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Abstract 

 

Dynamic change of hierarchical core voxels 

of functional brain network in aging 

 

Hyun Joo Kim 

Department of Molecular Medicine and Biopharmaceutical Science, 

The Graduate School of Convergence Science and Technology 

Seoul National University 

 

Many methods were developed to assess the functional intervoxel connectivity 

to discover and better understand the brain function in individuals. In this study, 

k-core percolation method was assessed to reveal the dynamic hierarchical 

structure on resting-state fMRI (rsfMRI) on voxel-level and the feasibility of the 

method was evaluated by applying it in the aging process. 

 

Total 70 individuals were included in this study, 32 individuals from Alzheimer’s 

Disease Neuroimaging Initiative (ADNI) and 38 individuals from Seoul National 

University (SNU). K-core percolation method, a voxel-based approach was 

applied to reveal the hierarchical structure of voxels in the brain. kmax-core and 

coreness k values derived from k-core percolation characterizing the time-

varying core voxels were visualized on various plots to visualize the dynamic 

hierarchical structure more intuitively. Independent component analysis (ICA) 
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was carried out to label the associated functional independent components (IC) 

of the identified voxel. Analysis was done in both static and dynamic studies, and 

in positive and negative correlations. Coreness k value map overlaid on brain T1 

MRI was generated for further evaluation of the distribution of coreness k values.  

 

Dynamic hierarchical structure of voxels visualized on various plots revealed 

time-varying change of kmax-core voxels and coreness k values, reflecting the 

dynamic change of brain function in an individual, which was not fully reflected 

on static functional connectivity. Dynamic flow pattern was different in positive 

and negative correlations, portraying the dynamic brain function in different 

neuronal networks. Coreness k value map revealed altered distribution of 

coreness k values in the brain. Asymmetric, unsynchronized distribution was 

deteriorated in the aging process. This asymmetry detected on dynamic coreness 

k map was assessed quantitatively by measuring asymmetry index, which 

revealed distinctive difference between young and aged healthy control group. 

The difference was more evident on dynamic study than static study. Also, as the 

age increased, coreness k values from static and dynamic studies decreased in 

all IC regions, which represents decreased connectivity in aging.  

 

Investigation of dynamic functional connectivity with k-core percolation on 

voxel-level revealed dynamic hierarchical structure of voxels, reflecting the 

time-varying brain function in individuals. Dynamic functional connectivity is 

more appropriate to investigate one’s brain function, since it contains the time-

varying information which is not well reflected on static functional connectivity. 

With this method, characteristics of dynamic hierarchical structure of an 
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individual can be discovered and have shown possibility of further clinical 

application.  

 

Keywords : dynamic functional connectivity, k-core percolation, hierarchical 

structure, resting-state fMRI, aging 

Student Number : 2015-26074 
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INTRODUCTION 

 

Dynamic functional brain connectivity in rsfMRI 

 

Resting-state functional MRI (rsfMRI) is an imaging method used to assess the 

regional interaction or connectivity within the brain, which seems to change 

dynamically over time. Brain connectivity on rsfMRI is assessed with blood-

oxygen-level dependent (BOLD) signals, which reflects the change of blood flow 

in the brain (1). Though not fully understood, researchers assume that the BOLD 

signals from rsfMRI reflect the brain function during the entire acquisition time 

or at the certain time bins (2). The former is called static study and the latter is 

dynamic study of functional brain connectivity on rsfMRI (3, 4, 5, 6, 7, 8, 9, 10, 

11). Conventionally, functional connectivity in rsfMRI has been assessed as the 

static study, neglecting the implicit time-varying information. To accommodate 

the temporal information in the analysis, various method to materialize dynamic 

study has been investigated. Most common method for dynamic study in fMRI is 

the sliding window analysis, by dividing the entire time course into a sequence of 

sliding windows and measuring functional connectivity in each window (12). 

Sliding window method is characterized by selecting certain time window, and 

this window is shifted in time by a fixed number of data points, called step, 

defining the overlap between two successive windows (13).  

 

To extract functional connectivity patterns with temporal information, several 

methods have been developed, such as model-based or seeds-based brain-

search methods. Hidden Markov model (HMM) is a model-based approach, which 
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generate time-varying states of a few clusters of spatial principal components 

using brain voxels (14, 15, 16, 17, 18). In HMM, individual rsfMRI volumes are 

modeled as a mixture of the brain states and linked to each state with a given 

probability. In HMM, the functional connectivity is only displayed as switches 

between states, so choosing the adequate state was essential (2). Also, the 

analysis was performed in a few to dozen state units, which was composed of 

thousands of voxels (18). The seeds-based approach is called co-activation 

pattern (CAP) of searched voxels and the seeds are composed of voxels of 

interest (VOI), which is made up of thousands of voxels, as well (19, 20, 21). A 

subset of time points was divided by clustering algorithm that show high activity 

at a specific seed region into multiple subgroups based on their spatial similarity, 

and then the volumes were averaged within each subgroup to generate CAPs. 

Despite the efforts to assess the dynamic functional connectivity, both 

approaches have potential computational problem and choosing the optimal output 

states in HMM or seeds in CAP approaches is another drawback for further 

analysis on individuals’ dynamic brain functions. Furthermore, these analytic 

methods are based on units of states or seeds, which are composed of thousands 

of voxels. Composition of thousands of voxels lead to the problem of 

heterogeneity of the unit itself. So further breakdown of units into much smaller 

number of voxels is necessary to overcome the heterogeneity. 

 

Functional brain networks have the characteristics of an open disperse system 

(22) with metastability (23, 24, 25) resulting in the state progressions with 

intermittent transition (26), whose underlying mechanism lies in intrinsic 

composition of network nodes. These network nodes or voxels are considered as 
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the units of brain function, and a voxel in current mm3 resolution of fMRI contain 

cluster of 105 neurons (27). So, the voxel itself can still be heterogeneous and 

stationarity within the time bins are unproven, but analysis on voxel-level 

assuming stationarity within the voxel is worthwhile, overcoming the previous 

limitations in dynamic functional connectivity analyses (9, 10, 28, 29). 

 

k-core percolation 

 

A method called k-core percolation has been recently introduced (30, 31). k-

core percolation investigates individual-specific core subnetworks of brain 

connectivity. It is voxel-based approach, which displays functional hierarchical 

structure of every voxel on recursive analysis. k-core is identified by pruning all 

voxels with degree lower than k until no remaining voxel with a degree less than 

k is left. kmax-core voxels at the uppermost hierarchy are considered the most 

influential nodes at that moment. A sliding window method, using 1-min time bins 

of 2 seconds shift for individuals, was used to produce the consecutive 116 or 93 

bins per subject, to analyze on dynamic basis. According to this analysis, the state 

progress and transition of voxels representing hierarchical structures were found 

to be diverse with various compositions of functional independent components 

(ICs) (32). This voxel-based approach led to implement various visualization 

methods, which are coreness k flag plots, bar plots, kmax-core stacked histogram, 

coreness k map. 

 

Functional intervoxel connectivity on rsfMRI was transformed to coreness k 

values for voxels, using node (voxel) instead of edge (correlation or connectivity) 
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information for visualization, and hierarchical intervoxel connectivity was 

interpreted in the voxel-level. Further evaluation was performed with intervoxel 

negative correlation to produce the negative-influence networks and absolute 

values from negative correlation were used for analysis. Also, positive and 

negative correlations were combined together to assess both influencing 

networks. 

 

Various plots were generated with coreness k or kmax-core voxels to display 

functional intervoxel connectivity, using positive correlation and negative 

correlation after thresholding to confirm the scale-freeness. It was applied in 

individuals from Alzheimer’s Disease Neuroimaging Initiative (ADNI) and our 

institution (SNU), on the static (10 minutes or 7 minutes, respectively for ADNI 

or SNU) and the dynamic (116 1-min-bins with 2-sec shifts (ADNI) or 93 1-min-

bins with 2-sec shifts (SNU)) studies. On the dynamic study, change of kmax-core 

composition and state transition over time were assessed, and these were 

classified into designated IC-maps, to determine the most influential IC at that 

moment. These figures and animations were generated to facilitate the 

interpretation of dynamic hierarchical structure of an individual’s brain function 

on voxel-level, anticipating further application in clinical settings as well. In this 

study, this k-core percolation method was applied in young and aged normal 

cognitive group to evaluate the feasibility of the method in assessing aging 

process. 
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Functional connectivity in aging process  

 

Various imaging modalities have been investigated in the aging to unveil the 

underlying mechanism in the aging process. MRI has been investigated to find the 

structural abnormality associated with neurodegeneration. PET imaging with 

various types of tracers such as FDG, amyloid-β, tau have been used to assess 

change in the glucose metabolism or accumulation of amyloid or tau proteins in 

aging or senile neurodegenerative diseases (33, 34).  

 

Functional brain connectivity has been emerged as an important biomarker for 

understanding aging and neurodegenerative diseases (35, 36, 37, 38, 39, 40, 41). 

fMRI has emerged as an imaging tool to measure the altered brain connectivity 

and dysfunction indirectly. The spontaneous low-frequency (<0.001–0.100 Hz) 

fluctuations of the BOLD signals can be measured from rsfMRI, and the 

correlations from the BOLD signals are generated into adjacency matrices to find 

the most affected region in the brain (35, 41). While previous studies have 

focused on revealing functional connectivity in brain regions on static fMRI, 

nowadays dynamic functional connectivity assessment is performed with BOLD 

signals (6, 10, 41), which is applied in the investigation of aging and 

neurodegenerations.  

 

Some features have been detected in previous functional connectivity studies of 

aging. One feature is the reduced connectivity (38, 42). Brain network is affected 

by aging, resulting in decreased connectivity within the networks such as primary 

sensory and cognitive networks. Several studies have suggested default mode 
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network (DMN) as the major hub for functional brain connectivity in aging. Along 

with aging, decreased connectivity in DMN has been observed most frequently in 

the neurodegenerative diseases as well, which was also correlated with severity 

of cognitive decline (35, 43, 44, 45, 46). Other networks such as dorsal attention 

network (DAN), salience network (SN) and sensorimotor network (SMN) have 

also been identified to contribute or be sensitive in aging (42).  

 

Another feature in the aging brain is asymmetry (47, 48). There are still 

controversies with mixed results in asymmetry observed in the aging brain, but 

it is quite evident that asymmetry plays some role in aging process. Left and right 

asymmetry in the insula regions increasing with age was observed (48). Altered 

cortical activation pattern called poster-anterior shift in aging (PASA) was 

observed in the aged population, which is referring to tendency of decreased 

activity in occipitotemporal regions and increased activity in the prefrontal cortex, 

suggesting neural activation shifting from the posterior (sensory) to the anterior 

(cognition) areas. Also, there is a phenomenon called hemispheric asymmetry 

reduction in older adults (HAROLD) reported in aging (49, 50). This is 

characterized by reduced asymmetry in the bilateral hemisphere by 

reorganization of brain connectivity resulting in increased activation in the 

previously low activity region, compensating for decreased unilateral neural 

efficiency, which in turn leads to rather decreased asymmetry in the aged 

population.   
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PURPOSE 

 

The purpose of this study was to reveal the dynamic hierarchical structure on 

voxel-level with k-core percolation method. Unveiled dynamic hierarchical 

structure was plotted on various figures and animations for more simple and 

intuitive interpretations. k-core percolation method was implemented to generate 

dynamic and static functional connectivity and these studies were compared to 

define the characteristics of dynamic study from static study. Dynamic functional 

connectivity was assessed in positive and negative correlations, and these 

correlations combined as well, and the results were compared. After evaluating 

the overall integrity of the method, this method was applied in individuals in the 

aging process to evaluate the feasibility of the method in clinical applications.  
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MATERIALS AND METHODS 

 

Data preprocessing 

 

rsfMRI data of aged healthy control patients (aged HC, aHC) were downloaded 

from the ADNI (https://adni.loni.usc.edu/data-samples/access-data/). Total 32 

participants were included, aged from 65 to 95 without any significant history of 

psychiatric disorder, neurological or cardiovascular disease (Table 1). Minimally 

preprocessed rsfMRI data were used (51) and further preprocessing was 

performed: smoothing using 6 mm full-width at half maximum of Gaussian kernel, 

bandpass filtering (0.01 Hz – 0.1 Hz). Next, the data were downsampled to 31 x 

37 x 31 dimension with 6 x 6 x 6 mm3 size-voxel to reduce computational load. 

A mask was applied to exclude voxels that do not belong to the gray matter, 

finally including in 5,937 voxels for the analysis. 

Additionally, rsfMRI data of normal individuals were retrieved from our institution 

(SNU)’s database as well, to represent normal individual (young HC, yHC). 38 

normal patients aged from 21 to 71 without any significant history of psychiatric 

disorder, neurological or cardiovascular disease were included. rsfMRI data were 

preprocessed using smoothing with 6mm full-width at half maximum of Gaussian 

kernel, bandpass filtering (0.01 Hz – 0.1 Hz). The temporal filtering with 0.01 to 

0.1 Hz and the downsampling were applied as the ADNI data, and total 5,937 

voxels were included for analysis with 6 x 6 x 6 mm3. 
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Table 1. Demographics of study subjects 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Table 2. Thresholds of groups 

 

 

Static Dynamic 

Positive % of node Negative % of node Positive % of node Negative % of node 

SNU 0.55 95.2 0.55 91.2 0.85 94.1 0.80 95.3 

ADNI 0.60 92.6 0.45 90.6 0.80 87.0 0.75 94.6 

 

 

 

 

  

  SNU ADNI 

Number 38 32 

Age 43.9 ± 14.0 

(21 – 71) 

75.7 ± 7.0 

(65 - 95) 

Sex (M:F) 19:19 11:21 

MMSE 29.4 ± 0.9 29.2 ± 1.3 
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Spatial information from independent component analysis 

 

Spatial information from independent component analysis (ICA) was applied as 

regional brain atlas to find ICs of the resting-state networks, which was 

previously retrieved using Multivariate Exploratory Linear Decomposition into 

Independent Components (MELODIC) (32). Spatial IC maps were applied, and 

threshold (Z > 6) were applied to generate binary masks. In the previous study 

(31), 15 ICs were included: aDMN (anterior default mode network), DMN, PCN 

(precuneus network, equivalent to posterior DMN), SN (salience network), DAN 

(dorsal attention network), L CEN (left central executive network), R CEN (right 

CEN), SMN (sensorimotor network) 1, SMN2, AN (auditory network), VN (visual 

network) 1, VN2, VN3, VN4, and VAN (ventral attention network). These 15 ICs 

were classified into seven categories for comprehensibility: DMN, SN, DAN, CEN, 

SMN, AN, and VN and the remaining unclassified regions as UNC (unclassified 

network) (Fig. S1). 

 

Sliding-window analysis 

 

rsfMRI data retrieved from ADNI and SNU were analyzed (Table 1). Sliding-

window analysis was used to investigate the nonstationary and time-varying 

dynamics of the brain connectivity. For ADNI data, the window size was set close 

to 1 minute (20 volumes, 60 sec) with a shift of 2 sec, resulting in 116 windows. 

A connectivity matrix of each window was constructed to conduct k-core 

percolation. To find the ideal threshold determining inverse linearity on the log-

log plots, these matrices were displayed for degree distribution to confirm the 
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scale-freeness of degree distribution, and average 93.9% of the entire voxels 

were included after thresholding (52). Thresholds varied among the groups, in 

static and dynamic studies, and in positive and negative correlations (Table 2). 

After applying the ideal threshold, adjacency matrices made with these thresholds 

were put into k-core percolation (30, 53), which produced 5,937 x 116 percolated 

matrix for coreness k values. Edges with values greater than the threshold were 

assigned as 1 and otherwise 0. These coreness k values of each voxel were 

rearranged according to the classified ICs (Fig. S1) (DMN, SN, DAN, CEN, SMN, 

AN, VN, UNC) shown as 116 flag plots on animation in ADNI data.  

 

For CN-SNU normal data, window size was set to 1 minute (20 volumes) with a 

shift of 3.5 sec. k-core percolation was calculated from the connectivity matrix 

of each window and binary matrix was generated in the same way as ADNI data, 

producing 5,937 x 93 percolated matrix for coreness k values. Edges with values 

greater than the threshold were assigned as 1 and otherwise 0 to make adjacency 

matrix. With these thresholds, more than 93.2% of the voxels were included in 

the study. 

From the CN-SNU data, healthy control subjects with age over 60 years old, 

which was six subjects, were included in the aged healthy control (aHC) for the 

analysis. The rest 32 subjects with age younger than 60 years old were classified 

as young healthy control (yHC). 

 

Appliciation of k-core percolation 

 

k-core percolation was carried out to investigate the hierarchical core structure 
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of a functional brain network using the voxel (node) as the analytic unit (23, 25, 

30). This procedure first removes nodes of degree 1 (k = 1). As the nodes are 

removed, the degree of the remaining nodes is also changed. Nodes, whose 

degrees are higher, are eventually removed if they meet the removal criteria 

while k increases. The procedure is performed recursively by incrementing k by 

1 until no further process is possible. A subgraph, called k-core, is obtained when 

all nodes with degree less than k is removed. The last surviving core is called 

kmax-core, and it is considered the voxel with the highest hierarchy, the most 

influential voxel, which change spontaneously at rest during acquisition period. 

After conducting k-core percolation, kmax-core voxels are categorized into 

functional ICs determined by group ICA, to identify the uppermost IC subnetworks 

contributing to the mental state at the precise moment. All the voxels are given 

the k values of the step when they are removed, and this is called the coreness 

k value of each voxel. 

 

For dynamic study, 116 time-bins of ADNI individuals and 93 time-bins of SNU 

individuals were put into the k-core percolation. The coreness k values were 

used for making animated flag plots, coreness k value map, and IC-based kmax-

core voxel compositions were used for making stacked histogram, brain-

rendered kmax-core images.  

  

Coreness k value map 

 

To visualize the coreness k value more intuitively, 6x6 multislice coreness k 

value map was rendered by merging 36 transaxial images of coreness k value 
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overlaid on brain T1 MRI in rainbow colors, both in static and dynamic studies. 

For the dynamic studies, these coreness k value map images of all windows (116 

or 93 windows) were merged in animated format to visualize the time-varying 

change of coreness k value on brain. For the scale of the color bar, a value of 

95% of individual kmax was set.  

 

Summation of dynamic coreness k values 

 

Coreness k values from the whole acquired time constituting the dynamic study 

were summed to compare with the coreness k values from the static study. 

Summed dynamic coreness k values were laid out on a 6x6 multislice coreness k 

map to compare with static coreness k map. Also, the coreness k values from 

both positive and negative correlations were summed to include both correlated 

networks and it was compared between dynamic and static studies. Similarities 

between the studies were assessed visually and quantitatively with correlation 

plots. 

 

Quantitative Analysis of Asymmetry Index 

 

Asymmetry index was used to evaluate the asymmetric distribution of coreness 

k values detected on dynamic coreness k map. Asymmetry index was measured 

by dividing the brain regions into left and right, anatomically (11 brain regions) 

or functionally (7 IC regions). Asymmetry indexes were applied both in static and 

dynamic studies with coreness k values summed from positive and negative 

correlations. The results were compared between young and aged normal groups. 
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To assess the time-varying change of asymmetry index of a subject in the 

dynamic studies, variance of asymmetry index was measured to assess the 

temporal change of asymmetry index.  

 

Voxel-based Analysis of coreness k values 

 

Voxel-based analysis was done with coreness k values of 5937 voxels. These 

coreness k values of static and dynamic studies were classified into 7 IC regions. 

Mean value of static and dynamic coreness k value of each subject was measured 

and the correlation between the age and coreness k values of 7 IC regions were 

assessed to visualize the change of coreness k values upon age.  

 

Statistical analysis was performed to quantitate the comparison between the 

groups. Non-parametric tests such as Mann Whitney U test, Kruskal-Wallis test 

were performed to compare between the groups and Wilcoxon sign rank test was 

performed in static and dynamic studies of the individuals. Correlation and 

regression were executed to see the relationship between variables. P value of 

less than 0.05 was considered statistically significant. Statistical analysis was 

carried out with MedCalc® Statistical Software version 20.123 (MedCalc 

Software Ltd, Ostend, Belgium; https://www.medcalc.org; 2022). 
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RESULTS 

 

Generation of dynamic hierarchical structure  

 

Hierarchical structure derived from k-core percolation was visualized with 

animated flag plots, bar plots, stacked-histograms, brain-rendered images (Fig. 

1, Movie S1). Animated flag plots displayed the characteristic time-varying 

changes of pruning pattern of each IC-based voxels upon percolation. The cross 

section of each IC-voxels at the end of percolation showed the number of 

coreness k voxels, and the length of flags represented the depth of hierarchical 

structures of IC-voxels, with the peak of each flag representing the kmax-core 

voxels of each IC at that moment, which are the voxels with uppermost hierarchy 

(30). Number of kmax-core voxels in each IC at certain time bin was expressed 

on bar plots. kmax-core voxels were plotted on animated stacked histograms with 

designated IC map colors.  

States, state transitions, pulses were assessed visually on animated images, 

identifying the ICs that these voxels belonged to. State transition was visually 

defined as an abrupt change in kmax-core voxels-IC composition to another 

composition, and number of transitions ranging from 0 to 14 per individuals was 

observed. When the same kmax-core voxels-IC composition was continued for 

some time, it was defined as smooth progression. Pulse was defined as the tall 

spike persistent for one or more bins. Right or left-sidedness of kmax-core voxels 

was not expressed on animated stacked histograms but roughly shown on brain-

rendered axial images.  
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Figure 1. Interpretation of various plots of kmax-core voxels and coreness k 

values. (a) Number of kmax-core voxels in each IC at the moment is expressed on 

bar plots. (b) Depth of hierarchical structures of IC-based kmax-core voxels are 

expressed as length of flag plots and cross section of flag plot mean the number 

of coreness k voxels. Peak of each flag represent the kmax-core voxels of each 

IC. (c) State transition is abrupt change of kmax-core IC-compositions (purple 

arrows) on the flow pattern and the spikes that appear on the stacked histogram 

is defined as pulse (orange arrows). (d) Stable, monotonous flow pattern of kmax-

core IC-composition is defined as smooth progression.  
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Visual assessment of hierarchical structure in static study  

 

Hierarchical structure revealed by k-core percolation was assessed in both 

dynamic and static studies. Inter-individual variability of hierarchical structure 

was noted but these structures were stratified according to the IC-compositions 

of kmax-core voxels, in a similar manner as previous studies (30, 31).  

 

In static study of positive correlations, distributed pattern or IC-dominant 

patterns of the kmax-core voxels (Fig. 2, Fig. S2) was observed. Among 70 

individuals regardless of age groups, various types were identified: 19 showed 

distributed pattern, 4 DMN/CEN, 4 CEN/UNC, 4 VN/SMN, 1 DMN/VN co-

dominant types and 3 DMN, 16 VN, 5 SMN-dominant types in positive correlation. 

14 showed dominant voxels of UNC.  

 

Static study of negative correlation revealed somewhat different patterns on the 

IC-composition of the kmax-core voxels. Types of patterns were less diverse, 

rather monotonous than positive correlations. 52 showed distributed pattern, 

which is about 74% of individuals, 11 with UNC-dominant type, 4 VN, 2 DMN/CEN 

dominant types and 1 CEN -dominant type.  

 

Regardless of age groups, all individuals showed similar pattern in positive or 

negative correlations, with diverse types in positive correlation and monotonous 

distributed or UNC-dominant type in negative correlation. 
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Figure 2. kmax-core voxels-IC composition of positive and negative correlations 

on static and dynamic study in aged HC group. A) On static study of positive 

correlation, various types were observed with distributed pattern, most prevalent. 

B) Patterns were less diverse in static negative correlations, with distributed type 

most predominant. C) On dynamic study of positive correlation, diverse types 

were observed as static study, with distributed pattern most common. D) As in 

the static study of negative correlation, patterns were less diverse, with 

predominant type as the distributed pattern.    



 19 

Visual assessment of hierarchical structure in dynamic study 

 

Time-varying change of pruning pattern of each IC-based voxels upon k-core 

percolation was well visualized on animated flag plots. Dynamic change of depth 

of hierarchical structures of IC-voxels was expressed with the change of flag 

lengths of each ICs. The temporal change of IC-compositions of kmax-core voxels 

at the uppermost position of k-core percolation were presented as the peaks on 

animated flag plots and on animated bar plots, stacked histogram and brain-

rendered axial images (Fig. 3, Movie. S1). 

 

Proportion of IC-based kmax-core voxels were classified with the transition 

pattern types in the dynamic study. Pulses, states and transition of states were 

determined visually. Dynamic study of positive correlation revealed diverse 

pattern of distributed or specific IC-dominant types with time-varying change 

(Fig. 2, Fig. S2). Concerning kmax-core voxels-IC composition, similar tendency 

was observed as the positive correlation in static study, displaying various 

pattern types, with distributed type most prevalent. Among 70 individuals, 21 

individuals showed distributed pattern, 13 VN-dominant, 8 CEN-dominant, 4 

DMN-dominant, 2 DMN/VN co-dominant, 10 UNC-dominant and 1 SMN-

dominant type.  

 

State transition, which is an abrupt change in kmax-core voxels-IC composition to 

another composition, was observed with number of transitions ranging from 0 to 

14 per individuals. State transitions were observed frequently in positive 

correlation, without definite directionality. Out of 70 individuals, 63 individuals 
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exhibited state transitions, with 1 to 14 transitions per individual (Fig. 4A, Movie. 

S2). State transitions were not predictable, portraying the diversity of an 

individual’s brain function. Pulse, which is defined as the tall spike persistent for 

one or more bins, was observed with an average number of 5.3 (0 to 17 pulses 

per individual). Some pulses preceded state transition, but it was not always the 

case, showing random appearance.  

 

Dynamic study of negative correlation displayed different pattern from positive 

correlation, and rather displaying similar pattern as the static study of negative 

correlation (Fig. 2, Fig. S2). 58 individuals, about 83% of individuals showed 

distributed type in IC-composition patterns. 7 individuals displayed UNC-

dominant type and 5 VN/UNC co-dominant types were observed as well. 

Considerable portion of UNC voxels was observed in significant portion 

throughout the whole state, all over the cerebral hemisphere and cerebellum.  

 

Unlike positive correlation, abrupt state transitions were less noticed in the 

negative correlation (Fig. 4B, Movie. S3). About 87% of individuals showed 

smooth progression over time without significant state transitions. Thus, voxel 

belonging to certain ICs persisted throughout the entire time bins. Although 

temporal progression was smooth, pulse was also observed in similar frequency 

as positive correlation, with about an average number of 5.0 (0 to 16 pulses per 

individual).  
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Figure 3. Time-varying change of coreness k value on flag plot and kmax-core 

voxel IC-composition in aged HC subject (F/71.5). Different kmax-core voxels IC-

compositions are observed along the time. (a) At initial window, various types of 

IC-voxels are noted on stacked histogram which is reflected on flag plot and bar 

plot. (b) At window 61, VN-dominant with some UNC-based kmax-core voxels 

are noted on bar plot and peak of flag plot.   
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Fig 4. Different pattern of coreness k value and kmax-core voxel IC-composition 

in positive and negative correlation in an individual. a) Positive correlation 

displays dynamic change of state transitions. Proportion of kmax-core voxel IC-

composition on dynamic study is not reflected on static study, which is indicated 

by the stacked bar plot in the left lower hand. b) Negative correlation shows 

relatively smooth progression with pulses without significant state transitions. 

Proportion of kmax-core voxel IC-composition on dynamic study is reflected on 

static study, which is indicated by the stacked bar plot in the left lower hand.  
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Comparison of static and dynamic hierarchical structures  

 

Hierarchical structure derived from static and dynamic studies were compared to 

determine the characteristics of dynamic study. As seen in the categorization of 

patterns of kmax-core voxels-IC composition, the compositions were similar in 

the static and dynamic studies in negative correlation. kmax-core voxels-IC 

composition in dynamic study revealed dynamic change over time, but when 

assessed in the overall entire time bin, the composition was similar as static study. 

Thus, composition and its ratio of kmax-core voxels-IC on static study were 

reflected on dynamic study (Fig. 4B). This enables predicting overall kmax-core 

voxels-IC composition in dynamic study from the static study and predicting the 

composition of kmax-core voxels in static study from dynamic study, vice versa.  

 

However, this pattern was not evidently observed in the positive correlation, and 

the proportion of kmax-core voxels-IC composition was variable between dynamic 

and static study (Fig. 4A). Animated stacked histogram of kmax-core voxels-IC 

composition revealed dynamic and diverse change of its composition over time, 

and the composition of static study was not able to capture its dynamic change. 

Therefore, predicting the dynamic hierarchical structure was not possible from 

static hierarchical structure in positive correlation. 

 

Visual assessment of coreness k value map  

 

Coreness k values of voxels representing the position of each voxel in the 

hierarchical structure from dynamic and static studies were rendered over 
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transaxial image of brain T1 MRI to visualize the distribution of coreness k value 

more intuitively, expressing more details, such as right or left sidedness of the 

coreness k value which was not well described on flag plot or stacked histogram. 

The color bar scale was set as 95% of individual kmax-core. 36 transaxial images 

of coreness k value overlayed on brain T1 MRI were merged to evaluate the 

distribution of coreness k value at a glance (Fig. 5, Movie. S4). Dynamic coreness 

k values from both positive and negative correlations were summed in the same 

individual to assess the whole functional intervoxel connectivity in both positive 

and negative-influence networks. As seen on the previous plots, dynamic change 

in distribution of coreness k value was observed over time, which was not fully 

reflected on static coreness k map. Distribution and its change differed among 

individuals.  

 

It is evident that static coreness k value cannot reflect the dynamic coreness k 

value that appear at certain time bin, but dynamic coreness k value from the 

entire time bins (116 or 93) were summed to investigate the relationship with the 

static coreness k value. Coreness k value map of summed dynamic study was 

compared with static study visually and revealed that the distribution of coreness 

k values were similar on both studies (Fig. 5). 
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Fig 5. Visual and quantitative assessment of summed dynamic coreness k map 

and static coreness k map in aged HC subject (F/71.5). Dynamic (a) and static 

(b) coreness k map display similar distribution of coreness k values and the 

high correlation between two studies are confirmed by the correlation plot.  
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Figure 6. Visual and quantitative assessment of summed dynamic coreness k 

map and static coreness k map in positive and negative correlations. Overall 

similarities are observed between two maps in positive (a) and negative (b) 

correlations, confirmed by positive correlation in all IC-maps. Intensity of the 

summed dynamic coreness k map is higher than static coreness k map, 

especially in negative correlation and this finding is confirmed with steeper 

slope on correlation plot.
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Minor difference did exist in the intensity of coreness k value in specific brain 

regions, but the overall distribution of coreness k values were similar. So, the 

dynamic coreness k values may differ along the time but when summed altogether, 

it is similar as the static coreness k value which is derived  from the entire time 

bin. 

 

To confirm the visual similarity objectively, quantitative assessment was 

performed between the summed dynamic and static coreness k values in the 

designated IC-maps. As the visual assessment, correlation plots between 

summed dynamic and static coreness k values displayed high positive correlation. 

Even in the classified IC-based analysis, these values were positively correlated 

in all regions (Fig. 5C). Thus, sum of dynamic coreness k value from entire time 

bins can be considered to reflect the static coreness k value.  

 

In addition, in the visual analysis, the overall intensity of coreness k value map 

seemed to be higher on the summed dynamic coreness k map than static coreness 

k map, especially in negative correlation. Correlation plot validated the visual 

finding by displaying steeper slope on the correlation plot (Fig. 6) in negative 

correlations compared to the positive correlations. 

 

Comparison of dynamic coreness k map in positive and negative 

correlations 

 

Dynamic coreness k value map was rendered in positive and negative correlation 

in the same individual, to compare the distribution of coreness k values in both 
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correlations (Movie. S5), which displayed different flow pattern of dynamic 

hierarchical structure on animated flag plot and stacked histogram. On dynamic 

coreness k map, change of distribution of coreness k values on brain were both 

diverse in positive and negative correlations with different patterns from each 

other. While the dynamic change of kmax-core voxels-IC composition revealed 

state transitions or smooth progressions in the flow pattern, distinguishing 

positive and negative correlations, dynamic coreness k map exhibited temporal 

change of distribution of coreness k values without displaying significant 

similarity or difference in both correlations. This implies that intervoxel 

correlation in positive and negative influence is dynamic over time in the brain, 

and its dynamic change is diverse without exhibiting characteristic pattern in both 

correlations. 

 

Comparison of dynamic coreness k map in young and aged 

groups 

 

Although there was inter-individual variability in the distribution of coreness k 

values, a specific pattern was noticed to characterize the young and aged groups, 

which was not evidently observed on previous plots of kmax-core voxels-IC 

compositions. In yHC group, overall change of distribution was symmetric and 

the transition of coreness k values showed diffuse symmetric, synchronized 

movement. However, despite the same normal cognition, aHC showed rather 

asymmetric distribution of coreness k value in the brain (Fig 7, Movie. S6). This 

pattern was recognizable both on static and dynamic studies,  
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Figure 7. Coreness k value maps of summed dynamic positive-negative 

correlations in young and aged HC subjects: yHC (M/25) (a), aHC (M/90) (b) (a) 

Diffuse symmetric, synchronized distribution of dynamic coreness k values is 

observed in the young healthy control subject. (b) Relatively uneven, asymmetric 

distribution of dynamic coreness k values is noted in the old healthy control 

subject.  



 31 

and in positive and negative correlations. It is implied that aging process led to 

altered distribution and transition of coreness k values. Tendency of asymmetric, 

unsynchronized distribution seemed to be prominent as the aging progressed. 

 

Quantitative assessment with asymmetry index 

 

Asymmetric distribution of coreness k values detected on coreness k map was 

evaluated with asymmetry index for quantitative and objective assessment. Brain 

regions were divided into left and right, anatomically with 11 brain regions of 

interest (ROI: hemisphere, prefrontal cortex, somatomotor cortex, parietal, 

temporal, cingulate, insula, limbic, basal ganglia thalamus, visual, cerebellum) or 

functionally with 7 IC maps (DMN, SN, DAN, CEN, SMN, AN, VN), and the 

asymmetry indexes (AI) were calculated in these regions. Box plots were 

generated to visualize the difference of asymmetry index among groups. 

 

Asymmetry index from static studies were evaluated between young and aged 

healthy control groups, and the absolute value of asymmetry index tended to 

increase as the subject’s age increased. Among 11 brain ROIs, ROIs such as 

cingulate, insula, limbic, visual regions showed statistically significant difference 

(Table 3, Fig. 8A, 8B).  
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Figure 8. Asymmetry index in insula on static and dynamic studies. (a) Static 

asymmetry index of aged HC over 60 years old show greater range of asymmetry 

index than young HC. (b) Static AI is increased as the age increased. (c) Variance 

of dynamic asymmetry index is greatest in the aged HC over 60 years old. (d) 

Dynamic AI variance is positively correlated with age, increasing significantly 

over age 60. (e) As the age is increased, variance of dynamic asymmetry index 

also increased. 
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Table 3. Comparison of static AI in ROI according to age. 

 

* P value less than 0.05 is considered statistically significant 

 

  



 34 

Table 4. Comparison of variance of dynamic AI in ROI according to age  

* P value less than 0.05 is considered statistically significant 
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Figure 9. Asymmetry index in SN on static and dynamic studies. (a) Static 

asymmetry index of aged HC over 60 years old show greater range of asymmetry 

index than young HC. (b) Static AI is increased as the age increased. (c) Variance 

of dynamic asymmetry index is greatest in the aged HC over 60 years old. (d) 

Dynamic AI variance is positively correlated with age, particularly increasing 

over age 60. (e) As the age is increased, variance of dynamic asymmetry index 

also increased. 
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When the asymmetry index was assessed in 7 IC maps, similar result was 

observed. Between young and aged healthy control groups, several IC regions 

such as SN, SMN, AN, VN showed statistically significant difference (Table S1, 

Fig. 9A).  

 

Asymmetry index from dynamic study displayed prominent difference between 

young and aged healthy control groups, as well. Regions identified with statistical 

significance on static asymmetry index were investigated with more caution in 

dynamic asymmetry index. As the age increased in the normal cognitive group, 

change of asymmetry index in a subject also increased in the same regions as 

the static study. To express the dynamic change of asymmetry index, variance 

of asymmetry index over time in each subject was generated. Variance revealed 

similar pattern as the static asymmetry index, variance increased as the age 

increased. Significant difference was observed in the ROIs of yHC group 

compared to aHC group (Table 4, Fig. 8B).  

 

In comparison with static asymmetry index, variance of dynamic asymmetry index 

displayed the difference between groups more clearly. While static asymmetry 

index of ROIs and IC maps revealed statistical significance in some regions, 

variance of dynamic asymmetry index displayed evident difference in all regions 

of ROI and IC maps, except CEN, between young and aged healthy control groups 

(Table S2, Fig. 9B). 
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Correlation of age and coreness k values  

 

Coreness k values derived from static and dynamic studies were evaluated and 

the voxel-wise correlation between coreness k values and age was assessed. 

Static and dynamic coreness k values were classified into 7 IC regions. 

Correlation between age and coreness k values in each IC regions was assessed. 

Coreness k values from age 20 to 60 remained in plateau, but at the age of 60, 

coreness k values from both static and dynamic studies tended to drop 

dramatically in all IC regions (Fig. 10). Regression analysis was performed in the 

whole group between age and coreness k value and revealed high negative 

correlation in all IC regions with r value of 0.6.  

 

Coreness k values in gender and aging 

 

It has been noted in previous studies that gender may affect brain connectivity 

and aging (54, 55, 56, 57, 58, 59), so the kmax-core voxels and coreness k values 

were also compared between male and female. Despite some previous studies 

suggesting difference in genders, no significant difference was detected in the 

hierarchical core voxels of both kmax-core voxels and coreness k values. There 

was no significant difference in the pattern or composition of kmax-core voxels 

and quantity or asymmetry index of coreness k values (Fig. 11). 
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Figure 10. Correlation of age and IC-based coreness k values in salience network. 

Orange dots represent SNU data and green dots represent ADNI data. Decrease 

of static (a) and dynamic (b) coreness k values over age is displayed on scatter 

plots.  
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Figure 11. Correlation of age and gender in SN and insula. No significant 

difference is noted between male and female in static (a) and dynamic (b) 

coreness k values. Asymetry index in insula was also similar in static (c) and 

dynamic (d) studies. 
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Validation of coreness k values in young group  

 

Results have suggested that coreness k values differ according to age, with high 

coreness k values and low asymmetry index in young age but one flaw in this 

study is that these data are retrieved from different database. Since ADNI data is 

comprised of aged population with or without cognitive impairment, relatively 

young population have not been included in the study database.  

 

So data of young normal cognitive population from Human Connectome Project 

(HCP, https://www.humanconnectome.org/) was additionally processed as 

supplement independent set to validate the results in young healthy control group. 

30 normal healthy contols with average age of 29.1 (23.5 to 38) without any 

significant history of psychiatric disorder, neurological or cardiovascular disease 

were included. rsfMRI data were preprocessed in the similar manner as the SNU 

and ADNI data, using smoothing with 6mm full-width at half maximum of Gaussian 

kernel, bandpass filtering (0.01 Hz – 0.1 Hz). Temporal filtering with 0.01 to 0.1 

Hz and downsampling were applied, and total 5,937 voxels were included for 

analysis with 6 x 6 x 6 mm3. 

 

HCP data revealed similar results as SNU data. There was inter-individual 

variability in the IC-composition of kmax-core voxels but symmetric distribution 

of coreness k map with low asymmetry index was observed and coreness k values 

in static and dynamic studies showed high value compared to aged population as 

well (Fig. 12). Thus, it can be concluded that young normal population exhibit 
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similar functional connectivity and that aging deteriorates asymmetry and 

decrease in connectivity. 
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DISCUSSION 

 

k-core percolation analysis in the dynamic study of rsfMRI successfully revealed 

dynamic hierarchical structure of functional intervoxel connectivity on voxel-

level, displaying dynamic change in the composition of coreness k values of 

voxels and identifying voxels with uppermost hierarchy at certain time points, 

which may represent the most influential voxel at one’s brain function at the 

moment (30, 31). Dynamic and static functional connectivity revealed by k-core 

percolation analysis were compared and disclosed that the static study cannot 

fully reflect the dynamic nature of the brain function, thus implying that it is more 

reasonable to study the brain function in dynamic basis rather than static basis.  

 

For dynamic analysis of functional intervoxel connectivity, sliding window 

methods have been used in the previous studies with various protocols. Spatial 

units ranged from voxels (1 mm3) to voxels-of-interest (VOIs; hundreds or more 

of voxels). In HMM analysis, these voxels were aggregated to make states and a 

few to dozen state units were used for interpretation, which was consisted of 

thousands or more voxels (8,9). In CAP analysis, which is a seeds-based analysis, 

the seeds were also made of thousands of voxels (13-15). These methods 

aggregated voxels to analyze, assuming that the VOIs are spatially homogeneous. 

This is considered limitation of these methods, since VOIs are heterogeneous.  

 

In this study, k-core percolation method was used, which is a method using the 

voxel as the input to overcome this weakness. Voxel itself was put into analysis 

pipe, and these voxels were not aggregated in the process. About 20 million 



 43 

neurons are estimated to exist as excitatory or inhibitory neurons in 6x6x6 mm3 

of brain cortex (27), which is the voxel size used in this analysis. Thus, voxel 

itself still can be heterogeneous. To overcome the heterogeneity of the voxel, 

sufficient observations is needed to decrease intervoxel variations. In this study, 

1-minute was chosen as the time unit in the sliding window method, and 2-

seconds shift in ADNI and SNU data generated 116 time-bins or 93 time-bins, 

respectively. 1-minute time bin assumes that the neuronal interaction within this 

voxel is stationary. Small time shifts, in this case, 1 step, partially overlaps two 

successive windows to observe time-varying change. It was to resolve the 

problem of possible heterogeneity within the voxel by increasing the number of 

observations. This strategy of defining voxels and time-bins of 1 minute as inputs 

revealed the dynamic change of compositions of IC-based kmax-core voxels and 

the distribution of coreness k value over time. Generated figures and animations 

enabled visual and quantitative assessment of dynamic hierarchical structures of 

functional intervoxel connectivity, facilitating understanding of an individual’s 

brain function, particularly in the aging process. 

 

Recent investigation in single cell transcriptomics combined neuronal cell 

clusters to classify these cluster into hierarchical groups of 32 neuronal types. 

In this hierarchical structure, excitatory and inhibitory neurons form diverse 

types of clusters, and many clusters overlapped each other (60). 20 million 

neurons per voxel units were analyzed to reveal the hierarchical structures of 

positive and negative correlations, which are assumed to represent the excitatory 

and inhibitory networks (61). In this study, excitatory network was assessed as 

positive correlation by generating connectivity matrix of each window to conduct 
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k-core percolation, with thresholds meeting scale-freeness. Inhibitory network 

was assessed with using the absolute values derived from negative correlation, 

which went through thresholding with scale-freeness and k-core percolation, as 

well. Coreness k values from negative correlation were visualized and compared 

in the same way as the positive correlation analysis. Dynamic coreness k values 

from positive and negative correlations were summed to integrate the excitatory 

and inhibitory networks in the assessment of dynamic functional connectivity (61). 

 

Dynamic study is clearly different from the static study and the static study 

cannot fully reflect the time-varying characteristics observed in the dynamic 

study. By the various plots generated in this study, it is clear that hierarchical 

structure of voxels changes dynamically along time. Nevertheless, when these 

time-varying changes of dynamic coreness k values from the entire time bins 

were summed altogether, it was similar with static coreness k values.  

 

To confirm the visual similarities between the summed dynamic and static 

coreness k value maps, correlation plot in two studies was carried out (Fig. 5). 

Correlation plot revealed positive correlation in all regions of IC maps, confirming 

the similarities between summed dynamic and static coreness k value 

distributions. Therefore, it can be implied that even though dynamic coreness k 

value at certain time bin may be diverse and unique, when these values are added 

altogether, summed dynamic coreness k value is eventually the same as the static 

coreness k value measured from the entire time bin, and that static coreness k 

values connote the information from dynamic coreness k values. 
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Dynamic hierarchical structure of coreness k values in positive and negative 

correlations exhibited different flow pattern along the time, portraying different 

dynamic functional state. More diverse change of IC-based voxel compositions 

was noted in the positive correlation. Abrupt state transition was commonly 

observed (83%) and more diverse types of IC-based voxel composition were 

present. These abrupt state transitions are assumed to represent the dynamic 

spikes of excitatory signals in an individual. Change of IC-based voxel 

composition over time was too diverse on dynamic study that composition of 

static study failed to reflect the composition of dynamic study in positive 

correlation.  

 

In contrast, flow pattern in negative correlation was somewhat monotonous from 

positive correlation. In general, abrupt change of state was less observed, mostly 

displaying smooth progression (87%) in distributed pattern (79%), with persisting 

certain combination of states throughout some time or entire time bins. In addition, 

UNC-based voxels tended to exist in considerable portion throughout the whole 

phase in negative correlation. From the monotonous progress over time, 

inhibitory signals can be assumed to be present in more stable state than 

excitatory signals without significant change of IC-based voxels over time. Due 

to its stable pattern, IC-based voxel composition of dynamic study was reflected 

on static study. Hence, prediction of composition on dynamic study from static 

study was possible.  

 

Although, dominant composition of dynamic study is reflected on the static study 

in negative correlation with monotonous progress, there is limitation in assessing 
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dynamic study from static study. Coreness k value from static study is derived 

from the whole acquired time, while dynamic coreness k values are derived from 

certain 1-min time bins in the whole acquired time. A composition at certain time 

bin may have been similar with static study composition, but in another time, 

composition can be totally different. Examples are well presented in the positive 

correlations. Thus, static study cannot fully reflect the diversity of dynamic study 

and playing limited role in interpreting the time-varying change of brain function, 

so assessing dynamic studies is essential to investigate the brain function of an 

individual. 

 

Visualization of coreness k value map over brain MRI was more effective in 

investigating the distribution of coreness k value on the brain, both in dynamic 

and static studies. While right or left sidedness of coreness k value was not 

expressed on flag plots or stacked histogram, coreness k value map visualized 

the distribution of these values with directionality, revealing certain features in 

the distribution of coreness k values.  

 

To evaluate the feasibility of k-core percolation method in clinical fields, analysis 

was applied to assess the change of hierarchical structures of core voxels in the 

aging process of normal cognition population. While no distinctive characteristics 

were discovered on dynamic hierarchical structure plotted on animated flag plots 

or stacked histograms, dynamic coreness k value map revealed certain pattern 

that may aid in distinguishing young individual from aged individual and possibly 

providing further insight in the hierarchical structure change in aging process. 

Temporal change of distribution of coreness k value on coreness k map was 
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synchronized with symmetric distribution in the yHC group. However, aHC group 

displayed the dissociative flow change with asymmetric distribution, which may 

indicate aging may be the factors affecting functional intervoxel connectivity. The 

finding was consistent in positive, negative correlations and in both correlations 

combined.  

 

Static coreness k value map also displayed similar pattern as dynamic coreness 

k value map. yHC group showed diffuse symmetric distribution of coreness k 

values and aHC group tended to show asymmetric distribution. Asymmetry or 

dissociative-ness was less prominent in static coreness k map than the dynamic 

coreness k map in aHC group, but it was enough to easily identify that the 

distribution is clearly different from the yHC group.  

 

To assess the visual asymmetry of distribution detected on coreness k map more 

objectively, asymmetry index was applied to quantitatively assess the 

asymmetric distribution of coreness k values. Brain regions were divided into left 

and right to assess the asymmetry index in the regions classified anatomically 

(ROI) and functionally (IC). Asymmetry index was calculated by 

|(left-right)/(left+right)*0.5|. 

 

Static asymmetry index identified several regions with statistically significant 

asymmetry. The identified brain regions in ROI and IC were similar, such as insula 

and SN, somatomotor cortex and SMN, visual cortex and VN. These regions were 

considered as independent set in analyzing the dynamic asymmetry index. 

Besides identifying regions affected by asymmetry, static asymmetry index 
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distinguished yHC from aHC group, which was consistent with finding on 

coreness k map, with significantly lower asymmetry index in yHC group.  

 

Based on the findings from static asymmetry index, asymmetry index was 

assessed in the dynamic studies. To assess the change of asymmetry index over 

time, variance of dynamic asymmetry index was calculated to evaluate the 

dispersed asymmetry index over time in a subject. More dispersed values meant 

more fluctuating asymmetry indexes over time. When the change of asymmetry 

index over time in a subject was arranged in the order of age, the tendency of 

increasing extent of dispersed asymmetry index in a subject was noted as the 

age increased. This finding was confirmed by assessing variance in the young 

and aged HC groups statistically. While static asymmetry index was significantly 

different in some regions, variance of dynamic asymmetry index was significantly 

different in all regions except CEN.  

 

Previous studies have indicated asymmetry in functional connectivity in aging or 

cognitive impairment as part of aging process in the brain (47, 49, 50, 62, 63, 64, 

65, 66, 67). The results are not consistent, but it seems that asymmetry does 

play a role in aging. As some part of brain network’s function decline, other part 

may be activated for compensation (49, 50), or functional connectivity can be 

decreased in the regions known to be vulnerable to structural atrophy occurring 

in the aging process (39, 66). Various regions or networks in the brain were 

affected by asymmetry, such as DMN, DAN, SN, insula (66, 67, 68). In this study, 

asymmetry was significantly correlated with aging in the similar regions or 

networks identified in previous studies.  
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Decreased connectivity in the aging process has been investigated in various 

studies (38, 40, 42, 59, 66, 68, 69, 70). Generally, it is considered that overall 

connectivity is decreased in the elderly but connectivity in some regions may be 

increased by the compensation process. Previous studies have assessed brain 

connectivity as ROI-based approach, calculating connectivity with one-

dimensional edge in the ROI. In this study, brain connectivity has been assessed 

in voxel-level using degree-based nodes, so voxel with higher value of k meant 

higher connectivity within nodes. Thus, decreasing connectivity in aging has been 

confirmed by decrease in coreness k values in 7 IC regions. Both in static and 

dynamic studies, the coreness k values tended to maintain or mildly decrease 

until the age of 60, when the coreness k values dropped. This implies that brain 

connectivity maintains its integrity in the adulthood but tends to lose it when the 

individual enters the seniorhood. 

 

Despite these findings, there are some limitations in this study. First, despite the 

efforts to reduce the heterogeneity of the analytic unit by using the voxel as the 

unit, voxel itself consists of millions of neurons, which connotes heterogeneity. 

In this study, the number of observations was increased to decrease the 

heterogeneity of the voxels, but further action may be needed to reduce 

heterogeneity to increase the overall integrity of the k-core percolation method. 

Second, the thresholds set to fit the scale-freeness was applied in each group 

with fixed value. Applying the adequate threshold for each individual may be more 

appropriate to generate the optimal binary adjacency matrices. Lastly, although 

there were efforts to quantitate the visual findings, more methods to assess the 
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findings objectively should be developed for further clinical application, such as 

in interpreting the change of kmax-core voxels on flag plots or stacked histograms. 
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CONCLUSION 

 

This study disclosed the integrity of the k-percolation method in the assessment 

of dynamic hierarchical structure on voxel-level from rsfMRI and its utility in 

investigating aging process more intuitively. Dynamic hierarchical structure was 

effectively visualized on various plots. Comparing with static functional 

connectivity confirmed that it is more appropriate to investigate dynamic 

functional connectivity for better understanding an individual’s brain function due 

to its dynamic nature. Also, this method displayed possibility of clinical 

application in detecting abnormalities of dynamic functional connectivity in the 

brain on individual basis.  
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Figure S1. Selected 7 independent components in group ICA (31). 
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Figure S2.  Flow patterns of positive and negative correlations in static and 

dynamic study in young HC group 
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Figure S3. Validation of young normal data with HCP data. HCP data expressed 

as orange dots, SNU and ADNI data expressed as blue dots. Young individuals 

from HCP and SNU data show similar distribution of static (a) and dynamic (b) 

coreness k values and static (c) and dynamic (d) asymmetry indexes. 

Demographics of HCP data shown on table (e) 

 

 

 

 

 

 

 

 

 



 64 

 

 Table S1. Comparison of static asymmetry index in IC according to age  

 

* P value less than 0.05 is considered statistically significant 
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Table S2. Comparison of variance of dynamic asymmetry index in IC according to age  

 

* P value less than 0.05 is considered statistically significant 
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Movie S1.  Dynamic hierarchical structure plotted on various plots in young HC 

subject. (a) Dynamic change of IC-compositions of kmax-core voxels in positive 

correlation is visualized on animated brain-rendered image, stacked histogram. 

Animated brain-rendered image displays kmax-core voxels in designated IC-

colors, roughly showing the distribution over the brain. (b) Time-varying change 

of kmax-core voxels IC-compositions on stacked histogram are visualized 

simulataneously on animated flag plots and barplots. In this case of positive 

correlation, various state transitions and pulses are observed along the time.  

 

 

(a) 
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(b) 
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Movie S2. Static kmax-core voxels and dynamic kmax-core voxels and coreness k 

values in positive correlation. (a) Dynamic change of state, state transitions, 

pulses are well visualized in positive correlation of aged HC subject. (b) Dynamic 

change of IC-composition of kmax-core voxels is not reflected on the stacked bar 

plot of static kmax-core voxels. 

 

 

 

  



 69 

Movie S3. Static kmax-core voxels and dynamic kmax-core voxels and coreness k 

values in negative correlation. (a) Smooth progression with distributed pattern is 

well visualized in negative correlation of aged HC subject. (b) IC-composition of 

kmax-core voxels in dynamic change is well reflected on the stacked bar plot of 

static kmax-core voxels. 
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Movie S4. Coreness k value maps in dynamic (a), static (b) studies of summed 

positive and negative correlations in aged HC subject (F/71.5). Distribution of 

dynamic coreness k value varies along time.  

 

 



 71 

 



 72 

Movie S5. Dynamic coreness k value maps in positive (a) and negative (b) 

correlations in aged HC subject (F/77.2). Similar but different pattern of 

distribution of dynamic coreness k values is observed in positive and negative 

correlation in an aged HC subject. 
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 Movie S6. Coreness k value maps of summed dynamic positive and negative 

correlations in young and aged HC subjects: young HC (M/25) (a), aged HC (M/90) 

(b). Diffuse symmetric, synchronized flow pattern is noted in young HC subject, 

while relatively asymmetric, unsynchronized flow is displayed in aged HC subject. 
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국문 초록 

 

노화에서 뇌기능신경망으로부터 추출한 코어복셀  

위계구조의 역동적 변화  

김현주 

서울대학교 

융합과학기술대학원 

분자의학 및 바이오제약학과 

 

그동안 뇌 기능을 보다 더 잘 이해하고 분석하기 위해 다양한 분석 방법들이 개발되었

다. 이 연구에서는 K코어추출법이라는 방식을 적용하여 휴지기 뇌기능자기공명영상에

서 역동적 위계 구조를 복셀 단위에서 밝혀내고자 하였다. 그리고 이 분석방법이 임상 

분야에서도 적용 가능한지 알아보고자 노화 과정에 적용하여 분석해 보았다.  

 

총 70명을 대상으로 연구가 진행되었는데, 인지 기능이 정상인 대상들을 ADNI에서 32

명 그리고 서울대학교에서 38명의 데이터를 받아 분석을 진행하였다. K코어추출법이라

는 방법은 복셀 단위로 분석하는 방법으로, 뇌에서 복셀의 위계 구조를 밝혀내기 위해 

사용하였다. K코어추출법으로 구한 K최상위코어값, K코어값의 시간에 따른 변화를 히

스토그램, 깃발 플롯, 뇌 그림 등의 다양한 방법으로 시각화하였다. 추출된 복셀은 독립 

요소 분석법을 적용하여 기능적으로 뇌의 어느 요소에 해당하는지 확인하였다. 이러한 

분석은 정적, 동적 연구에 사용되었고 또한 양성, 음성 상관 연구에도 사용되었다. K코

어값은 뇌 T1 자기공명영상에 얹어서 뇌 내의 분포에 관해서도 분석을 진행하였다.   
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복셀의 역동적 위계 구조는 시간에 따라 변화하는 K최상위코어값과 K코어값을 동영상

으로 만든 히스토그램, 깃발 플롯, 뇌 그림 등으로 시각화하였는데 각 개인의 동적인 뇌 

기능 변화가 그림으로 잘 표현되었다. 이러한 동적인 기능적 연결성은 정적인 기능적 연

결성에는 담기지 못한 시간에 따른 뇌 기능의 변화에 대한 정보가 담겨 있었다. 또한, 시

간에 따른 역동적 변화는 양성, 음성 상관에 따라서 다르게 나타나 신경계 네트워크에 

따라 그 변화도 다르게 나타남을 보였다. K코어값 분포도에서는 뇌에서 K코어값의 분

포가 나이가 든 군에서 비대칭적으로 나타나는 것을 발견할 수 있었는데, 이는 노화가 

진행됨에 따라 악화되는 경향이 있었다. K코어값 분포도에서 발견한 비대칭적 분포는 

비대칭 척도를 이용하여 정량화하였다. 그 결과, 젊은 정상군과 나이가 든 정상군에서 

차이가 있다는 것을 확인할 수 있었고 그 차이는 정적인 기능적 연결성보다는 동적인 기

능적 연결성에서 더 뚜렷하게 나타나는 것을 볼 수 있었다. 또한, 나이가 들어감에 따라 

모든 영역에서 정적, 동적인 K코어값 모두 감소하였는데 이는 노화가 진행되면서 뇌의 

기능적 연결성이 떨어지는 것을 나타낸다고 볼 수 있다. 

 

K코어추출법으로 복셀 단위로 동적인 기능적 연결성을 분석하였을 때 뇌의 역동적인 위

계 구조를 밝혀냈고 이는 시간에 따라 변화하는 각 개인의 뇌 기능을 잘 반영하였다. 정

적 기능적 연결성에는 담지 못하는 시간에 따른 정보를 담는다는 점에서 개인의 뇌 기

능을 연구할 때 역동적 기능적 연결성을 연구하는 것이 더 적합하다고 볼 수 있다. 이러

한 K코어추출법으로 뇌 기능의 역동적인 위계 구조를 밝혀내고, 노화에 적용해서 분석

한 것처럼 앞으로 임상에서 다른 분야에도 적용하여 뇌 기능을 연구하는 데에 활용할 수 

있을 것으로 기대된다.  
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