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Acoustic full waveform inversion with the diffraction-

angle-filtering-based nested algorithm: Application to 

3D seismic data 

 
Donggeon Kim 

Department of Energy Systems Engineering 

The Graduate School 

Seoul National University 

 

Full waveform inversion (FWI), which is a data-fitting approach that aims at 

building quantitative high-resolution subsurface velocity models, becomes one of 

the most popular tools to image wide-aperture and broadband seismic data. 

Considering both the kinematic and dynamic properties of all waves in seismic data 

makes FWI highly non-linear. However, because FWI is solved in the linearized 

local optimization framework, it often falls into local minima when initial models 

deviate from true models. To mitigate its non-linearity, one can preferentially 

reconstruct low-wavenumber macro velocity structures and then gradually recover 

higher-wavenumber reflectivity structures. However, in the early stage of 

conventional FWI, short-spread reflection data hardly contribute to the low-

wavenumber update. Contribution of the reflection data to the update of FWI appears 

in the high-wavenumber reflectivity image. Therefore, contrary to the literal 
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meaning of “full waveform inversion”, conventional FWI mainly relies on the diving 

waves to recover the background velocity model, which is crucial to stably converge 

to the global minimum. 

To additionally derive the low-wavenumber update from the reflected waves in 

the early stage of inversion, reflection waveform inversion (RWI) is proposed 

incorporating the scale separation of the velocity model into the background velocity 

and reflectivity models. By explicitly using the reflectivity model, the low-

wavenumber update along the reflection wavepaths is available in the early stage of 

inversion, which are used to update the background velocity model. Once the 

background velocity model has been newly updated, the reflectivity model is then 

re-inverted from the new background velocity model. In this manner, the background 

velocity and reflectivity models are alternately updated.  

For a large-scale practical application, the approach to separate the high- and 

low-wavenumber components of the velocity model should avoid a large increase in 

computational effort. Meanwhile, to secure wider low-wavenumber update coverage, 

the contribution of the diving waves to the low-wavenumber update has to be 

appropriately considered during inversion of the background velocity model. 

In this thesis, the FWI gradient in reflection seismology is first analyzed to 

demonstrate how the diving and reflected waves contribute to the wavenumber 

components of the FWI gradient. Then, a diffraction-angle filtering technique, which 

has been proposed to control low-, intermediate- and high-wavenumber components 

of the FWI gradient in acoustic FWI, is introduced for the scale separation of the 

velocity model. The effects of the five modes of diffraction-angle filtering on the 
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FWI gradient are illustrated only to show how diffraction-angle filtering changes the 

contributions of the diving and reflected waves to the FWI gradient. 

Based on the analysis of the FWI gradient and diffraction-angle filtering, I 

propose a new acoustic FWI technique with the diffraction-angle-filtering-based 

nested algorithm to build a reliable P-wave background velocity model using both 

the diving and reflected waves assuming a large-scale seismic data acquisition. In 

the nested algorithm, diffraction-angle filtering is applied in the framework of RWI, 

which allows the scale separation of the velocity model with reasonable 

computational efforts. Among the five modes of diffraction-angle filtering, modes 

IV and V are applied to the FWI gradient to update the background velocity and 

reflectivity structures, respectively. The prior reflectivity structures reconstructed by 

applying mode V provides the low-wavenumber update generated along the 

reflection wavepaths in addition to the conventional FWI update in the early stage 

of inversion. Then, mode IV can directly extract the low-wavenumber update 

generated along the wavepaths of the diving and reflected waves. With the improved 

low-wavenumber coverage, the background velocity model that accurately describes 

the kinematic behaviors of the observed diving and reflected waves can be 

reconstructed. 

Applications to the synthetic data for the 3D SEG/EAGE overthrust model and 

real 3D ocean-bottom cable (OBC) data from the Volve field at the North sea 

demonstrate that the diffraction-angle-filtering-based nested algorithm builds 

reliable background velocity models even when the subsurface structures are highly 

complex, or seismic data are affected by elasticity or anisotropy, which is common 
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in field data applications. Modes IV and V of diffraction-angle filtering are 

successfully implemented for the scale separation in the framework of RWI. The 

background velocity models reconstructed by the nested algorithm can be used as 

new initial models for the subsequent acoustic or elastic FWI, which allows us to 

yield more accurate high-resolution subsurface velocity models. 
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Fig. 2.1. Discretization of the acoustic wave equation on a 3D staggered grid set. 

The black circles are for pressures and velocities. The black triangles, 

squares and diamonds are for particle accelerations in x, y and z directions, 

respectively. Note that pressure and particle accelerations are defined at 

the same time step. .............................................................................. 14 

Fig. 2.2. A schematic diagram illustrating the modeling and PML regions. The area 

with the black solid lines indicates the PML region where damping profiles 

xd , 
yd  and 

zd  gradually increase toward the outer boundaries of the 

computational grid. The red area denotes the boundaries of the modeling 

region (the white area), which will be saved and injected during boundary 

saving. ................................................................................................... 18 

Fig. 2.3. A schematic diagram illustrating the model subdivided into sub-model 

along each spatial direction. The black arrows indicate communication 

between processors which is performed in the end of each time step. The 

grey layers, which include the wavefield values adjacent to the surrounding 

sub-models, are exchanged by processor-to-processor communication. 

 .............................................................................................................. 25 

Fig. 3.1. The wavenumber of diffraction tomography with respect to a potential 

scatterer in a subsurface model. The wavenumber vectors of the source and 

receiver wavefields are denoted by 
Sk   and 

Rk  , respectively.   

denotes the scattering angle between the source and receiver wavefields. 
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Then, the wavenumber vector k is plotted by the source-receiver pair at 

the potential scatterer during FWI.  ..................................................... 31 

Fig. 3.2. The residual between the numerically computed and observed pressure data. 

The observed pressure data are generated for an 1D P-wave velocity model 

with a single reflector, which consist of the direct and reflected waves. 

Assuming a kinematically inaccurate initial P-wave velocity model which 

has no prior information of subsurface reflectors, the data residual consists 

of the direct and reflected wave residuals. The data residual then plays a 

role as the adjoint source of the adjoint wavefield. In this case, the reflected 

wave residuals are mainly related to amplitude errors.  ...................... 35 

Fig. 3.3. Diagram of computing the gradient with no prior reflector for 3D acoustic 

FWI in the time domain. The background parts are transparent for visibility. 

(a) The downgoing spherical wavefronts are centered at the source or 

receiver position. Note that the receiver wavefield is computed in the 

reverse time order. The black and white triangles denote the source and 

receiver positions, respectively. (b) The red arrows indicate the 

wavenumber vectors of the downgoing source wavefield and diving-wave-

related downgoing receiver wavefield, which make the aperture angle 

nearly 180°. It derives ellipsoidal low-wavenumber gradient components. 

The blue arrows indicate the wavenumber vectors of the downgoing source 

wavefield and reflected-wave-related downgoing receiver wavefield, 

which make the aperture angle nearly 0°. It derives ellipsoidal high-

wavenumber gradient components. (c) The inline vertical slice is also 
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extracted and displayed.  ..................................................................... 36 

Fig. 3.4. The residual between the numerically computed and observed pressure data 

when the initial model includes the prior reflector that generates reflection 

in the computed data. The data residual consists of the direct and reflected 

wave residuals. However, unlike Fig. 3.2, the reflected wave residual is 

now related to both amplitude and kinematic errors.  ......................... 38 

Fig. 3.5. Diagram of computing the gradient with the prior reflector for 3D acoustic 

FWI in the time domain. (a) When the downgoing wavefronts meet the 

reflector, reflected upgoing wavefronts are generated. (b) The cyan arrows 

indicate the wavenumber vectors of the upgoing source wavefield and 

reflected-wave-related downgoing receiver wavefield, which make the 

aperture angle nearly 180°. Likewise, the wavenumber vectors of the 

downgoing source wavefield and reflected-wave-related upgoing receiver 

wavefield make the aperture angle nearly 180°. They derive a pair of 

ellipsoidal low-wavenumber gradient components. (c) The inline vertical 

slice is extracted and displayed.  ......................................................... 39 

Fig. 3.6. (a) A schematic diagram illustrating generation of the partial derivative 

wavefield derived by a single diffractor in an isotropic homogeneous 

background media. Diffraction patterns of the P-wave velocity filtered by 

(b) mode I, (c) mode II, (d) mode III, (e) mode IV, and (f) mode V. The red 

triangles and blue dots indicate the locations of seismic source and virtual 

source of the P-wave velocity, respectively. Note that filtered diffraction 

patterns of the P-wave velocity are independent of the azimuth angles. 
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Fig. 3.7. (a) A schematic diagram illustrating generation of the partial derivative 

wavefield derived by diffractors in an isotropic homogeneous background 

media with different incidence angles. The black triangles and red dots 

indicate the locations of seismic source and virtual sources in equation 

(3-2). The partial derivative wavefields excited by the (b) first term (the 

virtual source with mode I), (c) second term and (d) last term in equation 

(3-2). The white arrows denote particle motions derived by the partial 

derivative wavefields.  ......................................................................... 49 

Fig. 3.8. The partial derivative wavefields excited by the virtual sources with modes 

(a) II, (b) III, (c) IV and (d) V.  ............................................................ 50 

Fig. 3.9. Discretization of the 3D strain and particle acceleration wavefields on a 

staggered grid set to compute the modified virtual source in equation (3-2). 

The black circles are for the normal strains and velocities. The black 

triangles, squares and diamonds are for the particle accelerations in the x, 

y and z directions, respectively. The black crosses and stars are for the 

shear strains. Note that the strains and particle accelerations are defined at 

the same time step. .............................................................................. 55 

Fig. 3.10. Schematic diagram illustrating the location of the virtual source in 

equation (3-2) generated by the P-wave velocity at the nodal point (i, j, k) 

on a staggered grid set. The black circles indicate the P-wave velocity at 

the nodal point (i, j, k). The black triangles, squares and diamonds are for 

the virtual body-force sources in the (a) x, (b) y and (c) z directions, 
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Fig. 3.11. Filtered versions of the gradients of Figs. 3.3(b) and 3.5(b) obtained by (a, 

e) mode II, (b, f) mode III, (c, g) mode IV and (d, h) mode V of diffraction-
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Fig. 3.12. (a) A two-reflector model. The gradients for a single shot gather filtered 
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Fig. 3.13. Schematic diagrams illustrating the inverted reflected waves fitted (a) over 

the entire offsets at the same time and (b) at the near offsets intentionally. 
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Chapter 1. Introduction 
 

 

1.1. Background of the study 
 

Full waveform inversion (FWI), which is a method of data-fitting to provide 

subsurface structures of physical properties, became a powerful subsurface imaging 

tool as the wide-aperture and broadband seismic survey techniques were introduced 

(Tarantola 1984; Virieux and Operto 2009). Because the computational cost for 

modeling of realistic wave propagation behavior is generally high, the simple 

acoustic approximation has commonly been used for inversion of offshore seismic 

survey data. In FWI, the kinematic and dynamic behaviors of the direct, diving, 

refracted and reflected waves are simultaneously considered with the limited 

acquisition geometries and frequency bandwidth. In this case, the relationship 

between the seismic data misfit and subsurface model is usually non-linear; but 

conventional FWI is solved by linearized local optimization approaches. Therefore, 

as discussed in the former studies (Bunks et al. 1995; Sirgue and Pratt 2004; Shen 

and Symes 2008; Virieux and Operto 2009), FWI is prone to fall into local minima 

when sufficiently accurate initial models are unavailable. To mitigate the local 

minima problem, one often preferentially retrieves low-wavenumber background 

velocity structures from the kinematic information of wide-aperture seismic data 

(Pratt et al. 1996; Plessix et al. 2010; Alkhalifah 2015b; Brossier et al. 2015). During 

the reconstruction of the background velocity, kinematic information of short-spread 

reflection data hardly contributes to the low-wavenumber update because the 

velocity update associated with the reflected waves is dominated by high-
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wavenumber update in the conventional FWI (Mora 1989). Therefore, the low-

wavenumber update in the early stage of conventional FWI, which plays an 

important role in successful applications of FWI, heavily relies on the diving waves. 

In reflection seismology, the information carried by the reflected waves is 

essential to retrieve the structures at the deep part. One of the most robust tools for 

the estimation of macro velocity models from the reflected waves is migration 

velocity analysis (MVA). MVA is the process of the velocity model reconstruction 

in the image domain, which aims to maximize the coherency of the migrated image 

along the offset or aperture angle axis (Symes and Carazzone 1991; Sava and Fomel 

2003; Sava and Biondi 2004; Symes 2008). Based on linearized acoustic modeling 

with the scale separation and appropriate differential semblance optimization (DSO), 

MVA guarantees the stable reconstruction of background velocity models. However, 

MVA requires more computational resources than FWI for extended imaging 

conditions (Sava and Vasconcelos 2011). To introduce the MVA-like low-

wavenumber update from the reflected waves for the reconstruction of background 

velocity models in FWI, Xu et al. (2012) proposed reflection waveform inversion 

(RWI) on the basis of migration-based traveltime tomography (Chavent et al. 1994; 

Clément et al. 2001; MBTT). Similar to MBTT or MVA, RWI uses the scale 

separation of the velocity model. The velocity model is separated into the high-

wavenumber reflectivity and low-wavenumber background models. In RWI, the 

reflectivity model is first inverted prior to the reconstruction of the background 

velocity model. By explicitly using the prior reflectivity model, the low-wavenumber 

update, which occurs along the reflection wavepaths, is available in the early stage 
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of inversion. The low-wavenumber update from the reflected waves is used to 

reconstruct the background velocity model. Then, the reflectivity and background 

velocity models are updated in an alternate way during RWI. Zhou et al. (2015) 

combined early-arrival waveform inversion and RWI to improve the coverage of 

low-wavenumber updates for the background velocity model, and Wu & Alkhalifah 

(2015) simultaneously inverted the reflectivity and background parts by solving a 

new optimization problem. The scale separation of the velocity model can be 

achieved by decomposing the wavefields into the incident and scattered wavefields 

based on the migration/demigration process or up- and down-going decomposition 

(Wang et al. 2013) and then defining the new formulation of the FWI gradient to 

exclude the high-wavenumber-related terms. 

Gradient filtering can help to extract desired wavenumber components for scale 

separation of the velocity model update (Albertin et al. 2013; Almomin & Biondi 

2013; Tang et al. 2013). Alkhalifah (2015b) proposed scattering-angle filtering based 

on representation of the gradient in the time-lag normalized domain, which provides 

low-wavenumber components guided by the scattering angle. Following Alkhalifah 

(2015b), Wu and Alkhalifah (2017) improved the efficiency of scattering-angle 

filtering by defining a simplified scattering-angle-enrichment formulation with the 

cosine function of the scattering angle. Yao et al. (2018) decomposed the waves into 

the plane waves by applying the spatial Fourier transform to design the opening angle 

filtering function. These scattering-angle filtering defined in the wavenumber 

domain requires a high-dimensional Fourier transform, which is difficult to adopt for 

3D cases. 
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As an alternative to extract high- or low-wavenumber components of the FWI 

gradient by controlling the scattering energy in acoustic imaging, the inverse-

scattering imaging condition (ISIC) or energy-norm imaging condition (ENIC) 

(Whitmore and Crawley 2012; Ramos-Martinez et al. 2016; Rocha et al. 2016) can 

be adopted. ISIC or ENIC works by combining the Laplacian operator and weighted 

temporal derivatives of the wavefields, which requires relatively less computational 

resources compared to filtering in the wavenumber domain. ISIC or ENIC is 

identical to a combination of the virtual sources (the model parameter perturbation 

playing a role as a source for the partial derivative wavefields) of the P-wave velocity 

and impedance, which attenuates either small- or large-scattering angle energy for 

FWI or reverse time migration (RTM). Motivated by ISIC and ENIC, Oh et al. (2021) 

proposed diffraction-angle filtering (DAF), which additionally controls intermediate 

scattering-angle energy by describing the virtual sources of the P-wave velocity and 

P-wave impedance in elastic FWI with the parameterization comprising the P-wave 

velocity, P-wave impedance and Poisson’s ratio in acoustic media. Kim et al. (2022) 

applied diffraction-angle filtering in the RWI framework, which successfully 

reconstructed the background velocity model from both the diving and reflected 

waves for 2D seismic data. 
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1.2. Research objective 
 

As mentioned in Section 1.1, the preferential update of the background velocity 

model using the kinematic information carried by all waves (the diving and reflected 

waves) mitigates the local minima problem of FWI. To build reliable background 

velocity models in reflection seismology, one should revisit the framework of RWI. 

By the scale separation of the velocity model, the background velocity model can be 

preferentially recovered while exploiting the additional low-wavenumber update 

from the reflected waves. 

For a large-scale practical application, the scale separation of the velocity model 

should be implemented in a computationally efficient way considering the time-

consuming alternate updates of the reflectivity and background velocity model in 

RWI. Meanwhile, the contribution of the diving waves to the low-wavenumber 

update is often excluded in RWI. The update from the diving waves provides the 

low-wavenumber coverage complementary to the update from the reflected waves. 

Therefore, it is advisable to appropriately consider the contribution of the diving 

waves to the low-wavenumber update during the reconstruction of the background 

velocity model. 

To design an improved FWI strategy dealing with the large-scale reflection-

dominated data, I focus on scattering-angle-based gradient filtering. Scattering-

angle-based gradient filtering directly extracts the desired wavenumber components 

from the FWI gradient guided by the scattering (diffraction) angle between the 

source and receiver wavefields composing the formulation of FWI. Based on the 

relationship between the contents of the FWI gradient and scattering angle, 
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scattering-angle-based gradient filtering can select physically meaningful high-, 

intermediate- or low-wavenumber components of the FWI gradient.  

Among the scattering-angle filtering methods, diffraction-angle filtering is 

introduced in this thesis. Diffraction-angle filtering modifies the virtual source to 

control the small, intermediate and large scattering-angle energy by imitating the 

virtual sources of the P-wave velocity and P-wave impedance in elastic FWI (Oh et 

al. 2021). Oh et al. (2021) designed the five modes of diffraction-angle filtering to 

filter out either the large scattering-angle energy for RTM or small scattering-angle 

energy for FWI. Extended from Oh et al. (2021), I adopt diffraction-angle filtering 

for the scale separation of the velocity model into the reflectivity and background 

velocity model like RWI. To apply diffraction-angle filtering in the framework of 

RWI, I first review the wavenumber characteristics of the FWI gradient in reflection 

seismology to demonstrate how the diving and reflected waves contribute to the 

wavenumber contents of the FWI gradient. Next, the FWI gradients filtered by the 

five modes are illustrated to investigate how diffraction-angle filtering changes the 

contributions of the diving and reflected waves to the FWI gradient. 

In this thesis, I aim to design a new process of FWI for a large-scale practical 

application in reflection seismology. Based on the investigations of the FWI gradient 

and five modes of diffraction-angle filtering, the diffraction-angle-filtering-based 

scale separation is implemented. By incorporating the framework of RWI into FWI, 

the FWI gradient contains the low-wavenumber update from both the diving and 

reflected waves, which can be directly extracted by diffraction-angle filtering, in the 

early stage of inversion. Then, a new acoustic FWI strategy with the diffraction-
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angle-filtering-based nested algorithm can be designed to build reliable background 

velocity model using both the diving and reflected waves. Finally, acoustic FWI with 

the diffraction-angle-filtering-based nested algorithm is applied to the large-scale 

complex 3D synthetic data and real 3D data with elasticity and anisotropy to verify 

the applicability of the algorithm. 
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1.3. Outline 
 

In Chapter 2, I show the formulations and implementations of acoustic wave 

modeling and acoustic FWI for applications to 3D data. The numerical schemes to 

compute the acoustic wavefields and FWI gradient in 3D are described. 

In Chapter 3, the contributions of the diving and reflected waves to the FWI 

gradient is first investigated. From the analysis of the wavenumber components of 

the FWI gradient from the diving and reflected waves, we can understand why the 

contribution of the reflected waves to the low-wavenumber update lacks in 

conventional FWI. Then, I introduce the formulation and mechanism of diffraction-

angle filtering. The numerical scheme and computational requirements to implement 

diffraction-angle filtering is also explained. Next, diffraction-angle filtering is 

applied to the FWI gradient to see how the contributions of the diving and reflected 

waves to the FWI gradient can be changed. 

Considering some key points of RWI, I design a new nested algorithm, which 

consists of the alternate updates of the reflectivity and background velocity model. 

Among the five modes of diffraction-angle filtering, modes IV and V is used to 

compute the FWI gradient for the background velocity and reflectivity model, 

respectively. Mode V is first applied to the FWI gradient to invert the reflectivity 

model from the normal-incidence reflections. By explicitly including the prior 

reflectivity model, the low-wavenumber update along the wavepaths of the reflected 

waves is additionally available. Then, Mode IV directly extracts the contributions of 

the diving and reflected waves to low-wavenumber update from the FWI gradient, 

which can be used to build reliable background velocity model with wider low-
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wavenumber coverage. 

In Chapter 4, a synthetic data example for the 3D SEG/EAGE overthrust model 

is presented to demonstrate that acoustic FWI with the diffraction-angle-filtering-

based nested algorithm can provide kinematically reliable background velocity 

model for an ideal acoustic case, even when the subsurface structures are complex 

and initial velocity model deviates from the true velocity model.  

Chapter 5 shows a real data example for the 3D ocean-bottom cable (OBC) data 

from the Volve field at the North sea to examine if the proposed algorithm for 

acoustic FWI can enhance the macro velocity structures in the presence of strong 

elasticity and anisotropy. 
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Chapter 2. Implementation of acoustic FWI 
 

 

2.1. Acoustic wave modeling 
 

 

2.1.1. Acoustic wave equation 
 

In marine reflection seismology employing a pressure source, wave propagation 

is commonly described using the acoustic wave equation under the assumption of 

constant density. The acoustic wave equation with constant density can be derived 

from the equation of wave motion and generalized Hooke’s law written by 
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where P  and a  are the pressure and particle acceleration vector, respectively; x  

indicates the spatial coordinates; t  indicates time, and pV  is the P-wave velocity. 

The terms 
Pf  and f  represent the pressure and body-force sources, respectively, 

acting as seismic sources at the position 
sx  . By combining these equations, the 

acoustic wave equation can be rewritten as the acoustic wave equation with the 

second-order derivatives of wavefields in the temporal and spatial coordinates in 

terms of pressure as follows: 
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or in terms of particle displacement vector as follows: 

 

 2

p( , , ) ( ) ( ( , , )) ( , )s s st V t t =   + a x x x u x x f x , (2-3) 

 

where u  is the particle displacement vector. The acoustic wave equation can be 

solved by numerical simulation for a given P-wave velocity model using the 

staggered-grid finite-difference method (SGFDM) (Virieux 1984; Grave 1996), 

which will be described in Section 2.1.2. 

 

 

2.1.2. Staggered-grid finite-difference method 
 

In this thesis, to describe the acoustic wave behavior, equation (2-1) is solved 

by the high-order SGFDM, which discretizes derivatives of wavefields using 

centered finite-differences. The finite-difference method (FDM) has been widely 

adopted to solve a variety of physical problems governed by partial differential 

equations. The finite-element method (FEM; Marfurt 1984) or spectral-element 

method (SEM; Komatitsch and Tromp 1999), which can provide stable solutions for 

complex 3D models even with irregular free-surface topography, can also be used to 

solve the acoustic wave equation. However, marine seismic survey data are free from 

the effect of irregular free-surface topography and the FDM can provide accurate 

numerical solutions with lower computational cost compared to other methods. 

The stability and accuracy of FDM are generally enhanced by adopting high-

order staggered-grid method (Moczo et al. 2000). The high-order SGFDM uses a 

more complex operator to solve the first-order derivatives of wavefields in the spatial 
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coordinates but requires fewer grid points to simulate the acoustic wave propagation 

without numerical dispersion. By considering the dimension of subsurface models 

and the frequency band of interest, the fourth-order SGFDM is used in this thesis. 

Discretization of equation (2-1) leads to a staggered-grid, as shown in Fig. 2.1. Then, 

the numerical scheme is as follows:  
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where i, j, k and n are the indices for x-axis, y-axis, z-axis and time discretization, 

respectively; x  , y  , z   are the grid steps for the x-axis, y-axis, z-axis, 

respectively; and t  is the grid step in time. Note that the first-order derivatives in 

the spatial coordinates are approximated by a centralized fourth-order scheme, which 

is derived from the linear combination of different Taylor expansions (Fornberg 

1988), and the first-order derivative in time is approximated by a second-order 

scheme. 

 

 

2.1.3. Boundaries 
 

In general, the acoustic wave equation does not require additional explicit 

boundary conditions, because internal interfaces and acoustic sources are 

represented by changes of the P-wave velocity and the source terms in equation 

(2-1), respectively. To describe acoustic wave propagation in an inhomogeneous 

half-space, stress-free conditions (by setting the pressure field to zero on the 

boundary for acoustic cases) are implemented for the upper boundary, which 

represent the free-surface boundary conditions and absorbing boundary conditions 

are implemented for five other boundaries to remove artificial reflections occurring 

at the outer boundaries of the computational grid. In this thesis, the perfectly matched 

layer (PML; Berenger 1994; Collino and Tsogka 2001) is used to suppress these 

artificial reflections. 

  



 

１４ 

 

 

Fig. 2.1. Discretization of the acoustic wave equation on a 3D staggered grid set. 

The black circles are for pressures and velocities. The black triangles, 

squares and diamonds are for particle accelerations in x, y and z directions, 

respectively. Note that pressure and particle accelerations are defined at 

the same time step. 
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PML introduces the stretched-coordinate space in the frequency domain expressed 

by  
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where x , y  and z  are the new space variables stretched into the complex domain; 

   is the angular frequency and 
xd  , 

yd   and 
zd   are the damping profiles that 

gradually increase toward the outer boundaries of the computational grid in the PML 

regions (Fig. 2.2). Assuming a plane wave propagation along the x-axis with the new 

space variable,  
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it is noticed that a wave becomes attenuative in the stretched-coordinate space. To 

implement the PML, the spatial derivatives are changed as: 
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In the time domain, the spatial derivatives of the wavefield P  following equation 

(2-7) are rewritten as follows: 
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where H   is the Heaviside unit step function and * represents the convolution 

operator in time. Then, there are recursive relationships for 
x  , y   and 

z  

(Komatitsch and Martin 2007) to compute the spatial derivatives of the wavefield 

P  as: 
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The convolutional perfectly matched layer (CPML) can be easily implemented with 

SGFDM by introducing memory variables for 
x , y  and 

z  to be updated by 
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equation (2-9) at each time step. 
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Fig. 2.2. A schematic diagram illustrating the modeling and PML regions. The area 

with the black solid lines indicates the PML region where damping profiles 

xd , yd  and 
zd  gradually increase toward the outer boundaries of the 

computational grid. The red area denotes the boundaries of the modeling 

region (the white area), which will be saved and injected during boundary 

saving. 
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2.2. Acoustic FWI 
 

 

2.2.1. Formulation of acoustic FWI 
 

In the time domain, conventional acoustic FWI using the least-squares-norm-

based local optimization minimizes the following objective function: 
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where cP   and oP   are the numerically computed and observed pressure data, 

respectively; and s , r  and t  denote the source, receiver and time, respectively. 

The computed pressure data cP  are numerically obtained by SGFDM satisfying 

equation (2-4). Then, the gradient with respect to the P-wave velocity at the nodal 

point (i, j, k) for acoustic FWI can be directly expressed by the zero-lag cross-

correlations between the partial derivative wavefield and the pressure data residual 

as follows:  
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The partial derivative pressure wavefield with respect to pV  at the nodal point (i, j, 

k) can be computed by solving equation (2-2) with the source term substituted by 

the virtual pressure source 
, , ,

v

s i j kf   (Pratt et al. 1998), which can be derived by 
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differentiating equation (2-2) with respect to 
pV  at the nodal point (i, j, k). To avoid 

the direct computation of the partial derivative wavefields for the P-wave velocities 

at all the nodal points, which requires high computational efforts, the gradient is 

computed using the adjoint-state method (Plessix 2006) as follows (refer to 

Appendix A): 
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b

sP   indicates the adjoint pressure wavefield computed by back-propagating the 

pressure data residuals between cP  and oP . Then, the gradient is computed by the 

zero-lag cross-correlation between the source ( P ) and receiver (
b

sP ) wavefields. 

The gradient can be reformulated in terms of the virtual body-force source and 

the back-propagated adjoint particle acceleration wavefield. By taking the partial 

derivatives of equation (2-1) with respect to pV   at the nodal point (i, j, k) and 

assuming the equivalent body-force source instead of the pressure source, the partial 

derivative pressure wavefield can be expressed by  
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Combining these equations, the acoustic wave equation for the partial derivative 

pressure wavefield with the equivalent virtual body-force source is obtained in 

second-order derivative form as follows: 
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where 
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The virtual body-force source of equation (2-14) can be computed by differentiating 

equation (2-3) with respect to pV  at the nodal point (i, j, k) following the definition 

of the virtual source given by Pratt et al. (1998). Based on the adjoint method and 

equation (2-14), the gradient of equation (2-12) can be rewritten by  
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where 
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s r p p s r pT t V V P T t V− =  −a x x x x x x x . (2-15) 

 

Note that the adjoint of divergence is the negative gradient (Oh et al. 2021). The 

particle acceleration wavefield can be numerically obtained by using the simple 

finite-difference formulae (equation 2-4). Oh et al. (2021) modified the virtual source 

for acoustic FWI to imitate the PP diffraction patterns of the P-wave velocity and P-

wave impedance in elastic FWI with the pV - pI -  parameterization, where pV , 
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pI   and    are the P-wave velocity, P-wave impedance and Poisson’s ratio, 

respectively (Oh and Min 2017). The details will be discussed in Section 3.2. 

 

 

2.2.2. Other techniques for acoustic FWI 
 

In this section, some techniques to improve the efficiency and quality of 

inversion for 3D data are described. Two-level message passing interface-based 

parallelization, boundary saving, gradient preconditioning and source estimation are 

explained in Sections 2.2.2.1 to 2.2.2.4, respectively.  

 

 

2.2.2.1. Two-level message passing interface-based parallelization 

 

3D acoustic FWI implementation has no choice but to rely on two-level 

message passing interface-based parallelization to solve large-scale problem to avoid 

the enormous storage requirements or computational load per core (Bohlen 2002; 

Trinh et al. 2019). In the inner level, the model is subdivided into sub-models along 

each spatial direction. Each sub-model is assigned to an individual processor, and 

the wavefields for each sub-model are computed simultaneously on each assigned 

processor. To compute the spatial derivatives adjacent to the sub-model boundaries, 

the layers including the wavefield values at the boundaries are exchanged by 

processor-to-processor communication via message passing interface (Fig. 2.3). The 

depth of these layers depends on the order of the finite-difference method used. In 

the case of the fourth-order SGFDM, the depth of the layers is two grid points. In the 
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outer level, the wavefields from different seismic shots are computed parallelly. In 

this level, processor-to-processor communication only involves the summation of 

the objective functions and gradients from each seismic shot. The computational cost 

of communication between processors is negligible compared with that of the 

wavefield computation on each processor. 

 

 

2.2.2.2. Boundary saving 
 

For 3D acoustic FWI in the time domain, the source and receiver wavefields 

should be available at the same time step to compute the gradient (equations 2-12 or 

2-15). In equations (2-12) or (2-15), unlike the source wavefield computed in the 

forward time order, the receiver wavefield should be computed in the reverse time 

order. The source wavefield at time step 
nt  can be re-computed from time step 0 

for each receiver wavefield at time step 
N nt t−   (where 0,1,...,n N=  ), or stored 

from time step 0 to 
Nt  . However, these approaches require extremely high 

computational cost or extensive storage, therefore they are not suitable for large-

scale 3D FWI. Another approach is boundary saving, which uses the reversibility 

property of the wave equation. Boundary saving computes the source wavefield 

backwards in time. The source wavefield at time step 
Nt  and 

1Nt −
 will be the initial 

condition. Then, the numerical scheme for source wavefield is as follows: 
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In this case, the source wavefield at time step 
1nt −
  is computed from the source 

wavefield at time step 
nt   and 

1nt +
  during the back-propagation of the receiver 

wavefield. Note that this reversibility property is not valid in the case that a 

dissipative mechanism is applied (for example, application of PML) to simulate 

wave propagation in unbounded media. To circumvent this problem, the layers 

including the wavefield values at all time steps just inside the dissipative region 

should be stored (Fig. 2.2). Note that the depth of the layers depends on the order of 

finite-difference method. In the case of the fourth-order SGFDM, the depth of the 

layers is two grid points.  
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Fig. 2.3. A schematic diagram illustrating the model subdivided into sub-model 

along each spatial direction. The black arrows indicate communication 

between processors which is performed in the end of each time step. The 

grey layers, which include the wavefield values adjacent to the surrounding 

sub-models, are exchanged by processor-to-processor communication. 
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Saving the wavefield values at the boundaries, instead of saving the whole wavefield 

values, can considerably reduce the storage requirement for large-scale 3D FWI 

problem (Dussaud et al. 2008). 

 

 

2.2.2.3. Gradient preconditioning 
 

As FWI generally relies on the least-squares-norm-based local optimization 

technique, the estimation of inverse Hessian can significantly enhance the 

convergence of FWI. The Gauss-Newton, or Quasi-Newton methods are widely used 

for FWI, but the preconditioned steepest-descent method is applied in this thesis to 

directly examine the contribution of diffraction-angle filtering of the gradient. 

During FWI, the gradient is first preconditioned by the pseudo-hessian matrix (Shin 

et al. 2001), which can compensate for amplitude loss of the gradient at deep parts 

caused by the geometrical spreading effect. Still, FWI suffers from non-linearity and 

ill-posedness because of artifacts caused by too-coarse grids for the seismic structure 

update, too-few shots/receivers or noise in the recorded data. To mitigate these 

artifacts, a preconditioning strategy, which can be easily implemented without 

computation of a derivative stencil, is additionally applied to enforce smoothness 

(Guitton et al. 2012; Wellington et al. 2019). The preconditioning strategy can be 

implemented by simply multiplying a preconditioning operator to the gradient. In 

this thesis, 3D Gaussian filter is used as the preconditioning operator to attenuate 

high-wavenumber artifacts. 
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2.2.2.4. Source estimation 
 

Robust source estimation is crucial for FWI so as to ensure that the data residual 

is only dependent on the subsurface model parameters. Source estimation can be 

performed by using only the direct waves at near offsets (Wellington et al. 2015), 

stacking the direct waves at common-offset gathers (Huang and Schuster 2018) or 

solving the inverse problem with respect to the source wavelet (Jeong et al. 2017; 

Thiel et al. 2019). In this thesis, the direct waves are used for source estimation. All 

shot gathers from observed and computed data are time-shifted to align the direct 

waves and then stack the traces at near offsets so that direct wave is constructively 

stacked and other waves are canceled out. By taking the stacked traces from observed 

and computed data as the input and output, the Wiener filter can be designed to 

estimate the true source wavelet from an initial guess of source wavelet. 
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Chapter 3. Acoustic FWI with the diffraction-angle-

filtering-based nested algorithm 
 

 

FWI tries to retrieve subsurface velocity structures from the information carried 

by the diving and reflected waves. As mentioned in Section 1.1, in the early stage of 

FWI, the diving waves mainly contribute to the low-wavenumber update, while the 

contribution of the reflected waves to the update consists of the high-wavenumber 

components. The maximum penetration depth of the diving waves is about a 1/5~1/3 

of the maximum offset (Zhou et al. 2015; Yao et al. 2020), therefore it is often 

difficult to recover macro structures of deep target areas. 

To examine how the diving and reflected waves contribute to the high- and low-

wavenumber components of the FWI gradient, I first review the wavenumber 

characteristics of the FWI gradient in reflection seismology. The analysis of the 

wavenumber characteristics of the FWI gradient demonstrate why the low-

wavenumber update from the reflected waves lacks in the early stage of FWI and 

how the explicit use of the prior reflectivity model derives the low-wavenumber 

update along the wavepaths of the reflected waves. 

Then, diffraction-angle filtering is introduced to control the wavenumber 

contents of the FWI gradient guided by the diffraction (scattering) angle. From the 

illustration of the FWI gradient filtered by the five modes of diffraction-angle 

filtering, I can pick modes IV and V of diffraction-angle filtering for the scale 

separation of the velocity model.  

Based on the analysis, I design a new process of FWI for the reflection data by 
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incorporating the framework of RWI into FWI with diffraction-angle filtering. Like 

RWI (Xu et al. 2012; Wu and Alkhalifa 2015; Zhou et al. 2015) or the nested 

inversion technique (Biondi and Almomin 2014; Wang et al. 2016), I separate the 

velocity model into the background velocity and reflectivity models. Modes IV and 

V of diffraction-angle filtering are applied for the reconstruction of the background 

velocity model and reflectivity model, respectively. The near-zero-offset reflectivity 

built by using Mode V provides additional low-wavenumber components of the FWI 

gradient along the wavepaths of the reflected waves. Then, Mode IV extracts low-

wavenumber components of the FWI gradient incorporating the contributions of 

both the diving and reflected waves for the reconstruction of the background velocity 

model. Modes IV and V of diffraction-angle filtering control the intermediate 

scattering-angle energy, which prevents the leakage between the low-wavenumber 

background velocity and high-wavenumber reflectivity models. In addition, the 

computational efforts of diffraction-angle filtering are reasonable compared with 

other scale separation methods. The details are described in Sections 3.1 to 3.5. 
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3.1. Wavenumber characteristics of acoustic FWI gradient 
 

The wavenumber of the FWI gradient at a model point can be illustrated by 

diffraction tomography, which is governed by the scattering angle and local 

wavelength (Miller et al. 1987; Mora 1989; Fig. 3.1) as follows: 
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where 
Sk   and 

Rk   denote the wavenumber vectors of the source and receiver 

wavefields, respectively;   is the local wavelength at a potential scatterer;   is 

the scattering angle between the source and receiver wavefields; and n  is the 

normalization of the wavenumber vector k . Equation (3-1) demonstrates that low 

frequencies and large scattering angles contribute to the low-wavenumber update of 

FWI.  

To examine the wavenumber properties of the acoustic FWI gradient for 

reflection-dominated data, an acoustic FWI example of synthetic data recorded by 

one source-receiver pair in a 1D P-wave velocity model with a single reflector is 

presented in Fig. 3.2. It is assumed that an initial P-wave velocity model is inaccurate 

and no prior information of subsurface reflectors is known, which is a general 

assumption for conventional FWI. As mentioned in Section 2.2.1, the gradient is 

formed the by zero-lag cross-correlation between the source and receiver wavefields. 

Then, the receiver wavefield is generated by back-propagating the data residual, 

which is mainly associated with diving (direct) wave residual and reflected wave 

residual in this case. 
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Fig. 3.1. The wavenumber of diffraction tomography with respect to a potential 

scatterer in a subsurface model. The wavenumber vectors of the source and 

receiver wavefields are denoted by 
Sk   and 

Rk  , respectively.   

denotes the scattering angle between the source and receiver wavefields. 

Then, the wavenumber vector k is plotted by the source-receiver pair at 

the potential scatterer during FWI. 
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Because the initial P-wave velocity model is a smooth background velocity with no 

reflectors, only downgoing (incident) source and receiver wavefields exist. The 

downgoing wavefront of the receiver wavefield excited by the diving (direct) wave 

residual interferes with the downgoing wavefront of the source wavefield. The 

aperture angle of their wavenumber vectors ( d  ) is nearly 180°, which derives 

ellipsoidal low-wavenumber gradient component along the wavepath of the diving 

(direct) wave (the so-called first Fresnel zone; Woodward 1992; Virieux and Operto 

2009). On the other hand, the interference of the downgoing wavefront of the 

receiver wavefield excited by the reflected wave residual and the source wavefield 

derives ellipsoidal high-wavenumber gradient component whose focal points are the 

source and receiver (the so-called migration isochrone; Tarantola 1984; Lailly 1983). 

The aperture angle of their wavenumber vectors ( m ) is nearly 0° in this case. Fig. 

3.3 illustrates the gradient computation mentioned above. The stack of the first 

Fresnel zones over all source-receiver pairs composes the low-wavenumber 

components of the gradient that mainly contribute to fitting kinematic errors of the 

diving waves, while the stack of the migration isochrones over all source-receiver 

pairs composes the high-wavenumber components of the gradient that mainly 

contribute to fitting amplitude errors of the reflected waves. 

Next, it is assumed that the reflectivity model is reconstructed from the initial 

velocity model (Fig. 3.4). In this case, as the initial velocity model is slower (faster) 

than the true velocity model, the reflector is built at slightly shallower (deeper) depth. 

Then, both the source and receiver wavefields generate upgoing (scattered) 

components. The interference of the upgoing wavefront of the receiver wavefield 
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excited by the reflected wave residual and the downgoing wavefront of the source 

wavefield generates the first Fresnel zone where the aperture angle of their 

wavenumber vectors ( r ) is nearly 180°. Likewise, the interference of the upgoing 

wavefront of the source wavefield and the downgoing wavefront of the receiver 

wavefield of the reflected wave residual generates another first Fresnel zone (Xu et 

al. 2012; Brossier et al. 2015). This pair of first Fresnel zones appear in a rabbit-ear 

shape, which can reach the deeper parts of the subsurface with a short-spread 

acquisition geometry. The detail is illustrated in Fig. 3.5. The first Fresnel zone 

derived by the diving (direct) wave mainly recovers the low-vertical-wavenumber 

structures along the horizontal wavepath of the diving wave, while the pair of the 

first Fresnel zones recovers the low-horizontal-wavenumber structures along the 

vertical wavepath of the reflected wave (Mora 1989; Alkhalifah 2015a; Zhou et al. 

2018).  

To recover the low-wavenumber variations of deep targets by using the diving 

waves, wide-aperture seismic data acquisition is essential. On the other hand, the 

reflected waves can retrieve the deep low-wavenumber structures with relatively 

short offsets. In such a complementary manner, the velocity model update with wider 

low-wavenumber coverage derived by kinematic information of the diving and 

reflected waves can be provided. However, the prior reflectivity information lacks in 

the early stage of conventional FWI. If the initial velocity models deviate from the 

true models, low-wavenumber structures of the deep targets are not properly 

recovered, but high-wavenumber structures are dominantly reconstructed by the 

migration isochrones at wrong positions in conventional FWI (Mora 1989). 



 

３４ 

 

Coupling of the high- and low-wavenumber components of the gradient causes 

strong non-linearity when initial velocity models are not accurate enough to image 

reflectors at their correct positions. To mitigate non-linearity of conventional FWI, 

efficient schemes of separating the high- and low-wavenumber components of the 

gradient need to be introduced for a large-scale problem like 3D FWI. 



 

３５ 

 

 

Fig. 3.2. The residual between the numerically computed and observed pressure data. 

The observed pressure data are generated for an 1D P-wave velocity model 

with a single reflector, which consist of the direct and reflected waves. 

Assuming a kinematically inaccurate initial P-wave velocity model which 

has no prior information of subsurface reflectors, the data residual consists 

of the direct and reflected wave residuals. The data residual then plays a 

role as the adjoint source of the adjoint wavefield. In this case, the reflected 

wave residuals are mainly related to amplitude errors. 
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Fig. 3.3. Diagram of computing the gradient with no prior reflector for 3D acoustic 

FWI in the time domain. The background parts are transparent for visibility. 

(a) The downgoing spherical wavefronts are centered at the source or 

receiver position. Note that the receiver wavefield is computed in the 

reverse time order. The black and white triangles denote the source and 

receiver positions, respectively. (b) The red arrows indicate the 

wavenumber vectors of the downgoing source wavefield and diving-wave-

related downgoing receiver wavefield, which make the aperture angle 

nearly 180°. It derives ellipsoidal low-wavenumber gradient components. 

The blue arrows indicate the wavenumber vectors of the downgoing source 

wavefield and reflected-wave-related downgoing receiver wavefield, 

which make the aperture angle nearly 0°. It derives ellipsoidal high-

wavenumber gradient components. (c) The inline vertical slice is also 

extracted and displayed. 
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Fig. 3.3. (Continued) 
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Fig. 3.4. The residual between the numerically computed and observed pressure data 

when the initial model includes the prior reflector that generates reflection 

in the computed data. The data residual consists of the direct and reflected 

wave residuals. However, unlike Fig. 3.2, the reflected wave residual is 

now related to both amplitude and kinematic errors. 
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Fig. 3.5. Diagram of computing the gradient with the prior reflector for 3D acoustic 

FWI in the time domain. (a) When the downgoing wavefronts meet the 

reflector, reflected upgoing wavefronts are generated. (b) The cyan arrows 

indicate the wavenumber vectors of the upgoing source wavefield and 

reflected-wave-related downgoing receiver wavefield, which make the 

aperture angle nearly 180°. Likewise, the wavenumber vectors of the 

downgoing source wavefield and reflected-wave-related upgoing receiver 

wavefield make the aperture angle nearly 180°. They derive a pair of 

ellipsoidal low-wavenumber gradient components. (c) The inline vertical 

slice is extracted and displayed. 
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Fig. 3.5. (Continued) 
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3.2. Diffraction-angle filtering for acoustic FWI 
 

The preferential low-wavenumber update can mitigate the non-linearity of FWI. 

Therefore, separation of the high- and low-wavenumber components of the gradient 

becomes one of the key issues for successful FWI. In this thesis, diffraction-angle 

filtering (Oh et al. 2021) is introduced to control the wavenumber components of 

update with respect to the P-wave velocity while avoiding a large increase in 

computational effort. Formulation and mechanism of diffraction-angle filtering, 

implementation of diffraction-angle filtering on a staggered grid set and 

computational requirements are described in Sections 3.2.1 to 3.2.3. 

 

 

3.2.1. Formulation and mechanism of diffraction-angle filtering 
 

The main idea of diffraction-angle filtering is to modify the virtual source term 

to control the diffraction patterns of the partial derivative wavefields. Based on the 

expression of the virtual body-force source represented in equation (2-14), 

diffraction-angle filtering modifies the conventional virtual source of the P-wave 

velocity as follows (Oh et al. 2021): 
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The last term in equation (3-2) is zero in acoustic cases, because the curl of the P-

wave is zero. In equation (3-2), there are three weighting factors (represented by 
1a , 

2a  and artificially-defined Poisson’s ratio  ), which control the influences of the 

three terms (i.e., three square brackets). The first term is the conventional virtual 

source of the P-wave velocity as shown in equation (2-14). The second term controls 

energy at either small or large diffraction angles as ISIC or ENIC does. The last term 

additionally suppresses energy at intermediate diffraction angles, which can cause 

the coupling of high- and low-wavenumber components of the gradient during FWI. 

The second and last terms can be activated by changing a set of weighting factors 

(
1a , 

2a  and  ) as shown in Table 3.1. The virtual source obtained by applying 

mode I is identical to the conventional virtual source of the P-wave velocity. The 

virtual sources resulting from applying modes II and III are the same as the virtual 

sources of the P-wave velocity and P-wave impedance obtained from the acoustic 

wave equation with the pV  - pI   parameterization, respectively. Modes IV and V 

describe the virtual sources identical to those of the P-wave velocity and P-wave 

impedance in the elastic equations with the pV  - pI  -    parameterization, 

respectively. I set artificial Poisson’s ratio ( ) to be 0.25 to activate the last term 

without generating artificial backscattering energy (Oh et al. 2021). 



 

４３ 

 

Table 3.1. Five diffraction-angle filtering modes and their weighting factors. 

 

  

DAF 

mode 

Weighting factors (a1, a2 

and σ) 

Corresponding PP diffraction pattern 

 Mode I (2, 0, 0.5) 
pV  in acoustic FWI with 

pV  

parameterization 

Mode II (1, 1, 0.5) 
pV  in acoustic FWI with 

pV -
pI   

parameterization 

Mode III (1, -1, 0.5) 
pI  in acoustic FWI with 

pV -
pI   

parameterization 

Mode IV (1, 1, 0.25) 
pV  in elastic FWI with 

pV -
pI -   

parameterization 

Mode V (1, -1, 0.25) 
pI  in elastic FWI with 

pV -
pI -   

parameterization 
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Fig. 3.6 shows the diffraction patterns generated by the virtual sources resulting 

from applying five diffraction-angle filtering modes. Mode I yields an isotropic 

diffraction pattern (Fig. 3.6b). The diffraction patterns of mode II (Fig. 3.6c) and 

mode III (Fig. 3.6d) isolate energy at either large or small diffraction angles to some 

extent, but still diffract energy over intermediate diffraction angles, which causes 

cross-talk effects between high- and low-wavenumber components of the gradient. 

On the other hand, the energy at intermediate diffraction angles of mode IV (Fig. 

3.6e) and mode V (Fig. 3.6f) are suppressed by mimicking the diffraction patterns of 

the P-wave velocity and P-wave impedance in elastic FWI with 
pV  -

pI  -   

parameterization. Note that the diffraction pattern of the P-wave velocity and its 

filtered versions are independent of the azimuth.  

Fig. 3.7(a) shows a schematic diagram illustrating numerical generation of the 

partial derivative wavefields derived by the three terms of equation (3-2) with 

respect to different incidence angles. Fig. 3.7(b) shows that the diffraction patterns 

from the virtual source corresponds to the first term in equation (3-2), which is 

identical to the conventional virtual source of the P-wave velocity. The explosive 

virtual source of the P-wave velocity generates isotropic wavefront and therefore 

particles have bidirectional motion. The second term in equation (3-2) shows the 

diffraction pattern similar to that of the density obtained using the parameterization 

of the Lamé constants and density (Fig. 3.7c), and the last term describes the 

diffraction pattern of the S-wave velocity obtained using the pV  -
sV  -density 

parameterization (Fig. 3.7d; Tarantola, 1986; Oh et al. 2021). Considering the 
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dispersion relation ( 2 2 2

pV k = ), the first and second terms have identical amplitudes 

if 
1a  is equal to 

2a . 

As the second term generates unidirectional particle motions, it cancels either 

the backscattering or forward-scattering energy and doubles the counterparts. The 

last term emits the main PP diffraction energy at intermediate diffraction angles. By 

changing the Poisson’s ratio from 0.5 to 0, the diffraction energy at intermediate 

diffraction angles is gradually suppressed. When the Poisson’s ratio is less than 0.25, 

backscattering energy is artificially generated. Its particle motions are opposite of 

the original motions, which cause incorrect update. Therefore, the Poisson’s ratio 

should be 0.25 to yield more isolated diffraction patterns at large and small 

diffraction angles while preserving correct update.  

The partial derivative wavefields computed numerically from the virtual 

sources with modes II, III, IV and V are shown in Fig. 3.8. Modes II and III provide 

the diffraction patterns isolated at large and small diffraction angles, respectively, 

and modes IV and V additionally filter out energy at intermediate diffraction angles 

as expected. Then, the filtered partial derivative wavefields, which only include 

energy at large or small diffraction angles (which are identical to the aperture angles 

in equation 3-1), will lead to low- or high-wavenumber updates following equation 

(3-1). Compared to the previously-proposed scattering-angle filtering methods, 

diffraction-angle filtering controls the diffraction pattern by modifying the virtual 

source. Modification of the virtual source is done by combining the spatial and 

temporal derivatives of the wavefields. 
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Fig. 3.6. (a) A schematic diagram illustrating generation of the partial derivative 

wavefield derived by a single diffractor in an isotropic homogeneous 

background media. Diffraction patterns of the P-wave velocity filtered by 

(b) mode I, (c) mode II, (d) mode III, (e) mode IV, and (f) mode V. The red 

triangles and blue dots indicate the locations of seismic source and virtual 

source of the P-wave velocity, respectively. Note that filtered diffraction 

patterns of the P-wave velocity are independent of the azimuth angles. 
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Because no transforms are required across the data domains, diffraction-angle 

filtering can be easily applied to a large-scale problem like 3D FWI. While 

scattering-angle filtering suggested by Alkhalifah (2015b) or Yao et al. (2018) can 

design a more sophisticated filter, modes IV and V of diffraction-angle filtering can 

effectively separate the migration and tomographic components with lower 

computational efforts. 

 

 

3.2.2. Implementation on a staggered grid set 
 

The computation of the virtual source in equation (3-2) depends on the specific 

details of the finite approximation method. The virtual source is derived by 

differentiating wave equation with respect to the model parameter at the nodal point 

(i, j, k), and thus consists of local non-zero values near the nodal point (i, j, k). The 

virtual source modified by diffraction-angle filtering consists of the spatial 

derivatives of the particle displacement and pressure wavefields. The spatial 

derivatives of the particle displacement wavefield, which are identical to the normal 

and shear strain wavefields, are computed on the staggered-grid set as shown in Fig. 

3.9. Averaging method is applied (Levander 1988; Mittet 2002) as follows: 
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Note that the P-wave velocity should be always assigned at the locations of the 

quantities it scales. The virtual source of the P-wave velocity at the nodal point (i, j, 

k) is derived by differentiating the wave equation with respect to 
pV  at the nodal 

point (i, j, k) and the P-wave velocities at the other nodal points are treated as constant. 

Based on the aforementioned averaging method, the numerical scheme for the 

modified virtual source derived by 
pV  at the nodal point (i, j, k) can be written as 

follows (Fig. 3.10): 
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Fig. 3.7. (a) A schematic diagram illustrating generation of the partial derivative 

wavefield derived by diffractors in an isotropic homogeneous background 

media with different incidence angles. The black triangles and red dots 

indicate the locations of seismic source and virtual sources in equation 

(3-2). The partial derivative wavefields excited by the (b) first term (the 

virtual source with mode I), (c) second term and (d) last term in equation 

(3-2). The white arrows denote particle motions derived by the partial 

derivative wavefields. 
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Fig. 3.8. The partial derivative wavefields excited by the virtual sources with modes 

(a) II, (b) III, (c) IV and (d) V. 
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Note that the strain wavefields are computed by a centralized second-order scheme.  

 

 

3.2.3. Computational requirements 
 

Diffraction-angle filtering requires additional computational efforts to compute 

the spatial derivatives of the particle displacement and pressure wavefields. The 

computation of the modified virtual source for acoustic FWI is similar to that of the 

virtual source for elastic FWI. Table 3.2 shows the computational efforts to compute 

the gradient for one shot gather of the examples with different model dimensions. 

Implementation of diffraction-angle filtering requires about 1.5 times longer 

computational time compared with conventional FWI regardless of model dimension 

or data size. Implementation of diffraction-angle filtering leads to a significant 

increase in computational efforts. But still, it is obvious that diffraction-angle 

filtering is computationally attractive while sufficiently separating high- and low-

wavenumber updates compared with other scattering-angle filtering techniques, 

which require transforms across the data and space domains, or the 

migration/demigration process for scale separation (which doubles the 

computational cost compared to conventional FWI). 

  



 

５５ 

 

 

Fig. 3.9. Discretization of the 3D strain and particle acceleration wavefields on a 

staggered grid set to compute the modified virtual source in equation (3-2). 

The black circles are for the normal strains and velocities. The black 

triangles, squares and diamonds are for the particle accelerations in the x, 

y and z directions, respectively. The black crosses and stars are for the 

shear strains. Note that the strains and particle accelerations are defined at 

the same time step. 
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Fig. 3.10. Schematic diagram illustrating the location of the virtual source in 

equation (3-2) generated by the P-wave velocity at the nodal point (i, j, k) 

on a staggered grid set. The black circles indicate the P-wave velocity at 

the nodal point (i, j, k). The black triangles, squares and diamonds are for 

the virtual body-force sources in the (a) x, (b) y and (c) z directions, 

respectively. 
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Memory requirements for implementation of diffraction-angle filtering are slightly 

higher than those for conventional FWI. However, these additional requirements for 

diffraction-angle filtering is acceptable even in large 3D problems. 
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Table 3.2. Computational time and memory required to compute the gradient. 

 

 

  

FWI    

Model dimension Shot gather size Time (s) Memory (GB)  

100 x 100 x 50 500 x 10000 144 2.2  

200 x 200 x 100 1000 x 40000 954 7.3  

300 x 300 x 150 1500 x 90000 2330 27.1  

FWI with DAF    

Model dimension Shot gather size Time (s) Memory (GB)  

100 x 100 x 50 500 x 10000 216 2.3  

200 x 200 x 100 1000 x 40000 1480 8.4  

300 x 300 x 150 1500 x 90000 3629 32.2  
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3.3. Wavenumber characteristics of acoustic FWI gradient 

with diffraction-angle filtering 
 

To investigate the wavenumber characteristics of the acoustic FWI gradient 

with diffraction-angle filtering, the acoustic FWI example in Section 3.1 is recalled. 

Fig. 3.11 shows the filtered versions of the gradients displayed in Figs. 3.3(b) and 

3.5(b). In Figs. 3.11(a) and 3.11(b), modes II and III of diffraction-angle filtering 

emphasize the contributions of the low- and high-wavenumber components to the 

gradient, respectively. In Figs. 3.11(c) and 3.11(d), modes IV and V of diffraction-

angle filtering additionally boost the low-wavenumber first Fresnel zone and high-

wavenumber migration isochrone, respectively, with suppression of energy at 

intermediate diffraction angles. In particular, mode IV of diffraction-angle filtering 

in Fig. 3.11(c) suppresses most of the high-wavenumber components of the gradient 

and the first Fresnel zone is exclusively extracted, which enables the scale separation 

of the velocity into the macro velocity and reflectivity. In the case of the filtered 

gradients computed with the prior reflectivity information (Fig. 3.5b), mode IV of 

diffraction-angle filtering can extract not only the first Fresnel zone related to the 

diving wave, but also the pair of the first Fresnel zones related to the reflected wave, 

which is relatively weaker than the diving-wave-related first Fresnel zone or 

migration isochrone. Note that as the offset between the source and receiver 

increases, leakage of some parts of the migration isochrones related to large 

diffraction angles might occur.  

The wavepaths of the reflected waves are different from those of the diving 

waves, which can provide the velocity update with complementary wavenumber 
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coverages that cannot be recovered by the diving waves alone. Note that the reflected 

waves can reach the deep target area with relatively short wavepaths compared with 

the diving waves, which are often vulnerable to cycle-skipping. Therefore, the use 

of the reflected waves can partially mitigate the cycle-skipping problem when 

reconstructing the targets in deep areas. 

Next, a model with two reflectors in a linearly increasing background velocity 

is used to investigate the effect of diffraction-angle filtering on the gradient for a shot 

gather with the reflected waves (Fig. 3.12a). The initial model is the exact 

background velocity, and 40000 hydrophones are regularly deployed at the surface. 

In Fig. 3.12(b), as the reflection angle becomes larger (as the offset between the 

source and receiver increases or the depth of the reflector becomes shallower), the 

migration isochrone contains smoother low-wavenumber components. Note that 

modes II (Fig. 3.12c) and IV (Fig. 3.12e) boost the migration isochrones with large 

reflection angles, while modes III (Fig. 3.12d) and V (Fig. 3.12f) extract the 

migration isochrones related to reflection angles nearly 0°. In summary, diffraction-

angle filtering not only extracts either the first Fresnel zones or migration isochrones, 

but also controls the contribution of the migration isochrones with reflection angles 

to the gradient. Based on these results, the nested algorithm with the diffraction-

angle-filtering-based scale separation is designed, which will be described in the next 

Section. 
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Fig. 3.11. Filtered versions of the gradients of Figs. 3.3(b) and 3.5(b) obtained by (a, 

e) mode II, (b, f) mode III, (c, g) mode IV and (d, h) mode V of diffraction-

angle filtering. 
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Fig. 3.12. (a) A two-reflector model. The gradients for a single shot gather filtered 

by (b) mode I, (c) mode II, (d) mode III, (e) mode IV and (f) mode V of 

diffraction-angle filtering. The black triangles indicate the location of 

seismic source. 
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3.4. Design of the diffraction-angle-filtering-based nested 

algorithm 
 

The nested algorithm to mitigate non-linearity of acoustic FWI starts from the 

scale-separation of the P-wave velocity model into the background velocity and 

reflectivity models. The reflectivity model is first inverted starting from the given 

background velocity model. The prior reflectivity model is built at shallower (deeper) 

depths if the given background velocity model is slower (faster) than the true 

background velocity model. The prior reflectivity model generates reflections in the 

source and receiver wavefields, which leads to the additional low-wavenumber 

components of the FWI gradient along the wavepaths of the reflected waves. This 

low-wavenumber update from the reflected waves guides FWI to fit the mismatches 

of reflection moveout due to the inaccurate background velocity model so that the 

re-inverted reflectors starting from the updated background velocity model can be 

shifted to the correct positions. Then, the background velocity model can be 

reconstructed by the low-wavenumber components of the gradient along the 

wavepaths of both the diving and reflected waves. Gradual update of the P-wave 

velocity model from the background velocity model to the reflectivity model can 

partially mitigate the non-linearity of acoustic FWI. In the nested algorithm, the 

scale-separation of the velocity model update is performed by modes IV and V of 

diffraction-angle filtering instead of other techniques (e.g., the 

migration/demigration, up-/down-going wavefield separation, etc.), which can 

directly extract the low-wavenumber update along the full wavepaths. 

During inversion of the prior reflectivity model, it is crucial to first invert 
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reflectivity by fitting the near-zero-offset (near-normal-incidence) data to preserve 

the zero-offset traveltimes and then subsequently match traveltimes at far-offset data 

(Brossier et al. 2015; Zhou et al. 2015; Wang et al. 2016; Chen et al. 2020; Yao et al. 

2020). If the reflected waves were fitted over the entire offsets at the same time in a 

least-square sense starting from an inaccurate initial model, which is faster (slower) 

than the true velocity model, the two-way traveltimes of the reconstructed reflected 

waves at near offsets would be underestimated (overestimated) compared to those of 

the observed reflected waves like in Fig. 3.13(a) (Chen et al. 2020; Yao et al. 2020). 

In this case, the update direction related to the traveltime errors at near offsets is 

opposite to that related to the traveltime errors at far offsets, which makes FWI fall 

into local minima. On the other hand, if the reflected waves are preferentially fitted 

at the near offsets, then the update directions related to the traveltime errors at near 

offsets and far offsets are consistent. As mentioned in Section 3.3, mode V of 

diffraction-angle filtering boosts the contribution of near-normal-incidence 

reflection to the gradient (Fig. 3.12f). Therefore, mode V of diffraction-angle 

filtering is used to invert the reflectivity model to ensure the preferential updates 

related to normal-incidence reflection. Note that the direct waves are muted during 

reflectivity inversion to reject the secondary Fresnel zones related to the direct waves, 

and the post-critical reflections are excluded by using only near-to-intermediate 

offsets. Once the prior reflectivity model is reconstructed, mode IV of diffraction-

angle filtering is used to extract the low-wavenumber components of the gradient 

along the wavepaths of the diving and reflected waves (Fig. 3.11g).  

Then, the new gradients for the reflectivity ( pV ) and macro velocity ( p0V ) 



 

６５ 

 

model updates are defined as follows: 
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and 
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where the superscripts “Mode IV” and “Mode V” indicate the virtual sources filtered 

by modes IV and V, respectively. Note that the only difference between equations 

(3-5) and (3-6) is the virtual source, which controls the diffraction patterns of the 

partial derivative wavefields as shown in Fig. 3.11. 
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Fig. 3.13. Schematic diagrams illustrating the inverted reflected waves fitted (a) over 

the entire offsets at the same time and (b) at the near offsets intentionally. 

The black triangles indicate the location of the seismic source. The black 

bold and dotted hyperbolic lines indicate the 2D sections of the observed 

and computed reflected waves, respectively. The red and blue arrows 

denote the update directions that make the background velocity model 

faster and slower, respectively. 
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3.5. Workflow of the diffraction-angle-filtering-based nested 

algorithm 
 

Workflow of the diffraction-angle-filtering-based nested algorithm consists of 

two inner loop and one outer loop as shown in Algorithm 3.1. Starting from the 

smooth background velocity i

p0V  in the ith iteration of the outer loop, the workflow 

begins with the first inner loop where 
i

pV   is updated in the given background 

velocity 
i

p0V   by using equation (3-5). Inversion of 
i

pV   can converge in a few 

iterations because it only needs to fit the amplitude errors. After 
i

pV  is recovered, 

the gradient to update the background velocity 
i

p0V   is computed in the velocity 

model 
i i

p0 pV V+  by using equation (3-6) in the second inner loop. Note that 
i

pV  

should provide accurate amplitude information of the reflected waves to avoid 

contribution of the high-wavenumber leakage caused by remaining amplitude errors 

in the reflected waves to the gradient during inversion of the background velocity. 

As the background velocity 
i

p0V   is updated by the gradients computed with 

equation (3-6), the two-way traveltimes of the normal-incidence reflection data 

must be adjusted for the newly updated background velocity so as to keep the 

consistency of the two-way traveltimes of the normal-incidence reflection data like 

in Fig. 3.13(b). Therefore, only a few iterations of the second inner loop are 

performed in the velocity model 
i i

p0 pV V+  . Note that the optimal number of 

iterations of the second inner loop is found empirically, which can make the 

significant low-wavenumber update. Then, the outer loop restarts from the smooth 

background velocity 
i+1

p0V . In this manner, the nested algorithm is performed until 

the background velocity 
i

p0V  converges to the true background velocity. 
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Algorithm 3.1. Workflow of acoustic FWI with the DAF-based nested algorithm. 

 

  
Input: Observed data oP , initial background velocity model 0

p0V  

Outer loop 

First inner loop 

Solve min i

pV  i i

p0 p( )E V V+  

   Use velocity i

p0V  

   Get gradient i i i

p0 p p( ) /E V V V  +   with mode V of DAF 

   Update i

pV  

End first inner loop 

Second inner loop 

   Solve min i

p0V  i i

p0 p( )E V V+  

Use velocity i i

p0 pV V+  

Get gradient i i i

p0 p p0( ) /E V V V +   with mode IV of DAF 

Update i

p0V  

   End second inner loop 

Substitute i i+1

p0 p0V V  for next outer loop 

Initialize i

p 0V   

End outer loop 

Output: Updated background velocity N

p0V  
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Chapter 4. Application to synthetic data: 3D 

SEG/EAGE overthrust model 
 

 

Kim et al. (2022) applied acoustic FWI with the diffraction-angle-filtering-

based nested algorithm to the synthetic 2D pressure data to assess its performance 

(refer to Appendix B). In Chapter 4, the proposed nested algorithm is investigated 

for acoustic FWI of the 3D synthetic pressure data computed for the 3D SEG/EAGE 

overthrust model shown in Fig. 4.1 (Aminzadeh et al. 1997). While the dimension 

of the original model is 20 x 20 x 4.65 km3, only a portion of the model, whose 

dimension is 10 x 10 x 5 km3, is used for the test to avoid computational overburden. 

The water layer is added to describe marine seismic survey with ocean-bottom cable 

on the top of the extracted model. The extracted model includes the thrust faults, 

anticlines, monoclines and flat zones. A channel also exists at a depth of 3.25 km. 

The model has strong lateral and vertical velocity variations, and thus FWI of the 

synthetic pressure data computed for the model might fall into local minima without 

a kinematically accurate initial background velocity model. 3D acoustic FWI with 

the proposed nested algorithm can recover the low-wavenumber structures of the 

model along the wavepaths of the diving and reflected waves even for highly 

complex velocity structures. The reconstructed background velocity by the proposed 

algorithm can be used as a new initial background velocity model for the subsequent 

FWI stage. The modeling and inversion parameters for the synthetic pressure data 

are provided in Section 4.1. Inversion results are described in Section 4.2. The 

inverted models are displayed by the Voxler of Golden Software Inc. 
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Fig. 4.1. The true 3D SEG/EAGE overthrust P-wave velocity model. The inline and 

crossline vertical slices and the horizontal slices are extracted at (inline, 

crossline, depth) = (a) (2.5, 2.5, 4.25) km, (b) (2.5, 2.5, 3.25) km, (c) (2.5, 

2.5, 2) km and (d) (7.5, 2.5, 4.25) km. The black arrows indicate the part 

that we should pay attention to when comparing inversion results. 
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4.1. Modeling and inversion parameters 
 

The model is discretized by 200 x 200 x 100 grid points with a grid interval of 

50 m. A total of 40000 pressure sources are assumed to be excited at a depth of 50 

m; and 180 receivers are deployed with an inline interval of 500 m and a crossline 

interval of 1 km over the whole area. The source-receiver reciprocity theorem is used 

to reduce computational efforts (i.e., the receiver gathers are regarded as the shot 

gathers during modeling and inversion). For the source wavelet function, the Ricker 

wavelet with a peak frequency of 5 Hz is used. The total recording length is 5 s. Then, 

the Butterworth filter with a bandwidth of 3 − 9 Hz is applied to the synthetic 

observed data. Note that unrealistic low-frequency components in the source wavelet 

is excluded during inversion. Fig. 4.2 shows a representative receiver gather at a 

distance of 1.75 km along the inline direction, and a distance of 2 km along the 

crossline direction. In the receiver gather, the refracted waves are observed at far 

offsets (outside the yellow dotted box) due to the wide-aperture/long-offset 

acquisition geometry, and thus the contribution of the refracted and diving waves to 

the low-wavenumber updates dominates that of the reflected waves to the low-

wavenumber updates during inversion with the nested algorithm without the data 

scaling techniques. One can design the time-offset window to intentionally 

emphasize the short-spread reflection data (Zhou et al. 2015). However, in this thesis, 

a simple offset-selection strategy is used to balance the contribution of the reflected 

waves to the low-wavenumber updates. In this synthetic case, the nested algorithm 

is applied to the near-to-intermediate-offset data (<6 km; inside the yellow dotted 

box). It is assumed that the source wavelet function is known. The initial velocity 



 

７２ 

 

model is a linearly-increasing 1D P-wave velocity model as shown in Fig. 4.3(a), 

which cannot describe the macro variations of the model. Following the workflow 

described in Algorithm 3.1, the reflectivity model 
pV  is updated in the first inner 

loop starting from the given background velocity model 
p0V   using the near-to-

intermediate-offset data. The first inner loop is performed by 5 times for each 

background velocity model to ensure that the zero-offset reflectivity is completely 

inverted. Then, in the second inner loop, the low-wavenumber updates are computed 

in the velocity model 
p p0V V +  using the intermediate-offset data (<6 km), which 

provides the wavepaths of the reflected waves. The second inner loop is performed 

by 5 times until the zero-offset reflectivity is re-inverted for the newly updated 

background velocity. A fixed step-length of 0.05 km/s is used during inversion for 

simplicity. 
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Fig. 4.2. A representative receiver gather at a distance of 1.75 km along the inline 

direction, and a distance of 2 km along the crossline direction. The time 

slice is extracted at 4.5 s. The yellow dotted box is used to indicate the 

near-to-intermediate-offset data (<6 km) used in the nested inversion 

algorithm. 
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4.2. Inversion results 
 

In the first iteration of the outer loop, the reflectivity model 
p p0V V +   is 

reconstructed starting from the initial velocity model shown in Fig. 4.3(a). Fig. 4.3(b) 

shows the reflectivity model 
p p0V V +   inverted by using the near-normal-

incidence reflections by mode V of diffraction-angle filtering. Note that the model is 

so complicated, that it cannot be completely described only with zero-offset 

reflectivity and inaccurate initial background velocity models. However, the 

reflectivity model can provide sufficient wavepaths of the reflected waves, which 

lead to the velocity update with wide wavenumber coverages. Figs. 4.3(c) and 4.3(d) 

show the background velocity models reconstructed by using conventional FWI 

filtered by mode IV after 40 iterations and FWI with the diffraction-angle-filtering-

based nested algorithm after 8 iterations of the outer loop. Compared with the initial 

velocity model, the reconstructed background velocity models can briefly describe 

lateral and vertical velocity variations caused by heavily folded overthrust structures 

of sedimentary succession. However, the low-wavenumber update in conventional 

FWI filtered by mode IV is mainly derived by the diving waves, in which case the 

low-wavenumber update from the reflected waves is excluded. Figs. 4.4(a) and 4.4(b) 

show the velocity perturbations of the background velocity models in Figs. 4.3(c) 

and 4.3(d) from the initial velocity model, respectively. We can see that the update 

of FWI with the nested algorithm (Fig. 4.4b) is different from that of conventional 

FWI filtered by mode IV (Fig. 4.4a) because of the additional update along the 

wavepaths of the reflected waves. 
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Fig. 4.3. (a) The linearly-increasing background velocity model used as an initial 

guess and (b) the reflectivity model p p0V V +  recovered by using near-

normal-incidence reflections by mode V of diffraction-angle filtering 

starting from the initial background velocity model. The background 

velocity models built by using (c) conventional FWI filtered by mode IV 

and (d) FWI with the diffraction-angle-filtering-based nested algorithm. 

The inline and crossline vertical slices and the horizontal slice are extracted 

at (inline, crossline, depth) = (2.5, 2.5, 4.25) km. 
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Fig. 4.4. The velocity perturbations of the background velocity models built by using 

(a) conventional FWI filtered by mode IV and (b) FWI with the diffraction-

angle-filtering-based nested algorithm from the initial velocity model. The 

inline and crossline vertical slices and the horizontal slices are extracted at 

(inline, crossline, depth) = (2.5, 2.5, 4.25) km. 
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Next, I apply subsequent FWI starting from the reconstructed background velocity 

models. The results of subsequent FWI will demonstrate that the complementary 

low-wavenumber update along the reflection wavepaths not only updates the parts 

where the diving waves cannot reach, but also provides enhanced low-wavenumber 

update at the shallow parts, which allows subsequent FWI to converge toward the 

global minimum while recovering the intermediate-to-high-wavenumber subsurface 

structures. 

The finally inverted velocity models starting from the background velocity 

models reconstructed by using conventional FWI with mode IV and FWI with the 

nested algorithm are shown in Fig. 4.5. For comparison, the true velocity model and 

conventional FWI result starting from the linearly-increasing initial velocity model 

are also displayed in Fig. 4.5. The inline and crossline vertical slices and the 

horizontal slices are extracted like in Fig. 4.1. Referring to the black arrows depicted 

in Fig. 4.1, the sediment layers at the flat zone (refer to the crossline vertical slices) 

and fault block generated by the two thrust faults (refer to the inline and crossline 

vertical slices) are clearly reconstructed at correct depths in the inverted velocity 

model starting from the background velocity built by using FWI with the nested 

algorithm. Syncline at a depth of 2 km and deep reflectors (at depths of 2.5 − 3.5 km) 

are well delineated (Figs. 4.5d, 4.5l and 4.5p). Compared with the result starting from 

the linearly-increasing initial velocity model, the interfaces corresponding to the 

sediment layers at the flat zone (refer to the crossline vertical slices in Fig. 4.5b) 

appear at deeper depths, because of the incomplete reconstruction of the thick low-

velocity sediment layer at a depth of 1.5 km. 
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Fig. 4.5. (a, e, i, m) The true velocity model is displayed for comparison. The 

inverted velocity models starting from (b, f, j, n) the linearly-increasing 

velocity model and background velocity models reconstructed by using (c, 

g, k, o) conventional FWI filtered by mode IV and (d, h, l, p) FWI with the 

nested algorithm. The inline and crossline vertical slices and the horizontal 

slices are extracted at (inline, crossline, depth) = (a, b, c, d) (2.5, 2.5, 4.25) 

km, (e, f, g, h) (2.5, 2.5, 3.25) km, (i, j, k, l) (2.5, 2.5, 2) km and (g, h) (7.5, 

2.5, 4.25) km. 
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Fig. 4.5. (Continued) 
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Fig. 4.5. (Continued) 
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Note that the reflectors are less focused and their amplitudes are also incompletely 

estimated if the macro velocity model cannot provide sufficiently accurate kinematic 

information (Figs. 4.5b, 4.5j and 4.5n). The fault block between the two thrust faults 

(refer to the inline vertical slices in Fig. 4.5b) appears slightly shallower than that in 

the result with the nested algorithm. The dipping angles of the two thrust faults are 

overestimated and the fault block is distorted due to the inaccurate background 

velocity information at depths of 1.5 − 3 km. Likewise, the imaged syncline and 

reflectors at depths of 2 − 3.5 km are hardly focused and located at slightly shallower 

depths than those in the true velocity model (Fig. 4.5b). The anticline and thrust 

faults can be a potential closed petroleum trap, and distortion of the fault block and 

folds caused by the thrust faults can lead to inaccurate evaluation of the reservoir. 

The depth errors caused by the inaccurate macro velocity model are more obvious in 

the horizontal slices than in the vertical slices. Compared with the conventional FWI 

result, 3D structures bounded by the folds and faults are clearly imaged at their 

correct positions, and the channel-related low-velocity zone appears broad in the 

result of FWI with the nested algorithm (Figs. 4.5f and 4.5h).  

In the inverted velocity model starting from the background velocity model 

built by conventional FWI with mode IV, the reflectors are well focused at the 

shallow parts (Figs. 4.5k and 4.5o). However, the fault block is still distorted and 

reflectors at depths of 2 − 4 km are mispositioned (Figs. 4.5c, 4.5g and 4.5o) because 

of the incompletely reconstructed macro velocity structures. This implies that 

conventional FWI, which mainly relies on the diving waves and post-critical 

reflections to recover low-wavenumber structures, often fails to build a background 



 

８２ 

 

velocity model with full low-wavenumber coverage, while FWI with the nested 

algorithm, which allows the additional low-wavenumber update from the short-

spread reflections, recovers a reliable background velocity model. 

Fig. 4.6 shows the comparisons among the velocity profiles of the true velocity 

model and inverted velocity models in Fig. 4.5 for different locations. At all locations, 

the velocity profiles of FWI with the nested algorithm reasonably describe the 

vertical variations of the true velocity model. The comparisons among the data and 

model misfits of the inverted velocity models in Fig. 4.5 also demonstrate that FWI 

with the nested algorithm provides the most accurate velocity model (Fig. 4.7 and 

Table 4.1). Fig. 4.8 shows receiver gathers of the observed and computed data for 

the initial background velocity model and inverted velocity models in Fig. 4.5. The 

comparisons of the receiver gathers ensure that the velocity model reconstructed by 

FWI with the nested algorithm provides accurate amplitude and traveltime 

information of refractions and reflections, while conventional FWI, which mainly 

relies on the diving waves alone to build macro velocity structures, fails to fit 

traveltimes at the far offsets.  

The results for the synthetic data convinces us that FWI with inaccurate initial 

background velocity might get stuck in local minima even for an ideal acoustic case 

(note that elastic effects are not considered in this synthetic case). However, the 

diffraction-angle-filtering-based nested algorithm can reconstruct the background 

velocity model that provides accurate traveltime information, which partially 

linearize FWI and enables subsequent FWI to converge to the global minimum even 

when the subsurface velocity model is highly complex. 



 

８３ 

 

 

Fig. 4.6. Depth profiles of the true velocity model (the black lines) and inverted 

velocity models starting from the initial velocity model (the blue lines) and 

background velocity models reconstructed by using conventional FWI 

with mode IV (the green lines) and FWI with the nested algorithm (the red 

lines) at (inline, crossline) = (a) (2.5, 5) km, (b) (5, 5) km, (c) (7.5, 5) km. 

  



 

８４ 

 

 

Fig. 4.7. (a) Data misfits for the background velocity models reconstructed by using 

conventional FWI with mode IV (the green line) and FWI with the nested 

algorithm (the red line). (b) Data misfits for the subsequently inverted 

velocity models starting from the initial velocity model (the blue line) and 

background velocity models reconstructed by using conventional FWI 

with mode IV (the green line) and FWI with the nested algorithm (the red 

line). The data misfits are plotted in a logarithm scale.  
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Table 4.1. Model misfits for the subsequently inverted velocity models starting from 

the initial velocity model and background velocity models reconstructed 

by using conventional FWI with mode IV and FWI with the nested 

algorithm. 

  

 Model misfits  

Velocity model 
2

pV  
 

Initial velocity model 1.286E+06  

Conventional FWI 1.224E+06  

FWI with mode IV 1.174E+06  

FWI with the nested algorithm 1.013E+06  
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Fig. 4.8. Representative receiver gathers at a distance of 1.75 km along the inline 

direction, and a distance of 2 km along the crossline direction displayed by 

interweaving the observed data with the computed data for the (a) initial 

velocity model and inverted velocity models starting from the (b) initial 

velocity model and background velocity models reconstructed by using (c) 

conventional FWI with mode IV and (d) FWI with the nested algorithm 

every 10 x 10 traces. At the origin, the observed data are first shown 

followed by the computed data. 
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Fig. 4.8. (Continued) 
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Fig. 4.8. (Continued) 
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Chapter 5. Application to field data: North Sea Volve 

oil field 3D OBC data 
 

 

In Kim et al. (2022), acoustic FWI with the diffraction-angle-filtering-based 

nested algorithm is applied to the 2D line of the OBC data set acquired in the Volve 

oil field of the North Sea in 2002 (Szydlik et al. 2007; Fig. 5.1) to assess its 

applicability (refer to Appendix C). In Chapter 5, the performance and applicability 

of the proposed nested algorithm for acoustic FWI are examined by applying it to 

the 3D OBC data acquired in the Volve oil field, located in the North Sea (Szydlik et 

al. 2007). The preprocessed data (originally conducted in 2002) have officially been 

released by Equinor and its former Volve partners since October 2018. The field is 

characterized by a complex subchalk reservoir, which is a small dome-shaped 

structure (Szydlik et al. 2007; Fu et al. 2019; Singh et al. 2021). Considering the shot 

geometry of the field, the dimension of the subsurface velocity model for FWI is set 

to be 12.5 x 6.75 x 4.5 km3. A 3D P-wave velocity model reconstructed by using 

layer-stripping-based reflection tomography and incorporating well log data have 

been released along with the OBC data (Fig. 5.2; Szydlik et al. 2007). The sonic log 

obtained in the oblique well displayed in Fig. 5.3 is also available for quality control. 

According to the reconstructed 3D S-wave velocity, anisotropy parameters   and 

   models released along with the 3D P-wave velocity model and the previous 

studies of FWI of Volve oil field OBC data (Szydlik et al. 2007; Guo and Alkhalifah 

2017; Zhang and Alkhalifah 2017; Oh et al. 2018; Fu et al. 2019; Li et al. 2019; Li 

and Alkhalifah 2020; Singh et al. 2021), the inherent anisotropic and elastic 
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properties of subsurface media in the Volve oil field can seriously degrade the quality 

of acoustic FWI result. Because of the inaccurate approximations of physical 

behaviors of seismic data acquired in real seismic survey, acoustic FWI often 

generates artifacts or falls into local minima. To demonstrate that appropriate 

inversion strategies can enhance the background P-wave velocity obtained using 3D 

acoustic FWI even in case field data are affected by elasticity and anisotropy, 

acoustic FWI with the diffraction-angle-filtering-based nested algorithm is applied 

to the Volve oil field 3D OBC data. The inversion parameters and strategies for 

acoustic FWI of the OBC pressure data are described in Section 5.1. The inversion 

results are described in Section 5.2. Like in Chapter 4, the inverted models are 

displayed by the Voxler of Golden Software Inc. 
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Fig. 5.1. Location of the Volve oil field in the North Sea. 
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Fig. 5.2. The 3D P-wave velocity model reconstructed by reflection tomography for 

the Volve OBC data. The inline and crossline vertical slices and the 

horizontal slices are extracted at (inline, crossline, depth) = (a) (4, 2.25, 

3.75) km, (b) (4, 2.25, 2.95) km and (c) (5.5, 2.25, 3.75) km. The black 

arrows indicate the part that we should pay attention to when comparing 

inversion results. 
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Fig. 5.3. The path of the oblique well in the Volve oil field for quality control. The 

black dots indicate the trajectory of the well. The white dots indicate the 

projection of the well onto the inline and crossline vertical slices and the 

horizontal slice extracted at (inline, crossline, depth) = (4, 2.25, 2.95) km. 
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5.1. Inversion parameters and strategies 
 

The velocity model for inversion is discretized by 250 x 135 x 90 grid points 

with a grid interval of 50 m. A total of 12 parallel receiver cables are deployed at the 

sea bottom with an interval along the crossline direction of 400 m, and each cable 

consists of 240 receivers at an interval of 25 m along the inline direction. Although 

the water depth varies from 80 to 100 m, I assume a flat sea bottom with a water 

depth of 100 m. The pressure sources are excited by flip-flop shooting, whose 

intervals are 50 m and 25 m along the crossline inline directions, respectively. Note 

that the sources are assumed to be excited just below the sea surface, but there would 

be some errors in source positions due to the limitation of the grid interval. Like in 

Chapter 4, the source-receiver reciprocity theorem is used. Originally, a total of 2876 

receivers were deployed over the whole area with intervals of 25 and 400 m along 

the inline and crossline directions, and among them 144 receivers are used for 

inversion in this study. The sources are resampled with an interval of 50 m and then 

the data are sorted to obtain the receiver gathers. Fig. 5.4 shows the locations of the 

receivers and sources with respect to the first receiver gather. Fig. 5.5(a) shows a 

representative receiver gather at distances of 4.8 and 3.25 km along the inline and 

crossline directions. The total recording length is 6 s. The Butterworth filter with a 

bandwidth of 2 − 5.5 Hz is applied to the data (Fig. 5.5b). Note that preferential use 

of low-frequency components mitigates the cycle-skipping problem of the least-

squares-norm-based local optimization technique (Bunks et al. 1995; Sirgue and 

Pratt 2004; Virieux and Operto 2009). In the receiver gather (Fig. 5.5b), strong 

reflected waves are observed around 3 s, which seems to come from the subchalk 
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reservoir with an overlying seal rock. The source wavelet is estimated by the method 

described in Section 2.2.2.4. The direct waves at near offsets (<250 m) are used to 

estimate the source wavelet. The estimated source wavelet and its frequency 

spectrum are shown in Fig. 5.6. A 1D P-wave velocity model, which is generated 

from the sonic log obtained in the oblique well in Fig. 5.3, is used as an initial 

background velocity model (Fig. 5.7a). Following the workflow described in 

Algorithm 3.1, the reflectivity model 
pV   is recovered using the near-to-

intermediate-offset data with mode V of diffraction-angle filtering in the first inner 

loop starting from the given background velocity model 
p0V . The first inner loop is 

iterated by 4 times for each background velocity model. In the second inner loop, the 

low-wavenumber updates are computed for the velocity model 
p p0V V +  by using 

mode IV of diffraction-angle filtering. The second inner loop is iterated by 2 times 

until the zero-offset reflectivity is re-inverted for the newly updated background 

velocity. Like in Chapter 4, a fixed step-length of 0.05 km/s is used during inversion.  

As addressed in the former studies of the Volve oil field, there are strong 

anisotropic effects at depths of 1 − 2.5 km and reservoir. According to Gholami et al. 

(2013), Oh and Alkhalifah (2016) and Feng and Schuster (2019), the amplitudes of 

the scattering patterns of the anisotropy parameters   and   are dependent on 

incident angles of the wavefield with respect to the perturbations of the anisotropy 

parameters. Because the amplitudes of the scattering patterns of   are significant 

when incident angles are nearly 90° (which indicate the direct or diving waves), far-

offset data (>5 km) are excluded (Fig. 5.5b) during inversion to mitigate the cross-

talk effect between the P-wave velocity and   . The updates of the background 
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velocity and detailed velocity structures then mainly rely on the reflected waves and 

the updates related to the direct and diving waves only provide supplementary 

information of macro structures at the shallow part in this case. 
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Fig. 5.4. Locations of receivers and sources for the first receiver gather. The black 

dots indicate the locations of receivers. The blue dots indicate the locations 

of sources used for the first receiver gather and the red triangle indicates 

the location of the first receiver. 
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Fig. 5.5. (a) A representative receiver gather and (b) its bandpass-filtered version at 

distances of 4.8 and 3.25 km along the inline and crossline directions. The 

time slice is extracted at 4.2 s. The yellow dotted box is used to indicate 

the near-to-intermediate-offset data (<5 km) used in the nested inversion 

algorithm. 
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Fig. 5.5. (Continued) 
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Fig. 5.6. (a) The estimated source wavelet and (b) its frequency spectrum. 
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Fig. 5.7. (a) The 1D P-wave velocity model used as an initial guess. (b) The 

reflectivity model p p0V V +   recovered by using near-normal-incidence 

reflections by mode V starting from the initial velocity model. (c) The 

background velocity model built by using FWI with the nested algorithm. 

The inline and crossline vertical slices and the horizontal slice are extracted 

at (inline, crossline, depth) = (4, 2.25, 3.75) km. 
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5.2. Inversion results 
 

The reflectivity model 
p p0V V +  inverted in the first iteration of the outer loop 

starting from the initial velocity model is shown in Fig. 5.7(b). The horizontal chalk 

layer appears at depths of 3 − 3.25 km, indicating the location of the reservoir. Note 

that the chalk layer is mispositioned at deeper depths than in the reference velocity 

model (Fig. 5.2). Then, the low-wavenumber updates along the wavepaths of the 

reflected waves generated by the seal rock will adjust the depths of the reservoir 

structures. Fig. 5.7(c) shows the reconstructed background velocity after 10 

iterations of the outer loop of the nested algorithm. Compared with the initial 

velocity model, the velocities in the overburden at depths of 1.5 − 3 km decreased 

and the reconstructed background velocity model describes vertical velocity 

variations above the reservoir. Fig. 5.8 shows the velocity perturbation of the 

background velocity model in Fig. 5.7(c) from the initial velocity model. The update 

of FWI with the nested algorithm contains the low-wavenumber components at 

depths of 1.5 − 3 km, which are driven by the reflections generated from the seal 

rock. This enables inversion to update the macro structures of the deep target area 

while excluding the far-offset data. Note that the low-wavenumber components of 

the update for the reservoir structures are significant due to the large-scattering-

angle-related migration isochrones and first Fresnel zones along the reflection 

wavepaths. At the shallow part, the update of the macro velocity structure is driven 

by the direct and diving waves. 

Next, subsequent FWI is carried out using the background velocity model 

recovered by using FWI with the nested algorithm (Fig. 5.9) as an initial guess. 
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Subsequent FWI is carried out by using mode V of diffraction-angle filtering in this 

case to mainly fit the amplitudes of near-normal-incidence reflections, which is 

relatively free from the PS mode conversion. Fig. 5.9 shows the velocity model 

inverted by subsequent FWI. For comparison, the reference tomography velocity 

model in Fig. 5.2 and velocity model inverted by conventional FWI starting from the 

initial velocity model in Fig. 5.7(a) are displayed together in Fig. 5.9. The inline and 

crossline vertical slices and the horizontal slices are extracted like in Fig. 5.2. Note 

that subsequent FWI recovers the detailed reservoir structures and interfaces of the 

overburden, but it is difficult to trust the amplitudes and thicknesses of the reflectors 

because of the inaccurate approximations of physical behaviors in acoustic FWI. 

Therefore, I mainly focus on the positions of the interfaces rather than the 

quantitative values to examine the quality of the velocity model reconstructed by the 

diffraction-angle-filtering-based nested algorithm in this case. Referring to the black 

arrows depicted in Fig. 5.2, the interface of the seal rock is reconstructed at depths 

of 2.95 − 3 km in the result of conventional FWI starting from the inaccurate initial 

velocity model, which are deeper than their presumed depths (Figs. 5.9b and 5.9e). 

On the other hand, the reservoir structure imaged in the result of FWI with the nested 

algorithm is shifted to shallower depths, which are presumably its correct position 

(Figs. 5.9c and 5.9f). The imaged dome-shaped structure in Fig. 5.9(f), which is 

presumed as a reservoir, is located at its correct position referring to the tomography 

velocity model shown in Fig. 5.9(d). 
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Fig. 5.8. The velocity perturbation of the background velocity model built by using 

FWI with the diffraction-angle-filtering-based nested algorithm from the 

initial velocity model. The inline and crossline vertical slices and the 

horizontal slice are extracted at (inline, crossline, depth) = (4, 2.25, 3.75) 

km. 
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The dome-shaped structure appears more clearly in the result of FWI with the nested 

algorithm compared with that obtained by conventional FWI starting from the initial 

model (Figs. 5.9h and 5.9i). Fig. 5.10 shows the comparisons among the velocity 

profiles of the well log, initial velocity model, background velocity model built by 

FWI with the nested algorithm, and finally inverted velocity models starting from 

the initial velocity model and background velocity model built by FWI with the 

nested algorithm along the well path shown in Fig. 5.3. FWI starting from the initial 

velocity model (the yellow line) locates the reservoir structures at wrong positions 

(the blue line). In contrast, the background velocity model reconstructed by FWI 

with the nested algorithm has slower velocities in the overburden (the green line). 

Accordingly, the result of FWI starting from the reconstructed background velocity 

model (the red line) matches well with the tendency of the well log and the chalk 

interface and reservoir structures are shifted to shallower depths. Note that there are 

still some mismatches at depths of 2.5 − 3 km because some of material properties 

such as elasticity and anisotropy are not considered, which will be discussed later. 

For another quality control, angle-domain common-image gathers (ADCIGs; 

Sava and Fomel 2003) are computed for the result of FWI starting from the initial 

velocity model and background velocity model reconstructed by the nested 

algorithm (Fig. 5.11). Note that an inline profile of data is extracted at a distance of 

3.65 km along the crossline direction to compute the ADCIGs. The reflection events 

in Fig. 5.11(b) are much flatter than those of Fig. 5.11(a), specifically the events at 

depths of 2.5 − 3 km (in the yellow dashed box in Fig. 5.11), which come from the 

chalk layer. However, because the vertical P-wave velocity is mainly recovered, 
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some events at large angles still smile upward, which might be attributed to 

anisotropy (indicated by the red arrows). 
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Fig. 5.9. (a, d, g) The true velocity model is displayed for comparison. The inverted 

velocity models starting from (b, e, h) the initial velocity model and (c, f, 

i) background velocity model reconstructed by using FWI with the nested 

algorithm. The inline and crossline vertical slices and the horizontal slices 

are extracted at (inline, crossline, depth) = (a, b, c) (4, 2.25, 3.75) km, (d, 

e, f) (4, 2.25, 2.95) km and (g, h, i) (5.5, 2.25, 3.75) km. 
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Fig. 5.9. (Continued) 
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Fig. 5.9. (Continued) 
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In Fig. 5.12, receiver gathers of the observed and computed data for the initial 

background velocity model, inverted velocity models starting from the initial 

velocity model and background velocity model reconstructed by FWI with the nested 

algorithm are displayed. The phases of refractions and reflections are well-matched 

at the near-to-intermediate offsets. Note that some amplitude errors still exist over 

the whole offsets, because acoustic approximation cannot explain the PS mode 

conversion at the interface of seal rock. From these results, I confirm that the 

reconstructed P-wave velocity model reasonably describes the traveltime 

information of the observed pressure data acquired in the Volve oil field at the near-

to-intermediate offsets.  

Still, there are the incomplete reconstruction of the seal rock and reservoir at 

depths of 2.5 − 3 km and the amplitude errors in Fig. 5.12. One of the reasons is that 

the acoustic approximation cannot fully recover large contrasts of the P- and S-wave 

impedances (e.g., at the chalk interface) due to amplitude mismatches caused by the 

PS mode conversion (Plessix and Pérez Solano 2015; Agudo et al. 2020). Meanwhile, 

the traveltime differences caused by the anisotropic effects in the Volve oil field 

become remarkable at offsets longer than 4 − 5 km (Oh et al. 2018). To minimize the 

anisotropic effects, the vertical P-wave velocity is recovered using the reflections at 

the near-to-intermediate offsets in this thesis. However, the exclusion of the far-offset 

data leads to the absence of the low-vertical-wavenumber updates along the 

horizontal wavepaths of the diving waves and post-critical reflections. For further 

improvements, elastic anisotropic FWI should be performed to simultaneously 

recover the P- and S-wave structures concerning the anisotropy parameters using full 
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offsets. The reconstructed P-wave background velocity model can then be used as an 

initial guess. 
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Fig. 5.10. Depth profiles of the well sonic log (the black line), reference tomography 

velocity model (the pink line), initial velocity model (the yellow line), 

background velocity model built by FWI with the nested algorithm (the 

green line), and finally inverted velocity models starting from the initial 

model (the blue line) and background velocity model reconstructed by 

FWI with the nested algorithm (the red line) along the well path shown in 

Fig. 5.3. 
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Fig. 5.11. ADCIGs computed in an inline profile of data extracted at a distance along 

the crossline direction of 3.65 km for the (a) initial velocity model and (b) 

background velocity model inverted by FWI with the nested algorithm. 

The angle ranges from 0° to 45°. P1 − P7 are located at (inline, crossline) 

= (4, 4.5) km, (4, 5) km, (4, 5.5) km, (4, 6) km, (4, 6.5) km, (4, 7) km and 

(4, 7.5) km. 

  



 

１１４ 

 

 

Fig. 5.12. Representative receiver gathers at distances of 4.8 and 3.25 km along the 

inline and crossline directions displayed by interweaving the observed data 

with the computed data for the (a) initial velocity model and inverted 

velocity models starting from the (b) initial velocity model and (c) 

background velocity model reconstructed by FWI with the nested 

algorithm every 10 x 10 traces. At the origin, the observed data are first 

shown followed by the computed data. 
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Fig. 5.12. (Continued) 
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Chapter 6. Conclusions 
 

 

Acoustic FWI used to build the high-resolution subsurface velocity model from 

3D pressure data suffers from the local minima problem without kinematically 

accurate macro velocity subsurface model. The reconstruction of the macro velocity 

structures mainly relies on the updates associated with diving waves in conventional 

FWI. In this study, to obtain the updates for macro velocity structures along the 

wavepaths of the diving and reflected waves in acoustic FWI, the diffraction-angle-

filtering-based nested algorithm was designed and applied for 3D data sets. The 

diffraction-angle-filtering-based nested algorithm enables one to separate the 

velocity model into the high-wavenumber reflectivity model and low-wavenumber 

background velocity model. In the proposed algorithm, the high-wavenumber 

reflectivity model is first inverted to introduce the wavepaths of the reflected waves. 

Then, the low-wavenumber updates generated along the wavepaths of the diving and 

reflected waves provide complementary low-wavenumber coverage, which can 

reconstruct the background velocity model for subsequent FWI. In 3D acoustic FWI, 

diffraction-angle filtering can directly extract either the high- or low-wavenumber 

components of the gradient with reasonable computational efforts. Mode V of 

diffraction-angle filtering boosts the high-wavenumber migration isochrones related 

to the near-normal-incidence reflections to build prior reflectivity model, while mode 

IV of diffraction-angle filtering extracts the low-wavenumber first Fresnel zones 

along the wavepaths of the diving waves and the wavepaths of the reflected waves 

(which are generated by the prior reflectivity model) to reconstruct the background 
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velocity model.  

The synthetic data example for the 3D SEG/EAGE overthrust model (which 

has strong lateral and vertical velocity variations) demonstrated that conventional 

FWI falls into local minima even when the seismic data is free from the elastic or 

anisotropic properties, whereas FWI with the proposed nested algorithm can build a 

reliable background velocity model, which enables FWI to converge toward the 

global minimum. With the complementary low-wavenumber updates along the 

reflection wavepaths, the distortion of the imaged fault block and folds caused by 

the thrust faults, which can lead to misunderstanding of the reservoir structures, is 

remarkably enhanced and reflectors are well focused. The application to the 3D field 

data set from the North Sea showed that acoustic FWI with the proposed algorithm 

can provide kinematically accurate P-wave background velocity model for seismic 

data with significant elastic and anisotropic effects. Even when the far-offset data are 

excluded during acoustic inversion because of the cross-talk effects between the P-

wave velocity and anisotropy parameters, the nested algorithm enables FWI to 

recover the correct velocities of the overburden by the macro velocity updates along 

the reflection wavepaths generated from the seal rock. Although the amplitude errors 

cannot be fitted by acoustic FWI, the reconstructed background velocity model 

sufficiently describes the traveltimes of the observed PP refractions and reflections. 

The reconstructed P-wave background velocity model can be served as the initial 

guess for further multi-parameter inversion for elastic VTI media. 

In general, acoustic FWI using the least-squares-norm-based local optimization 

is vulnerable to cycle-skipping and often requires proper time windows or offset 
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ranges to avoid cycle-skipping for a given frequency band. Moreover, acoustic FWI 

using the least-squares-norm-based local optimization is sensitive to amplitude 

errors, which can be significant at intermediate-to-far offsets because of the PS mode 

conversion in field data applications. The diffraction-angle-filtering-based nested 

algorithm can be easily implemented for other objective functions, which are more 

convex and robust to amplitude errors. Appropriate model constraints can also 

enhance the quality of the reconstructed background velocity model. By adopting 

more appropriate approaches for field data applications, the proposed algorithm can 

build the background velocity model in a more robust way. Besides, subsequent 

multi-parameter inversions for elastic anisotropic media should be considered when 

dealing with field data to quality control the reconstructed P-wave velocity model 

more precisely and obtain quantitatively reliable high-resolution subsurface velocity 

structures. 
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Appendix A. Derivation of the gradient using the 

adjoint-state method 

 

 

In this appendix, the gradient of FWI is derived using the adjoint-state method 

following Plessix (2006). The acoustic wave equation with the second-order 

derivatives of wavefields in the temporal and spatial coordinates in terms of pressure 

and its initial and radiation boundary conditions are written as: 
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Then, the objective function for one source-receiver pair with the governing equation 

(the acoustic wave equation) is written as follows: 
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Because the second term in equation (A-2) is always zero for any wavefield q , the 

objective function is exactly the same as that in equation (2-10). According to the 

integration by parts and Gauss divergence theorem, each part of the second term is 

rearranged as follows: 
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which are satisfied under the termination and radiation boundary condition for q  

as follows: 



 

１３２ 

 

 

( , , ) 0

( , , )
0

s

s

t T

q T

q t

t =

=



= 

x x

x x ,                    (A-6) 

 

and 

 

lim ( , , ) 0sq t
→

=
x

x x ,                    (A-7) 

 

where T  is the total recording length. Therefore, equation (A-2) is rewritten as: 
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Then, the total derivative of Equation (A-8) is 
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The adjoint wavefield is defined as: 
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In summary, for the adjoint wavefield that satisfies the following conditions: 
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the gradient can be computed as: 
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which is identical to the equation (2-12). 

  



 

１３４ 

 

Appendix B. Application to synthetic data: 2D 

Marmousi-II model 
 

 

B.1. Modeling and inversion parameters 
 

In this appendix, the application of the nested algorithm to the synthetic 2D 

pressure data computed for the Marmousi-II model (Fig. B.1; Martin et al. 2006) is 

introduced. Appendix B is extracted from the works in Kim et al. (2022). The model 

is discretized by 460 x 153 grid points with a grid interval of 20 m. It is assumed that 

46 shots and 460 receivers are applied with an even interval at a depth of 20 m, and 

that the shot and receiver intervals are 200 and 20 m, respectively. A linearly-

increasing 1-D velocity model is used for an initial model as shown in Fig. B.2(a). 

For the source function, a Ricker wavelet with a peak frequency of 6.5 Hz is used. 

The total recording length is 5.2 s. The zero-phase Butterworth filters with 

bandwidths of 3 − 6, 3 − 9 and 3 − 12 Hz is applied to the observed and modeled 

data for the multiscale strategy (Bunks et al. 1995). For numerical modeling, I use 

the 4th-order staggered-grid finite-difference method (Virieux 1984) and 

convolutional perfectly matched layers (Komatitsch and Martin 2007) are added to 

avoid artificial boundary reflections. Fig. B.3 shows a representative shot gather at a 

distance of 1.9 km. We can observe the pre-critical reflected waves at near-to-

intermediate offsets (in the red box) and the diving and post-critical reflected waves 

at far offsets (outside the red box). Following the workflow described in Algorithm 

3.1, I invert the reflectivity model pV  using near-offset data in the first inner loop 

starting from the given background velocity model p0V . Then, in the second inner 
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loop, the low-wavenumber updates are computed in the velocity model 
p p0V V +  

using the full-offset data. The preconditioned steepest-descent method is applied for 

the two inner loops. The gradient is preconditioned by the pseudo-Hessian matrix 

(Shin et al. 2001). Considering that incompletely inverted reflectivity model boosts 

the high-wavenumber artifacts and hinders the contribution of the reflected waves to 

the update of the background velocity model, I iterate the first inner loop by 10 times 

for each background velocity model so that the amplitudes and phases of reflected 

waves can be well matched with those of the observed data at near offsets. The 

second inner loop is just performed by single time. I iterate the outer loop by 10 

times for each frequency band. I use a fixed step-length of 0.05 km/s for the two 

inner loops. 
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Fig. B.1. The true 2D Marmousi-II P-wave velocity model. The black arrows 

indicate the part that we should pay attention to when comparing 

inversion results. 
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Fig. B.2. (a) The linearly-increasing background velocity model used as an initial 

guess and (b) the reflectivity model p p0V V +  recovered by using near-

normal-incidence reflections by mode V of diffraction-angle filtering 

starting from the initial background velocity model. 

  



 

１３８ 

 

 

Fig. B.3. A representative shot gather at a distance of 1.9 km of the Marmousi-II 

model. The seismic data contain the pre-critical reflections (in the red box), 

diving waves and post-critical reflections (outside the red box). 
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B.2. Inversion results 
 

Fig. B.2(b) shows the resultant model 
p p0V V +  after 10 iterations of the first 

inner loop. We observe that some reflectors are mispositioned (pointed by the black 

arrows), which can be moved to the correct positions by using additional low-

wavenumber information along the reflection wavepaths. Recall that mode V 

suppresses the low-wavenumber components of the gradient and boosts the 

contribution of the near-normal-incidence data. Fig. B.4 shows filtered versions of 

the gradients computed at the first iteration of the second inner loop for the 

reconstruction of the background velocity model. To examine if the pre-critical 

reflections can provide complementary low-wavenumber coverage for the 

background velocity model reconstruction, which cannot be covered by only the 

diving waves, I separate the pre-critical reflections and early-arrivals (the diving 

waves and post-critical reflections) by using a linear time-offset window (the red box 

in Fig. B.3). To demonstrate if energy at intermediate diffraction angles is suppressed 

by mode IV, the gradients filtered by mode IV are compared to those filtered by mode 

II (whose mechanism is identical to the ENIC proposed by Rocha et al. 2016). 

Because mode IV applied in the second inner loop additionally suppresses the energy 

at intermediate diffraction angles, the gradient filtered by mode IV in Fig. B.4(b) 

reveals macro-structures of the velocity model without high-wavenumber artifacts 

compared with that filtered by mode II in Fig. B.4(a). The gradients computed using 

only the early-arrival data are shown in Figs. B.4(c) and B.4(d). 
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Fig. B.4. The gradients computed at the first iteration of the second inner loop of the 

nested algorithm using (a, b) the full data, (c, d) the early arrival data and 

(e, f) the pre-critical reflection data. The left panels (a, c, e) are filtered by 

mode II and the right panels (b, d, e) are filtered by mode IV. 
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In Figs. B.4(c) and B.4(d), the gradients mainly derived by the diving-wave-related 

first Fresnel zones reveal the low-wavenumber structures up to a depth of 2.5 km 

along the paths of the diving waves. However, due to the limitation of acquisition 

geometry, the left-hand and right-hand sides of the model are hardly delineated. 

Likewise, mode IV shows better performance compared with mode II. In contrast, 

the gradients computed using only the pre-critical reflection data provide the 

information of macro-structures at distances of 0 − 3 km and 7 − 9 km in Figs. B.4(e) 

and B.4(f). Because strong reflectors are located at depths of 2 − 2.5 km, the 

gradients in Figs. B.4(e) and B.4(f) mainly delineate the structures above a depth of 

2 km. The migration isochrones at intermediate diffraction angles are dominant in 

this case and thus high-wavenumber artifacts severely occur in the gradient filtered 

by mode II compared with that filtered by mode IV, which shows the performance 

of mode IV in dealing with pre-critical reflection data. In Fig. B.5, I present the 

background velocity models corresponding to the gradients in Fig. B.4. Figs. B.5(a) 

and B.5(b) demonstrate that FWI with the nested algorithm using both the diving 

and reflected waves yields the best low-wavenumber coverage, which describes 

macro-structures of the Marmousi-II model, compared with Figs. B.5(c) − B.5(f). In 

Figs. B.5(c) and B.5(d), while the shallow parts of the background velocity are 

improved by the contribution of the diving waves, the left-hand side of the model (at 

distances of 0 − 3 km) and macro-structures at depths of 1 − 2 km are not recovered 

well even though the diving waves can reach the deepest part of the model. This is 

probably due to the limited wavenumber coverage of the diving-wave-related first 

Fresnel zones and cycle skipping of far-offset data containing the diving waves. 
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Fig. B.5. The background velocity models built by FWI with the nested algorithm 

using (a, b) the full data, (c, d) the early arrival data and (e, f) the pre-

critical reflection data. The left panels (a, c, e) are filtered by mode II and 

the right panels (b, d, e) are filtered by mode IV in the second inner loop. 
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When an initial velocity model deviates from the true velocity model, far-offset data 

required to retrieve low-wavenumber information of the deep parts are prone to be 

cycle-skipped, which causes the local minima problem. On the other hand, Figs. 

B.5(e) and B.5(f) show that FWI with the nested algorithm using the pre-critical 

reflection data resolves macro-structures different from those delineated by FWI 

with the nested algorithm using the early-arrival data, specifically above a depth of 

2 km, which leads to wider coverage of low-wavenumber structures in Figs B.5(a) 

and B.5(b). Note that the background velocity models obtained by FWI with the 

nested algorithm filtered by mode II (Figs. B.5a, B.5c and B.5e) contain some high-

wavenumber artifacts and do not fully resolve macro-structures compared with those 

filtered by mode IV (Figs. B.5b, B.5d and B.5f). 

To compare these results with those of Oh et al. (2021), I display the gradient 

at the first iteration and the final model obtained by applying mode IV in 

conventional FWI in Figs. B.6 and B.7. By comparing Fig. B.6 with Fig. B.4, we see 

that the gradient of Fig. B.6 looks similar to that of Fig. B.4(d), which indicates that 

mode IV plays a role in recovering low-wavenumber information carried by the 

diving waves in the conventional FWI framework. Accordingly, the resultant 

background velocity in Fig. B.7 cannot recover reliable macro-structures as in the 

inverted background velocity in Fig. B.5(d). From these results, we can confirm that 

FWI with the nested algorithm boosts up the contribution of the reflected waves to 

the low-wavenumber update, which provides complementary low-wavenumber 

information in addition to the low-wavenumber update from the diving waves and 

post-critical reflections. 
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Fig. B.6. The gradient obtained by applying mode IV at the first iteration of 

conventional FWI. 
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Fig. B.7. The background velocity model obtained by applying mode IV in 

conventional FWI. 
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The background velocity model can be used as an initial model in subsequent 

FWI performed to recover detailed velocity structures. Figs. B.8(a) and B.8(b) show 

the final velocity models inverted by subsequent FWI starting from the linearly-

increasing velocity model (i.e., initial model) and the background velocity model 

recovered by FWI with the nested algorithm, respectively. When I start from the 

linearly-increasing model, I fail to recover the accurate velocity model because of 

the severe traveltime errors due to the inaccurate initial model (Fig. B.8a). In contrast, 

when I start from the background velocity model reconstructed by FWI with the 

nested algorithm, I obtain inversion result comparable to the true velocity model (Fig. 

B.8b). 

In Fig. B.9, I show absolute differences between the inverted models and the 

true velocity model. For reference, I also display the difference between the linearly-

increasing velocity model and true velocity model. We observe that the differences 

for the case of starting from the background velocity obtained by FWI with the nested 

algorithm (Fig. B.9b) are smaller than those for both the linearly-increasing velocity 

model (Fig. B.9c) and the final velocity model starting from the linearly-increasing 

velocity model (Fig. B.9a), specifically at depths of 0 − 2 km. Fig. B.10(a) shows 

shot gathers of the observed and modeled data generated for the finally inverted 

model (e.g., Fig. B.8b), which indicate that the amplitudes and phases of refractions 

and reflections are also well-recovered. Fig. B.10(b) also supports that traces of the 

observed and modeled data match well with each other. These results convince us 

that the success of FWI depends on the recovery of reliable background velocity, 
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which can be accomplished by effectively extracting low-wavenumber information 

from both the diving and pre-/post-critical reflected waves. 
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Fig. B.8. Final inversion results obtained by subsequent FWI starting from (a) the 

linearly-increasing velocity model and (b) the background velocity model 

obtained by FWI with the nested algorithm. 
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Fig. B.9. Absolute differences between the true Marmousi-II velocity model and the 

final velocity models inverted by subsequent FWI starting from (a) the 

linearly-increasing velocity model and (b) the background velocity model 

obtained by FWI with the nested algorithm. For reference, the differences 

between the true and linearly-increasing velocity models are also displayed 

in (c). 
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Fig. B.10. (a) A representative shot gather at a distance of 1.9 km displayed by 

interweaving the observed data with the modeled data for the final 

inversion result (shown in Fig. B.8b) every 23 traces. From left to right 

in the panel, the observed data are shown first followed by the modeled 

data. (b) The comparison of the traces of the observed (green) and 

modeled data for the linearly-increasing (blue) and final velocity models 

(red). 
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Appendix C. Application to field data: North Sea 

Volve oil field 2D OBC data 

 

 

C.1. Inversion parameters and strategies 
 

In this appendix, the application of the nested algorithm to the 2D line of the 

OBC data set acquired in the Volve oil field of the North Sea in 2002 (Szydlik et al. 

2007) is introduced. Appendix C is extracted from the works in Kim et al. (2022). 

For 2D acoustic inversion, I choose a single cable line containing 240 receivers 

with an interval of 25 m from the 3D OBC data set. The preprocessed data have 

officially been released by Equinor and its former Volve partners since October 2018. 

I additionally apply a simple procedure of 3D-to-2D conversion to compensate for 

the amplitude and phase errors caused by 2D approximation (Crase et al. 1990). The 

dimension of model is 12 km x 4.5 km with a grid spacing of 25 m. 60 pressure 

sources were applied with an interval of 200 m at a depth of 25 m, and 240 receivers 

were deployed at the sea bottom ranging from 3.175 to 9.15 km of the model. 

Although the water depth varies from 80 to 100 m, I assume a flat sea bottom with a 

water depth of 100 m. Because inversion is mainly performed with low-frequency 

data, the depth variation is less than one grid point. The recording length is 6.4 s. For 

stable FWI, the zero-phase Butterworth filter with corner frequencies of 2.5 and 5.6 

Hz is applied to the data.  

For forward modeling, I use the same technique that was used in Appendix B. 

A representative shot gather and its band-pass filtered version are shown in Figs. 

C.1(a) and C.1(b), respectively. 
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Fig. C.1. (a) A representative shot gather of the Volve OBC data set at a distance of 

3.35 km and (b) its filtered version obtained by the band-pass filter ranging 

from 2.5 to 5.6 Hz. 
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For reference, I display the 3D tomography model released along with the data in 

Fig. C.2. The black solid lines indicate the path of the well and the yellow dashed 

lines indicate the 2D line extracted for acoustic inversion. For an initial velocity 

model, I use a linearly-increasing model as shown in Fig. C.3(a). As I did for the 

Marmousi-II model, I iterate the first inner loop by 10 times for each background 

velocity model to invert the reflectivity model. The total iteration number for the 

outer loop is 12. For simplicity, I use a fixed step length of 0.05 km/s for the two 

inner loops. 

To minimize amplitude mismatches caused by inaccurate physical 

approximations (i.e., acoustic approximation of elastic media) and geometrical 

spreading effects remaining after 3D-to-2D conversion, I use the least-squares norm 

with trace-by-trace-normalized data (i.e., global correlation norm) as an objective 

function (Shen 2010; Choi and Alkhalifah 2012; Warner et al. 2013). I estimate the 

source wavelet by matching near-offset direct arrivals of the trace-by-trace-

normalized observed and modeled data using the filter-based method (Pratt, 1999). 

Compared to the synthetic example, the Volve data have weak reflections as shown 

in Fig. C.1. Therefore, I scale the gradient with the depth-variable weighting factor 

( 2 ze , where z indicates the depth) to amplify the deeper parts in the two inner loops. 

As addressed in the former studies, there are strong anisotropic effects at depths of 

1 − 2.5 km in the Volve oil field (Oh et al. 2018; Oh and Alkhalifah 2019; Li and 

Alkhalifah 2020). According to Zhang and Alkhalifah (2017) and Feng and Schuster 

(2019), I do not use the far-offset data to mitigate anisotropic effects. The maximum 

offset was adjusted from 9 km to 3 km. Then, the gradient is mainly affected by the 
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low-wavenumber components along the short-spread reflection wavepaths, which is 

relatively free from trade-off effects due to the anisotropic parameters. 
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Fig. C.2. The 3D tomography P-wave velocity model released along with the Volve 

data. The yellow dashed lines indicate the section used for 2D acoustic 

FWI. The black solid lines indicate the path of the well. The black arrows 

indicate the top interface of the chalk layer in the tomography model. 
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Fig. C.3. (a) The linearly-increasing background velocity model used as an initial 

guess and (b) the reflectivity model p p0V V +  recovered by using near-

normal-incidence reflections by mode V of diffraction-angle filtering 

starting from the initial background velocity model. 
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C.2. Inversion results 
 

Fig. C.3(b) shows the resultant reflectivity model 
p p0V V +   obtained by 

applying mode V after 10 iterations of the first inner loop. We observe that the 

horizontal chalk layer is inverted indicating the location of reservoir, as in the former 

studies (Szydlik et al. 2007; Guo and Alkhalifah 2017; Oh et al. 2018; Li et al. 2019). 

This horizontal reflector will play a role in providing the reflection wavepaths at 

depths of 0 − 3 km during inversion of the background velocity model in the second 

inner loop. The background velocity model is updated by applying mode IV to the 

gradient corresponding to the velocity model 
p p0V V + . Figs. C.4 and C.5 show the 

scaled gradient and the background velocity model obtained by FWI with the nested 

algorithm, respectively. In Fig. C.4, the gradient contains the low-wavenumber 

components at depths of 1.5 − 3 km, which are carried by the first Fresnel zones 

associated with the pre-critical reflections. Even though I only use the near-to-

intermediate-offset data, I was able to update the low-wavenumber structures at the 

deeper depths of 1.5 − 3 km. Fig. C.5 shows the background velocity model after 12 

iterations of the outer loop, where we can also confirm that macro-structures at 

depths shallower than 3 km are well recovered. This low-wavenumber update will 

play a role in locating the chalk layer in its correct position. 

I subsequently carry out conventional FWI for the Volve data using the 

background velocity model recovered by FWI with the nested algorithm as an initial 

guess. For comparison, I also perform FWI starting from the linearly-increasing 

initial velocity model. 
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Fig. C.4. The scaled gradient obtained at the first iteration of the second inner loop 

of the nested algorithm. 
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Fig. C.5. The background velocity model obtained by FWI with the nested algorithm. 
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Fig. C.6 shows the final inversion results and the corresponding depth profiles along 

the well path starting from the linearly-increasing velocity model and the background 

velocity model obtained by FWI with the nested algorithm. The well is oblique and 

deviates from the 2D line for inversion. Therefore, I project the well path along the 

2D line. The prominent reflector due to horizontal chalk interface in the left panel of 

Fig. C.6(a) is located at depths deeper than 3 km and not focused well. In the right 

panel of Fig. C.6(a), I observe that the linearly-increasing velocity model 

(represented by the green line) is far from the well log (black) and the final inversion 

result starting from the linearly-increasing velocity model (red) deviates from the 

tendency of the well log and does not match well with the P-wave velocity contrast 

due to chalk interface. In contrast, the reflector in the left panel of Fig. C.6(b) is 

shifted to a shallower depth which is presumably its correct position (refer to the 

black arrows that indicates the top of the chalk layer in tomography model). In the 

right panel of Fig. C.6(b), we observe that the background velocity model inverted 

by FWI with the nested algorithm (green) has lower velocities than those of the 

linearly-increasing velocity model (green in Fig. C.6a). Accordingly, the final 

inversion result starting from the background velocity (red) matches well with the 

tendency of the well log compared with that starting from the linearly-increasing 

velocity model (red in Fig. C.6a), specifically above a depth of 2.3 km. The upper 

boundary of the cap rock is shifted up to some extent. Still, the locations of the cap 

rock and reservoir are slightly different from the well log. Considering that the depth 

of the chalk layer varies from 2.5 to 3 km along the inline or crossline directions, 

which forms a small dome-shaped structure (Szydlik et al. 2007; refer to the 
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reference 3D tomography model in Fig. C.2), these mismatches might be caused by 

the errors due to the projection of the oblique well deviated from our 2D line. 

For another quality control, angle-domain common-image gathers (ADCIGs; 

Sava and Fomel 2003) are computed for the final FWI results starting from the 

linearly-increasing velocity model and the background velocity model inverted by 

FWI with the nested algorithm, which are displayed in Figs. C.7(a) and C.7(b), 

respectively. The events in Fig. C.7(b) are much flatter than those of Fig. C.7(a). As 

strong reflections generated by the chalk layer mainly contribute to low-wavenumber 

update like RWI, the events at depths of 2.5 − 3 km (in the yellow dashed box in Fig. 

C.7) are flattened well. However, because I mainly recovered the vertical P-wave 

velocity, some events at large angles still smile upward, which might be attributed to 

anisotropy (indicated by the red arrows). In Fig. C.8, I compare shot gathers of the 

trace-by-trace-normalized observed and the modeled data for the finally inverted 

model (e.g., Fig. C.6b). In Fig. C.8, we observe that the phases of refractions and 

reflections are well-matched at the near-to-intermediate offsets (shorter than 4 − 5 

km). From these results, we confirm that the reconstructed P-wave velocity model 

reasonably describes the observed pressure data acquired in the Volve oil field. 
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Fig. C.6. Final inversion results and depth profiles along the well path obtained by 

subsequent FWI starting from (a) the linearly-increasing velocity model 

and (b) the background velocity model obtained by FWI with the nested 

algorithm. In the right panels of (a) and (b), the depth profiles of starting 

(the green lines) and inverted velocity models (the red lines) are displayed 

with the well log (the black lines). The well log velocities above a depth of 

1.6 km are not available and thus they are interpolated. The black lines in 

the left panels of (a) and (b) indicate the well path. The yellow dots indicate 

the locations for ADCIG in Fig. C.7. 
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Fig. C.7. ADCIGs for the final inversion results obtained starting from (a) the 

linearly-increasing velocity model and (b) the background velocity model 

obtained by FWI with the nested algorithm. The angle ranges from 0° to 

60°. Locations of P1 − P4 are shown in Fig. C.6. 
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Fig. C.8. A representative shot gather at a distance of 3.35 km displayed by 

interweaving the trace-by-trace-normalized Volve field data with the 

modelled data computed for the final inversion model (shown in Fig. C.6b) 

every 12 traces. From left to right in the panel, the Volve field data are 

shown first followed by the modelled data. 

 



 

１６５ 

 

초 록 
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정량적 고해상도 지하 속도구조 모델을 구축하기 위한 자료 적합 

접근 방식인 완전파형역산(full waveform inversion; FWI)은 광대역/광각 

탄성파 자료를 다루기 위해 널리 사용되는 수단들 중 하나가 되었다. 

완전파형역산은 탄성파 자료에 포함된 전체 파동의 운동학적∙동역학적 

성질을 함께 고려하게 되는데, 이는 완전파형역산을 매우 비선형적으로 

만들게 된다. 그러나 완전파형역산은 선형 국부 최적화 기법을 사용하기 

때문에 초기 속도구조 모델이 부정확할 경우 국부 최솟값에 빠지게 된다. 

완전파형역산의 비선형성 문제를 해결하기 위해서는 우선적으로 장파장 

배경 속도구조 모델을 구축한 뒤, 순차적으로 단파장 반사층구조 모델을 

복원하는 과정이 필요하다. 그러나 완전파형역산의 초기 단계에서 

반사파에 의한 장파장 배경 속도구조의 갱신은 거의 발생하지 않으며, 

반사파는 단파장 반사층구조만을 갱신하게 된다. 따라서 “완전파형역산” 

이라는 명칭과는 달리, 기존 완전파형역산은 주로 다이빙파에 의존하여 
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배경 속도구조 모델을 구축하며 반사파의 주시 정보는 역산 과정에서 

거의 반영되지 않는다. 

추가적으로 반사파를 활용해 초기 역산단계에서 장파장 배경 

속도구조 모델을 갱신하기 위해서, 속도구조 모델을 배경 속도구조 

모델과 반사층구조 모델로 분리하여 역산을 수행하는 반사파 파형역산이 

제시되었다. 반사층구조 모델을 직접적으로 사용함으로써, 반사파의 

파동경로를 따라 추가적으로 장파장 속도구조를 갱신할 수 있게 된다. 

반사층구조 모델은 새롭게 갱신된 배경 속도구조 모델에 대해 

반복적으로 구축되어야 하며, 이러한 일련의 과정을 통해 장파장 

속도구조 모델과 단파장 반사층구조 모델이 번갈아가며 역산된다. 

이를 큰 규모의 실제 탐사 자료에 적용하기 위해서는 속도구조 

모델을 장파장 배경 속도구조 모델과 단파장 반사층구조 모델로 

분리하기 위한 계산효율적인 방법이 필요하다. 또한, 배경 속도구조를 

구축하는 과정에서 다이빙파와 반사파에 의한 정보가 함께 효율적으로 

고려되어야 한다. 

본 논문에서는 먼저 탄성파 반사법탐사에서 탄성파 자료에 포함된 

다이빙파와 반사파가 완전파형역산 그래디언트의 파장 성분에 어떻게 

영향을 미치는지 분석한다. 그 후, 완전파형역산 그래디언트의 파장 

성분을 조절하기 위해 회절각 필터링 기법을 도입하고, 5개의 회절각 

필터링 모드로 인해 다이빙파와 반사파가 그래디언트에 미치는 영향이 

어떻게 변화하는지 살펴본다. 

완전파형역산 그래디언트와 회절각 필터링 기법에 대한 분석을 

기반으로, 다이빙파와 반사파를 함께 활용하여 신뢰할 수 있는 배경 
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속도구조를 구축할 수 있는 회절각 필터링 기반 중첩 알고리듬을 사용한 

음향파 완전파형역산 기술을 제시하였다. 알고리듬상에서, 회절각 

필터링은 반사파 파형역산과 같이 속도구조 모델을 배경 속도구조 

모델과 반사층구조 모델로 분리하기 위해 사용된다. 회절각 필터링은 큰 

연산량의 증가 없이 계산효율적으로 구현될 수 있으며, 3차원 탄성파 

탐사 자료와 같은 큰 규모의 탐사 자료에 대해서도 알고리듬을 적용할 

수 있도록 해준다. 5개의 회절각 필터링 모드 중, 모드 IV와 V가 각각 

배경 속도구조 모델과 반사층구조 모델을 갱신하기 위해 사용된다. 모드 

V를 통해 구축된 반사층구조 모델은 반사파 파동경로를 따라 추가적인 

장파장 속도구조 갱신을 발생시킨다. 모드 IV는 직접적으로 다이빙파와 

반사파의 파동경로를 따라 발생하는 장파장 완전파형역산 그래디언트 

성분을 추출하여 배경 속도구조 구축에 사용할 수 있다. 개선된 장파장 

속도구조 갱신 범위를 기반으로 관측 다이빙파와 반사파의 주시 정보를 

더 정확히 묘사할 수 있는 배경 속도구조를 구축할 수 있다. 

3차원 SEG/EAGE 오버스러스트 모델을 이용해 만든 합성 자료 및 

북해 볼브(Volve) 지역의 3차원 해저케이블(ocean-bottom cable) 자료에 

회절각 필터링 기반 중첩 알고리듬을 적용해봄으로써 지하구조가 매우 

복잡하거나, 탄성파 자료에 탄성 및 이방성 효과가 나타나는 경우에 

대해서도 알고리듬이 신뢰할 수 있는 배경 속도구조 모델을 구축할 수 

있음을 보여주었다. 회절각 필터링의 모드 IV와 모드 V를 통해 

성공적으로 속도구조 모델을 배경 속도구조 모델과 반사층구조 모델로 

분리할 수 있음을 확인할 수 있었다. 구축된 배경 속도구조 모델은 더 

정확한 고해상도 속도구조를 구축하기 위한 차후 음향파 및 탄성파 
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완전파형역산을 위한 초기 속도모델로 사용될 수 있을 것으로 기대된다. 

 

 

주요어: 역문제 이론, 파형역산, 지진파 토모그래피, 실체파, 음향 특성, 
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