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Abstract

Deep-learning-based Methodology for
Macro- and Micro-level Fault Diagnosis
of Rotating Machinery Using Low- and

High-resolution Signals

Jin Uk Ko

Department of Mechanical and Aerospace Engineering
The Graduate School

Seoul National University

Rotating machinery is widely used in many industrial sites, including manufacturing
and power generation. Unpredicted failures in these systems can result in huge
economic and human losses. To prevent this situation, fault diagnosis studies have
gathered much attention, with the goal of operating rotating machines without the
occurrence of any unpredicted problems. Fault diagnosis methods aim to accurately
detect any abnormality prior to failure and classify the health conditions of the target
system. Recently, fault diagnosis studies using deep learning have achieved excellent
performance thanks to the ability of new methods to autonomously extract meaningful

features.



For this purpose, two types of signals of different resolutions are measured from
rotating machinery, specifically: operation signals and vibration signals. Operation
signals, which are measured with a low sampling rate, are obtained in real-time and
contain various types of condition parameters that enable global monitoring of the
system. Vibration signals with a high sampling rate are obtained when an event occurs,
not in real-time. Using these signals of different resolutions, two sub-tasks of fault
diagnosis — anomaly detection and fault identification — are performed. Anomaly
detection, which is conducted with operation signals, is a task to detect abnormalities
in a system before those abnormalities develop into a hard failure. This is considered
macro-level fault diagnosis. When performing anomaly detection, the normal data is
modeled by unsupervised learning, a residual is calculated, and a threshold is
determined. If the residual becomes larger than the threshold, the system is regarded as
an anomaly condition. Fault identification is performed to classify the health conditions
of the system using vibration signals; this is viewed as micro-level fault diagnosis. For
fault identification, supervised learning is used to train a deep-learning-based classifier;
thus, a large amount of labeled data is required for the training. Since fault data is
insufficient in real industrial fields, data augmentation is necessary to augment the fault
data. Currently, a variational auto-encoder or a generative adversarial network are the

approaches most widely used for data augmentation.

Anomaly detection and fault identification have been studied separately. If both
tasks are integrated, macro- and micro-level fault diagnosis can be implemented.
However, there are three issues that must be handled to develop a deep-learning-based
methodology for macro- and micro-level fault diagnosis. First, conventional anomaly

detection methods produce frequent false alarms; in other words, they may indicate a



problem even if there is no anomaly in the system. This problem occurs because
conventional approaches may model the normal data inadequately or set a wrong
threshold; for example, one that does not consider the fluctuations in the normal data.
Second, the prior generative-network-based augmentation approach has inborn
limitations due to its structural properties. With this method, signals of various lengths
cannot be generated because the architecture is fixed. Also, incorrect samples can be
generated if the latent vectors are sampled wrongly. The final issue with health
classification is that the performance of a classifier can be affected by noise in the input
data. Since noise can distort the data distribution, it is difficult for a classifier to

correctly classify the noisy data.

Based on the current state of the field, this doctoral dissertation proposes a deep-
learning-based methodology for macro- and micro-level fault diagnosis using operation
and vibration signals from rotating machinery. The first research thrust proposes new
methods for modeling and threshold setting to reduce false alarms related to anomaly
detection. The proposed modeling method is developed by applying ensemble and
denoising techniques to auto-encoders. Further, a threshold is newly proposed using
the joint distribution of the output and the residual. Consequently, the proposed method
considers the fluctuations in the normal data, which can significantly reduce false
alarms. The second research thrust proposes a new generative network to generate
signals of variable lengths. The proposed network, whose input and output are the time
and amplitude, respectively, is designed to learn the frequency information of the
training data. The proposed method is implemented to reflect the signal processing
knowledge, including the use of the Nyquist theorem. After the training is finished, the

proposed model can produce signals of various lengths in the desired time range. The



proposed approach can also focus on the characteristic frequency components, thanks
to attention blocks. The third research thrust proposes a novel training method that
simultaneously learns the classification and denoising tasks. In the proposed scheme,
multi-task learning is used to allow a classifier to solve the classification and denoising
tasks concurrently. The proposed method can be applied to any deep-learning algorithm,
regardless of the network type. The classifier that is trained by the proposed method

can classify the health conditions, as well as remove noise in the input signals.
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Chapter 1

Introduction

1.1 Motivation

Rotating machinery is widely used in various industrial fields, including
manufacturing and power generation. Steam turbines, motors, and wind turbines are
examples of rotating machinery. Unpredicted failures in rotating machines can result
in huge economic and human losses. To prevent this situation, fault diagnosis studies
have gathered much recent attention, with the goal of operating rotating machines

without the occurrence of any unpredicted problems [1].

There are two main types of fault diagnosis approaches: physics-based
approaches and data-driven approaches. Physics-based methods diagnose a system
using domain knowledge. Domain knowledge includes expertise in an industrial
field and signal processing knowledge. Though this method has the advantage of an
explainable rationale, the method requires significant domain knowledge and a long
decision time. The other approach, the data-driven method, uses a deep-learning-
based classifier that is trained using raw signals or with handcrafted features
extracted using signal processing techniques or statistical analysis. Although the

data-driven method can achieve better performance than the physics-based method,



it requires many labeled samples to train the classifier successfully [2]. Since
approaches have recently emerged that enable big data to be measured from
mechanical systems, deep-learning (DL) has been extensively researched in recent

years with the goal of developing approaches for accurate fault diagnosis [3].

From the rotating machinery, two types of signals of different resolutions are
measured. The first type of signals that are measured is referred to as operation
signals. Operation signals contain various types of condition parameters that are
measured to globally monitor the operation of a system. Temperature, pressure, and
turbine speed are examples of operation signals in a steam turbine. Operation signals
are measured with a low sampling rate — 1 [sample/min] or 1 [sample/sec] — because
they are acquired in real-time. The second type of signals is called vibration signals.
They are measured at a high sampling rate (over 5000 [Hz]) and are saved when a
fault occurs, rather than being measured in real-time, which would result in a
significant load on the storage device. Vibration signals can contain the dynamic

characteristics of a rotating machine [4].

Deep-learning-based fault diagnosis can be subdivided into two tasks —
anomaly detection and fault identification — based on the data employed. Using the
operation signals, anomaly detection is conducted in real-time to detect whether
there is any anomaly in the target system. Because the operation signals contain
overall information and are measured in real-time, anomaly detection can be viewed
as macro-level fault diagnosis. Meanwhile, fault identification is a task designed to
classify the health conditions of a target system using vibration signals [5]. Fault
identification is considered micro-level fault diagnosis, since the task is conducted

whenever a fault occurs, and locally measured vibration signals are used. Though



both tasks can be integrated to achieve macro- and micro-level fault diagnosis, each

task is typically studied separately.

In deep-learning-based anomaly detection, an unsupervised learning algorithm,
like an auto-encoder (AE), is used to model the normal data [6]. The model extracts
important features from the input data and reconstructs the input from the features.
After the training is finished, if the abnormal data is entered into the model, the
output of the model has a huge error, since the model cannot reconstruct the input
data. A residual is computed as the difference between the input and the output, and
a threshold is determined heuristically or statistically. If the residual surpasses the

threshold, the system is considered to be in an abnormal state.

To identify fault conditions, a large amount of labeled data is necessary to train
a deep-learning-based classifier. Since these networks have many trainable
parameters, many labeled samples are required to optimize the parameters. However,
in the data from real industrial sites, fault samples are usually so small in number as
to be insufficient, as compared to many normal samples. Therefore, data
augmentation is required to augment the fault samples so that the classifier is trained
properly. Among many kinds of data augmentation methods, the variational auto-
encoder (VAE) and generative adversarial network (GAN) approaches have emerged
in popularity due to their superior generation performance. VAE, which consists of
an encoder and a decoder, uses the variational inference to fit the distribution of the
latent vectors as a simple distribution, like a Gaussian distribution [7]. A GAN
consists of a generator and a discriminator, and both are trained adversarially [8].
The generator tries to produce a fake sample to deceive the discriminator, while the

discriminator works to distinguish the fake sample. For both VAE and GAN, after



training is finished, a latent vector is sampled from a Gaussian or random uniform

distribution and entered into the generator to generate new samples.

If the labeled samples are augmented enough, they are used to train a deep-
learning classifier. In the classifier, a feature extractor autonomously extracts
meaningful features from the input data; then, the features are used to predict the
label of the input. Deep neural network (DNN), convolutional neural network (CNN)
[9], and long short-term memory (LSTM) [10] approaches can be used for the
extractor. When making the final output, fully connected layers are often employed.

In this way, the classifier can diagnose the health states of the input data.

Though the previous fault diagnosis studies employing deep learning have
shown excellent performance, three issues still exist that hinder the development of
a methodology for macro- and micro-level fault diagnosis that is applicable in real
industrial fields. First, the prior DL-based anomaly detection studies produce
incorrect alarms, even if the system is normal; these alarms are called false alarms.
Since the conventional approaches set a constant threshold that cannot consider the
fluctuations in the normal data, many false alarms occur, even though there are no
abnormalities in the target system. Second, VAE and GAN-based data augmentation
methods have inborn limitations due to their structural properties. During the
inference procedure, since the architecture is fixed, the generated signals have the
same length. This means that a user cannot generate signals of various lengths at the
desired time ranges. Furthermore, incorrect samples can be generated if the latent
vectors are sampled wrongly. Because the physical understanding of the latent space
has not yet been studied when the input samples are signals, setting a criterion for

the sampling of latent vectors is difficult. The final issue is that the performance of



a classifier can be affected by the noise in the input data. Since noise can distort the

data distribution, it is difficult for a classifier to correctly classify the noisy data.

To overcome the aforementioned issues, the research presented in this doctoral
dissertation aims to establish a new deep-learning-based methodology for macro-
and micro-level fault diagnosis of rotating machinery using operation and vibration
signals. Deep-learning techniques, statistical analysis, and signal processing
knowledge are integrated to develop a methodology for macro- and micro-level fault

diagnosis.

1.2 Research Scope and Overview

The purpose of this doctoral dissertation is to establish a DL-based methodology for
macro- and micro-level fault diagnosis of rotating machinery utilizing low- and high-
resolution signals. Each research thrust is as follows: (1) Research Thrust 1 — An
ensemble denoising auto-encoder-based dynamic threshold (EDAE-DT) for
anomaly detection; (2) Research Thrust 2 — A frequency-learning generative network
(FLGN) for data augmentation; (3) Research Thrust 3 — Multi-task learning of

classification and denoising (MLCD) for health classification.

Research Thrust 1: An Ensemble Denoising Auto-encoder-based Dynamic

Threshold (EDAE-DT) for Anomaly Detection

Research Thrust 1 proposes an ensemble denoising auto-encoder-based dynamic



threshold (EDAE-DT) to reduce false alarms in anomaly detection. EDAE is
developed to better model the normal data, and DT is proposed to set a variable
threshold that considers the fluctuation in the normal data. Combining denoising and
ensemble techniques with AE, EDAE can model the normal data well. The critical
hyper-parameters — the number of latent nodes and learning rate — are selected by
Bayesian optimization [11] to achieve maximal performance. Five DAEs are trained
using the optimized hyper-parameters, and the outputs of those DAES are averaged
to make a final output. The residual is calculated as the L1 norm of the output and
the true data. When computing the DT, the joint distribution of the output of EDAE
and the residual is found by kernel density estimation [12]. Then, the output values
are discretized, and the marginal distributions with respect to each grid of the output
are obtained. Next, the critical point for each marginal distribution is found, where
the upper tail of the marginal distribution becomes the confidence level. Finally, a
critical function is obtained by linearly interpolating the critical points and flattening
the upper and lower tails, since the interpolation becomes incorrect in both regions.
This critical function determines the threshold value according to the output value.
The proposed approach is verified with two datasets from a domestic thermal power
plant. The results indicate that EDAE models the normal data better than AE and
DAE. Also, the proposed scheme can detect anomalies faster than the experts, while

significantly reducing false alarms.

Research Thrust 2: A Frequency-learning Generative Network (FLGN) for

Data Augmentation



Research Thrust 2 proposes a frequency-learning generative network (FLGN) to
generate signals of variable lengths. FLGN is a new generative model, which is
completely different from VAE and GAN. The input is the time vector, and the
output is the amplitude vector at the corresponding time. FLGN consists of three
extractors: a stochastic frequency extractor, a phase extractor, and a magnitude
extractor. These extractors are composed of several fully connected blocks, a
sample-wise average layer, and an attention layer. In addition to the extractors,
deterministic frequencies are learned in the form of trainable parameters; they are
fixed if the model is trained. The summation of the deterministic and the stochastic
frequencies becomes the final frequency. A sine-basis is built based on the final
frequency and the phase feature. Given the sine-basis as the input, the magnitude
extractor outputs a magnitude feature corresponding to the basis. A bias is added to
the inner product of the magnitude feature and the sine-basis, which becomes the
final output of the FLGN. Using the deterministic frequencies and the three
extractors, the proposed approach can learn the frequency components of the training
data. The proposed model is validated with one simulated signal and two testbed
signals. The validation results indicate that the proposed method not only produces
the signals for the desired time range but also learns the frequency information well.
Of particular note, it is also discovered that the proposed model can focus on the

characteristic frequency components thanks to the attention blocks.

Research Thrust 3: Multi-task Learning of Classification and Denoising

(MLCD) for Health Classification



Research Thrust 3 proposes a novel training method called multi-task learning of
classification and denoising (MLCD) to improve the generalization performance
against noisy data. The main idea of MLCD is multi-task learning (MTL), which
enables a classifier that can solve the primary task and auxiliary tasks simultaneously.
Solving the auxiliary tasks prevents the classifier from being biased toward the
primary task, which can lead to improved performance of the primary task. In this
work, classification is the primary task, and denoising is the auxiliary task. For the
denoising task, the MLCD-applied classifier is trained to output the clean data, given
noisy data. Another advantage of the proposed approach is that it can be applied to
any classifier regardless of the network type. The proposed method is applied to one-
dimensional CNN (1D CNN ) and LSTM and validated with the RK4 testbed dataset.
The validation results present that MLCD-applied models can improve the
classification performance and reduce the uncertainty in the output, as compared to
the 1D CNN and LSTM models, respectively. The t-SNE (t-distributed stochastic
neighbor embedding) visualization results show that the features of MLCD-1D CNN
and MLCD-LSTM are better clustered for the same class and distinguished for
different classes. When visualizing the features at the intermediate layers, although
most features extracted by 1D CNN and LSTM overlapped, the MLCD-applied
models extract more various and meaningful features than those of the comparative
models. Specifically, some features of the MLCD-applied models are similar to the
waveform of the input samples. This indicates that the proposed method can make a
classifier learn the characteristics of the signals, while removing noise from the
signals; this is achieved by learning both the denoising task and classification task

together.



1.3 Dissertation Layout

This doctoral dissertation is organized as follows. Chapter 2 offers the theoretical
background required to understand each research thrust. Chapter 3 explains the
ensemble denoising auto-encoder-based dynamic threshold (EDAE-DT) approach
that is proposed to reduce false alarms in anomaly detection. Chapter 4 describes the
frequency-learning generative network (FLGN) that is able to generate signals of
variable lengths. Chapter 5 presents a new learning scheme called multi-task learning
of classification and denoising (MLCD) to make a classifier robust against noisy data.
Finally, Chapter 6 concludes this doctoral dissertation with a summary of the

contributions and suggestions for future research.

Sections of this chapter have been published or submitted as the following journal articles:

1) Jin Uk Ko, Kyumin Na, Joon-Seok Oh, Jaedong Kim, and Byeng D, Youn, “A new
auto-encoder-based dynamic threshold to reduce false alarm rate for anomaly
detection of steam turbines,” Expert Systems with Applications, Vol. 189, pp. 116094,
2022.

2) Jin Uk Ko, Jinwook Lee, Taehun Kim, Yong Chae Kim, and Byeng D. Youn,
“Frequency-learning generative network (FLGN) to generate vibration signals of
variable lengths,” Expert Systems with Applications, 2022

3) Jin Uk Ko, Joon Ha Jung, Myungyon Kim, Hyeon Bae Kong, Jinwook Lee, and
Byeng D, Youn, “Multi-task learning of classification and denoising (MLCD) for
noise-robust rotor system diagnosis,” Computers in Industry, Vol. 125, pp. 103385,
2021.




Chapter 2

Technical Background and
Literature Review

This chapter offers theoretical background and a comprehensive study of macro- and
micro-level fault diagnosis approaches of rotating machinery using signals of
different resolutions. First, Section 2.1 explains the fault diagnosis scheme to
monitor the health conditions of rotating machinery. Physics-based and data-driven
approaches are explained in detail. Characteristics of low and high-resolution signals
from a rotating machine are offered in Section 2.2. Section 2.3 reviews the deep-
learning algorithms that are used in this work. Then, Section 2.4 provides the
theoretical background for each thrust are described. In particular, anomaly detection
based on deep learning is presented in Section 2.4.1. The concept of data
augmentation is provided in Section 2.4.2. Next, Section 2.4.3 introduces the concept
of health classification using deep learning. Lastly, a summary and discussion of this

chapter are provided in Section 2.5.

2.1 Fault Diagnosis Methods of Rotating Machinery

Rotating machinery, which is composed of a shaft and bearings that support the shaft,
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transfers fluid or electrical energy into mechanical energy and vice versa [4]. Many
rotating machines are used in various industrial sites; for example, steam turbines,
gas turbines, and wind turbines are used in power generation. Since these mechanical
systems operate under harsh conditions, many faults can occur in the systems. These
faults can lead to severe failure of the systems, which can cause catastrophic disasters.
To prevent unpredicted accidents, prognostics and health management (PHM) has
been fervently studied to develop a comprehensive scheme to monitor the health
conditions of the target system [1]. Specifically, PHM is a comprehensive technique
that 1) recognizes whether the monitored condition parameters deviate from the
normal state, 2) diagnoses the health conditions, and 3) predicts the remaining useful
life or risk of failure [5]. The main effects that can be achieved by PHM are described
in Figure 2-1. PHM can improve the quality of the product, availability, and
productivity, ensure reliability and safety, and reduce operation and maintenance
costs. Consequently, PHM techniques should be applied to rotating machinery to

operate the systems safely and cost-effectively.

Productivity

Reliability Availability

Figure 2-1 Purposes of prognostics and health management (PHM)
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The main objective of this doctoral dissertation is to establish a methodology
for macro- and micro-level fault diagnosis. Figure 2-2 illustrates physics-based and
data-driven approaches of fault diagnosis. There are rule-based and health-feature-
based approaches in the physics-based approach. The rule-based method uses
domain knowledge, and experts determine whether or not the system is normal. In
the health-feature-based approach, vibration signals are examined by using signal
processing techniques and statistical analysis, and health features are extracted
manually; finally, the health condition is predicted by analyzing the health features.
For example, the condition of a steam turbine is diagnosed as a rubbing condition if
the second sub-harmonic frequency component becomes greater. The physics-based
approach is explainable, since it is based on physical or domain rationale. However,
it usually takes lots of human resources and time for the final decision and heavily

depends on the domain knowledge.

The data-driven method uses deep-learning algorithms for fault diagnosis. A
classifier can autonomously extract features from the input data. A deep-learning
algorithm is trained with training data to solve the assigned task; thus, lots of samples
are necessary for the training. If there are not enough samples, the algorithm cannot
be trained properly so that the diagnostic performance is decreased significantly. The
data-driven approach can work automatically and shows superior performance
across various engineered systems, but it requires much data for the training.
Because of the advantages of deep-learning algorithms, fault diagnosis methods
utilizing deep-learning techniques have been examined for diverse engineered

systems [13].
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Figure 2-2 Types of fault diagnosis methods: (a) physics-based method and (b)

data-driven method

2.2 Low- and High-resolution Signals from Rotating
Machinery

Two signals of different resolutions are measured from a rotating machine: 1)
operation signals and 2) vibration signals. Figure 2-3 describes those signals from a
steam turbine. Operation signals are multi-variate signals that are relevant to the
operation of a rotating machine [14]. Various condition parameters are measured to
monitor the health states of the system; for example, turbine speed, steam
temperature, steam pressure, and metal temperature are included. The sampling rate
is very low — 1/60 [Hz] or 1 [Hz] — which means that operation signals have low

resolution. They are measured in real-time to continuously monitor health conditions.
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Figure 2-3 Low- and high-resolution signals from rotating machinery

Therefore, operation signals are macroscopic data that contain general information

about the system.

The other signals that are obtained from rotating machinery are vibration signals.
Vibration signals have been widely used to analyze the condition of a rotating
machine since they represent the dynamic characteristics of the system [1].
Proximity sensors or accelerometers are utilized to measure the vibration signals. At
each installation point, two sensors located at 90-degree intervals are used to measure

two vibration signals that are orthogonal to each other [15]. This is to contain
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information about asymmetric and anisotropic characteristics of the system. They
are discrete signals, which are measured at a high sampling rate; 8500 [Hz] or 12800
[Hz]. According to the Nyquist theorem [16], discrete signals can be perfectly
reconstructed into continuous signals if the sampling frequency is twice as large as
the frequency bandwidth. Thus, if the sampling rate becomes greater, the frequency
resolution becomes finer, which denotes that the vibration signals contain enough
frequency information; however, more load is placed on data storage devices. The
sensors are installed whenever a fault occurs, not in real-time, because of the heavy
load on the storage devices. Also, they are installed locally, rather than globally,
because those sensors require additional cost and space to install. Consequently, the

vibration signals can be viewed as microscopic data.

To sum up, operation and vibration signals have three major differences. First,
the range of sampling rate is different; operation signals are low resolution, and
vibration signals are high resolution. Second, operation signals consist of various
condition parameters, but vibration signals only have signals that are related to
vibration. Finally, although operations signals are measured in real-time, vibration

signals are obtained when an anomaly is detected, not in real-time.

2.3 Review of Deep-Learning Algorithms

As mentioned in Section Figure 2-2, deep learning has been extensively utilized for
fault diagnosis of rotating machines. Among various deep-learning algorithms, one-
dimensional convolutional neural network (1D CNN) and long short-term memory

(LSTM) have achieved outstanding performance. Section 2.3.1 provides the concept
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of 1D CNN, and Section 2.3.2 presents a detailed explanation of LSTM.

2.3.1 One-dimensional Convolutional Neural Network (1D CNN)

Convolutional neural network (CNN) is a popular deep-learning algorithm; it is
primarily utilized for image recognition. Three characteristics of CNN — sparse
connectivity, parameter sharing, and pooling — distinguish CNN from DNN [13].
The convolutional layers are locally connected rather than fully connected (sparse
connectivity). For each filter, the weight is the same across all of the sparse
connections (parameter sharing); this significantly reduces the number of trainable
parameters. Pooling is a subsampling layer that provides a statistical summary of the

input, remaining only the core information.

Thanks to these properties, CNN has been broadly used in fault diagnosis
studies. When an image is input, the height of the filter for 2D CNN is smaller than
the height of the input because pixels are usually correlated locally; the filters move

in two-dimensional directions, as shown in Figure 2-4(a). Unlike the case of an

X, X1 Width
Y1 Y1
Y Yo — Filter || Height
Xy X2
(@) (b) (©)

Figure 2-4 Moving of filters in CNN: (a) 2D CNN, (b) 1D CNN, and (c) shape of

a filter
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image, the multi-channel signals of a rotor system may be correlated with each other,
rather than correlated locally. Therefore, it is more suitable to make the height of the
filter the same as the input dimension and let the filter move in a one-dimensional
direction, as described in Figure 2-4(b). This is a one-dimensional convolutional
neural network (1D CNN). That is, 1D CNN has the properties of a CNN and can

learn representation from the multi-channel signals that are correlated widely.

2.3.2 Long Short-term Memory (LSTM)

LSTM is a variant of recurrent neural networks; LSTM learns long-time-sequence
patterns by preventing gradient exploding and vanishing problems [14]. LSTM
consists of three gates and two states. Figure 2-5 describes the structure of an LSTM
cell whose input and output at time step t are x; and y;, respectively. Egs. (2.1), (2.2)
and (2.3) express three sigmoid gates: a forget gate (f;), an input gate (i;), and an

output gate (o). Egs. (2.4), (2.5) and (2.6) define an output gate, a cell state (c:) and
f =0 (Wix +Wyih +b, ), W, e R™™ W, eR"™ b, eR" (2.1)
i =0 (Wix +Wih_ + ), W, eR™™ W eR™™ b eR" (2.2)
0, = (Wix +Wh, +b,), W, e R™™ W, eR"™ b eR" (23)
g, = tanh (Wgx +Wgh , +b ), W,, e R"™" W, e R"™™ b e R" (2.4)
¢ =f®c, +,®g, (2.5)

y, =h =0, ®tanh(c,) (2.6)
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Figure 2-5 Structure of an LSTM cell

a hidden state (h;), respectively. In the equations, o(-) and tanh(-) refer to the sigmoid
and hyperbolic tangent function, respectively; n, denotes the number of nodes at layer
I. A detailed description of the gates and the cell states follows. The forget gate
regulates the level of information from the previous cell state to remain. The input
gate controls how much information from the input will be used; the output gate
determines how much information from the previous cell state will be used for the
next time step. Finally, as presented in Eg. (2.5), the current cell state is the
summation of the previous cell state multiplied by the forget gate and current

information from the input multiplied by the input gate. In this way, the cell state
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conveys important information from the past and from the current input in each

update.

2.4 Deep-learning-based Macro- and Micro-level Fault
Diagnosis Methods

Deep-learning-based fault diagnosis is executed using low- and high-resolution
signals. Fault diagnosis can be subdivided into two tasks: anomaly detection and
fault identification. Anomaly and fault look similar, but they are distinctly different
from each other. Anomaly means that a system deviates from its normal condition
because of various reasons, including sensor error, environmental disturbance, and
the occurrence of a fault. The fault is a condition that a mechanical defect occurs in
the system; the change includes mechanical looseness, contact with other materials,
and the occurrence of cracks. Due to the physical change, the damping coefficient or
stiffness of the system may change, which leads to a change in the vibration signals.
The general procedure of both tasks is described in Figure 2-6. Anomaly detection
is a task that detects an abnormal change in the target system. Operation signals are
used for anomaly detection to observe any unusual change in the entire system. The
flowchart of deep-learning-based anomaly detection is shown in Figure 2-6(a). Using
the operation signals, an unsupervised learning algorithm like an auto-encoder is
used to learn the characteristics of normal data; only normal data is required to train
the modeling algorithm. Then, the residual is calculated, and the threshold is
determined heuristically or statistically. If the residual exceeds the threshold, it is
considered that there is an anomaly in the system. Finally, among the various

operation signals, the signals that are related to the anomaly are identified. A detailed
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explanation of anomaly detection using deep learning is described in Section 2.4.1.
Anomaly detection is difficult to be performed with vibration signals of high-
resolution since 1) vibration signals are measured locally and 2) they are not
measured in real-time. Anomaly detection can be considered as macro-level fault

diagnosis because it is performed with macroscopic operation signals.

Fault identification is performed to classify the health conditions of the system.
The common procedure of fault identification is presented in Figure 2-6(b). First,
vibration signals are obtained with a high sampling frequency. Other than the normal
data, signals of various fault conditions are required. Since fault samples are usually
insufficient compared to normal samples in real industrial fields, data augmentation
is necessary to augment the minor samples; the data augmentation is reviewed in
Section 2.4.2. After data augmentation, a supervised learning algorithm like DNN or
CNN is trained to diagnose the health conditions. The detailed contents of deep-
learning-based fault identification are presented in Section 2.4.3. It is hard to conduct
fault identification using operation signals of low resolution because operation
signals cannot contain information about the change in the dynamic characteristics.
Fault identification can be viewed as micro-level fault diagnosis since it is conducted

by using vibration signals that are locally measured.

There have been few attempts to connect anomaly detection and fault
identification; they are studied separately. The reason that both tasks are individually
studied is that both tasks are conducted with different types of signals. If both tasks
are integrated, the target system can be more thoroughly managed with a
combination of macro- and micro-level fault diagnosis than with single-level

diagnosis. Figure 2-7 describes the proposed methodology for macro- and micro-
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level fault diagnosis in this doctoral dissertation. Through research thrust 1, an
anomaly-related part is identified; this is macro-level fault diagnosis. Then, vibration
signals near the abnormal part are measured. Next, if fault data is insufficient
compared to the normal data, research thrust 2 augments the minor fault samples.
Finally, with the augmented data, the health conditions are classified by research
thrust 3; this is the micro-level diagnosis. In this way, the proposed methodology

achieves macro- and micro-level fault diagnosis of a rotating machine.

21 ; ': ...;-_. ; ;_. ;:



r

Operation signals
L (Low resolution)

J/

Modeling normal data by
unsupervised learning

Calculating
residual & threshold

Residual > Threshold?

( Detection of ]
(anomaly-related parts
(@)

( Vibration signals ]
L (High resolution)

A

Data augmentation

Training a classifier by
supervised learning

Classification of
health conditions

(b)
Figure 2-6 Fault diagnosis schemes using low- and high-resolution signals: ()

anomaly detection and (b) fault identification



[ [Input] ] Macro-level diagnosis

Operation signals
Thrust 1
Residual > Threshold? [Output] ]
Normal
Yes Micro-level diagnosis
[Output] [Input]
Anomaly-related part Vibration signals
Sufficient
Thrust 2

Yes

[Output] ]_> '
[ Augmented data Configuring data
v

Thrust 3

[Oui’put]
[ J

Health conditions
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2.4.1 Anomaly Detection

Deep-learning-based anomaly detection consists of two major steps: 1) modeling of

normal data and 2) setting a threshold that becomes a criterion to judge whether or
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not the target system is operating normally [17]. The first step is to learn the
characteristics of the normal data using an unsupervised algorithm, like an auto-
encoder. By training an auto-encoder with a bottleneck layer to reconstruct the input,
the auto-encoder can learn the essential information of the input signals [17, 18]. If
a model is well-trained with normal data, the output has little error with normal input
data; however, there will be significant errors in the output if the input is abnormal

data.

The general procedure of deep-learning-based anomaly detection is illustrated
in Figure 2-8. It is composed of a training step and a testing step. In the training step,
multi-variate operating signals of the normal condition are measured first.
Preprocessing is needed because raw signals are improper to be directly used for a
deep-learning algorithm. Preprocessing methods include filling in missing values,
removing outliers, treating noise, etc. Next, hyper-parameters of an auto-encoder are
selected, either heuristically or by grid search [19], random search [20], or Bayesian
optimization [21]. Critical hyper-parameters, such as the learning rate, should be
chosen carefully to ensure the maximal performance of a deep-learning algorithm.
Then, by using the preprocessed normal data and the chosen hyper-parameters, an
auto-encoder is trained by minimizing the objective function, such as mean squared
error or mean absolute error. The trained auto-encoder can model the characteristics
of a normal condition. Finally, a threshold is determined by using the residual, which
is calculated as the L1 norm or L2 norm of the output and true data. For example,
given a confidence level (p), a threshold can be set as the value where the cumulative
distribution function of a residual becomes (1 - p). If the threshold is determined too

sensitively, false alarms can frequently occur even though there is no abnormality in
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Figure 2-8 General procedure of deep-learning-based anomaly detection

the system. If it is set too conservatively, few alarms might be generated, even when
an anomaly occurs. In the testing step, new signals are measured; they can be from
either a normal or anomaly condition. Those signals are preprocessed using the same
methods as in the training step. Then, a residual is calculated using the trained auto-
encoder. Finally, the condition of the system is monitored by comparing the residual

and the threshold.

Some prior studies related to deep-learning-based anomaly detection for

turbines have focused on the modeling performance by developing a deep-learning
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model. Arranz et al. [18] proposed a neural network of a single layer with a sigmoid
function to characterize the normal data of a combined-cycle gas turbine plant.
Several models have been trained to detect the condition. For example, Dhini et al.
[22] developed a multilayer perceptron of a sigmoid function for anomaly detection
of a steam turbine. The objective function was mean squared error (MSE), and the
weights were trained by a back-propagation method. Liu et al. [23] developed a
flowchart for wind turbine anomaly detection by using k-means clustering [24], t-
distributed stochastic neighborhood estimation (t-SNE) [25], and a deep neural
network. Specifically, k-means clustering and t-SNE were used to extract
meaningful features from wind turbine data. Lu et al. [26] proposed a stacked
denoising auto-encoder to consider the noise in the input signals. The auto-encoder
was trained with a greedy approach, and sparsity was constrained to the hidden layers.
A convolutional auto-encoder approach was also developed by Lee et al. [27] for
anomaly detection of a gas turbine. When training the model, the computational cost
was decreased using the sparse connectivity in the convolutional layer and through

the reduction of a feature map through the use of a max-pooling layer.

A few prior studies have concentrated on developing an accurate threshold in
the field of deep-learning-based anomaly detection. In early work, an intuitive
threshold, called the N-sigma rule, was defined by using the mean and standard
deviation of a health index [28, 29]. When the health index was assumed to follow a
Gaussian distribution, it was considered to be normal when an index existed within
three times the standard deviation from the mean. Chen et al. [17] proposed a stacked
denoising auto-encoder to detect anomalies in a wind turbine. A health indicator was

defined as a Mahalanobis distance (MD) of the residual, and the threshold was
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determined as the point where the upper tail of the indicator’s cumulative distribution
function became the confidence level. Zeng et al. [30] proposed a new method that
combined sparse Bayesian learning and hypothesis testing. Hypothesis testing was

done to determine whether or not a sample falls into a confidence interval.

Even if the prior studies have shown good anomaly detection performance, they
still make false alarms frequently. This is graphically illustrated in Figure 2-9. If a
threshold is chosen properly, valid alarms are raised before the hard failure. However,
when a rotating machine operates under the normal state, there can be fluctuation
due to environmental disturbance, etc. In this situation, it is difficult for the auto-
encoder to learn the normal data well. Furthermore, the constant threshold of the
conventional approaches can be determined incorrectly. Frequent occurrence of false
alarms causes unnecessary maintenance, which increases downtime. Therefore, false

alarms should be reduced for accurate anomaly detection.

A
Tg Hard
g failure
7
Time
False alarms! Valid alarms

Figure 2-9 Limitation of the prior studies of anomaly detection
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2.4.2 Data Augmentation

Deep-learning-based fault diagnosis studies have shown dramatic advances and
promising applications in the health monitoring of various types of rotating
machinery [31-37]. Unlike traditional diagnosis methods that need handcrafted
features, a deep-learning classifier can autonomously learn meaningful features from
input data to diagnose the health condition of the target machinery [31, 37, 38]. The
deep-learning algorithms used in these methods need sufficient labeled samples to
achieve high performance because they have a lot of trainable parameters. To
optimize these parameters, a significant amount of data is needed in proportion to
the number of parameters. However, in a real industrial facility, fault signals are
scarce because engineered systems should generally operate under normal condition.
If fault samples are insufficient compared to normal samples, the classifier will be
biased to the majority normal condition, and minority fault conditions will not be
classified well [39, 40]; this is called the class imbalance issue. There are mainly two
methods to handle the issue: an algorithm-level approach and a data-level approach
[39, 41]. The algorithm-level approach deals with the imbalance issue by modifying
the loss function to impose more penalty on the misclassification [39, 41]. This
method can be used as an end-to-end learning scheme, but it requires much
knowledge about the classifier and the target data [41]. The data-level approach,
rebalancing the data distribution by controlling the number of samples, can be
divided into two schemes: undersampling and oversampling methods. An
undersampling method rebalances the data distribution by reducing the majority

class, which means that information loss is inevitable [39]. An oversampling method
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is to balance the distribution by augmenting the minority class [39]. Among these
methods, the oversampling method is the most versatile since little information is

lost, and it does not depend on the classifier [39].

To augment the minority samples, researchers have fervently studied data
augmentation approaches using generative networks; variational auto-encoder (VAE)
and generative adversarial network (GAN) approaches are widely utilized. The
general architecture of VAE and GAN is presented in Figure 2-10. VAE, which is
composed of an encoder and a decoder, uses variational inference to fit the
distribution of latent vectors as a simple distribution, like a Gaussian distribution [7].
After training the VAE, a latent vector is sampled from the distribution and entered
into the decoder; then, the decoder produces a new sample corresponding to the

latent vector [7]. A GAN is made up of a generator and a discriminator, which are

M" z | Decoder [~/

Sampling latent vectors
@
F ake Real?
eal’
Setotins ™ Fake?
Real
Samphng ea
latent vectors
(b)

Figure 2-10 Architecture of generative networks: (a) VAE and (b) GAN
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trained in an adversarial manner. When a latent vector is sampled, the generator
produces a fake sample to deceive the discriminator; then, the discriminator tries to
discriminate whether or not the input sample is fake [42]. Although VAE is usually
more stable than GAN, GAN can generate clearer samples than VAE [43].

A small number of prior studies have examined VAE-based signal
augmentation. Zhao et al. [44] proposed a VAE approach based on a 1D CNN. The
encoder and the decoder were composed of several convolution and max-pooling
layers. When validating the generation performance using a rolling bearing dataset,
this approach generated new samples similar to the training data and enhanced the
classification accuracy. Zhang et al. [45] used VAE to develop a semi-supervised
fault-diagnosis scheme. The developed VAE model was composed of an encoder, an
external classifier, and a decoder; the classifier predicted the label, given a latent
vector. Che et al. [46] combined VAE and meta-learning for bearing fault diagnosis.
That proposed VAE, which consisted of various fully connected layers, generated
the minority fault signals; then, a metric-based meta-learning model was trained with
those generated signals. Some studies have employed GAN to produce fault signals.
A generative model based on an auxiliary classifier generative adversarial network
(ACGAN) was proposed by Shao et al. [47]. The discriminator in ACGAN
performed two classification tasks; the first task was to classify whether the input of
the discriminator was real or not, and the other was to classify the label of the input
data. Enhanced GAN was proposed to generate imbalanced vibration signals [48]. A
deep convolutional generative adversarial network (DCGAN) with 1D CNN was
used to construct the model. Later, Gao et al. [49] proposed an augmenting scheme

based on WGAN-GP. The proposed network was more stable than both the DCGAN
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and the ACGAN approaches. When tested with various classifiers, including logistic
regression and random forest, the performance results of the classifiers were
improved when trained by new samples produced by the proposed network. Suh et
al. [50] developed a new generative network to oversample the fault data of an
induction motor by using a Wasserstein generative adversarial network with gradient
penalty (WGAN-GP) and DCGAN. When validating a CNN-based classifier with
various imbalance ratios, the proposed approach improved the classification
performance in most cases. A sparsity-constrained generative adversarial network
(SC-GAN) was designed to augment the minority data [51]. In the work, a sparse
auto-encoder was trained first and the encoder and the decoder became the
discriminator and the generator, respectively; a fully connected layer was added at
the end of the decoder. By imposing sparsity on the GAN, it could achieve more
stable generation and learn the important frequency components of the input signal.
Peng et al. [52] proposed WGAN with hierarchical feature matching (HFM) to
produce bearing fault signals. Wasserstein loss was used to make the training
procedure stable and HFM was developed so that the features of the generated

signals of each condition were close to those of the true signals.

Although the previous VAE or GAN-based augmentation studies have shown
outstanding generation performance, they have two limitations: 1) the lengths of the
generated signals are not changeable, and 2) wrong samples can be produced if latent
vectors are incorrectly sampled. Figure 2-11 describes these two limitations. First,
the signals generated by the conventional models have the same length because the
network architecture cannot be changed. The length of the generated signal and the

input signal is the same. Longer or shorter signals cannot be generated using these
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Figure 2-11 Limitations of the VAE or GAN-based models

methods. Second, incorrect samples can be produced if the latent vectors that will be
entered into the generator are sampled improperly. As described in Section 2.4.2,
latent vectors are sampled from a Gaussian or uniform distribution, and the generator
produces a new sample, given the sampled latent vectors. When a GAN is trained
with image samples, it has been found that each latent dimension is related to a visual
property of an image, including rotation, thickness, etc. [53]. However, in the case
of vibration signals, the physical meaning of the latent space has not been discovered
yet. This makes it difficult to set up the standards for the sampling procedure to

prevent generating invalid samples.

2.4.3 Health Classification

Deep-learning-based health classification studies have drawn much attention due to

their high performance and automated feature extraction ability. The objective of
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health classification is to predict the label condition of the given sample. Figure 2-

12 shows the graphical expression of health classification modeling.

Let the input sample be x, the model be F(-) whose parameters are W, and the output

class be c. Then, the health classification modeling becomes as follows:

P(y=c|x)=F(xW) (2.7)

This means that a classifier learns the probability distribution when the output class
is equal to c, given a sample x. To learn the function F(-), the objective function
should be defined first. When there are two classes, the objective function becomes
binary cross-entropy. Also, in the case of more than three two classes, categorical

cross-entropy is used as the objective function. Both functions are defined as follows:

. 1 . .
L(y.9)=-5 2y log ¥, +(1-¥)log(1-¥) (2.8)
. 1&< .
L(Y: Y) = _EZZ Yii log Yii (2.9)
i=1 j=1
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where i is the true class, ¥ is the output, B is the number of samples, and C is the
number of classes. Using a training data, the parameters of a classifier are optimized
by back-propagation [54]. After forward propagation to compute the output, the
gradient of the parameters about the loss function is calculated in reverse order from
the output layer to the input layer. After calculating all gradients, it is updated by the
gradient descent rule. This is mathematically expressed as follows:

oL

Wk+lzwk_ Y=
T wr

(2.10)
where Kk is the iteration number and # is the learning rate. Other than the stochastic
gradient descent rule, adaptive momentum estimation (Adam) has been widely used

because Adam can reach the optimum point fast and stably [55].

Many prior studies have developed new deep-learning-based classifiers using
various deep-learning algorithms. Oh et al. [56] suggested a rotor system diagnosis
scheme by training a restricted Boltzmann machine with a proposed vibration
imaging method. Wu et al. [57] and Long et al. [58] used a 1D CNN and 2D CNN
to diagnose the states of rotating machinery, respectively. Also, Zhao et al. [59]
developed a new fault diagnosis method for a planet bearing using a CNN. Islam et
al. [60] utilized a CNN to construct a bearing classifier that extracted features
automatically from the wavelet packet transformation of an acoustic emission signal.
In addition, Nguyen et al. [61] and Bruin et al. [62] developed fault diagnosis models
by using LSTM. They focused on the capability of LSTM, which can understand the

sequential context in the time-series signals.

Despite the outstanding performance of the conventional methods, they can be
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Figure 2-13 Limitation of the prior studies of health classification

affected by the noise in the input data. Figure 2-13 illustrates the noise issue in health
classification. If the test data has a similar data distribution to that of the training
data, the classifier can well predict the label of the test data. However, in a real
industrial field, the measured signals can be corrupted by much noise due to
mechanical or environmental causes. Thus, newly measured signals have different
distributions due to the noise, which leads to performance degradation. Consequently,

this noise issue should be addressed for noise-robust health classification.

2.5 Summary and Discussion

The objective of this doctoral dissertation is to develop a deep-learning-based
methodology for macro- and micro-level fault diagnosis using signals of different

resolutions. First, the concept of PHM and fault diagnosis are reviewed in Section
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2.1. Since two types of signals of different resolutions are measured from a rotating
machine, the characteristics of both signals are studied in Section 2.2. Section 2.3
presents the literature review of deep-learning algorithms that are utilized in this
work. By using low- and high-resolution signals, anomaly detection and fault
identification are conducted, respectively; Section 2.4 provides the literature review
about both tasks. Section 2.4.1 explains the concept of anomaly detection and
reviews the previous studies. When fault signals are insufficient compared to normal
data, data augmentation is required to increase the number of fault samples; a
literature review about data augmentation is presented in Section 2.4.2. Section 2.4.3
offers the theoretical background of health classification and the prior studies about

it.
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3) Jin Uk Ko, Joon Ha Jung, Myungyon Kim, Hyeon Bae Kong, Jinwook Lee, and
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2021.
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Chapter 3

Ensemble Denoising Auto-encoder
based Dynamic Threshold (EDAE-
DT) for Anomaly Detection

In this chapter, an ensemble denoising auto-encoder-based dynamic threshold
(EDAE-DT) is newly proposed to reduce false alarms in anomaly detection. An
ensemble denoising auto-encoder (EDAE) is trained to model the normal data of a
steam turbine. A deep neural network is selected as the base model of the EDAE
because it is most widely used in the field of anomaly detection of engineered
systems [18, 22, 26, 63]. An ensemble technique can reduce the generalization error
by averaging the output of several models [64]. A denoising task can further improve
the reconstruction performance by learning how to remove noise in the input [65].
After training the EDAE, the dynamic threshold (DT) calculates a variable threshold
according to the output of the EDAE by computing the upper confidence limit from
the joint distribution of that output and the residual. The threshold value is
determined dynamically with respect to the output. After anomaly detection, to
identify the part that is related to the anomaly, a new sensitivity is defined by using
the maximum values of the residual and the threshold. Through this enhancement,

the operators are able to investigate the specific parts related to the sensitive
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condition parameters, which can reduce maintenance costs. In this research, two
datasets from a thermal power plant are used to validate the proposed EDAE-DT.
Each dataset consists of several operating parameters and has a sampling frequency
of 1 [sample/min]. To confirm the effect of the ensemble and denoising techniques
in the modeling process, the proposed EDAE approach is compared with AE and
DAE methods; the AE method is used in [22, 66], and the DAE approach is used in
[17, 26]. Since the performance of a deep-learning algorithm varies according to its
architecture, the modeling performances of AE, DAE, and EDAE are compared with
various numbers of hidden layers. Then, the anomaly detection performance of
EDAE-DT is compared with previous anomaly detection methods; specifically, the
N-sigma method [28, 29] and the MD-based method [17]. N-sigma is chosen for
comparison because it is simple and intuitive; MD is selected since a threshold is
determined statistically from a single health index extracted from multi-variate
signals. For quantitative validation, several metrics are newly defined for the
evaluation of anomaly detection performance. In addition, to validate the
performance of the fault diagnosis, a confusion matrix is used by labeling the
detected status as normal or anomaly. The validation results indicate that the
proposed method detects anomalies with significantly fewer false alarms, as
compared with conventional methods, while also detecting anomalies faster than

experts.

The remainder of this chapter is structured as follows. Section 3.1 provides the
theoretical background of the conventional deep-learning-based anomaly detection
methods. Section 3.2 explains the proposed method in detail. Performance

evaluation metrics are presented in Section 3.3. The validation data is provided in
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Section 3.4, and Section 3.5 shows the validation results. Finally, Section 3.5.3 offers

the conclusion of this study.

3.1 Background: Deep-learning-based Anomaly Detection

In this section, the conventional studies about deep-learning-based anomaly
detection are reviewed. First, the studies to model the normal data are presented.

Then, the prior studies to set a threshold are investigated.

3.1.1 Conventional Methods to Model the Normal Data

An auto-encoder (AE) is an unsupervised learning algorithm that is trained to
reconstruct its input. It has been widely used to model the characteristics of hormal
data. The basic architecture of an AE is illustrated in Figure 3-1. Given multi-variate
operation signals, including vibration, temperature, and pressure, they are entered
into an encoder and are reconstructed in the decoder; the architectures of both parts

are usually symmetric. The representation of the (I1+1)-th layer becomes as follows:

at=f (W'a' +b') (3.1)

where f(*) is the activation function; a"** is the output of the I-th layer; W' and b' are
the weight and bias between the I-th layer and the (I+1)-th layer. To induce the non-
linear dimensionality reduction of the input, the final layer of the encoder has smaller
hidden nodes than those of the input layer [67]. In this way, the encoder extracts the

essential information from the input data. Then, a decoder reconstructs the input
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from the encoded information. The AE is trained by minimizing the mean squared
error (MSE) or the mean absolute error (MAE). In this study, MAE is used because
MAE is more sensitive to local variations of input data [68]. The mathematical

expression of MAE is defined as follows:

1Y .
L:MZ‘JXi - (3.2)

where x; is the sample at time index i, and M is the number of samples. When an AE
is successfully trained with normal data of a steam turbine, it can be said that the AE

models the normal condition of the turbine.

Other than the AE, a denoising auto-encoder (DAE) is also widely employed.
Its architecture is the same as AE; the difference is the input. Noise is added to the
input, and the DAE predicts clean data, which is the data before the noise is added.
Since the DAE has the ability to reconstruct the input data while removing the noise,

the performance of the DAE is usually better than that of the AE.
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Figure 3-1 Architecture of an auto-encoder (AE)
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3.1.2 Conventional Methods to Set a Threshold

Nelson’s N-sigma method and the Mahalanobis-distance-based (MD) method are the
most widely used methods to set a threshold. Both methods set a constant threshold;
the N-sigma method is intuitive, and MD extracts a single health indicator from
multi-variate signals. In the N-sigma method, mean (u) and standard deviation (o)
are calculated from the L1 residual of the k-th parameter. Then, the threshold in N-

sigma method is determined as below:

t, =41 +Nxo, (3.3)
where N is selected heuristically or as the value that satisfies the confidence level (p).

The MD method is different from the N-sigma method. The residual of the k-th
parameter is computed as the difference between the true and predicted output as

follows:

h = yk,true - yk,pred (34)

Then, a monitoring indicator at the I-th sample is calculated as follows:

t' = \/(r' ~F) st(r' -F) (3.5)

where ¥ and S are the mean vector and covariance matrix of the residual,
respectively. After that, the probability distribution function of the indicator t is
computed by kernel density estimation. Finally, the threshold is set as the point such

that the cumulative distribution function of t becomes (1 - p).
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3.2 Ensemble Denoising Auto-encoder-based Dynamic
Threshold (EDAE-DT)

To detect anomalies of rotating machinery with fewer false alarms, an ensemble
denoising auto-encoder-based dynamic threshold (EDAE-DT) is newly proposed.
The overall procedure of EDAE-DT is described in Figure 3-2. Similar to the
conventional anomaly detection procedure, the proposed method consists of training
and testing steps. In the training procedure, operating signals of the normal condition
are measured from the steam turbine. In the preprocessing step, the missing values
are filled by linear interpolation of nearby values, outliers are removed by the 6-
MAD (median absolute deviation) method, and moving average filtering is applied

for smoothing. Finally, the signals are min-max scaled.

Next, EDAE is trained as follows. The learning rate and the number of latent
nodes are selected by Bayesian optimization. Figure 3-3 illustrates the architecture
of EDAE. The denoising auto-encoder (DAE) has a symmetric architecture around
the latent layer. Dropout is applied to the intermediate hidden layers (orange circle),
except the latent layer; the dropout rate is set as 0.1. Each model is trained with noisy
input signals; they are added using different white-gaussian noise (g) with the same
signal-to-noise ratio for each model. That is, if x.' denotes the n-th parameter value
at time index i, all clean signals (x) and corrupted signals (%;) for the j-th model
become like Eqg. (3.6). Then, the loss function of the j-th model (L;), the output of the
EDAE (y'), and the residual of j-th tag at i-th index (rj') become like Eq. (3.7). In Eq.
(3.7), B is the mini-batch size, Qj(+) is the learned representation of model j, and M
is the number of models; M is set as five in this work. rj' is non-negative since it is

the L1 norm of the output and the target value. By learning how to denoise the input
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Figure 3-2 Procedure of EDAE-DT

signals, the reconstructing performance can be enhanced. Also, the ensemble

technique can improve performance by reducing the uncertainty in the outputs.

(3.6)
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After training the EDAE, the dynamic threshold (DT) is computed; each step is
described graphically in Figure 3-4. For each parameter, let the output of EDAE be
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Figure 3-3 Architecture of EDAE
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Figure 3-4 Concept of dynamic threshold (DT)

y = [yur;yva]" and the corresponding residual be r = [ry;ra]’. Both variables are
obtained by Eq. (3.7); index i and j are ignored for convenience. The joint probability
distribution f(y,r) is obtained by kernel density estimation using a Gaussian kernel.
The bandwidth is estimated by Scott’s rule [69]. Then, for each y« (black dotted line)
of the regular grid size, the marginal distribution h(-) is obtained as shown in Eq.

(3.8).

f(y.r)

T (3.8)
LO f(y,,r)dr

h(riy=y,)=

The denominator plays the role of normalization to make the integral of h(-) equal to
1. Next, using a pre-defined confidence level (p), the critical point (g«) for each yx is

calculated so that g satisfies Eqg. (3.9).

f:h(r;y:yk)drzl—p (3.9)
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Those critical points are linearly interpolated, and the upper and lower tails are

flattened as follows:

if y>
{g (¥) =9 (Yuper) Y2 Yo @10
g (y) g (ylower) If y < ylower

Here, Yiower and Yupper are chosen as 0.8 times of minimum of y and 1.2 times of the
maximum of y, respectively. The reason for flattening is that interpolation is usually
inaccurate in those regions. Then, a critical function (g(y)) can be defined with
respect to each parameter, which is the blue line in Figure 3-4. When y™ is the
EDAE’s output for unseen data, g(y™) becomes the threshold value. If the residual is
greater than g(y™), the system is considered to have an anomaly, since the residual

exceeds the confidence limit.

After detecting an anomaly by EDAE-DT, to find the condition parameters

related to the anomaly, a sensitivity is newly defined as follows:

o _ max (1 (¥;.0 )) = max (9 (¥ o)) (3.11)

| max(r(¥,0))

where s; is the sensitivity of the j-th parameter, r(y;) is the residual of yj, Vjotal is the

union of (Yju;Yjval;Yje), and g(+) is the critical function. If sj is positive, an alarm is
produced for the parameter; it can be said that no alarm occurs if s; is negative. Also,
a greater value of s; indicates a more sensitive parameter. This sensitivity value can
give a clue to the plant operators about which parameters are relevant to the

abnormality.
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3.3 Performance Evaluation Metrics

As described in Section 2.4.1, deep-learning-based anomaly detection methods
consist of two main steps: modeling of normal data and anomaly detection.
Accordingly, two kinds of metrics are newly defined for quantitative validation;
metrics for modeling performance and for anomaly detection performance. The
proposed metrics are summarized in Table 3-1. RMSE (root mean squared error) of
validation data is defined to quantify the modeling performance because it is the
most widely used metric for regression [70, 71]. In the formulation, T is the time
length of the validation data, N is the number of condition parameters; x;' and y;' are
j-th parameters at time index i and the ensembled output of it, respectively. RMSE
indicates how well an algorithm reconstructs the input data, which means modeling
the normal data. The smaller this metric, the better the algorithm learns the normal

data.

Definitions of false alarms and valid alarms are needed to define metrics for
anomaly detection performance. Figure 3-5 describes the meaning of both alarms. In
Figure 3-5, Tw, Tva, and T are the time lengths of the training, validation, and test
data, respectively; the black line is the residual, and the dotted blue line is the
threshold. Training, validation, and test data might be continuous or not; however,
they should be in the order of time, not overlapped. An alarm occurs when the
residual exceeds the threshold. False alarms are alarms that arise in the training and
validation periods; these are expressed in the orange regions. Valid alarms, expressed

in the gray region, are alarms that occur in the test period, since a change due to an
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anomaly will occur in the test period. In this context, three metrics — a, f, and o —are
newly proposed to quantify the anomaly detection performance. « and g are the
numbers of false alarms and valid alarms per hour, respectively. In the formulation
of Table 3-1, F and V, mathematically defined in Eq. (3.12), are sets of false alarms
and valid alarms; in the equation, fs is the sampling frequency. A small « means that
anomaly detection is reliable; a large a denotes that anomaly detection is so sensitive
that the operator might be confused by too many false alarms. In contrast, the larger
the value of S, the better an algorithm is sensitive to the change of the system due to
an anomaly. « is more crucial than g from the viewpoint of reliability only if g is
greater than 0. ¢ is defined as the difference between the detection time of experts
(Te) and the first detection of a valid alarm (Vo). It is desirable for ¢ to be positive;
otherwise, there is no reason to use that anomaly detection algorithm. As for the units
of the metrics, RMSE has no dimension because input signals are normalized, and a,

S are times per hour; the unit of ¢ is days.
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Table 3-1 Defined evaluation metrics

Performance type Notation Definition Formulation Unit
pé\r/[f(())(rifrii% . RMSE Root mean squared error \/ % i_l: JZZ:( Y ('[i ) — X, (ti ))2 -
o # of false alarms per hour N (F) times /
T, +T, hour
Anggiizizfcc;ion i1 # of valid alarms per hour N_E:/ ) ti}rlr(l)isr/
S How much faster than experts’ T -V, days

detection

F={t19(y,(t))<r(y;(t)) and t, e P} where P :{ti [T, <t <T O, <t <T )t —t, =fi}

Vv ={ti la(y;(t))<r(y;(t))andt eQ} where Q:{ti T, <t <T,t,—t, =fi}
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Figure 3-5 Definition of false alarms and valid alarms

3.4 Description of the Validation Datasets

Two datasets were collected from a steam turbine of domestic thermal power plant
A. The power capacity of each generator of plant A is 500 [MW]. The operating
signals of the steam turbine were measured by an OSlsoft Pl system. The PI system
organizes various signals from the entire power plant. 24 parameters related to the
steam turbine were measured for this dataset; the meaning and the unit of each
parameter are provided in Table 3-2, and the sensor locations are illustrated in Figure
3-6. Also, the sampling rate, data configuration, and several types of anomaly
information for the two datasets are summarized in Table 3-3. The sampling rate is
1 [sample/min], and the number of parameters is 24 for the two datasets. Since EDAE
should be designed to learn the characteristics of the normal condition well, the
length of the training data is set as around 4-5 months, to be long enough to allow

accurate modeling of the normal condition. The validation data is set to a length of
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1 week, and the length of test data is around 1 day, including the experts’ detection
time Te. The test period is inevitably short, since a turbine is usually stopped after
any anomaly is detected. For dataset A, training, validation, and test data are
successively constituted; however, the configuration is not successive for dataset A..
The number of training samples is around 170,000 for both datasets. For case Ay, the
shutdown began at 13:30:00 on 10/31/11, and the turbine was re-operated at 03:20:00
on 11/10/11. Here, and throughout, the date format is month/day/year; for instance,
10/31/11is October 31, 2011. In the case of Ay, the turbine started to stop at 02:00:00
on 12/19/13; it was restarted at 19:40:00 on 12/19/13 after maintenance. The
anomaly cause of A; is a high vibration in the x-direction at the 4™ turbine bearing,
detected by the operator at 12:20:00 on 10/31/11; the anomaly-related parameter is
also analyzed as vibration in the x-direction at bearing #4 by experts. The anomaly
reason for Az is leakage at the crossover pipe; this was discovered by the operator at
20:40:00 on 12/18/13. For A, among the pressure and temperature of crossover pipe
signals, experts determined that the pressure of the crossover pipe is significantly
related to the anomaly; on the other hand, the temperature is relatively slow to change

due to the anomaly.

Figure 3-7 illustrates preprocessed-signal trends of anomaly-related parameters
determined by experts; units are not expressed since they are normalized. The
vertical black-dotted line is the anomaly detection time by the experts. For case Ay,
the variation scale of the training and validation periods are similar to each other.
However, vibration increased significantly in the test period near 14:00:00 on
10/30/11. That is, the change due to the anomaly is valid in the test period of A;. The

variations of training and validation data for case A; are also similar. However, the
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variation in the test period is not valid, as compared to case Az; this means that for

A it will be harder to detect the anomaly than it was for A.
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Table 3-2 Condition parameter information of datasets A; and A

No. Parameter Unit Notation
1 Vibration in the x-direction at bearing #1 mm X1
2 Vibration in the y-direction at bearing #1 mm X2
3 Vibration in the x-direction at bearing #2 mm X3
4 Vibration in the y-direction at bearing #2 mm X4
5 Vibration in the x-direction at bearing #3 mm Xs
6 Vibration in the y-direction at bearing #3 mm X6
7 Vibration in the x-direction at bearing #4 mm X7
8 Vibration in the y-direction at bearing #4 mm X3
9 Vibration in the x-direction at bearing #5 mm X9
10 Vibration in the y-direction at bearing #5 mm X10
11 Vibration in the x-direction at bearing #6 mm X1
12 Vibration in the y-direction at bearing #6 mm X12
13 Vibration in the x-direction at bearing #7 mm X13
14 Vibration in the y-direction at bearing #7 mm X14
15 Vibration in the x-direction at bearing #8 mm X15
16 Vibration in the y-direction at bearing #8 mm X16
17 Vibration in the x-direction at bearing #9 mm X17
18 Vibration in the y direction at bearing #9 mm X18
19 Metal temperature of the crossover pipe °C X19

20 Steam temperature of the crossover pipe °C X20
21 Pressure of the crossover pipe psi X21
22 Steam pressure of the hot reheater line kg/cm’g X22
3 Pressure of up]i‘;f;:;rsl \(;Z lt\}/lee low-pressure ke/em’e s
24 Pressure of the hot reheater outlet line kg/cm’g X24
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Figure 3-6 Sensor locations of a steam turbine

54

>

Condenser

X170 X18

Generator




Table 3-3 Data description of datasets A; and A,

Dataset Aq A,
Sampling rate [sample/min] 1
Number of condition parameters 24
Training data 06/30/11 to 10/23/11 02/12/13 to 07/12/13
Data c
) . Validation data 10/23/11 to 10/30/11 08/01/13 to 08/08/13
configuration
Test data 10/30/11 to 10/31/11 12/18/13 to 12/19/13
Anomaly detection time by experts (7¢) 10/31/11 12:20:00 12/18/13 20:40:00
Start time of shutdown 10/31/11 13:30:00 12/19/13 02:00:00
Restart time after maintenance 11/10/11 03:20:00 12/19/13 19:40:00

High vibration in the x-direction at

Cause of anomaly bearing #4

Leakage at crossover pipe

Vibration in the x-direction at

Anomaly-related parameter by experts bearing #4 (x7)

Pressure of crossover pipe (x21)
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Figure 3-8 Architecture of four auto-encoders: (a) 3 layers, (b) 5 layers, (c) 7 layers, and (d) 9 layers
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3.5 Validation of the Proposed Method

For dataset A;, EDAE, AE, and DAE are trained with four different depths of hidden
layers, as described in Figure 3-8; specifically, 3 layers, 5 layers, 7 layers, and 9
layers. The gray circles show the input or output nodes, the green circles represent
the latent nodes, and the orange circles are the intermediate hidden nodes. For DAE
and EDAE, noise with a signal-to-noise-ratio of 5 [dB] is added to the input signals.
Training epochs and batch size are set as 60 and 64, respectively. EDAE is ensembled

with five DAEs. The confidence level of each threshold method is set as 1e-3.

3.5.1 Case Study 1: Dataset A;

For the four different architectures in Figure 3-8, modeling performances of AE,
DAE, and EDAE are compared to each other. The critical hyper-parameters — the
number of latent nodes and learning rate — are chosen by Bayesian optimization. The
number of iterations is 12, and the acquisition function is chosen as expected
improvement (EI). The convergence results of the optimization are summarized in
Figure 3-9; the y-axis denotes the minimum validation loss until the iteration. The
MAE of the validation data is converged in every case, which means a local optimum
has been reached. Table 3-4 shows the Bayesian optimization results with respect to
the different depths of the hidden layers. To make a bottleneck layer, the number of
latent nodes is constrained to be less than the number of hidden nodes in the layer
that is before the latent layer. The optimal learning rate decreases as a model
becomes deeper because a small learning rate has the advantage of optimizing a
complex neural network. Using the optimized critical hyper-parameters, the three

algorithms are trained. The training and validation losses per epoch of the AEs,
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DAEs, and EDAEs are organized in Figure 3-10. The red circles, blue triangles,
green squares, and purple plus-shaped lines represent the results for 3 layers, 5 layers,
7 layers, and 9 layers, respectively. For each EDAE, the averaged losses of five
DAEs are illustrated. The training losses are converged during the training procedure,
and the validation loss is usually greater than the training loss. The difference
between the converged training loss and the validation loss decreases in order for
AE, DAE, and EDAE, respectively. This means that EDAE suffers the least from the

overfitting issue.

RMSE values for trained AE, DAE, and EDAE are summarized in Figure 3-11.
DAE shows a smaller RMSE value than AE, due to the denoising task. The RMSE
values of EDAE are smaller than those of AE and DAE in every case. In particular,
the RMSE value for an EDAE of 3 layers is the smallest. This means that the EDAE
of 3 layers learns the normal condition better than other approaches. This is because
a light neural network is enough to model the training data, whose input dimension
is just 24. In the case of light data, a neural network with many hidden layers may
have a severe overfitting problem. Consequently, the EDAE of 3 layers is selected

for further study.

After training the EDAE of 3 layers using the training data, N-sigma, MD, and
DT are obtained. Figure 3-12 represents the averaged anomaly detection metrics of
those thresholds. When seeing the metric 8, N-sigma produces 42.2934 valid alarms
per hour, while DT generates slightly fewer valid alarms; the £ value of MD is too
small, as compared to the other two methods. Also, DT generates the first valid alarm
faster than the experts by 0.78 days. While MD triggers the first valid alarm slower

than experts, N-sigma triggers the alarm earlier than experts by 0.84 days, which is
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slightly faster than DT. However, the metric for false alarms («) shows that DT
generates far fewer false alarms than either N-sigma or MD. Specifically, the a value
of DT is about 32.92% of that of N-sigma. In summary, the results show that EDAE-
DT can detect an anomaly faster than experts, while generating the fewest false

alarms, as compared to the conventional methods.

Based on the newly proposed sensitivity in Eq. (3.11), the top three anomaly-
sensitive parameters were selected; these are presented in Table 3-5. As you can see,
vibration in the x-direction at bearing #4 (x7) is the most sensitive parameter. This
coincides with the sensitive parameter that is analyzed by the experts. The a value
of that parameter is 0.0519 times per hour, which means that there is one false alarm
every 20 hours, on average. On the other hand, the 4 value is 55.3907 times per hour,

which shows that the most sensitive parameter can generate frequent valid alarms.

Figure 3-13 illustrates the critical function of x7, and Figure 3-14 presents the
output, residual, and dynamic threshold of x;. In Figure 3-14(a), the first column
shows the results of the training data, the second column shows those of validation,
and the third column shows those of the test period. In the first row of Figure 3-14(a),
the blue line is the true data, and the yellow line is the output. In the second row of
Figure 3-14(a), the blue line is the residual, and the yellow plot is the dynamic
threshold. The vertical black-dotted line denotes the time required for detection by
experts. Since the residual is the L1 norm of the output and true data, the residual is
not negative. Because a critical function produces a threshold for the EDAE’s output,
it is good for training and validation samples to be located under the critical function
to mitigate the false alarm issue; this can be seen in Figure 3-13. Unlike the training

and validation samples, test samples cross the function; this means that alarms occur
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during the test period. Thus, it is confirmed that DT can effectively reduce false

alarms, while generating valid alarms.

The diagnostic performances of N-sigma, MD, and DT are compared using
classification metrics — precision, recall, accuracy, and F1 score — and a confusion
matrix. The true labels of samples are annotated as binary; the samples during
training and validation periods are labeled as normal, and the ones in the test period
are labeled as an anomaly. The predicted label is obtained for each parameter as

follows:

. |0 if <t
= nom (3.13)
y {1 otherwise

where y,' is a predicted label, r,' denotes a residual, and t,' is a threshold of the n-th
parameter at time index i. Then, a single label at time index i (y') is calculated by
averaging the predicted outputs of all parameters as follows:

|0 if 1Zy;<o.5
ne

y = (3.14)

1 otherwise

Table 3-6 shows the averaged diagnostic performance metrics over 10 independent
trials for dataset A;. As you can see, MD has inaccurate results, as compared to N-
sigma and DT. The recall and accuracy of DT are greater than those of N-sigma, but
the precision and F1 scores of DT are slightly smaller than those of N-sigma. That
is, the diagnostic performances of DT and N-sigma are similar to each other. This is
because 1) the labeling might be wrong due to the lack of exact label information,

and 2) the number of faulty samples is far smaller than that of normal samples. The
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predicted labels for x; are described in Figure 3-15. A blue line denotes a residual, a
yellow line is a threshold, a black dotted line denotes Te, and a red circle is the
predicted label of a sample. For MD, a health index is illustrated instead of the
residual. Though MD classifies most of the samples during training and validation
periods as normal, it also misclassifies the test samples as normal. This is consistent
with the results of Figure 3-12, which denotes that the valid alarm rate of MD is the
smallest. DT and N-sigma seem to have similar prediction results. The confusion
matrices of the model used in Figure 3-12 are illustrated in Figure 3-16. The label of
normal samples is 0, and that of the faulty ones is 1. The float value is the number
of predicted samples over that of total samples, and the value in parentheses is that
of predicted samples. From the confusion matrices, it can also be found that MD
misclassifies the fault samples as normal. Also, DT and N-sigma have similar

classification performance, which is also shown in Table 3-6 and Figure 3-15.
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Table 3-4 Bayesian optimization results of AE, DAE, and EDAE for dataset A

# of hidden Hyper- AE DAE EDAE
layers parameters
# of latent nodes 11 25 15
3 layers .
Learning rate 0.004466 0.010000 0.000674
# of latent nodes 25 18 10
5 layers .
Learning rate 0.000873 0.001267 0.000120
# of latent nodes 11 14 9
7 layers )
Learning rate 0.000744 0.006773 0.000594
# of latent nodes 2 4 7
9 layers )
Learning rate 0.004984 0.001319 0.000120
i Ry I - —
64 .-';rx-l: -r|_|' ]_]l -\-_-l'!_ 1].



Training loss Validation loss

04
—a— AE:
— AEs
m —m— Ay
g —t AEg
02 -
L ———————
0 0 40 0
Epoch Epoch
(a) AE3, AEs, AE7, and AE9
Training loss Validation loss

—e— DAE;
—u— DAEs
—m— DAE;
S

DAEg

Epoch Epoch
(b) DAE3, DAEs, DAE7, and DAEQ
Training loss Validation loss
0150 o— EDAE; 0150
—i— EDAE;
gy 0125 —m— EDAE; g 0025
—t— EDAEq
0100 0100
0.075 0075
0 0 20 0
Epoch Epoch

(c) EDAE;, EDAEs, EDAE; and EDAE,

Figure 3-10 Training and validation losses of auto-encoders for dataset A:: ()

AEs, (b) DAEs, and (c) EDAEs

65 = A &gk



[" AE  mm DAE mm EDAE |
RMSE

0.25 -
0.20 1
0.15 1
0.10 1

0.05 -

0.00 -
3 layers 5 layers 7 layers 9 layers

Figure 3-11 RMSE of AE, DAE, and EDAE with respect to four different architectures for dataset A;
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Table 3-5 Anomaly detection performance of the top three parameters of A;

Condition parameters s o [times/hour] g [times/hour] 0 [days]
Vibration in the x-direction at bearing #4 (x7) 0.9218 0.0519 55.3907 0.9174
Vibration in the x-direction at bearing #3 (xs) 0.8716 0.0366 55.1921 0.9139
Vibration in the y-direction at bearing #5 (x10) 0.8395 0.04408 55.3510 0.9167
] 'k.l.-
=
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Table 3-6 Averaged diagnostic performance of 10 trials for dataset A,

Metrics Precision Recall Accuracy F1 score

N-sigma 0.919 0.992 0.993 0.958
MD 0.003 0.006 0.987 0.004
DT 0.918 1.000 0.999 0.957
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3.5.2 Case Study 2: Dataset A>
As in case A, the modeling performances of AE, DAE, and EDAE with respect to

the different numbers of hidden layers are compared to each other. For AE, DAE,
and EDAE, the critical hyper-parameters are selected by Bayesian optimization. The
optimization settings are the same as in the case of Ai:. The convergence plots are
organized in Figure 3-17. The minimum objective function is converged during the
optimization, which denotes that a local optimum has been found. Bayesian
optimization results of AE, DAE, and EDAE are summarized in Table 3-7. In the
same manner, as that used for A, the number of latent nodes is upper-bounded with
the number of nodes of the previous layer to build a bottleneck architecture. As can
be seen, the learning rate is generally decreased when the number of hidden layers
increases. This is because a small learning rate is suitable for finding an optimal point
in a more complex network. The three algorithms are trained with optimized hyper-
parameters. The training and validation MAESs per epoch are summarized in Figure
3-18; the legend is the same as in Figure 3-10. The losses of five DAEs of each
EDAE are averaged. The training and validation losses are converged in most cases.
In addition, the difference between the training loss and validation loss of EDAE is

smaller than those of AE and DAE.

Figure 3-19 illustrates the RMSE values of trained AE, DAE, and EDAE for
four different architectures. As shown in the figure, for each architecture, RMSE
values decrease in the order of AE, DAE, and EDAE. The RMSE value of EDAE
for the 3-layer scenario is smaller than that of the others. This illustrates that an
EDAE of three layers can model the normal data remarkably well, better than the

other approaches. Deeper EDAEs show worse modeling performance than the
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EDAE of 3 layers. The reason for this is that the deeper models suffer an overfitting

problem. Therefore, the EDAE of 3 layers is analyzed in detail.

Three thresholds — N-sigma, MD, and DT — are calculated using the EDAE’s
output. Averaged anomaly detection metrics of those methods are described in
Figure 3-20. First, the o value of N-sigma is the highest among the thresholds; this
implies that the false alarm problem is the most severe when using N-sigma. MD
falls in second place, and DT shows the smallest . This indicates that the false alarm
issue is not severe for DT, as compared to N-sigma and DT. The valid alarm rate f
value of DT is 43.5976; this means DT triggers valid alarms about 43 times per hour.
MD’s g is 0.0423, which represents that MD triggers fewer valid alarms than N-
sigma and DT; that is, MD is least sensitive to the change of multi-variate time-series
data that arises due to an anomaly. Finally, ¢ values of DT and N-sigma are 0.5765;
this describes that those methods detect an anomaly faster than experts by around 13
hours. In contrast, the ¢ value of MD is negative, which means that MD’s detection
is slower than experts. In summary, EDAE-DT produces the fewest false alarms,
while triggering valid alarms faster than experts. Thus, DT is superior to the N-sigma

and MD methods.

After validating the superior anomaly detection performance of EDAE-DT,
parameters that are sensitive to the change of input due to the anomaly are selected,
as outlined in Table 3-8. Those parameters are sorted in descending order based on
the sensitivity. It turns out that the pressure of the crossover pipe has the largest
sensitivity value, which matches the true anomaly cause shown in Table 3-3. Also,
the false alarm rate of the parameter is around 0.052 times per hour, which is quite

small. The valid alarm rate value is 57.9296 times per hour, which also describes
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that the parameter is sensitive to the change of input data that happens due to an
anomaly. Although there are temperature-related parameters at the crossover pipe
(e.g., the metal temperature of the crossover pipe), these parameters are not selected
as anomaly-sensitive parameters. The reason for this is that a change in temperature
is slower than that of pressure when there is a sudden change in a system. Thus,

pressure is a better choice for anomaly detection.

Figure 3-21 is the critical function of x.1, and Figure 3-22 shows the output and
residual of x21. The legends are the same as those shown in Figure 3-13 and Figure
3-14, respectively. In the training and validation periods, the output of EDAE is
similar to the true data; this indicates that EDAE can model the normal condition
successfully. Furthermore, the greater error lies in the output of the test period. In
Figure 3-21, the black line is the critical function. As you can seg, the critical function
exists over the training and validation points; this illustrates that false alarms can be
diminished. Specifically, the residual of the test data increases gradually, crossing
the critical function. Therefore, it can be validated that the dynamic threshold

determined by the critical function can trigger valid alarms.

The performance of fault diagnosis of the N-sigma, MD, and DT approaches is
compared through the use of classification metrics and a confusion matrix. The
labeling method is the same as that used in the case of dataset A;. The averaged
performance metrics over 10 independent trials are summarized in Table 3-9. DT
has the greatest recall, accuracy, and F1 score, as compared to other methods; the
precision of DT is almost the same as that of N-sigma. Therefore, it can be said that
DT has a more accurate diagnostic performance, as compared to the other methods.

This matches with the facts found in Figure 3-20. However, the gaps in the diagnostic

76



metrics between DT and N-sigma are not dramatic, as compared to the results in
Figure 3-20. This is because 1) some samples might be wrongly labeled due to the
absence of exact label information, and 2) the number of normal samples is much
greater than that of faulty ones. Figure 3-23 describes the predicted labels for xz1; in
the case of MD, a health index is plotted in place of the residual. MD mainly
misclassifies the test samples as normal. Though DT and N-sigma have similar
prediction results, the false alarm rate of DT is smaller than N-sigma when
considering the training and validation samples. From the model employed in Figure
3-20, confusion matrices of those three methods are calculated in Figure 3-24.
Likewise, for the results of case A;, the classification performances of DT and N-
sigma are similar to each other. Also, MD mainly predicts fault samples as normal,

which denotes that its valid alarm rate is very small.

77



0,300
0275
0250

g 0225
0.200
0175

0150

19 4
018 4
17 A

016

[£3]

S 015
014
013
012

011 4

0.16
0.15
014
23]
Z on
012

11 A

lteration

(a)

DAE3
DAEs
DAE;
DAEg

Iteration

(b)

EDAEs
EDAEs
EDAE7
EDAEg

lteration

(©

Figure 3-17 Convergence plots with dataset Az: (a) AE, (b) DAE, and (c) EDAE

78

2T

|8t



Table 3-7 Bayesian optimization results of AE, DAE, and EDAE for dataset A,

# of hidden

Hyper-

AE DAE EDAE
layers parameters
# of latent nodes 5 18 13
3 layers )
Learning rate 0.009310 0.007051 0.000651
# of latent nodes 15 11 15
5 layers .
Learning rate 0.000565 0.001846 0.000257
# of latent nodes 12 16 7
7 layers .
Learning rate 0.000079 0.001746 0.000196
# of latent nodes 6 7 6
9 layers )
Learning rate 0.000031 0.002122 0.000201
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Table 3-8 Anomaly detection performance of the top three parameters of A,

Condition parameters s o [times/hour] S [times/hour] 0 [days]
Pressure of the crossover pipe (x21) 0.9273 0.0520 57.9296 0.7639
Pressure of upstream of the low-pressure 0.8216 0.0610 59 1549 0.7639
bypass (x23) ’ ’ ’ )
Pressure of the hot reheater outlet line (x24) 0.8184 0.0507 59.1127 0.7639
] '\-\.I.-
1
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Table 3-9 Averaged diagnostic performance of 10 trials for dataset A,

Metrics Precision Recall Accuracy F1 score

N-sigma 1.000 0.967 0.999 0.983
MD 0.006 0.003 0.984 0.004
DT 0.997 1.000 1.000 0.999
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3.5.3 Analysis and Discussion

Since the confidence level (p) affects detection performance, the performance of the
proposed method is investigated with respect to various confidence levels: p = [1e-
01, 1e-02, 1e-03, 1e-04, 1e-05]. Figures 3-25 and 3-26 describe the critical functions
and detection performance metrics of the datasets A; and Ay, respectively. As
presented in Eq. (3.9), the critical points shift up in the residual direction as p gets
smaller, which causes the critical function to move upward. This can be found in
both Figures 3-25(a) and 3-26(a). Also, as can be seen from the detection
performance results, o converges as p becomes greater than or equal to 1e-03 for
both cases.  and ¢ decrease respectively when o increases; this means that the
detection performance degenerates. This is because the threshold value increases as
the critical function rises in the residual direction. As a result, it makes sense to set
the confidence level as 1e-03 when making a trade-off among the three factors:

minimizing & and maximizing £ and 6.

The effect of the number of models (M) in EDAE is also analyzed. Though
using more models in the ensemble technique usually presents better performance,
the number of models cannot be increased infinitely because of computational cost.
Figures 3-27 and 3-28 describe the modeling and anomaly detection performance
results according to M = [3, 5, 7, 9, 11] for the datasets A; and A, respectively. In
Figure 3-27, the EDAE of M =5 achieves the smallest RMSE value and the lowest
false alarm rate («); it also shows the greatest valid alarm rate (). The J value of the
EDAE of M = 5 is slightly less than the greatest value, which is achieved by the
EDAE of M = 7. When seeing Figure 3-28(a), the smallest RMSE value is obtained
by the EDAE of M = 5. As can be seen from Figure 3-28(b), the EDAE of M =5
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presents better detection performance than other cases. It shows the greatest ¢ value,
while achieving a small « value and a great # value. In summary, setting M = 5 is
reasonable when considering the modeling and anomaly detection performance

results.
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3.6 Summary and Discussion

This research proposes an EDAE-DT for accurate anomaly detection of a steam
turbine. The EDAE approach can model the normal data successfully through its
denoising task and its ensemble technique. The denoising task makes EDAE robust
against noise, and the ensemble technique can improve the reconstruction
performance. The DT method is developed to minimize false alarms in anomaly
detection. By employing the joint probability distribution between the output of a
model and the residual, a variable threshold is determined so that it satisfies the
confidence limit according to the variation in the input. A sensitivity is newly defined
by DT to find the condition parameters related to an anomaly. As a result, after an
anomaly is detected, sensitive parameters can be identified. To quantitatively
evaluate the anomaly detection performance, three performance metrics are newly
defined. The proposed method is validated with two steam turbine datasets by using
the metrics. Among the four different architectures, EDAE of 3 layers has a superior
modeling performance than other auto-encoders. Also, the EDAE-DT approach
generates much fewer false alarms, as compared to conventional methods, and alerts
valid alarms faster than experts. It is also discovered that the most sensitive
parameter, determined by the proposed sensitivity, matches with the true abnormal-
related parameter. This can be helpful for the operators by localizing an area for

inspection.

Sections of this chapter have been published as the following journal article:

1) Jin Uk Ko, Kyumin Na, Joon-Seok Oh, Jaedong Kim, and Byeng D, Youn, “A new
auto-encoder-based dynamic threshold to reduce false alarm rate for anomaly
detection of steam turbines,” Expert Systems with Applications, Vol. 189, pp. 116094,
2022.
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Chapter 4

Frequency-learning Generative
Network (FLGN) for Data
Augmentation

In this chapter, a new generative network called frequency-learning generative
network (FLGN) is proposed 1) to generate signals of variable lengths at specific
time ranges and 2) to ensure that there is little possibility of generating dissimilar
samples. Though the proposed method completely differs from VAE and GAN, the
proposed method is called a “generative network™ since it is based on a neural
network and tries to produce new signals. To generate signals at specific time ranges,
the input becomes a time vector, and the output is set as the amplitude vector at that
time. The key idea is the Fourier series, which indicates that a signal can be
decomposed into several sinusoidal signals [72]. The proposed network is composed
of three parts; a frequency extractor (FE), a phase extractor (PE), and a magnitude
extractor (ME). Those extractors extract the stochastic frequency feature, the phase
feature, and the magnitude feature, respectively. An attention block is utilized for
each extractor so that it can focus on the important features. A deterministic
frequency is learned in the form of a trainable parameter in a neural network. Then,

a sine-basis is generated using the deterministic frequency parameter, the stochastic
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frequency feature, and the phase feature. Then, the magnitude extractor extracts a
magnitude feature using the sine-basis. Finally, a bias is added to the dot product of
the sine-basis and the magnitude feature; this becomes the output of the proposed
network. Through the research presented in this chapter, the proposed approach is
verified by applying it to three datasets; a simulated signal, an RK4 dataset that was
measured from a testbed of GE Bentley Nevada, and an open machinery fault
database called MAFAULDA [73]. The generation performance is evaluated
qualitatively and quantitatively. The validation results indicate that the proposed
method can accurately generate signals for various time ranges, as desired.
Furthermore, the proposed model can effectively learn the frequency components in
the target signal. Specifically, when interpreting the proposed network by visualizing
the attention score, it is found that the proposed model can focus on the characteristic

frequency components.

The remainder of this chapter is organized as follows. Section 4.1 presents the
theoretical background of the proposed method. Section 4.2 provides the proposed
method in detail. The experimental implementation setting is offered in Section 4.3.
Section 4.4 shows the descriptions of the validation datasets, and the validation
results are presented in Section 4.5. Finally, the conclusion of this study and

suggestions for future work are offered in Section 4.6.

4.1 Background: Fourier Series

Fourier series denotes that a periodic function is represented as the summation of

sinusoidal waves [72]. Given a function x(t), whose period is T, the Fourier series
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expression of the function becomes as follows:

4.1)

Here, c, is the magnitude, ¢« is the phase, and ¢o is the bias. They are defined as

follows:
2
On =7 (4.2)
c = a’+b’ (4.3)
a
¢, =arctan Lb—”j (4.4)
a, _2 Tx(t)cos(%—nt]dt
T Jo
2 (T . (27N
where b, :?J.O x(t)sm(?tJdt (4.5)
1 T
¢ =8 ==, (t)dt

The Fourier series can be interpreted as approximating a periodic function using
frequency information such as magnitude, frequency, and phase. Inspired by this, the
proposed method is developed. The motivation is graphically illustrated in Figure 4-
1. To make a signal at a desired time range, the input is time. Then, feature extractors
make magnitude, frequency, and phase. From this frequency information, another
feature extractor computes sine-bases. Finally, the sine-bases are summed to yield

the target signal.
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Figure 4-1 Motivation of the proposed method

4.2 Frequency-learning Generative Network (FLGN)

In this section, a novel generative model called frequency-learning generative
network (FLGN) is explained in detail. The proposed method is developed to
generate vibration signals of variable lengths and to minimize the risk of generating
incorrect signals. The problem is formulated first with two assumptions: the target
signal is stationary, and the training and test data have the same label conditions.
Then, the detailed procedure of the proposed approach is described. Finally, the

deep-learning settings to reflect signal processing knowledge are elucidated.

4.2.1 Problem Formulation

First, the problem that the proposed scheme is designed to address is formulated. The

proposed method, which generates a signal at a desired time range, is developed
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under the following assumptions:

1) It is assumed that the target signal is measured under a constant-speed
condition. This means that the signal is stationary and that the frequency

components remain constant.

2) The training and test data are assumed to have the same label conditions.
For example, if the proposed model is trained with rubbing data, the
proposed method will generate signals of the rubbing condition at different

time ranges.

Let D" = {t;", x(t")}Mi=1 be the training dataset and F(-) be the proposed
model. Here, t{" is the time at the i-th index, x(t/™) is the amplitude at the time
tf", and M is the number of training samples. Then, the output of FLGN is
£(tf") = F(tf™). When test data is D* = {t*}"=1, the proposed method will
generate f(tfe). The time range of the test data can be changed as desired by the

user.

4.2.2 Overall Procedure of FLGN

To produce signals of various lengths, a frequency-learning generative network
(FLGN) approach is newly proposed in this research. Figure 4-2 illustrates the
schematic diagram of the proposed method. The input is a time vector {t}!,, and
the output is {£(¢)}!,, which is the amplitude vector at the corresponding time
vector. There are three feature extractors; specifically, a frequency extractor (FE),

a phase extractor (PE), and a magnitude extractor (ME). These all consist of
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number of nodes is m, 2) a batch normalization layer, and 3) an activation function
Q(). The SA layer is used to sample-wisely average the feature, and an attention
block is added to further focus on the important part of the averaged feature. The
attention block is developed based on the squeeze and excitation network [74]. Using
the attention blocks in each extractor, the proposed model can focus on the important
frequency, phase, and magnitude features. f; is a trainable parameter to learn the
deterministic frequency and Af; is a feature used to learn the stochastic frequency;
where i =1,..,N; and Ny is the dimension of the frequency features. Af; is
used because the frequency components can slightly change due to environmental

disturbances, despite the constant-speed condition.

The input and output sizes of the main modules in FLGN are shown in Table 4-
1. Let the length of the desired time range be B; then, the size of the input layer is
B x 1. FE and PE output a stochastic frequency feature (Af;) and a phase feature
(¢:), as presented in Eq. (4.6). The dimensions of both features become 1 X Nf; the
first dimension is changed from B to 1 by the SA layer. (f; + a X Af;) will
become the final frequency at the i-th index, which is constrained to be exist in the
range of 0 and half of the sampling frequency (f;). a is a hyper-parameter to
control the effect of Af;. If the input signal has mostly deterministic frequency
components, a small @ will be more proper. (f;, Af;, ¢;) are combined to make a
sinusoidal basis (s;) in the sine-basis layer, as shown in Eq. (4.7). The output size
of the sine-basis layer is B x N¢. Using the sine-basis, ME extracts a magnitude
feature (a;) like Eq. (4.8). The output dimension of ME is 1 x N¢. Finally, a bias
(ap) is added to the dot product of the sine-basis feature and the magnitude feature,

as in Eqg. (4.9). It is similar to the Fourier series, which approximates a signal as the
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summation of sinusoidal signals. This becomes the final output (£(t)) of FLGN,
whose dimension is B X 1; this is same as the size of the input time vector. The
objective function is mean squared error (MSE), as presented in Eq. (4.10). In the
equation, j is the sample index, and B is the number of samples; for the training, B
becomes the batch size. In Table 4-1, the input and output layers share the same size
B x 1. Since B can be determined as a user want, it is confirmed that the proposed

method can generate signals of variable lengths.

f, =(Trainable parameter)

af =FE(t) (4.6)
4 = PE(t)

s, =sin(2z(f+axaf)t+4) @4.7)
a, = ME(s;) (4.8)

x(t)=a, +Zi:aisi =a, +ZME(si)sin(27r( f+axaf)t+g) (4.9)

L(x,>A<):%Z(xj—f(j)2 (4.10)

Table 4-1 Input and output size of main modules in FLGN

Module Input size Output size
Input layer Bx1 Bx1
FE Bx1 1 x Ny
PE Bx1 1 X N
Sine-basis layer 1 X N B X N¢
ME B x Ny 1x Ny
Output layer 1 X Ny Bx1
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Table 4-2 Training procedure of FLGN

Input: Training data D”ai”={ti”,x(tfr)}il; batch size B ; Ny ;
deterministic frequency range (p, q); «; learning rate n; training epochs
Output: Model configuration of FLGN

I) Parameter initialization

Deterministic frequency parameters > ¢, = (f1, ...,fo)
Trainable parameters in FE and PE > ¢,

Trainable parameters in ME 2> ¢,

Total trainable parameters - 6 = (¢r, 91, ¢2)

Initialize ¢, with uniform distribution U(p, q)
Initialize ¢, with the He uniform initialization method
Initialize ¢, with the He normal initialization method

I1) Mini-batch training

while validation loss does not converge do
for epoch = 1 to training epochs do

for batch=1to [ﬁ] do

Draw mini-batch samples {(t;,x(¢t1)), ..., (ts x(tz))} from Dtrain
Compute X = F(t;6)

Calculate loss function L(x,X) in Eq. (4.10)

Update parameters 6 « 6 — nz—;

end for
end for
end while

The training procedure is described in Table 4-2. Given training data whose
amplitude is min-max scaled, hyper-parameters, including batch size, N, frequency
range (p,q), a,thelearningrate (1), and the number of training epochs are chosen
first. Next, the deterministic frequency parameters are initialized by uniform

distribution U(p, q). The parameters in FE and PE are initialized by the He uniform
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initialization method [75], and those in ME are initialized by the He normal
initialization method [75]. The proposed model is trained by mini-batch learning
until the validation loss converges. The mini-batch samples are drawn to be
overlapping; the stride is setas |(B/8)]. After the training is finished, the developed

model can predict the amplitude in the test time range.

4.2.3 Deep-learning Implementation Details to Reflect Signals
Processing Knowledge

First, because it is sometimes unknown which frequency is dominant, the
deterministic frequency (f;) is initialized with uniform distribution U(p,q) .
(p, q) should satisfy the following condition: 0 < p < q < f;/2. In particular, the
range can be chosen using prior knowledge about the frequency information in the
target signal. For example, if it is known that frequency components of the target
signal exist around 60 [Hz], the range can be selected as (50,70). Ny should be
large enough to have the ability to learn most frequency components. For instance,
if there are over 10 sub-harmonics of the fundamental frequency, setting Ny less
than 10 makes it difficult to learn most of the frequency information. Also, the
frequency (f; + a X Af;) is constrained to be between 0 and the Nyquist frequency
(fs/2) to satisfy the Nyquist-Shannon sampling theorem [16]. In addition, the phase
feature (¢;) is restricted to exist between —m and m. To do this, the following

activation function Eqg. (4.11) is applied to the end of the phase extractor.

g(h)=(h—7)%@r)-x (4.11)

Here, “%” is the modulus operator. The function g(h) is a periodic function, whose
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Figure 4-3 Trend of activation function g(h)

period is 2m; it is plotted in Figure 4-3. Finally, L1 regularization is applied to the
deterministic frequency parameters (f;) to make any useless frequency
components zero [76]; the regularization scale is 1e-4. A regularizer combining L1
and L2 penalties is also applied to the magnitude extract for a similar reason; the
scale value is 1e-4. This regularization can restrict most parameters to be small; that
is, the magnitude features, except the features about the characteristic frequencies,

will become small.

4.3 Experimental Implementation Setting

This section introduces the rest of the hyper-parameter conditions of the proposed
method and the evaluation scheme. To rigorously validate its generation
performance, FLGN is validated by both qualitative evaluation and quantitative

evaluation.
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4.3.1 Hyper-parameter Setting

The Adam optimizer is used to optimize the parameters of FLGN [55]. The initial
learning rate is 5e-4, and the learning rate decay ratio is 1e-7. No bias is used at any
fully connected layer. For an attention block, the reduction hyper-parameter r is
chosen as 20. A batch normalization layer and an exponential linear unit (ELU) are
employed with each fully connected layer. A new activation function g(h), which
is defined in Eq. (4.11), and a sigmoid function are used right before the SA layer in
PE and ME, respectively. Batch size, N¢, and a are chosen differently for each
dataset. In particular, the batch size should be large enough to contain the most
frequency information. When training the proposed method with a mini-batch
method, the batch size plays a role in the sequence length. Thus, if the batch size is
too small, the mini-batch sample will not involve enough frequency components

since the frequency resolution will be too big.

4.3.2 Evaluation Scheme

Given a time vector as the input, the proposed model generates the signal of that time
range. Here, to test the proposed method, the generation performance is evaluated
both qualitatively and quantitatively. For the qualitative evaluation, the true and the
generated signals are visualized in the time domain and in the frequency domain,
respectively. Magnitude spectrums of the true and the generated signals are
compared in the frequency domain. If the generated signal is similar to the true one,

both signals will also appear similar in both domains.

Similarity metrics and handcrafted features are computed for the quantitative

evaluation. Root mean squared error (RMSE) and the correlation coefficient values
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are calculated to identify how similar a generated signal is to the true signal. Features
of both domains are also computed for quantitative evaluation. Time-frequency
features are not considered because it is assumed that the signal is stationary [77]. If
the generated and true signals are similar, those feature values will also be similar.
The features of both domains, referring to [78], are summarized in Table 4-3. Here,
X is the amplitude in the time domain, N is the length of X, f is the frequency,
and s(f) is the power spectrum function of X. RMS is relevant to the kinetic
energy of the signal, and skewness and kurtosis can reflect the statistical
characteristics of the signal. Shape factor, impulse factor, and crest factor describe
how much the signal is similar to a sinusoidal waveform. The frequency center and
root mean squared frequency (RMSF) indicate the fundamental frequency of the
signal. Finally, the root variance frequency (RVF) shows how spread out the

frequency components are.

The generation performance is further investigated using an auto-encoder. If the
signals produced by the FLGN method are similar to the true signals, the auto-
encoder that is trained only with the true signals will successfully reconstruct the
generated signals. Figure 4-4 graphically illustrates the evaluation based on the auto-
encoder. An FLGN model is trained, and the auto-encoder is trained using the true
signals; its objective is to reconstruct the true data. Finally, the latent space is
visualized, and RMSE and correlation coefficient between the signals reconstructed
from the true and generated signals are computed. If the produced signals are similar
to the true signals, both signals will be reconstructed successfully. Thus, the latent
vectors of both signals will be close to each other and RMSE will be small, and the

correlation coefficient will be near 1.
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Table 4-3 Time-domain and frequency-domain features

Domain Feature Notation Definition
RMS Xyms / i1 X7
N
N X —X )3
Skewness X i=1\4i mean
skew (N — 1)53
N o 4
Kurtosis Xiewrs i=1(Xi = Ximean)
i (N —1)s*
Time
domain p
X s
Shape factor sf Mean(XD
Impulse Max(X)
Xif it A
factor Mean(1X])
Max(X
Crest factor Xcr ax(X)
ers
Frequency X, Jy fxs(Hdf
Cc Y. e —
center fo s(Hdf
© o 1/2
Frequency RMSF ¥ Jo 7 xs(f)df
domain rmsf - p
Iy stHaf
o _ 2 1/2
RVF Xyop (fo f ffc) ><s(f)df>
Jy s(Haf
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Figure 4-4 Performance evaluation using an auto-encoder: (a) procedure, (b)

architecture of the auto-encoder, and (c) FC block in the auto-encoder
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4.4 Description of the Validation Datasets

The developed method is validated on three datasets. The first dataset is a simulated
signal (D1), which contains impulsive signals and the signal of a low-frequency
component. Two types of periodic impulsive signals with frequencies of 10 [Hz] and
25 [Hz] are involved to simulate the repeated impulsive fault. The low frequency is
5 [Hz], and white-Gaussian noise is added. The sampling frequency is determined as
2000 [Hz]. Figure 4-5 describes the time-domain and frequency-domain trends. The
mathematical expression of the simulated signal is presented in Eq. (4.12); where “*”
is the convolution operator. The characteristic frequencies are 5 [Hz], 330 [Hz], and

500 [Hz].
X, (t)=e"sin(27x500xt)
X, (t) =4e™ sin (27 x330xt)
X; (t) =0.3sin(27 x5xt)
£~N(0,0.1%)

y(t)=&(t)*ié(t—%j+xz(t)*iﬁ(t—£+2—(1)0J+x3(t)+g

(4.12)

The second dataset is the RK4 dataset (D2), which was measured from a GE
Bently-Nevada testbed. The testbed setup is presented in Figure 4-6(a). The time-
domain and frequency-domain trends are described in Figure 4-7. For this dataset,
vibration signals were measured using two proximity sensors located at 90-degree
intervals. The sampling frequency is 8500 [Hz], and the experiment was conducted
in a steady-state condition of 3600 [rpm]; thus, the fundamental frequency (f;) is 60
[Hz]. There are five health conditions in this dataset, including normal, misalignment,
unbalance, oil whirl, and rubbing. Detailed information about the experiment can be

found in [79]. Among the five health states, rubbing and oil whirl conditions are
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examined in this study. As shown in Figure 4-7, the sub-harmonic components at
2fo and 3f, exist in the rubbing signal and the oil whirl signal contains the 0.5f,

component.

MAFAULDA (Ds) [73] is used as the third validation dataset. This dataset was
measured from a Machinery Fault Simulator (MFS) testbed. Figure 4-6(b) shows the
setup of the MAFAULDA testbed, and Figure 4-8 presents the time-domain and the
frequency-domain trends of the imbalance and the horizontal misalignment
conditions. There is a disc and a shaft that is supported by two rolling bearings;
accelerometers are located at two points. The sampling frequency is 51200 [Hz],
which is the highest among the three validation datasets. The dataset includes various
fault conditions with different levels of fault severity and rotating speed; the rotating
speed range is 700 ~ 3,600 [rpm]. More information about the testbed is described
in [80]. In this research, imbalance and horizontal misalignment signals of 1,800
[rom] are examined. Among the three datasets (Di1, D2, and Ds), only the
MAFAULDA signals are wavelet-denoised and low-pass filtered to remove
unnecessary frequency components [81]; the cutoff frequency is set as 1000 [Hz].
The fundamental frequency (f,) for both conditions is 30 [Hz]. For the imbalance
condition, the fundamental frequency is dominant. The horizontal misalignment
signal has many frequency components, including sub-harmonic components at 2f;,
3fo, 4fy, and 7f;,. Since the signals of D3 are much noisier than the others, it can

be estimated that generating those signals will be the most difficult task.

The training, validation, and test data configurations are summarized in Table
4-4. For the simulated signal, the signal from 0 [sec] to 4 [sec] is used as the training

data; the signal from 4 [sec] to 5 [sec] is employed as the validation data. Signals
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from O [sec] to 1.50 [sec] and from 1.50 [sec] to 2.50 [sec] are used as the training
and validation data for the RK4 dataset. In the case of MAFAULDA, training, and
validation samples are determined as the samples from O [sec] to 1.00 [sec] and from
1.00 [sec] to 1.20 [sec], respectively. For each dataset, three test data samples with
different time ranges are utilized to verify the proposed model. The size of each test
data sample is chosen differently to verify the generation performance related to

signals of variable lengths.

Table 4-5 shows the hyper-parameters of each dataset. For D1 and D», batch
sizeand N areselected as 512 and 1000, respectively. The frequency range is from
0 to 1000 [HZz], and the training epochs is chosen as 800. Since D3 has the largest
sampling rate among the three datasets, the batch size and Ny are set to be greater
than their values for the other datasets. In particular, for each dataset, the batch size
is set large enough to contain most sub-harmonic components of the fundamental
frequency. The important hyper-parameter a is chosen by the grid search method
[19]. « is selected from [0.001, 0.01, 0.1, 1.0, 10.0] to achieve the smallest MSE.

Details of this process are summarized in Section 4.5.4.
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Figure 4-5 Time-domain and frequency-domain plots of the simulated signal: (a)

time-domain and (b) magnitude spectrum
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Figure 4-6 Testbed setups: (a) RK4 dataset and (b) MAFAULDA
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Figure 4-7 Time-domain and frequency-domain plots of the rubbing and oil whirl signals of the RK4 dataset: (a) time-

domain trend and (b) magnitude spectrum
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Figure 4-8 Time-domain and frequency-domain plots of the imbalance and horizontal misalignment signals of

MAFAULDA: (a) time-domain trend and (b) magnitude spectrum
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Table 4-4 Configuration of the training, validation, and test data of each dataset

Start time ~ end time [sec] (Number of samples)

Dataset
Training (Tr) Validation (Val) Test; (Ter) Test, (Tez) Tests (Te3)
Simulated signal 0.00 ~ 4.00 4.00 ~5.00 5.00 ~7.00 7.00 ~ 8.50 8.50~9.50
(Dy) (8000) (2000) (4000) (3000) (2000)
RK4 dataset 0.00 ~ 1.50 1.50 ~2.50 2.50 ~3.50 3.50 ~4.25 4.00 ~4.50
(Do) (12750) (8500) (8500) (6375) (4250)
MAFAULDA 0.00 ~ 1.00 1.00 ~ 1.20 1.20 ~2.20 2.20~2.70 2.70 ~2.95
(Ds) (51200) (10240) (51200) (25600) (12800)

Table 4-5 Hyper-parameters of each dataset

Dataset Batch size Ng¢ (p,q) a Training epochs
Simulated
signal (D)) 512 1000 (0, 1000) 0.1 800
RK‘tga)taset 512 1000 (0, 1000) 0.01 800
2
MAFAULDA 2048 1200 (0, 1000) 0.01 800
(D3)
] ‘-\.I.-
g
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4.5 Validation of the Proposed Method

Three datasets are employed to validate the proposed approach. One is a simulated
signal, which contains periodic impulsive signals and a signal with a low-frequency
component. The second dataset is RK4 data, which was measured from a testbed of
GE Bentley Nevada. The third dataset is a machinery fault database (MAFAULDA),
which is an open dataset offered by [73]. The proposed FLGN is validated using the
evaluation schemes presented in Section 4.3.2. The validation results show that the
signals generated by FLGN are very similar to the true signals. Also, the results show

that frequency components are successfully learned by the proposed method.

45.1 Case Study 1: Simulated Signal

The training and validation loss curves are analyzed first to confirm whether the
training process is finished correctly; the curves are shown in Figure 4-9. In the
figure, the blue line is the loss curve of the training data, and the red-dotted line is
that of the validation data. The y-axis of the figure is limited to exist between 0 and
0.20. As shown in the figure, the validation loss decreases as the training loss
decreases; further, both losses converge when the training is almost over. Since the
validation loss does not increase while the training loss decrease, it can be concluded
that an overfitting problem does not occur. Moreover, it seems that the losses slowly
decrease during 10 ~ 100 epochs. This infers that FLGN does not initially learn the
dominant frequency; however, it can learn the correct frequency as the training

proceeds.

In addition to the loss curves, the validation batch samples are compared. Figure

119



4-10 describes the validation samples at the 20", 400", and 780" epochs. In the figure,
the blue line denotes the true sample, and the red line is the generated sample.
Initially, the generated signal is very different from the true sample; the impulsive
components are not captured in the generated signal. At the 400" epoch, though a
more similar signal is generated, there are still some errors in the generated signal.
However, the errors decrease further as training progresses, and the sample generated

by FLGN at the 780" epoch is almost identical to the true sample.

For the three test data samples (Tes, Tez, and Tes) in Table 4-4, the generated
signal is compared with the true signal (as shown in Figure 4-11) by visualizing them
in the time domain and in the frequency domain, respectively. The blue line means
the true signal, and the red line denotes the produced signal. As can be seen from the
time-domain results, the generated signal is almost the same as the true signal in all
cases. Two periodic impulse signals and the low-frequency component of 5 [Hz] are
learned well. Also, it can be found that FLGN can generate signals well even when
the lengths of Tes, Te,, and Tes are varied. This cannot be achieved by conventional
VAE or GAN-based models; these prior models can only produce a signal that has
the same size as that of the final hidden layer of the generator. The magnitude
spectrum results of the generated and true signals are also similar in all cases.
Furthermore, the characteristic frequencies — 5 [Hz], 330 [Hz], and 500 [Hz] — are
learned well by FLGN.

Next, the similarity metrics — RMSE and correlation coefficient — are computed
and shown in Figure 4-12. For each data sample, the metrics are calculated based on
the true signal and the generated signal. The blue line with triangles presents the

RMSE curve, and the red line with circles denotes the curve of the correlation
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coefficient. The RMSE value of the training data is the smallest, and that of Tes is
the greatest. Specifically, the further away from the time range of the training data,
the greater the RMSE value. This is natural because the performance of a deep-
learning algorithm usually degrades as the input data becomes more dissimilar to the
training data. For the correlation coefficient, meanwhile, the coefficient remains at
about 1.0 for all data. This means that the generated signals are highly correlated
with the true signals. This can be interpreted to mean that the generated signals are

nearly identical to the true ones.

The features in Table 4-3 are calculated and shown in Figure 4-13. Here, the
red bar with downward lines means the feature of the true signal, and the gray bar
with upward lines presents that of the generated signal. First, since RMS, skewness,
and kurtosis are similar to each other, the generated signal has kinetic energy and
statistical characteristics that are similar to the true signal. The shape factor, impulse
factor, and crest factor of the generated signals are also similar to those of the true
signals. This indicates that the sinusoidal characteristics are similar. Finally, since
the frequency center, RMSF, and RVF of both signals are almost the same, it can be

argued that the frequency components are also similar.

The performance of the developed method is verified using an auto-encoder;
the architecture of the auto-encoder is illustrated in Figure 4-4(b). Figure 4-14
presents the visualization of the latent vectors, which are encoded from the true and
generated signals. The red circle denotes the latent vectors of the true signals, and
the blue x-marker means those of the generated signals. As can be seen from the
figure, the latent vectors of the generated signals are close to those of the true signals.

This means that the produced signals are similar to the true signals. This can also be
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found in Table 4-6, which shows the RMSE and the correlation coefficient between
the signals reconstructed from the true and the generated signals. RMSE values are
small, and the coefficient values are around 1. This quantitatively verifies that the

proposed method can produce signals that are similar to the target signals.

In summary, the signal produced by FLGN is similar to the true signal when
comparing the results in the time domain and in the frequency domain. The generated
signal is highly correlated to the true one, and the handcrafted features of both signals
are significantly similar to each other. Also, the proposed method can generate
signals of variable lengths well. Therefore, it can be said that the proposed FLGN

produces a signal of variable length that is similar to the target signal.
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Figure 4-9 Training and validation loss curves in Case 1
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Figure 4-10 Time-domain visualization of validation batch samples for epochs in Case 1: (a) 20" epoch, (b) 400" epoch,

and (c) 780" epoch
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Table 4-6 RMSE and correlation coefficient between the signals reconstructed

from the true and generated signals in Case 1

Data RMSE Correlation coefficient
Tr 0.0160 0.9994

Val 0.0271 0.9983

Te; 0.0349 0.9974

Te; 0.0445 0.9957

Tes 0.0548 0.9939

4.5.2 Case Study 2: RK4 Testbed Dataset

Figure 4-15 shows the training and validation loss curves for the rubbing and oil
whirl conditions. The range of the y-axis is constrained to exist between 0 and 0.20.
For the rubbing condition, the training and validation losses decrease gradually until
the 200" epoch; then, both losses remain constant until the 350" epoch. After that,
both losses converge at the end of the training procedure. The losses of the oil whirl
condition decrease with fluctuation until the 200™ epoch; after that, both losses
decrease and converge gradually. For both conditions, since the gap between the
final training and validation losses is small enough, it can be concluded that any

overfitting issue is not severe.

The batch samples of validation data are compared with the generated samples
while the training procedure progresses. Figure 4-16 presents both signals at the 20™,
400", and 780" epochs of the rubbing and oil whirl conditions. The legend is the
same as that of Figure 4-10. The generated signals are not similar to the true signals

initially for either condition. However, as the training procedure proceeds, the
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generated signals are almost the same as the true ones. This means that FLGN is

trained well for both conditions.

The results of the three test data samples — Tes, Te,, and Tes — are described in
Figure 4-17. The legend is the same as that of Figure 4-11 of Case 1. As you can see
from the results of the rubbing condition, the generated signal is very similar to the
true signal in the time domain. The magnitude spectrum results are also similar to
each other. The fundamental frequency (f, = 60 [Hz]) and the fault-related
frequencies (2f, and 3f,) are identical for all cases. For the oil whirl condition, the
signals produced by FLGN are similar to the true signals in both domains. In
particular, the generated signals have characteristic frequency components at f,
and 0.5f,. However, unlike the rubbing condition, the error between the generated
and true signals is greater. This is because the signal of the oil condition has a greater
spectral smearing effect than that of the rubbing condition; consequently, it is more

difficult to learn the frequency components for the oil whirl condition.

The RMSE and correlation coefficient between the true signal and the generated
signal are calculated and presented in Figure 4-18. The legend is identical to that of
Figure 4-12 of Case 1. In both conditions, the training data has the smallest RMSE
value, and the RMSE value increases as the input time range moves farther away
from the training time range. The reason for this phenomenon is the same as that
described in Case 1; that is, the performance of a neural network often deteriorates
as the test data becomes increasingly different from the training data. Examining the
correlation coefficient curves, we find that the coefficient of the rubbing condition
is almost 1.0, and that of the oil whirl condition is greater than 0.8. This means that

the generated signal is significantly correlated to the true signal.
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To further validate the similarity between the true data and the generated data,
the features in Table 4-3 are computed to examine the similarity between both signals.
Figures 4-19 and 4-20 show the results of the rubbing and oil whirl conditions,
respectively. The true and generated signals share similar RMS values, which means
that the energy of the signals is similar. The skewness and kurtosis of both signals
are also similar. This indicates that the statistical properties are also similar. Also,
since the shape factor, impulse factor, and crest factor of the produced signals are
similar to those of the true ones, it can be confirmed that the produced signals have
sinusoidal properties that are similar to those of the true signals. Furthermore, both
signals have very similar frequency center, RMSF, and RVF values. This means that
the dominant frequency information is almost identical when comparing the true and

generated signals.

The proposed method is evaluated using an auto-encoder. Figures 4-21 and 4-
22 show the visualization of the latent vectors of the rubbing and oil whirl conditions,
respectively; the legend is the same as that of Figure 4-14. For most cases, the latent
vectors of the signals generated by the FLGN method overlap those of the true
signals. Specifically, for the oil whirl condition, the latent vectors of the produced
signals are close to those of the true signals, even if some of the latent vectors spread
out. The RMSE and correlation coefficient values of both conditions are summarized
in Tables 4-7 and 4-8, respectively. As can be seen from the tables, RMSE values
are small, and the correlation coefficient values are close to 1. This means that the

generated signals are statistically similar to the true signals.

In summary, we validated the generation performance of FLGN for Case 2 in

various ways. The validation results show that the proposed model is able to produce
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signals of different lengths well. For both conditions, the generated signals are

significantly correlated to the true ones and have similar handcrafted features.
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Figure 4-16 Time-domain visualization of validation batch samples for various epochs in Case 2: (a-c) 20", 400" , and 780"

epochs of rubbing and (d-f) 20" , 400" , and 780" epoch of oil whirl
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Figure 4-19 Time-domain and frequency-domain features of the rubbing condition

in Case 2: (a) RMS, (b) skewness, (c) kurtosis, (d) shape factor, () impulse factor,

(f) crest factor, (g) frequency center, (h) RMSF, and (i) RVF

136



B True ¥ Output

2
0.4 0.15
0.10
02 !
0.05
0.0 0.00 0
Tr Val Te; Tex Tes Tr Val Te; Tes Tey Tr  Val Te; Tep, Tes
(a) (b) (©)
2
1.0 2
0.5 1 !
0.0 0 0
Tr Val Te; Ter Tey Tr  Val  Te; Tex Tey Tr  Val Te; Tex Tes
(d) (e) U]
15
40 40
10
20
20 5
0 0 0
Tr  Val Te Tex Tey Tr Val Te Tex Tey Tr  Val Te; Tex Tey
() (h) 0

Figure 4-20 Time-domain and frequency-domain features of the oil
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condition in Case 2: (a) RMS, (b) skewness, (c) kurtosis, (d) shape factor, (e)
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Table 4-7 RMSE and correlation coefficient between the signals reconstructed

from the true and generated signals of the rubbing condition in Case 2

Data RMSE Correlation coefficient
Tr 0.0270 0.9989

Val 0.0368 0.9982

Tes 0.0426 0.9980

Te; 0.0600 0.9959

Tes 0.0694 0.9951

Table 4-8 RMSE and correlation coefficient between the signals reconstructed

from the true and generated signals of the oil whirl condition in Case 2

Data RMSE Correlation coefficient
Tr 0.0471 0.9937

Val 0.1066 0.9786

Tes 0.1506 0.9641

Tex 0.1885 0.9517

Tes 0.2082 0.9473
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45.3 Case Study 3: MAFAULDA

In this case, the signals of the imbalance and horizontal misalignment conditions are
studied. The training and validation loss curves are shown in Figure 4-23. As shown,
the training and validation losses decrease smoothly for the imbalance condition. For
the horizontal misalignment condition, both losses also converge; however, there is
much fluctuation. This is because the signal of the horizontal misalignment condition
has more complex frequency components than that of the imbalance condition; this
can be confirmed by examining the results in Figure 4-8. Since the difference
between the training and validation losses is low enough at the end of the training
procedure, it can be concluded that the overfitting problem is not severe in either

condition.

Figure 4-24 describes the generated and true signals at the 20", 400", and 780"
epochs for the imbalance and horizontal misalignment conditions. The legend is
identical to that of Figures 4-10 and 4-16. Also, the results are similar to those shown
for Case 1 and Case 2. Though the generated signals are not similar to the true signals
initially, they become similar to the true samples as the training procedure progresses.
Even if there is much noise in the true signal, as found for Case 1 and Case 2, FLGN

can effectively produce similar signals to the true signals.

The results of the test data are presented in Figure 4-25. The legend is identical
to that of Figures 4-11 and 4-17. In the imbalance condition, the generated and true
signals are similar to each other, when comparing them in the time domain. Also,
both signals have an identical fundamental frequency component (f, =30 [Hz]). In
the horizontal misalignment condition, although the true signal has many sub-

harmonic signalsat n x f, (n = 2,...,9), itis found that FLGN can learn most sub-
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harmonic signals and that the generated signals are similar to the true signals.

Next, the similarity metrics are computed to quantitatively evaluate the degree
to which the generated signal is similar to the true signal. Figure 4-26 presents the
results for the imbalance and horizontal misalignment conditions. The legend is the
same as that of Figures 4-11 and 4-16. For the imbalance condition, though the
RMSE value of the test data is larger than that of the training data, the correlation
coefficient remains greater than 0.9. This means that the generated signal is highly
correlated to the true signal. This is also found in the results of the horizontal
misalignment condition. The coefficient is larger than 0.7, while the RMSE value of
the test data also increases compared to the training data. The gap between the test
and training data is wider in the horizontal misalignment case. This is because there
are more sub-harmonic components and noise components than in the imbalance
condition. The phenomenon where the RMSE value increases from the training data

to test data is also recognized, and the reason is estimated to be the same.

The handcrafted features of the imbalance and horizontal conditions are
calculated and shown in Figures 4-27 and 4-28, respectively. Like Case 1 and Case
2, most features of the produced signals are similar to the true ones. However, in
some features, including the impulse factor, frequency center, RMSF, and RVF, the
gap between the generated and the true signals is greater than those of Case 1 and

Case 2. This is because dataset D3 has more sub-harmonic and noise components.

The generation performance of the FLGN method is verified through the use of
an auto-encoder. The latent vectors of the imbalance and horizontal misalignment

conditions are visualized in Figure 4-29 and Figure 4-30, respectively. The legends
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are identical to those of Figures 4-21 and 4-22. Although the latent vectors of the
true signals are more complicated than those of Case 1 and Case 2, those of the
generated signals are similar to the true signals. This is also discovered in Tables 4-
9 and 4-10, which present the RMSE and correlation coefficient values of both
conditions. The RMSE wvalues are less than 0.22, and the correlation coefficient
values are greater than 0.96 for both conditions. This proves that the signals

generated by the proposed approach are similar to the true signals.

In conclusion, when validating the proposed method by applying it to the
MAFAULDA, not only does the proposed method have the ability to learn the

frequency information well, but it can also generate signals of variable lengths well.
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Table 4-9 RMSE and correlation coefficient between the signals reconstructed

from the true and generated signals of the imbalance condition in Case 3

Data RMSE Correlation coefficient
Tr 0.0281 0.9985

Val 0.0582 0.9951

Tes 0.0653 0.9933

Te; 0.1631 0.9676

Tes 0.1849 0.9620

Table 4-10 RMSE and correlation coefficient between the signals reconstructed

from the true and generated signals of the horizontal misalignment condition in

Case 3
Data RMSE Correlation coefficient
Tr 0.0678 0.9922
Val 0.1539 0.9836
Te; 0.1582 0.9765
Te, 0.1917 0.9741
Tes 0.2149 0.9716
x:x_'i o
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4.5.4 Analysis and Discussion

Grid search [19] is performed to tune « for each dataset. The grid is [0.001, 0.01,
0.1, 1.0, 10.0] and the value that achieves the smallest MSE is chosen. When
computing the final frequency that combines the deterministic frequency and the
stochastic frequency feature, a controls the relative effect of the stochastic
frequency feature. If « is small, the deterministic frequency will become dominant;
otherwise, the stochastic frequency will be important. The results for Tes are
described in Figure 4-31. The x-axis and y-axis are described in the log scale. In
Case 1, an a of 0.1 shows the smallest MSE value. In Case 2 and Case 3, an a of
0.01 achieves the smallest MSE value. Also, asmall a results in better performance
in general; a of 10.0 shows the largest MSE in all cases. This means that the
deterministic frequency is more important than the stochastic frequency. This is
because the validation datasets follow the assumption that the signals are stationary;

thus, it is unnecessary to impose great weight on the stochastic frequency.

To interpret the proposed network, the attention score in ME is visualized with
the frequency (f; + a X Af;) and the magnitude (a;). Figure 4-32 shows the
results of Te; of Case 1 and Case 2, and Figure 4-33 present those of Case 3. The
frequency components (f; +a X Af;,a;) are compared with the magnitude
spectrum of the true signals, which are offered in Figures 4-5(b), 4-7(b), and 4-8(b).
In Case 1, the magnitude spectrum is similar to the spectrum obtained by FFT. The
attention score is high near the characteristic frequencies — 5 [Hz], 330 [Hz], and 500
[Hz]. This denotes that the proposed model is able to focus on the characteristic
frequencies well. This result is also found in Case 2. The learned frequency features

are similar to the magnitude spectrum of the true signals. When seeing the attention
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score, the sub-harmonic components — 60 [Hz], 120 [Hz], and 180 [Hz] — are
dominant, and there are few components other than those sub-harmonic components.
The reason why the unimportant components have a very small magnitude is because
of the strong regularization applied to ME. Because the attention score is very high
at the sub-harmonic frequencies, it can be argued that the proposed method also
concentrates on the sub-harmonic components well in Case 2. For Case 3, the
magnitude spectrum of the proposed method is similar to the true spectrum, which
is shown in Figure 4-8(b). As can be seen from the attention score, the network
focuses well on the sub-harmonics, including 30 [Hz], 60 [Hz], 90 [Hz], and 120
[Hz]. But, the sub-harmonic at 210 [Hz] is less concentrated, and other frequency
components except the sub-harmonics are focused. This is because the proposed

model is distracted by the noise components.
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4.6 Summary and Discussion

In this research, a new generative network called FLGN is newly proposed to
generate signals of various lengths. Unlike VAE or GAN-based models, the
proposed method is a new generative model that is designed and trained based on
signal processing knowledge; therefore, the proposed approach has the capability to
learn the frequency information of the training data. The proposed method consists
of three extractors — the frequency extractor, the phase extractor, and the magnitude
extractor. Those extractors can extract the frequency, phase, and corresponding
magnitude in the training signal. Three datasets — a simulated signal, the RK4 dataset,
and MAFAULDA - are utilized to validate the proposed model. The proposed
method is evaluated both qualitatively and quantitatively. The validation results
denote that the proposed approach can generate signals that are sufficiently similar
to the true signals. Specifically, the fundamental frequency and its sub-harmonics
are very similar to each other. The hyper-parameter study of « indicates that a small
a achieves better performance for a stationary signal. Also, when interpreting the
network by visualizing the attention score, it can be found that the proposed method

can focus on the characteristic frequency components.

Sections of this chapter have been published or submitted as the following journal article:

1) Jin Uk Ko, Jinwook Lee, Taehun Kim, Yong Chae Kim, and Byeng D. Youn,
“Frequency-learning generative network (FLGN) to generate vibration signals of
variable lengths,” Expert Systems with Applications, 2022

158



Chapter 5

Multi-task Learning of
Classification and Denoising
(MLCD) for Health Classification

This section proposes a multi-task learning of classification of denoising (MLCD)
scheme to make a classifier robust against noisy data. The proposed method is a
learning scheme that simultaneously learns classification and denoising, with hyper-
parameters optimized by the Bayesian method [21]. Among various hyper-parameter
optimization methods, including grid search [19] and random search [20], we chose
the Bayesian method because it outperforms conventional methods [21].
Classification is chosen as the primary task because this study focuses on the
diagnosis of a rotor system; that is, classifying the condition of the system. MLCD
proposes simultaneous learning of these tasks rather than learning classification after
denoising. By enabling an explicit denoising capability while classifying the health
condition, MLCD improves the diagnostic performance by adding a regularization
effect from learning the auxiliary task (denoising) and decreases the computational
time required, as compared with the computational time that would be required to
learn classification sequentially, after denoising. To validate the effect of MLCD on

noisy signals, MLCD is integrated with two popular deep-learning algorithms;

159



LSTM and 1D CNN. The two MLCD-based algorithms, MLCD-LSTM and MLCD-
1D CNN, are compared with LSTM and 1D CNN, respectively, by using rotor
testbed data; these are ablation tests to validate the effect of MLCD. The
performance of each algorithm is maximized by choosing critical hyper-parameters
through Bayesian optimization. The results of the case study support that MLCD-
LSTM and MLCD-1D CNN show improved test accuracy for various noisy inputs,
respectively. By visualizing the intermediate features and the t-distributed Stochastic
Neighboring Embedding (t-SNE) [25] results of the high-level features, it was found
that MLCD-based algorithms extract noise-robust and various features, which also

contain the sinusoidal characteristic of the input signals.

5.1 Background: Multi-task Learning

Multi-task learning (MTL) is a learning strategy that forces an algorithm to solve
more than two tasks simultaneously [82]. Among the tasks, the main task is called
the primary task. The other tasks used to help the primary task are called auxiliary
tasks. By learning the auxiliary tasks simultaneously, the performance of the primary
task can be improved because the auxiliary tasks prevent the algorithm from being
overfitted to the primary task [83]. The neural network structure of MTL is shown
in Figure 5-1, where there are three types of layers: the input layer, the shared layers,
and the task-relevant layers. A shared representation for all tasks is learned in the
shared layers, while a representation specific to each task is learned in the task-
relevant layers. Note that T, indicates a primary task and {T;}%, denote auxiliary

tasks. Examples of tasks include classification, regression, and denoising [84].
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Figure 5-1 Architecture of a neural network with multi-task learning

To develop a noise-robust fault diagnosis algorithm, the proposed scheme
defines the primary task as classification and the auxiliary task as denoising of the
input signals. Given input signals {%,}N_, and target label vectors {y,}V_,,
classification seeks to find the function y, = f(%,). The denoising task predicts
clean samples {x,}N_,, given noisy samples {%,}N_, where %, =x, +¢; ¢ is

noise. That is, the step of denoising seeks to find the relationship x, = g(x,).

5.2 Multi-task Learning of Classification and Denoising
(MLCD)

This section delineates the proposed multi-task learning of classification and
denoising (MLCD) scheme to make a classifier robust against noisy signals. The
overall procedure of the MLCD scheme and its integration with LSTM and 1D CNN

are presented in this section.
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5.2.1 Overall Procedure of MLCD

To solve the noise issue, multi-task learning of classification and denoising (MLCD)
is newly proposed. In the proposed method, an algorithm learns the classification
and denoising simultaneously. In the final layers of classification and denoising,
softmax and linear activations are selected, respectively. Then, the outputs of the

classification (9°Y) and denoising (7%¢") are expressed as follows:

clf
I

1 e
yo = — —| (5.1)
e’ 2
2" e
Zlden
9den — (52)
Zden
D

where K denotes the number of classes; D denotes the dimension of the input signals;
zi = Wi'h + by is the linear summation of the previous layer (h) with weight vector (w;)
and bias (bi) corresponding to the i"" node of the final layer; {z}=1 and {z%"}Pj=1
denote the final linear projections in the classification and denoising, respectively.

The designed objective function (Luicp) is defined as follows:
Lieo = Loy ()7 Wshd W )+ﬁx den ( “ Wona deen)

1 e
:_EZ yr::(f |09yn||<f +ﬁx—z
n=1 k

o]
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i

where L and Lgen are loss functions of classification and denoising; cross entropy

loss and mean absolute error, respectively; Wsng, War, and Ween denote the trainable
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parameters in the shared, classification-relevant, and denoising-relevant layers,
T

respectively; 4 is a weighting hyper-parameter; y<" = [y</, ..,y , ..,y s

a true one-hot vector corresponding to an input X,,; B is batch size; ||||» denotes the

L1 norm. Then, the parameter updating rules become as follows:

oLy oL
W =Wk — ' den 5.4
shd shd 77 [ aWSI;]d ﬂ 8Ws',§d ( )
oL

W™ =Wy —n— - (5.5)

clf

¥ oL, en
Wdtnl :Wdl:en -n 6\/\7k (5-6)

den

where k is the k™ iteration during training; # is the learning rate.  and S are critical
hyper-parameters because # regulates the extent of training, and g controls the
relative importance between the tasks. For most studies, hyper-parameters are
chosen heuristically for simplicity. However, a manual hyper-parameter setting
cannot ensure the maximal performance of an algorithm; for example, too large #
can cause the training not to converge, and too large £ can ignore the learning of
classification. Therefore, in this study, the critical hyper-parameters are chosen by
Bayesian optimization [21]. Bayesian optimization finds the solution by using a
surrogate model and Bayesian updating. After choosing optimal hyper-parameters,
the total parameters (Wsna, Weir, Waen) are trained as expressed in Egs. (5.4), (5.5) and
(5.6).

MLCD improves generalization performance for two reasons. First, learning

the denoising task gives hints for classification so that the algorithm learns more
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meaningful features in the shared layers. This enables an MLCD-based algorithm to
extract more diverse and meaningful features rather than similar and simple ones.
Second, Lq¢en plays arole as the regularization term for classification, which prevents
the algorithm from being overfitted to classification. Thus, the final features at the
classification-relevant layer will be distinguished better according to the classes. For
these reasons, MLCD-based algorithms can achieve improved generalization

performance.

The entire procedure of the developed fault diagnosis approach is described in
Figure 5-2. There are three main parts to the method: data acquisition, data
preprocessing, and fault classification with denoising. First, raw vibration signals are
measured from a rotor system with perpendicularly located proximity sensors. These
raw signals are not suitable to use directly because the number of sample points per
cycle is not synchronized. In addition, the anisotropic characteristics of faults might
not be involved well in the raw signals depending on the directions of the sensors.
Thus, in the data preprocessing step, the raw signals are processed to be used as input
to the deep-learning-based algorithms. Finally, the preprocessed data are used to

train the deep-learning algorithm, such as LSTM or 1D CNN.

Among many candidates, LSTM and 1D CNN are employed in this research;
these are the two most widely used algorithms in fault diagnosis studies. LSTM
learns the sequential context in the input through several gates and cell states; 1D
CNN learns meaningful representation by sliding filters — whose heights are equal
to those of the input — in the time direction. The critical hyper-parameters are chosen
by Bayesian optimization. The Bayesian method, which finds the optimal solution

by surrogate function and Bayesian updating, can provide superior results, as
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____________________

Figure 5-2 Overall procedure of the newly proposed method

compared to traditional methods like random search and grid search. After finding
optimal hyper-parameters, the algorithm is trained to learn both tasks. Features are
extracted in the shared layers automatically, and they are summarized through the
fully connected layers of task-relevant layers for both tasks. Note that classification
and denoising are learned simultaneously in training; however, only classification is

turned on during testing.

5.2.2 Integration with LSTM: MLCD-LSTM
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Based on the related works outlined in Section 5.1, LCD-LSTM is developed in this
research by integrating MLCD with LSTM. The architecture of MLCD-LSTM is
shown in Figure 5-3. The ODR signals are generated along the half circumference
in 15° intervals; this adds up to 12 signals. The sequence length of the input is 64,
which is the same as the number of sample points of two revolutions. Thus, the input
dimension becomes 12-by-64. Then, two LSTM layers of 24 hidden nodes are
stacked. All hidden states of the second LSTM layer are used for denoising, while
only the final hidden state of LSTM is used for the classification. The outputs of
LSTM are connected to the task-relevant fully connected layers (FC1lc, FC1p); the
number of hidden nodes at each FC1 is 256. These two FC1 layers are connected to
the final layers (FC2c, FC2p), which give the output corresponding to the
classification and denoising, respectively. The fully connected layers of the
denoising (dotted black line) are inactivated in the test procedure. Note that the
LSTM algorithm, which is compared with MLCD-LSTM, has the same architecture
except for the denoising part. The batch size and training epoch are both set as 100.
The hyperbolic tangent function and the rectified linear unit (ReLU) are selected as
the activation functions of the LSTM layers and the fully connected layers,

respectively.

5.2.3 Integration with 1D CNN: MLCD-1D CNN
MLCD-1D CNN is developed by applying MLCD to 1D CNN. The architecture of

MLCD-1D CNN is described in Figure 5-4. The shapes of the input and output are
the same as those of MLCD-LSTM. A total of four 1D convolutional layers and two

max-pooling layers are used for the shared part. The number of filters in each
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convolutional layer is 8, 16, 32, and 32, respectively. The stride of filters in each
convolutional layer is 1. The size of the max-pooling is set to 2. The output of the
final pooling layer is connected to two intermediate fully connected layers (FClc,
FC1p) of 128 hidden nodes. These two FC1 layers are connected to the final layers
(FC2¢, FC2p), which produce the final output of the classification and denoising
tasks, respectively. Similar to MLCD-LSTM, the fully connected layers for the
denoising task are not activated during the testing procedure. The architecture of the
1D CNN algorithm, which is compared with MLCD-1D CNN, is the same as that of
MLCD-1D CNN, except for the denoising part. The batch size and training epoch
are both chosen as 100. The leaky-rectified linear unit (LeakyReLU) and ReLU are
chosen as the activation functions of the convolutional layers and the fully connected

layers, respectively.
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5.3 Preprocessing Techniques

The details of the preprocessing step are illustrated in Figure 5-5. First, the raw
signals are angular resampled to synchronize the number of sample points in a cycle
by rearranging the rotation angle of a rotor equally [85, 86], as shown in Figure 5-5
(). The rotation angle is obtained from the tacho signal. Then, to capture the
directional characteristics of the fault, omnidirectional regeneration (ODR) signals
[79] are generated from the resampled signals by rotational transformation, as shown
in Figure 5-5 (b). The ODR signals can be considered as signals that are measured
at several circumferential positions; thus, they contain more information about the
system than the raw signals. Next, white gaussian noise is added to the ODR signals.
The noisy ODR signals and the clean ODR signals are considered noisy and clean
samples, respectively. The noisy signals of all labels are scaled with respect to the
normal data to preserve the relative magnitude information. The noisy signals
become the input of an MLCD-applied classifier, and the clean signals are the target
output of the classifier. Finally, to make the signals be entered into LSTM and 1D
CNN, the m noisy ODR and clean ODR signals of each class are sampled with a
given sequence length (I) and stride (s); then, the number of final samples becomes

(m - 1)/s. The sequenced signals of all classes are concatenated and shuffled.
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5.4 Description of the Validation Datasets

The RK4 dataset was obtained to validate the performance of the proposed MLCD
method. Figure 4-6(a) shows the experimental setup of a GE Bently-Nevada RK4
testbed, which has been used in many fault diagnosis studies of rotor systems [56,
79, 87-91]. The experimental settings, including the sampling rate and rotating speed,
are the same as in Section 4.4. Five health states, including normal and four fault
states — unbalance, misalignment, rubbing, and oil whirl —were acquired, since those
faults are the most common types of faults of a rotor system [92]. Each state was
measured three times. There are some differences among data sets, though the state
(label) remains the same. The raw signals are angular resampled so that there are 32
samples in each cycle. The ODR signals were generated by rotating the resampled
signals from 0° to 90° at 15° intervals. Four levels of white gaussian noise of signal-
to-noise ratio (SNR) — 10, 1, 0, -1 [dB] — were added, where the SNR in decibels is

defined as follows:

SNR,; =10log,, [ E‘Q”a' ) (5.7)
Psignal and Pnoise denote the power of the signal and noise, respectively. The noisy
(blue line) and clean signals (red dotted line) of each dataset are illustrated in Figures
5-6, 5-7, and 5-8. As the SNR gets smaller, the clean signals are more distorted by
the noise. After scaled about normal signals, they were sampled with a sequence
length of 64 and stride of 8; then, the number of training samples of each state

became 7048. More information about the testbed and data is provided in [77].
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Figure 5-6 Signal trends of set 1: (a) SNR of 10 [dB], (b) SNR of 1 [dB], (c) SNR

of 0 [dB], and (d) SNR of -1 [dB]
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Figure 5-7 Signal trends of set 2: (a) SNR of 10 [dB], (b) SNR of 1 [dB], (c) SNR

of 0 [dB], and (d) SNR of -1 [dB]
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Figure 5-8 Signal trends of set 3: (a) SNR of 10 [dB], (b) SNR of 1 [dB], (c) SNR

of 0 [dB], and (d) SNR of -1 [dB]
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5.5 Validation of the Proposed Method

This section provides the results and analysis of the proposed MLCD method when
validating the proposed method with the RK4 dataset. Two developed models —
MLCD-LSTM and MLCD-1D CNN - are evaluated in terms of test accuracy and

intermediate feature analysis.

55.1 Case Study 1: MLCD-LSTM
The optimized hyper-parameters of LSTM and MLCD-LSTM are summarized in

Table 5-1. Figure 5-9 compares the average classification accuracy of 10 repeated
tests of each case with the optimized hyper-parameters. x [dB] = y [dB] denotes that
the algorithm is trained with an input where the noise of SNR of x [dB] is added and
tested with the same data set added by SNR of y [dB] noise. The error range is one
standard deviation from the mean accuracy. A large variance in accuracy means a
large uncertainty in the results when there is a small disturbance in the input. When
set 1 is used for training, MLCD-LSTM shows 10% to 25% better performance in
all cases, as compared to LSTM. In addition, the overall variances of MLCD-LSTM
are lower than those of LSTM. In particular, when an SNR of 1 [dB] is used, the
proposed MLCD method decreases the variances significantly, as compared with the
results from LSTM. If set 2 is used as training data, MLCD-LSTM also shows better
test accuracy than LSTM. For the cases of SNRs of 10, 1, and 0 [dB], MLCD-LSTM
shows similar test accuracy to LSTM. However, when an SNR of -1 [dB] is used,
MLCD-LSTM shows a test accuracy of around 80%; whereas that of LSTM is
around 40%, which is half of that of MLCD-LSTM. In this case, the variance of
MLCD-LSTM is less than that of LSTM, which means the uncertainty in the
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prediction is decreased through the use of the proposed MLCD method. Finally,
when set 3 is used, the average test accuracies of MLCD-LSTM are greater than
those of LSTM in all cases. In particular, when an SNR of 1 or -1 [dB] is used for
training, the test accuracy of MLCD-LSTM is around 90%; whereas the performance
of LSTM is around 80% and 60%, respectively. Comparing the variances of MLCD-
LSTM and LSTM, MLCD-LSTM reduces variance significantly when an SNR of -
1 [dB] is used for training. Although MLCD-LSTM slightly increases the variance
when an SNR of 0 [dB] is trained, MLCD-LSTM shows greater test accuracy than
LSTM. Overall, MLCD-LSTM improved generalization performance, as compared
to LSTM. This is because learning the auxiliary task prevents the algorithm from
being overfitted toward classification by giving a regularization effect, as discussed

in Section 5.1.

Figure 5-10 provides a visualization of features at the FC1¢ of set 3 by t-SNE
for three cases: SNR of 0 [dB] - -1 [dB] in (a) and (b), SNR of 1 [dB] - -1 [dB] in
(c) and (d), and SNR of 10 [dB] = -1 [dB] in (e) and (f). Testing with an SNR of -1
[dB] is selected since it is the most difficult situation for a fault diagnosis algorithm.
The better an algorithm trains, the better the features at the FC1c are classified. As
you can see from Figures 5-10(a) and (b), while LSTM cannot distinguish normal,
misalignment, and rubbing states, MLCD-LSTM diagnoses those states much better
because the extracted features are distinctive according to the states. Figures 5-10(c)
and (d) show that MLCD-LSTM also classifies normal, misalignment, and rubbing
states much better than LSTM. In the case of an SNR of 10 [dB] = -1 [dB], as shown
in Figures 5-10(e) and (f), given normal, misalignment, and rubbing states, the

extracted features of LSTM are severely overlapped. However, MLCD-LSTM can
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extract more distinguishable features from those states than LSTM. In particular, the
normal state is diagnosed well from the misalignment and rubbing states by MLCD-
LSTM. To summarize, since the features at the FC1c are better distinguished, as
compared with LSTM, MLCD is shown to improve the fault diagnosis performance,

given noisy input signals.

From the analysis of t-SNE, it is discovered that LSTM mostly confuses the
rubbing state with others. To understand this fact a little more, the intermediate
features at the shared layers — LSTM1 and LSTM2 in Figure 5-3 — are visualized in
Figure 5-11 for the case of set 3 and an SNR of 0 [dB] - -1 [dB]. When a test sample
in Figure 5-11(a) is given, the features of MLCD-LSTM are shown in Figure 5-11(b)
and (c), and those of LSTM are shown in Figures 5-11(d) and (e). Three facts can be
discovered from the results. First, it can be found that the noise is removed more and
more as it passes through more layers in MLCD-LSTM. Second, compared to the
features of LSTM, those of MLCD-LSTM are quite similar to sinusoidal waves. In
particular, as you can see from Figures 5-11(c) and (e), most features of MLCD-
LSTM are more similar to the true rubbing signal in Figure 5-8 than those of LSTM.
Third, when comparing Figure 5-11(b) with (d) and Figure 5-11(c) with (e),
respectively, while most features of LSTM overlap with each other, those of MLCD-
LSTM show more various trends than those of LSTM. This indicates that MLCD
enables the algorithm to extract more meaningful features, as compared to single-
task learning of classification. Therefore, when significant noise exists in the input,
MLCD-LSTM can understand the sinusoidal characteristic of the input signals better

and extract a wider variety of features than LSTM.
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Table 5-1 Bayesian optimization results of LSTM

SNR[dB]  Algorithm  7(10%) B Zigﬁf:c"yn

LSTM 0.0267 : 1.0000

10 MLCD-LSTM 09482  0.4578 1.0000

LSTM 3.5488 i 1.0000

! MLCD-LSTM  3.0938 13642  0.9979

setl LSTM 0.3487 i 1.0000
0 MLCD-LSTM  11.3084 489001  0.9997

LSTM 0.1000 i 1.0000

! MLCD-LSTM  12.2952 58.4489  1.0000

LSTM 0.1000 i 1.0000

0 MLCD-LSTM  6.6706 12.0396  1.0000

LSTM 3.8200 i 1.0000

! MLCD-LSTM 23300  1.6878 1.0000

Set2 LSTM 2.0691 i 1.0000
0 MLCD-LSTM 88012 447087  0.9989

LSTM 32052 - 1.0000

! MLCD-LSTM 25600  1.4894 1.0000

LSTM 0.1000 i 1.0000

10 MLCD-LSTM ~ 1.9932  0.1000 1.0000

LSTM 0.1000 i 1.0000

: MLCD-LSTM 85376 10.6941  1.0000

et LSTM 0.3140 i 1.0000
0 MLCD-LSTM 25695  0.1000  0.9994

LSTM 154718 - 1.0000

! MLCD-LSTM  1.6954  0.1000  0.9971
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5.5.2 Case Study 2: MLCD-1D CNN
The optimized hyper-parameters of 1D CNN and MLCD-1D CNN are tabulated in

Table 5-2. Using the optimal hyper-parameters, each algorithm was trained and
tested 10 times. The test results of MLCD-1D CNN and 1D CNN are shown in Figure
5-12. The results describe that the test accuracy of the proposed MLCD-1D CNN is
better than that of 1D CNN in most cases. For set 1, MLCD-1D CNN shows better
test accuracy than 1D CNN in all cases. In particular, when an SNR of 0 [dB] is
trained, the mean test accuracy of MLCD-1D CNN is much greater than that of 1D
CNN, while the variance of MLCD-1D CNN is far smaller than that of 1D CNN.
This indicates that the MLCD method improves the generalization performance. In
the case of set 2, there is little difference in the test accuracy between MLCD-1D
CNN and 1D CNN when an SNR of 10 [dB] is used. However, when an SNR of 1
or 0 [dB] is used for training, the MLCD-1D CNN shows slightly better accuracy
and less variance than 1D CNN. When set 3 is used, both MLCD-1D CNN and 1D
CNN show almost 100 % test accuracy for the case of an SNR of 10 [dB]. For the
case of an SNR of 1 [dB], MLCD-1D CNN shows slightly better performance than
1D CNN. However, when an SNR of 0 [dB] or -1 [dB] is used for training, the
average accuracy of MLCD-1D CNN is almost 100%, while that of 1D CNN is under
80%. Moreover, the variance of test accuracy decreases considerably when the
proposed MLCD method is used. In summary, MLCD-1D CNN shows an enhanced
generalization performance because learning the denoising task gives a

regularization effect to the classification task, as discussed in Section 5.1.

The features at the FC1¢ layer of set 1 are analyzed by using t-SNE in Figure
5-13 for three cases: SNR of 0 [dB] = -1 [dB] in (a) and (b), SNR of 1 [dB] = -1
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[dB] in (c) and (d), and SNR of 10 [dB] - -1 [dB] in () and (f). Since the algorithms
are more affected by the noise as the SNR level becomes smaller, the test case is
chosen as an SNR of -1 [dB]. From Figures 5-13(a) and (b), it is found that MLCD-
1D CNN classifies all states well, while 1D CNN confuses the misalignment and
rubbing states. Moreover, MLCD-1D CNN clusters the features of each label better
than 1D CNN: the features of some labels — normal, unbalance, and oil whirl — of
1D CNN are not clustered well. Figure 5-13(c) shows that it is difficult for 1D CNN
to diagnose normal and rubbing conditions since the features of 1D CNN of normal
and rubbing are close to each other. However, as shown in Figure 5-13(d), the
features of normal and rubbing states of MLCD-1D CNN are clustered further apart
than those of 1D CNN. Figures 5-13(e) and (f) show that while 1D CNN confuses
normal, misalignment, and rubbing states, MLCD-1D CNN can extract more
distinctive features from those states, which are located further from each other. In
addition, MLCD-1D CNN also learns better-clustered features for the unbalance and
oil whirl states. In short, it can be said that the generalization performance of MLCD-
1D CNN is improved because the features at the FC1. are classified better than those

of 1D CNN.

To understand the results better, the intermediate features at the first two
convolutional layers — Convl and Conv2 in Figure 5-4— are visualized in Figure 5-
14 for the case of set 1 and an SNR of 0 [dB] = -1 [dB]. Along with LSTM cases,
the rubbing state is chosen since it is the hardest state for 1D CNN to diagnose
accurately. There are three findings from the analysis. First, for both 1D CNN and
MLCD-1D CNN, more noise in the input signal is removed as it passes through more

convolutional layers; however, the extent of denoising is greater for MLCD-1D CNN.
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This is because a higher level of representation for classification and denoising is
learned as the input goes through more convolutional layers. Second, the features of
MLCD-1D CNN are more similar to sinusoid waves, which means that MLCD-1D
CNN can learn about the waveform of the input signal better than 1D CNN.
Interestingly, the 8" features (from upside to downside and from left to right) in
Figure 5-14(b) and the 13" and 16" features in Figure 5-14(c) are quite similar to the
true rubbing signal (red dotted line) in Figure 5-6(d). Lastly, when checking the
similarity of features at the shared layers, the features of MLCD-1D CNN are more
diverse than those of 1D CNN. In particular, almost half of the features at Conv2 of
1D CNN are similar to a w-shape, as shown in Figure 5-14(e). Consequently, given
noisy input, MLCD-1D CNN learns the characteristic of the signal waveform better

and generates noise-robust and more diverse features, as compared to 1D CNN.
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Table 5-2 Bayesian optimization results of 1D CNN

SNR[dB]  Algorithm  7(10%) B Zigﬁf:c"yn

1D CNN 0.1000 i 10000

0 MLCDADCNN 01000 100000 1.0000

1D CNN 0.1000 i 10000

1 MLCD-IDCNN ~ 0.1000  10.0000  1.0000

setl 1D CNN 9.5624 i 10000
0 MLCD-IDCNN ~ 0.1000  10.0000  1.0000

1D CNN 0.1000 i 10000

! MLCD-IDCNN  0.1000  10.0000  1.0000

1D CNN 0.1000 i 1.0000

0 MLCDADCNN 01000 100000 1.0000

1D CNN 0.1000 i 1.0000

1 MLCD-IDCNN  0.1000  10.0000  1.0000

set2 1D CNN 0.1000 i 1.0000
0 MLCD-IDCNN ~ 0.1000  10.0000  1.0000

1D CNN 0.1842 i 1.0000

! MLCD-IDCNN  0.1000  10.0000  1.0000

1D CNN 0.1000 i 1.0000

¥ MLCDADCNN 01000 100000 1.0000

1D CNN 0.0244 i 1.0000

: MLCD-ID CNN ~ 0.1000  10.0000  1.0000

et ID CNN 4.0523 i 1.0000
0 MLCD-IDCNN 0413 152443 1.0000

1D CNN 1.6411 i 1.0000

! MLCD-IDCNN  0.1000  10.0000  1.0000
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Figure 5-12 Average test results of 1D CNN and MLCD-1D CNN
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Figure 5-13 t-SNE visualization of features at FC1c with set 1: (@) 1D CNN, SNR
of 0 [dB] © -1 [dB], (b) MLCD-1D CNN, SNR of 0 [dB] = -1 [dB], (c) 1D CNN,
SNR of 1 [dB] © -1 [dB], (d) MLCD-1D CNN, SNR of 1 [dB] = -1 [dB], () 1D
CNN, SNR of 10 [dB] > -1 [dB], and (f) MLCD-1D CNN, SNR of 10 [dB] = -
1 [dB]
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Figure 5-14 Visualization of intermediate features at the shared layers of 1D CNN and MLCD-1D CNN with a rubbing test
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5.6 Summary and Discussion

In this research, we proposed a new training scheme called MLCD for noise-robust
fault diagnosis. The key idea of MLCD is to improve the generalization performance
of fault diagnosis through multi-task learning of classification and denoising using
optimal hyper-parameters that are chosen by Bayesian optimization. MLCD was
integrated with LSTM and 1D CNN; then, MLCD-LSTM and MLCD-1D CNN were
newly developed. For each RK4 testbed data set, each algorithm was trained and
tested with different SNR levels repeatedly. From the results and analysis, two
conclusions can be made. First, the visualization of intermediate features shows that
MLCD-based algorithms extract more meaningful features where the greatest
amount of noise is removed and learn the representation of the signal waveform
better. Second, when the high-level features at FClc are visualized in two-
dimensional space by t-SNE, the features of MLCD-based algorithms are classified
better according to the five states. This means that the generalization performance of
fault diagnosis is improved despite noisy input. In future work, tasks other than
denoising will be researched to find the optimal combination with classification for

noise-robust fault diagnosis.

Sections of this chapter have been published as the following journal article:

1) Jin Uk Ko, Joon Ha Jung, Myungyon Kim, Hyeon Bae Kong, Jinwook Lee, and
Byeng D, Youn, “Multi-task learning of classification and denoising (MLCD) for
noise-robust rotor system diagnosis,” Computers in Industry, Vol. 125, pp. 103385,
2021.
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Chapter 6

Conclusion

6.1 Contributions and Significance

This doctoral dissertation proposes a deep-learning-based methodology for macro-
and micro-level fault diagnosis using operation and vibration signals. The proposed
methodology consists of three novel studies: (1) an ensemble denoising auto-
encoder-based dynamic threshold (EDAE-DT) to reduce false alarms by considering
the fluctuation in the normal data; (2) a frequency-learning generative network
(FLGN) to generate signals of variable lengths by learning the frequency information;
and, (3) multi-task learning of classification and denoising (MLCD) approach to
improve classification performance against noise by concurrently learning the
denoising capability. The research in this dissertation provides the following
contributions to the area of deep-learning-based fault diagnosis of rotating

machinery.

Contribution 1: Development of a new anomaly detection technique that
reduces false alarms by considering the fluctuations in the

normal data.
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This doctoral dissertation proposes an ensemble denoising auto-encoder-based
dynamic threshold (EDAE-DT) to reduce false alarms in anomaly detection.
Concretely, EDAE is a new modeling method that is able to learn the normal data
well by using an ensemble technique with five DAEs. Together, the ensemble
technique and denoising task enable the modeling performance to be improved. DT
is developed to set a variable threshold by considering the joint distribution of the
output of the EDAE and the residual. After calculating the joint distribution, it is
discretized, and critical points are determined as the point where the upper tail of the
marginal distribution becomes a confidence level; a critical function is obtained by
linearly interpolating the critical points. This critical function computes a threshold
value with respect to each output value. In summary, by 1) improving the modeling
performance and 2) setting a threshold dynamically, the EDAE-DT achieves
accurate anomaly detection, while generating the lowest number of false alarms of

available methods.

Contribution 2: Suggestion of an innovative generative network to generate
stationary signals of variable lengths by using the Fourier

series.

This doctoral dissertation proposes a novel method called frequency-learning
generative network (FLGN) to generate signals of variable lengths. FLGN is an
innovative generative network, which is completely different from the prior VAE or
GAN-based models. The FLGN approach consists of three feature extractors — a

stochastic frequency extractor, a phase extractor, and a magnitude extractor —and a
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sine-basis layer. A deterministic frequency is learned in the form of a trainable
parameter; the stochastic frequency, phase, and magnitude are extracted in the form
of features. The frequency and phase are used to construct a sine-basis, and that basis
is entered into the magnitude extractor. The output of FLGN is obtained by adding a
bias to the dot product of the magnitude vector and sine-basis vector. The proposed
FLGN generates signals that are similar to the true signals, even if the lengths of the
signals change. It is also found that the FLGN learns the characteristic frequency
components in the training data well. In particular, through the use of an attention
block at each extractor, it is discovered that the proposed FLGN approach focuses

well on the characteristic frequencies.

Contribution 3: Suggestion of a new training scheme to make a classifier robust

against noise by using multi-task learning.

This doctoral dissertation develops a new training scheme called multi-task learning
of classification and denoising (MLCD) to make a classifier robust against noise.
The proposed MLCD scheme learns the classification task, while learning the
denoising task simultaneously. The multi-task learning technigue enables improved
generalization performance of a classifier. MLCD can be applied to any deep-
learning algorithm regardless of its architecture. In this research, it is integrated with
LSTM and 1D CNN. The MLCD-applied classifier has improved classification
performance even if there is a large amount of noise in the input signal. MLCD also
results in the classifier having less uncertainty in its output. Furthermore, not only

does an MLCD-applied classifier have the ability to remove the noise in the input
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signal, but the classifier also extracts meaningful and sinusoidal features. Overall,
the MLCD-applied classifier extracts more discriminative features, as compared to

a classifier without MLCD.

6.2 Suggestions for Future Research

This doctoral dissertation proposes an innovative methodology for macro- and
micro-level fault diagnosis of rotating machinery using operation and vibration
signals. Even if the proposed studies solve the limitations of the conventional
approaches, there are still several research topics that need to be addressed further to
enhance the performance of the resulting fault diagnosis. The following suggestions

are specific recommendations for future research.

Suggestion 1: Validation of the proposed methods with signals under variable-

speed conditions

The studies in this doctoral dissertation research were validated with signals that
were obtained under constant-speed conditions. This means that the signals were
stationary; their frequency information did not change with respect to time. However,
some rotating machines, including motors and wind turbines, rotate under variable-
speed conditions. Therefore, in future work, the proposed method should be
validated with non-stationary signals under variable-speed conditions to broaden the

applicability of the proposed studies.
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Suggestion 2:  Improvement of classification performance for extremely

imbalanced data

In real industrial fields, fault samples are usually insufficient compared to normal
samples; sometimes, fault samples might be extremely scarce. Although research
thrust 2 augments fault samples given short signals, the generation performance will
be decreased if the samples are extremely insufficient. Thus, an advanced fault
diagnosis method should be developed for improved classification performance

under extremely imbalanced data.

Suggestion 3: Development of a fault diagnosis scheme considering the domain

discrepancy issue

Even when studying the same type of rotating machinery, measured signals can have
various distributions according to the machines’ various operating conditions. The
performance of an algorithm is decreased if the test data has a different distribution
than the training data; this is called the domain discrepancy issue. Domain adaptation
is a research area that seeks to solve the domain discrepancy issue. Therefore, to
make the proposed methodology work well on various mechanical systems, a novel
fault diagnosis approach should be developed to mitigate the domain discrepancy

issue through the use of domain adaptation techniques.
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