence threshold and averaging the

precision values at 11 recall points. The IoU thresholds for 3D AP were set to

0.7, 0.5, and 0.5 for Car, Pedestrian, and Cyclist, respectively, and mAP is the

mean 3D AP score for all classes.

MD3D improves the performance of all anchor-based detectors for most

classes and difficulty levels. In the case of SECOND, a significant improvement

was achieved in all settings, especially in the Pedestrian and Cyclist classes.

This difference in performance gain arises from the difference in the feature di-

mension size. Unlike PointPillars, which use 248×216 features, SECOND uses

200×176-size features. In other words, PointPillars has a lower anchor stride

than SECOND, so its anchor boxes have already been excessively assigned

as a foreground for even small-size GTs of Pedestrian and Cyclist, which en-

ables sufficient learning for both classes at the cost of latency. As a result, even

if MD3D was applied, a significant performance improvement would not be

achieved. However, with a larger anchor stride, SECOND assigns an average

of 1.4 and 1.6 anchors to Pedestrian and Cyclist, respectively, so they are not

trained sufficiently. Therefore, with MD3D learning a single GMM regardless of

the size of the object, SECOND+MD3D significantly improves the performance

for Pedestrian and Cyclist compared to SECOND. The performance improve-

ment of PV-RCNN is marginal because MD3D is applied only to the RPN of

the first stage. Regardless of the precision, in the RPN, the recall value increases

with the increase in number of proposal boxes. However, as can be seen in Fig-

ure 4.7, MD3D is more effective at removing false positives than the existing

head; therefore, the performance improvement of an RPN head is insufficient.

The MD3D also shows superior performance compared to anchor-free de-

tection heads. Compared to CenterPoint [85], which uses a heatmap-based de-
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tection head and regresses the bounding box with center coordinates, MD3D

significantly improves the performance for all classes. This performance im-

provement is inherently attributed to MD3D’s effective learning for small classes,

such as Pedestrian and Cyclist, in addition to the change of box encoding scheme

from center to corner. The Gaussian radius of the heatmap depends on the size of

the GT box; therefore, small objects are not sufficiently trained as large ones. For

another anchor-free detector, PointRCNN [61], which is a two-stage detector

that utilizes point features, we replace only the regression branch with MD3D

while leaving the classification branch that performs foreground segmentation

in the RPN as it is. With this modification, the mAP is increased slightly, and

the latency was significantly reduced. This shows that our MDN-based corner

regression offers an advantage over PointRCNN’s bin-based residual regression.

For both the training and inference phases, we keep the top 512 proposals for

refinement of the stage-2 sub-network.

4.3.4 Latency of Each Module

We replace the detection heads of each baseline detector with MD3D maintain-

ing other modules unchanged. The detailed detection head structures are shown

in Table 4.8. Replacing the head with ours affects not only the head module’s

latency but also the following modules’ latency. Thus we measure the latency

of each module, and the results are shown in Table 4.2. Latency was measured

using Titan RTX with a batch size of 1.

‘Backbone’ includes the pre-processing time and the inference time of the

backbone network. ‘Head’ shows the inference time of the detection head for

one-stage detectors and the RPN head for two-stage detectors. ‘Refinement’

shows the refinement time of proposals. ‘Post’ includes the post-processing
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Method
Latency (ms)

Backbone Head Refinement Post Total

Anchor-based

PointPillars [36] 33.6 6.6 - 10.1 50.3

PointPillars+MD3D 33.6 5.3 - 8.1 47.0

SECOND [81] 19.2 1.2 - 1.5 21.9

SECOND+MD3D 19.2 1.1 - 1.2 21.5

PV-RCNN [59] 68.8 1.2 17.5 2.6 90.1

PV-RCNN+MD3D 68.8 1.1 17.4 2.6 89.9

Anchor-free

CenterPoint [85] 23.6 1.5 - 3.0 28.1

CenterPoint+MD3D 23.6 1.1 - 2.0 26.7

PointRCNN [61] 40.8 1.5 91.8 1.3 135.4

PointRCNN+MD3D 40.8 1.6 61.9 1.2 105.5

Table 4.2: Latency of each module. We replace the detection head with the

proposed MD3D. Latency is measured using Titan RTX with a batch size of 1.

time, such as NMS. And ‘Total’ includes the whole inference time from pre-

processing to post-processing.

The detection heads of PointPillars, SECOND, PV-RCNN, and CenterPoint

use BEV features. And their differences in latency mostly come from the spatial

dimension of their BEV feature. PointPillars uses a 248×216-size feature, and

others use a 200×176. Thus, the difference in ‘Head’ latency is higher in Point-

Pillars than others. MD3D filters out false positives using mixing coefficient

ϕ. Therefore, the ‘Post’ latency decreases by reducing the number of proposals

for NMS. PointRCNN uses the point feature and it predicts proposals without

separating channels for each class. Thus, the ‘Head’ latency slightly increases

but ‘Refinement’ latency significantly decreases because unnecessary boxes are

removed using ϕ before the NMS.
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Difficulty Method Veh AP Veh APH Ped AP Ped APH Cyc AP Cyc APH

LEVEL 1

SECOND 67.46 66.87 57.16 47.56 55.76 54.40

SECOND+MD3D 69.27 68.51 63.70 55.80 67.61 66.22

Improvements +1.81 +1.64 +6.54 +8.24 +11.85 +11.82

LEVEL 2

SECOND 59.12 58.59 49.38 41.03 53.87 52.55

SECOND+MD3D 60.74 60.05 54.43 47.58 65.31 63.97

Improvements +1.62 +1.46 +5.05 +6.55 +11.44 +11.42

Table 4.3: Performance comparison on the Waymo open dataset with 202 vali-

dation sequences.

4.3.5 Results on the Waymo Open Dataset

For the Waymo dataset, we report the AP and the average precision weighted

by heading (APH) of SECOND [81] with and without the MD3D head, respec-

tively. The AP was calculated by averaging the precision values at 11 recall

points identically to that of the KITTI dataset. APH is calculated similarly to

AP but uses precision values weighting each true positive by heading accuracy.

We evaluated the models into two difficulty levels: LEVEL 1 includes GT boxes

with at least five inside points, and LEVEL 2 includes GTs with at least one in-

side point. As shown in Table 4.3, the proposed MD3D improved the baseline

at all levels and all classes. Note that the MD3D leads to a significant gain in

Pedestrian and Cyclist classes, whose GTs are relatively small. This verifies

the advantages of the MD3D predicting bounding boxes in a probabilistic and

anchor-free manner.
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Figure 4.4: Recalls on the KITTI-val set. MD3D offers a clear advantage in

predicting small objects, where only a limited number of anchor boxes are as-

signed to the existing detectors.

4.3.6 Analyzing Recall by object size

As shown in Figure 4.1, anchor-based detectors have an insufficient number of

anchors assigned to the foreground for extremely small objects. We measured

recall by object size to verify that the proposed method, not in the use of an-

chors, could improve this inherent limitation. We used SECOND as the base

model, and considered bounding boxes before NMS to focus on the regression

results. As shown in Figure 4.4, there is an improvement for XS-sized GT boxes

in the Car class, where the lack of assigned anchors has caused harm to the per-

formance of the existing detector. The improvement is insignificant for other

sized Car boxes because the base model has already assigned an excessive num-
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ber of anchors to the foreground. In addition, in Pedestrian and Cyclist classes,

the recall of GT with a size close to the average is already high enough for the

base model, so the increase is small; however, for extremely small size cases, the

increase is noticeably significant. Therefore, the proposed MD3D can delicately

detect small objects compared to anchor-based detection heads.

4.3.7 Ablation Study

Figure 4.5: Illustration of various box encoding methods. The Borigin con-

sists of the center coordinate (xc, yc, zc), the dimension (l, w, h), and the yaw

angle θ. The Bcenter consists of the center coordinate (xc, yc, zc), the front-

center coordinate (xfc, yfc), and the dimension (w, h). We use Bcorner consist-

ing of the front-left-top corner Cflt = (xflt, yflt, zflt), the back-right-bottom

corner Cbrb = (xbrb, ybrb, zbrb), and width w.

Box encoding methods

As shown in Figure 4.5, we conducted an ablation study of the box encoding

method on the KITTI validation dataset with models applying MD3D to Point-

Pillars. To better demonstrate the performance of each box encoding method
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regarding the headings of predicted boxes, we used the average orientation sim-

ilarity (AOS) metric, along with 3D AP, which assesses cosine similarities be-

tween the angles of the estimated and GT heading orientations. The results are

presented in Table 4.4. First, using the GT box in its original form, Borigin =

{xc, yc, zc, l, w, h, θ} results in a very low AOS AP and thus a low 3D AP. This

is because of discontinuous θ, which is the same box when the yaw angle θ is 0

and 2π, but the loss is calculated differently. Therefore, we experimented with

Bsincos, which changes θ to a continuous value, (sin(θ), cos(θ)) ∈ R2, to avoid

ambiguity. Both AOS and 3D AP have some increases. Still, because sin(θ) and

cos(θ) are mutually dependent and periodic, Bsincos is not entirely appropriate

for our GMM modeling, leaving room for improvement. Therefore we devised

a novel method of finding the front-center coordinate value of the box, as shown

in (b), to predict the box without θ. This Bcenter = {xc, yc, zc, xfc, yfc, w, h}

has a notable improvement over the previous two approaches. In addition, an-

other variant method, Bcorner, predicting two corners with w, yields the highest

performance. This is because it is easy to localize the corner of an object owing

to the characteristics of the point clouds obtained by LiDAR.

Probability distributions

In MD3D, it is essential to choose a proper probability density function that fits

the data characteristics of the input point clouds and the output 3D bounding

boxes, because it substantially impacts the model’s performance. We consider

the Laplace, Cauchy, and Gaussian distributions, which are symmetric and have

the same number of parameters. We applied them to PointPillars and SECOND

baselines and compared them to the KITTI-val dataset. As shown in Figure 4.6,

the shapes of the three distributions differ in peak height and tail length. The
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Box encoding
AOS APHard 3D APHard

Ped Cyc Ped Cyc

Borigin 31.89 64.29 32.70 59.91

Bsincos 31.69 67.03 36.90 61.93

Bcenter 39.51 68.02 41.88 62.61

Bcorner 39.31 71.13 42.40 63.41

Table 4.4: Comparison of box encoding methods.

PDF form
KITTI-val 3D mAP

PointPillars+MD3D SECOND+MD3D

Laplace 63.98 70.47

Cauchy 64.91 70.75

Gaussian 66.29 71.35

Table 4.5: Comparison of probability distributions.

point clouds have sparse representations, implying that the area occupied by

actual points is very small compared with the space of the entire area when

voxelized. This makes our MD3D have a considerable number of mixture com-

ponents because MD3D requires output for the entire feature space. Therefore,

the Gaussian distribution with the shortest tail is the most suitable for MD3D

because it can effectively suppress the probability of boxes with high uncer-

tainty from unnecessary empty spaces. Table 4.5 also shows that the Gaussian

distribution was the most effective for both models.
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Figure 4.6: Pdfs of the Gaussian, Cauchy, and Laplace distributions.

The number of Mixture components

Table 4.1 shows that MD3D has a significant performance improvement for de-

tectors with smaller input feature dimension and therefore fewer anchors. To

verify the effect of the number of anchors and the number of mixture compo-

nents K, we set SECOND as the base model and compared the performance

by adjusting the horizontal and vertical dimensions of the input feature by 1/4,

1/2, and 2 times, respectively. As shown in Table 4.6, anchors are placed sepa-

rately in two directions, 0 and 90 degrees for each class. Thereby, anchor-based

detectors output anchor boxes six times more than K, even for features of the

same size. The anchor-based detector with more anchors achieves higher per-

formance in obtaining better foreground GT assignments, whereas MD3D with

an unnecessarily large K tends to learn poorly and achieve lower performance.

However, comparing them in a small feature dimension of 50×44, SECOND

achieves a very low mAP (50.10) despite predicting six times more boxes than

MD3D (64.86). SECOND needs to predict 200×176×6 boxes, 96 times more

63



Method
# anchors KITTI-val 3D APmean

mAP
K Car Ped Cyc

SECOND

50×44×6 66.12 29.91 54.27 50.10

100×88×6 78.78 33.37 62.51 58.22

200×176×6 81.19 51.27 69.36 67.28

400×352×6 80.28 63.58 72.98 72.28

SECOND

+MD3D

50×44 72.94 49.85 71.78 64.86(+14.76)

100×88 81.10 55.05 74.45 70.20(+11.98)

200×176 81.72 57.42 74.92 71.35(+ 4.08)

400×352 81.07 57.46 74.46 71.00(- 1.28)

Table 4.6: Effect of the number of mixture components.

boxes than MD3D, to achieve similar performance (67.28). Therefore, the per-

formance of MD3D is maximized when used in compact detectors.

Covariance matrix

We modeled the point cloud-based 3D object detection with the multivariate

GMM using only the diagonal elements of a covariance matrix rather than a full

matrix. Training with a full covariance matrix means that a detector learns the

correlation of the elements of Bcorner ∈ R7, whereas the diagonal matrix does

not. Table 4.7 presents the results of applying these two methods to PointPillars.

In the case of Pedestrian, whose intraclass correlation is high because the objects

share similar shapes, the full covariance model achieves higher performance.

Except for Pedestrian, the models using only the diagonal matrix outperformed
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Covariance

matrix

KITTI-val 3D APmean
mAP

MD3D

paramsCar Ped Cyc

Full 75.06 53.12 68.35 65.51 15,018

Diagonal 80.16 46.92 71.79 66.29 6,930

Table 4.7: Effect of constraint on the covariance matrix. Assuming indepen-

dence between elements achieves relatively efficient and effective results.

those using the entire matrix. Therefore, we decided to use only the diagonal

elements of the covariance matrix because it achieves a slightly better mAP and

uses half the number of parameters.

4.3.8 Discussion

MD3D showed superior performance and latency regardless of the backbone

network types and the use of anchors (Tables 4.1 and 4.3). It is especially effec-

tive for one-stage detectors, such as SECOND and CenterPoint, which output

relatively small feature maps (Table 4.6). The reason for their dramatic increase

in performance is the higher recall than that of existing heads for small objects,

such as Pedestrian and Cyclist (Figure 4.4). However, MD3D has an advantage

in terms of recall rather than precision (Figure 4.7), the performance improve-

ment for two-stage detectors, such as PV-RCNN and PointRCNN is marginal.

In addition, MD3D has advantages regarding the number of parameters and la-

tency because the box prediction channels are not separated by class. However,

because of the unified channel across classes, the performance on datasets with

many classes may be limited, which we will attempt to overcome in the future
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work.

4.4 Conclusion

Most of the existing point cloud-based 3D object detectors apply a specific tar-

get assignment policy to the GT boxes to regress 3D bounding boxes. Because

this training method needs to optimize many hand-crafted design factors, it takes

significant amount of effort to utilize and places many restrictions on the net-

work structure. In this chapter, we proposed MD3D, which reformulates the

regression of 3D bounding boxes in point clouds as a density estimation prob-

lem. The MD3D is easy to use and can be applied to various types of feature

encoding methods without considering the target assignment policy and net-

work structure. Experiments on the KITTI and Waymo datasets show that the

proposed method outperforms conventional methods in terms of performance,

speed, ease of use, and flexibility. Although we only considered point clouds as

inputs, the MD3D can be easily applied to other various types of inputs. Further-

more, we expect MD3D is utilized for multi-modal inputs by fusing the mixture

density outputs.
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Figure 4.7: Qualitative results for the KITTI-val set. Green boxes indicate GT

boxes, and blue boxes indicate predicted boxes with the confidence of over 0.1.

MD3D improves the existing detector regarding precision and recall, whereas

the mixing coefficient ϕ efficiently filters out unlikely boxes. We filtered out the

predictions with ϕ
max(ϕ) < 0.001 before the NMS. We used SECOND with a

50×44 feature as the base model for this comparison.
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Method
Detection head

Original MD3D

PointPillars

SECOND

PV-RCNN

CenterPoint

PointRCNN

Table 4.8: Detection heads. The structures and parameters of the original heads

are the default settings of OpenPCDet [70]. The structures and parameters of

the MD3D BEV-heads (PointPillars, SECOND, PV-RCNN, and CenterPoint)

follow the simplest original BEV head and the MD3D point-head (PointRCNN)

follows the original PointRCNN head. σ2 (dotted line) is not used in the infer-

ence phase.
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Method PointPillars PV-RCNN CenterPoint PointRCNN

Backbone

Network

Table 4.9: Backbone network architectures (1). Every model used the default

settings of OpenPCDet [70].
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Method
SECOND SECOND SECOND SECOND

(50×44) (100×88) (200×176) (400×352)

Backbone

Network

Table 4.10: Backbone network architectures (2). The backbone structures

of SECOND(50×44, 100×88, and 400×352) were designed by adding some

sparse convolution blocks or changing the stride parameters of the default struc-

ture of SECOND(200×176).
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Chapter 5

Combination of PA-AUG and MD3D

We have proposed two novel methods for improving LiDAR-based 3D object

detection: PA-AUG (Chapter 3) and MD3D (Chapter 4). PA-AUG makes 3D

object detectors robust to various extreme environments by using structural in-

formation of 3D ground-truth boxes. Also, the detectors can be aware of intra-

object relation as it learns individual variation in an intra-object part. MD3D

is an anchor-free detection method estimating the distribution of 3D bounding

boxes in point clouds with a Gaussian Mixture Model (GMM). It is free from

the problems experienced by anchor-based detectors. Thus, it improves the de-

tection accuracy and latency of conventional detectors. In this chapter, we show

the experimental results of the combination of PA-AUG and MD3D to verify

their effectiveness when they are applied together.

5.1 Methods

PA-AUG is a data augmentation method, and MD3D is a detection head, which

means they are independent of each other. Therefore, they can be applied to-
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gether to an object detector without modifying any structure or hyper-parameters.

The order of the data augmentations is important. So we keep the conven-

tional data augmentations as they are and apply PA-AUG right after them. The

hyper-parameters for PA-AUG remain unchanged, which is shown in Table 3.2.

MD3D is applicable to any type of point cloud feature encoding method

that allows it to be plugged and played easily to the existing detectors. Thus, the

structure and hyper-parameters for MD3D remain unchanged, which is shown

in Table 4.8.

5.2 Experiments

5.2.1 Settings

We choose one anchor-based 3D object detector, SECOND [81], and one anchor-

free 3D object detector, CenterPoint [85], as baseline models. We use the base-

line code from OpenPCDet [70], one of the most widely used codebases. The

two baseline models use the same data augmentation methods: gt-sampling,

flipping, rotating, and scaling. Thus, PA-AUG is applied right after scaling. We

mark ‘+ PA-AUG’ for this test in Tables 5.1 and 5.2. MD3D replaces the original

detection head and loss of SECOND and CenterPoint. And we mark ‘+ MD3D’

for this variant model. We evaluated each method three times and calculated the

average APs. The repeated tests are represented in #1, #2, and #3.

We evaluated the proposed methods on the KITTI dataset [24], one of the

most popular datasets for 3D object detection for autonomous driving. It con-

sists of 7,481 training samples and 7,518 testing samples, where the training

samples are generally divided into train split with 3,712 samples and val split

with 3,769 samples. Because the KITTI dataset contains only 90-degree anno-
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tation, we clipped the scenes into (0, 70.4)m, (-40, 40)m, and (-3, 1)m for the

X, Y, and Z axis ranges.

5.2.2 Results on the KITTI Dataset

The experimental results of PA-AUG, MD3D, and their combination on SEC-

OND [81] are shown in Table 5.1. PA-AUG improves the mAP of SECOND by

0.93. The most noticeable improvements occur in the Pedestrian class. MD3D

significantly increases the mAP by 4.08. It considerably improves the APs of

Pedestrian and Cyclist classes. And the combination of the two methods im-

proves the mAP by 4.92, which is the best performance among the variants of

SECOND. The big leap in performance comes from the improvements in Pedes-

trian and Cyclist classes. The increase in Car class is not significant.

Table 5.2 shows the experimental results of PA-AUG, MD3D, and their

combination on CenterPoint [85]. PA-AUG improves the mAP of CenterPoint

by 1.29. Similar to the results on SECOND, most of the improvements come

from Pedestrian. MD3D increases the mAP by 2.97. It shows high performance

improvements for all classes. The combination of the two methods improves the

mAP by 3.40. Compared to the results on SECOND, it showed relatively even

increases for all classes.
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Experiments
Car 3D AP (IoU=0.7) Ped 3D AP (IoU=0.5) Cyc 3D AP (IoU=0.5)

mAP
Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

SECOND [81]

#1 88.68 78.50 77.23 54.79 50.12 46.68 80.35 65.05 61.12 66.95

#2 87.73 78.18 76.94 56.26 52.58 48.13 78.73 65.38 60.22 67.13

#3 87.99 78.33 77.13 55.31 51.15 46.45 82.37 67.51 63.51 67.75

Average 88.13 78.34 77.10 55.45 51.28 47.09 80.49 65.98 61.62 67.28

SECOND + PA-AUG

#1 87.80 78.33 77.19 57.67 53.98 49.39 80.38 66.05 61.76 68.06

#2 88.58 78.60 77.46 57.86 54.16 49.69 79.41 63.65 61.31 67.86

#3 88.20 78.20 76.86 59.96 55.45 51.31 79.78 65.92 62.51 68.69

Average 88.19 78.38 77.17 58.49 54.53 50.13 79.85 65.21 61.86 68.20

Improvements +0.06 +0.04 +0.07 +3.04 +3.25 +3.04 -0.63 -0.77 +0.25 +0.93

SECOND + MD3D

#1 89.13 78.78 76.99 64.07 56.79 50.37 87.45 72.19 65.72 71.28

#2 88.92 78.97 77.46 64.70 57.28 50.97 86.46 72.71 66.18 71.52

#3 89.30 78.81 77.10 64.46 57.16 51.03 87.09 71.38 65.07 71.26

Average 89.12 78.85 77.18 64.41 57.07 50.79 87.00 72.10 65.66 71.35

Improvements +0.98 +0.52 +0.08 +8.96 +5.79 +3.70 +6.51 +6.12 +4.04 +4.08

SECOND + PA-AUG + MD3D

#1 88.96 78.66 76.99 66.18 59.03 52.60 87.27 71.98 65.98 71.96

#2 89.41 79.01 77.20 66.93 59.77 52.78 88.36 71.89 66.08 72.38

#3 89.16 78.87 76.78 67.36 59.69 52.83 87.20 72.09 66.27 72.25

Average 89.17 78.85 76.99 66.82 59.50 52.74 87.61 71.99 66.11 72.20

Improvements +1.04 +0.51 -0.11 +11.37 +8.22 +5.65 +7.13 +6.01 +4.49 +4.92

Table 5.1: Performance comparison of the combination of PA-AUG and

MD3D on SECOND [81]. The results are evaluated by the AP with 11 recall

positions on the KITTI-val set, and the average values of three repeated experi-

ments are reported for each AP. The highest average APs are underlined.
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Experiments
Car 3D AP (IoU=0.7) Ped 3D AP (IoU=0.5) Cyc 3D AP (IoU=0.5)

mAP
Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard

CenterPoint [85]

#1 84.93 77.17 75.98 57.86 53.42 50.53 83.17 66.82 62.50 68.04

#2 84.99 77.42 76.06 57.19 52.95 49.23 82.32 67.02 62.92 67.79

#3 85.83 77.75 76.22 55.12 52.00 49.23 82.65 68.44 63.47 67.86

Average 85.25 77.45 76.09 56.72 52.79 49.66 82.71 67.43 62.97 67.90

CenterPoint + PA-AUG

#1 86.12 78.32 76.48 58.48 55.53 51.97 83.74 68.26 64.96 69.32

#2 85.47 77.91 76.21 61.59 57.72 53.99 82.54 67.77 63.47 69.63

#3 86.29 78.39 76.33 58.90 55.66 51.98 80.14 67.50 62.38 68.62

Average 85.96 78.21 76.34 59.66 56.30 52.65 82.14 67.84 63.60 69.19

Improvements +0.71 +0.76 +0.26 +2.93 +3.51 +2.98 -0.57 +0.42 +0.63 +1.29

CenterPoint + MD3D

#1 89.07 78.91 77.66 63.18 55.93 50.11 86.68 71.80 65.59 70.99

#2 89.17 78.80 77.50 63.69 55.89 49.77 86.83 66.91 64.99 70.40

#3 89.05 78.92 77.63 63.39 56.06 50.19 87.28 72.35 66.00 71.21

Average 89.10 78.88 77.60 63.42 55.96 50.02 86.93 70.35 65.53 70.86

Improvements +3.85 +1.43 +1.51 +6.69 +3.17 +0.36 +4.22 +2.93 +2.57 +2.97

CenterPoint + PA-AUG + MD3D

#1 89.44 79.04 77.65 65.20 58.21 51.99 86.79 66.74 65.28 71.15

#2 88.96 78.86 77.47 65.18 58.29 52.13 86.60 66.85 65.58 71.10

#3 89.59 79.22 77.44 67.03 59.44 52.73 87.15 66.71 65.44 71.64

Average 89.33 79.04 77.52 65.80 58.64 52.29 86.84 66.77 65.43 71.30

Improvements +4.08 +1.59 +1.44 +9.08 +5.85 +2.62 +4.13 -0.66 +2.47 +3.40

Table 5.2: Performance comparison of the combination of PA-AUG and

MD3D on CenterPoint [85] The results are evaluated by the AP with 11 re-

call positions on the KITTI-val set, and the average values of three repeated

experiments are reported for each AP. The highest average APs are underlined.
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5.3 Discussion

In this chapter, we have presented the experimental results of the combination

of PA-AUG and MD3D on SECOND and CenterPoint, which are anchor-based

and anchor-free 3D object detectors. The results show the combination of the

two proposed methods has a synergy effect when they are used together. The

improvements in PA-AUG and MD3D are cumulated to the improvements in

the combination, which means both of them enhance different aspects of object

detectors independently. However, it also shows some negative effects on APs,

such as Car (Hard) in SECOND and Cyclist (Moderate) in CenterPoint. There-

fore, the backbone network structures affect the improvements of PA-AUG,

MD3D, and their combination.
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Chapter 6

Conclusion

6.1 Summary

The general pipeline of LiDAR-based 3D object detection methods consists

of three stages: 1) data augmentation & preprocessing, 2) backbone network,

and 3) detection head. (Section 1.1) Previous studies have focused on the back-

bone network architectures which is the most core part for overall performance

and speed. Therefore, a lot of highly optimized 3D object detectors have been

proposed [81, 36, 59, 61, 85]. However, their backbone network architectures

greatly vary each other owing to their different preprocessing methods. In this

dissertation, we aim to improve 3D object detectors regardless of their backbone

network architectures.

In chapter 3, we propose a novel part-aware data augmentation (PA-AUG)

which makes better use of 3D information of point clouds than the conven-

tional methods. We divide the objects into 8 or 4 partitions according to intra-

object part location and apply five separate augmentation methods which can be

used simultaneously in a partition-based way. The proposed data augmentation
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methods can be universally applied to any architecture, and PA-AUG further

improves one of the SOTA detectors on the KITTI dataset. Experimental results

show that PA-AUG can improve robustness to corrupted data and enhance data

efficiency.

In chapter 4, we propose a novel mixture-density-based 3D object detec-

tion (MD3D) which reformulates the regression of 3D bounding boxes in point

clouds as a density estimation problem. The MD3D is easy to use and can

be applied to various types of feature encoding methods without considering

the target assignment policy and network structure. Experiments on the KITTI

and Waymo datasets show that the MD3D outperforms conventional methods in

terms of performance, speed, ease of use, and flexibility.

In chapter 5, we show the experimental results on the combination of PA-

AUG and MD3D. We apply the combination of the proposed two methods to

SECOND [81] and CenterPoint [85], which are anchor-based and anchor-free

3D object detectors. Their results on the KITTI dataset show the combina-

tion significantly improves the detection performance of both detectors. The

increases in performance seem to be accumulated as applying PA-AUG and

MD3D, which implies they improve different aspects of the detection perfor-

mance and have synergy when they are used together.

6.2 Limitations and Future works

6.2.1 Hyper-parameter-free PA-AUG

PA-AUG includes five partition-based data augmentation methods: dropout, swap,

mix, sparse, and noise. They are applied stochastically to each partition. Thus,

PA-AUG requires many hyper-parameters, i.e., the probabilities of each method,
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the number of partitions to drop, swap, and mix, the number of points to sparsify

and generate noise. It is a very time-consuming task to optimize these hyper-

parameters for each dataset. Therefore, an automated PA-AUG, which utilizes

the loss or accuracy value to manipulate the hyper-parameters automatically,

will be essential to apply to multiple datasets.

6.2.2 Redefinition of Part-aware Partitioning

We divide the Car, Pedestrian, and Cyclist with 8, 4, and 4 partitions which sep-

arate the characteristic sub-parts of each class. It is defined using human’s prior

knowledge and the experimental results (Section 3.3.4) show it is more effective

than other partitioning methods. However, there are many classes which are hard

to define the characteristic sub-parts in the real world. So it may be ineffective to

define the part-aware partitioning method with human’s prior knowledge. There-

fore, a unified partitioning method for all classes or a self-manipulating dynamic

partitioning method will be needed when applying PA-AUG to datasets with a

lot of classes.

6.2.3 Application to other tasks

Both PA-AUG and MD3D can be applied to other tasks, such as semantic seg-

mentation and object tracking. PA-AUG is beneficial to learn the semantic re-

lation in intra-object sub-parts. Thus, it would be effective to point cloud-based

3D semantic segmentation task and object tracking task. MD3D could be easily

utilized in semantic segmentation and object tracking by modifying the loss

function and output channels. And its hyper-parameter-free learning method

would be working well with other vision tasks.
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초록

자율주행자동차,로봇의인식장비로많이활용되고있는라이다 (LiDAR)

는 레이저 펄스를 방출하여 되돌아오는 시간을 계산하여 포인트 클라우드

(point cloud) 형태로 주변 환경을 감지한다. 주변 환경을 감지할때 가장 중

요한 부분은 근처에 어떤 객체가 있는지, 어디에 위치해 있는지를 인식하는

것이고 이러한 작업을 수행하기 위해 포인트 클라우드를 활용하는 3차원 객

체검출기술들이많이연구되고있다.

포인트 클라우드 데이터의 전처리 방법에 따라 매우 다양한 구조의 백본

네트워크 (backbone network)가연구되고있다.고도화된백본네트워크들로

인해 인식 성능에 큰 발전을 이루었지만, 이들의 형태가 크게 다르기 때문에

서로 호환성이 부족하여 연구들의 갈래가 많이 나누어지고 있다. 본 논문에

서풀고자하는문제는 “파편화된백본네트워크의구조들에구애받지않고 3

차원객체검출기의성능을향상시킬방법이있는가”이다.이를위해본논문

에서는 포인트 클라우드 데이터 기반의 3차원 객체 검출 기술을 향상시키는

두가지방법을제안한다.

첫번째는 3차원경계상자 (3D bounding box)의구조적인정보의활용을

최대화하는 구조 감응형 데이터 증강 (PA-AUG) 기법이다. 3차원 경계 상자

라벨은객체에딱맞게생성되고방향값을포함하기때문에상자내에객체의

구조 정보를 포함하고 있다. 이를 활용하기 위해 우리는 3차원 경계 상자를

구조감응형파티션으로구분하는방식을제안하고,파티션수준에서수행되
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는새로운방식의데이터증강기법을제안한다. PA-AUG는다양한형태의 3

차원 객체 검출기들의 성능을 강인하게 만들어주고, 학습 데이터를 2.5배 증

강시키는만큼의인식성능향상효과를보여준다.

두 번째는 혼합 밀도 신경망 기반 3차원 객체 검출 (MD3D) 기법이다.

MD3D는 가우시간 혼합 모델 (Gaussian Mixture Model) 을 이용해 3차원 경

계 상자 회귀 문제를 밀도 예측 방식으로 재정의한 기법이다. 이러한 방식은

기존의 라벨 할당식의 학습 방법들과 달리 포인트 클라우드 전처리 형태에

구애받지않고동일한학습방식을적용할수있다.또한기존방식대비학습

에필요한하이퍼파라미터가현저히적어서최적화가용이하여인식성능을

크게 높일 수 있을 뿐만 아니라 간단한 구조로 인해 인식 속도도 빨라지게

된다.

PA-AUG와 MD3D는 모두 백본 네트워크 구조에 상관없이 다양한 3차원

객체검출기에공통적으로사용될수있으며높은인식성능향상을보여준다.

뿐만아니라두기법은검출기의서로다른영역에적용되는기법이므로함께

동시에사용할수있고,함께사용했을때인식성능이더욱크게향상된다.

주요어: 3차원객체검출,라이다,포인트클라우드,데이터증강,혼합밀

도신경망,자율주행

학번: 2017-23640
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