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Abstract 

 

Deep-learning-based Methodology for 

Macro- and Micro-level Fault Diagnosis 

of Rotating Machinery Using Low- and 

High-resolution Signals 
 

Jin Uk Ko 

Department of Mechanical and Aerospace Engineering 

The Graduate School 

Seoul National University 

 

Rotating machinery is widely used in many industrial sites, including manufacturing 

and power generation. Unpredicted failures in these systems can result in huge 

economic and human losses. To prevent this situation, fault diagnosis studies have 

gathered much attention, with the goal of operating rotating machines without the 

occurrence of any unpredicted problems. Fault diagnosis methods aim to accurately 

detect any abnormality prior to failure and classify the health conditions of the target 

system. Recently, fault diagnosis studies using deep learning have achieved excellent 

performance thanks to the ability of new methods to autonomously extract meaningful 

features. 
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For this purpose, two types of signals of different resolutions are measured from 

rotating machinery, specifically: operation signals and vibration signals. Operation 

signals, which are measured with a low sampling rate, are obtained in real-time and 

contain various types of condition parameters that enable global monitoring of the 

system. Vibration signals with a high sampling rate are obtained when an event occurs, 

not in real-time. Using these signals of different resolutions, two sub-tasks of fault 

diagnosis – anomaly detection and fault identification – are performed. Anomaly 

detection, which is conducted with operation signals, is a task to detect abnormalities 

in a system before those abnormalities develop into a hard failure. This is considered 

macro-level fault diagnosis. When performing anomaly detection, the normal data is 

modeled by unsupervised learning, a residual is calculated, and a threshold is 

determined. If the residual becomes larger than the threshold, the system is regarded as 

an anomaly condition. Fault identification is performed to classify the health conditions 

of the system using vibration signals; this is viewed as micro-level fault diagnosis. For 

fault identification, supervised learning is used to train a deep-learning-based classifier; 

thus, a large amount of labeled data is required for the training. Since fault data is 

insufficient in real industrial fields, data augmentation is necessary to augment the fault 

data. Currently, a variational auto-encoder or a generative adversarial network are the 

approaches most widely used for data augmentation.  

Anomaly detection and fault identification have been studied separately. If both 

tasks are integrated, macro- and micro-level fault diagnosis can be implemented. 

However, there are three issues that must be handled to develop a deep-learning-based 

methodology for macro- and micro-level fault diagnosis. First, conventional anomaly 

detection methods produce frequent false alarms; in other words, they may indicate a 
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problem even if there is no anomaly in the system. This problem occurs because 

conventional approaches may model the normal data inadequately or set a wrong 

threshold; for example, one that does not consider the fluctuations in the normal data. 

Second, the prior generative-network-based augmentation approach has inborn 

limitations due to its structural properties. With this method, signals of various lengths 

cannot be generated because the architecture is fixed. Also, incorrect samples can be 

generated if the latent vectors are sampled wrongly. The final issue with health 

classification is that the performance of a classifier can be affected by noise in the input 

data. Since noise can distort the data distribution, it is difficult for a classifier to 

correctly classify the noisy data. 

Based on the current state of the field, this doctoral dissertation proposes a deep-

learning-based methodology for macro- and micro-level fault diagnosis using operation 

and vibration signals from rotating machinery. The first research thrust proposes new 

methods for modeling and threshold setting to reduce false alarms related to anomaly 

detection. The proposed modeling method is developed by applying ensemble and 

denoising techniques to auto-encoders. Further, a threshold is newly proposed using 

the joint distribution of the output and the residual. Consequently, the proposed method 

considers the fluctuations in the normal data, which can significantly reduce false 

alarms. The second research thrust proposes a new generative network to generate 

signals of variable lengths. The proposed network, whose input and output are the time 

and amplitude, respectively, is designed to learn the frequency information of the 

training data. The proposed method is implemented to reflect the signal processing 

knowledge, including the use of the Nyquist theorem. After the training is finished, the 

proposed model can produce signals of various lengths in the desired time range. The 
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proposed approach can also focus on the characteristic frequency components, thanks 

to attention blocks. The third research thrust proposes a novel training method that 

simultaneously learns the classification and denoising tasks. In the proposed scheme, 

multi-task learning is used to allow a classifier to solve the classification and denoising 

tasks concurrently. The proposed method can be applied to any deep-learning algorithm, 

regardless of the network type. The classifier that is trained by the proposed method 

can classify the health conditions, as well as remove noise in the input signals. 

 

Keywords:  Macro- and micro-level fault diagnosis 

Rotating machinery 

Low-resolution operation signals 

High-resolution vibration signals 

Deep learning 

Prognostics and health management (PHM) 
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Chapter 1 Introduction 

 

Introduction 

 

1.1 Motivation 

Rotating machinery is widely used in various industrial fields, including 

manufacturing and power generation. Steam turbines, motors, and wind turbines are 

examples of rotating machinery. Unpredicted failures in rotating machines can result 

in huge economic and human losses. To prevent this situation, fault diagnosis studies 

have gathered much recent attention, with the goal of operating rotating machines 

without the occurrence of any unpredicted problems [1]. 

There are two main types of fault diagnosis approaches: physics-based 

approaches and data-driven approaches. Physics-based methods diagnose a system 

using domain knowledge. Domain knowledge includes expertise in an industrial 

field and signal processing knowledge. Though this method has the advantage of an 

explainable rationale, the method requires significant domain knowledge and a long 

decision time. The other approach, the data-driven method, uses a deep-learning-

based classifier that is trained using raw signals or with handcrafted features 

extracted using signal processing techniques or statistical analysis. Although the 

data-driven method can achieve better performance than the physics-based method, 
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it requires many labeled samples to train the classifier successfully [2]. Since 

approaches have recently emerged that enable big data to be measured from 

mechanical systems, deep-learning (DL) has been extensively researched in recent 

years with the goal of developing approaches for accurate fault diagnosis [3].  

From the rotating machinery, two types of signals of different resolutions are 

measured. The first type of signals that are measured is referred to as operation 

signals. Operation signals contain various types of condition parameters that are 

measured to globally monitor the operation of a system. Temperature, pressure, and 

turbine speed are examples of operation signals in a steam turbine. Operation signals 

are measured with a low sampling rate – 1 [sample/min] or 1 [sample/sec] – because 

they are acquired in real-time. The second type of signals is called vibration signals. 

They are measured at a high sampling rate (over 5000 [Hz]) and are saved when a 

fault occurs, rather than being measured in real-time, which would result in a 

significant load on the storage device. Vibration signals can contain the dynamic 

characteristics of a rotating machine [4]. 

Deep-learning-based fault diagnosis can be subdivided into two tasks – 

anomaly detection and fault identification – based on the data employed. Using the 

operation signals, anomaly detection is conducted in real-time to detect whether 

there is any anomaly in the target system. Because the operation signals contain 

overall information and are measured in real-time, anomaly detection can be viewed 

as macro-level fault diagnosis. Meanwhile, fault identification is a task designed to 

classify the health conditions of a target system using vibration signals [5]. Fault 

identification is considered micro-level fault diagnosis, since the task is conducted 

whenever a fault occurs, and locally measured vibration signals are used. Though 
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both tasks can be integrated to achieve macro- and micro-level fault diagnosis, each 

task is typically studied separately.  

In deep-learning-based anomaly detection, an unsupervised learning algorithm, 

like an auto-encoder (AE), is used to model the normal data [6]. The model extracts 

important features from the input data and reconstructs the input from the features. 

After the training is finished, if the abnormal data is entered into the model, the 

output of the model has a huge error, since the model cannot reconstruct the input 

data. A residual is computed as the difference between the input and the output, and 

a threshold is determined heuristically or statistically. If the residual surpasses the 

threshold, the system is considered to be in an abnormal state.  

To identify fault conditions, a large amount of labeled data is necessary to train 

a deep-learning-based classifier. Since these networks have many trainable 

parameters, many labeled samples are required to optimize the parameters. However, 

in the data from real industrial sites, fault samples are usually so small in number as 

to be insufficient, as compared to many normal samples. Therefore, data 

augmentation is required to augment the fault samples so that the classifier is trained 

properly. Among many kinds of data augmentation methods, the variational auto-

encoder (VAE) and generative adversarial network (GAN) approaches have emerged 

in popularity due to their superior generation performance. VAE, which consists of 

an encoder and a decoder, uses the variational inference to fit the distribution of the 

latent vectors as a simple distribution, like a Gaussian distribution [7]. A GAN 

consists of a generator and a discriminator, and both are trained adversarially [8]. 

The generator tries to produce a fake sample to deceive the discriminator, while the 

discriminator works to distinguish the fake sample. For both VAE and GAN, after 
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training is finished, a latent vector is sampled from a Gaussian or random uniform 

distribution and entered into the generator to generate new samples.  

If the labeled samples are augmented enough, they are used to train a deep-

learning classifier. In the classifier, a feature extractor autonomously extracts 

meaningful features from the input data; then, the features are used to predict the 

label of the input. Deep neural network (DNN), convolutional neural network (CNN) 

[9], and long short-term memory (LSTM) [10] approaches can be used for the 

extractor. When making the final output, fully connected layers are often employed. 

In this way, the classifier can diagnose the health states of the input data.  

Though the previous fault diagnosis studies employing deep learning have 

shown excellent performance, three issues still exist that hinder the development of 

a methodology for macro- and micro-level fault diagnosis that is applicable in real 

industrial fields. First, the prior DL-based anomaly detection studies produce 

incorrect alarms, even if the system is normal; these alarms are called false alarms. 

Since the conventional approaches set a constant threshold that cannot consider the 

fluctuations in the normal data, many false alarms occur, even though there are no 

abnormalities in the target system. Second, VAE and GAN-based data augmentation 

methods have inborn limitations due to their structural properties. During the 

inference procedure, since the architecture is fixed, the generated signals have the 

same length. This means that a user cannot generate signals of various lengths at the 

desired time ranges. Furthermore, incorrect samples can be generated if the latent 

vectors are sampled wrongly. Because the physical understanding of the latent space 

has not yet been studied when the input samples are signals, setting a criterion for 

the sampling of latent vectors is difficult. The final issue is that the performance of 
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a classifier can be affected by the noise in the input data. Since noise can distort the 

data distribution, it is difficult for a classifier to correctly classify the noisy data. 

To overcome the aforementioned issues, the research presented in this doctoral 

dissertation aims to establish a new deep-learning-based methodology for macro- 

and micro-level fault diagnosis of rotating machinery using operation and vibration 

signals. Deep-learning techniques, statistical analysis, and signal processing 

knowledge are integrated to develop a methodology for macro- and micro-level fault 

diagnosis. 

 

1.2 Research Scope and Overview 

The purpose of this doctoral dissertation is to establish a DL-based methodology for 

macro- and micro-level fault diagnosis of rotating machinery utilizing low- and high-

resolution signals. Each research thrust is as follows: (1) Research Thrust 1 – An 

ensemble denoising auto-encoder-based dynamic threshold (EDAE-DT) for 

anomaly detection; (2) Research Thrust 2 – A frequency-learning generative network 

(FLGN) for data augmentation; (3) Research Thrust 3 – Multi-task learning of 

classification and denoising (MLCD) for health classification.  

 

Research Thrust 1:  An Ensemble Denoising Auto-encoder-based Dynamic 

Threshold (EDAE-DT) for Anomaly Detection 

Research Thrust 1 proposes an ensemble denoising auto-encoder-based dynamic 
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threshold (EDAE-DT) to reduce false alarms in anomaly detection. EDAE is 

developed to better model the normal data, and DT is proposed to set a variable 

threshold that considers the fluctuation in the normal data. Combining denoising and 

ensemble techniques with AE, EDAE can model the normal data well. The critical 

hyper-parameters – the number of latent nodes and learning rate – are selected by 

Bayesian optimization [11] to achieve maximal performance. Five DAEs are trained 

using the optimized hyper-parameters, and the outputs of those DAEs are averaged 

to make a final output. The residual is calculated as the L1 norm of the output and 

the true data. When computing the DT, the joint distribution of the output of EDAE 

and the residual is found by kernel density estimation [12]. Then, the output values 

are discretized, and the marginal distributions with respect to each grid of the output 

are obtained. Next, the critical point for each marginal distribution is found, where 

the upper tail of the marginal distribution becomes the confidence level. Finally, a 

critical function is obtained by linearly interpolating the critical points and flattening 

the upper and lower tails, since the interpolation becomes incorrect in both regions. 

This critical function determines the threshold value according to the output value. 

The proposed approach is verified with two datasets from a domestic thermal power 

plant. The results indicate that EDAE models the normal data better than AE and 

DAE. Also, the proposed scheme can detect anomalies faster than the experts, while 

significantly reducing false alarms. 

 

Research Thrust 2:  A Frequency-learning Generative Network (FLGN) for 

Data Augmentation  
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Research Thrust 2 proposes a frequency-learning generative network (FLGN) to 

generate signals of variable lengths. FLGN is a new generative model, which is 

completely different from VAE and GAN. The input is the time vector, and the 

output is the amplitude vector at the corresponding time. FLGN consists of three 

extractors: a stochastic frequency extractor, a phase extractor, and a magnitude 

extractor. These extractors are composed of several fully connected blocks, a 

sample-wise average layer, and an attention layer. In addition to the extractors, 

deterministic frequencies are learned in the form of trainable parameters; they are 

fixed if the model is trained. The summation of the deterministic and the stochastic 

frequencies becomes the final frequency. A sine-basis is built based on the final 

frequency and the phase feature. Given the sine-basis as the input, the magnitude 

extractor outputs a magnitude feature corresponding to the basis. A bias is added to 

the inner product of the magnitude feature and the sine-basis, which becomes the 

final output of the FLGN. Using the deterministic frequencies and the three 

extractors, the proposed approach can learn the frequency components of the training 

data. The proposed model is validated with one simulated signal and two testbed 

signals. The validation results indicate that the proposed method not only produces 

the signals for the desired time range but also learns the frequency information well. 

Of particular note, it is also discovered that the proposed model can focus on the 

characteristic frequency components thanks to the attention blocks. 

 

Research Thrust 3:  Multi-task Learning of Classification and Denoising 

(MLCD) for Health Classification 
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Research Thrust 3 proposes a novel training method called multi-task learning of 

classification and denoising (MLCD) to improve the generalization performance 

against noisy data. The main idea of MLCD is multi-task learning (MTL), which 

enables a classifier that can solve the primary task and auxiliary tasks simultaneously. 

Solving the auxiliary tasks prevents the classifier from being biased toward the 

primary task, which can lead to improved performance of the primary task. In this 

work, classification is the primary task, and denoising is the auxiliary task. For the 

denoising task, the MLCD-applied classifier is trained to output the clean data, given 

noisy data. Another advantage of the proposed approach is that it can be applied to 

any classifier regardless of the network type. The proposed method is applied to one-

dimensional CNN (1D CNN ) and LSTM and validated with the RK4 testbed dataset. 

The validation results present that MLCD-applied models can improve the 

classification performance and reduce the uncertainty in the output, as compared to 

the 1D CNN and LSTM models, respectively. The t-SNE (t-distributed stochastic 

neighbor embedding) visualization results show that the features of MLCD-1D CNN 

and MLCD-LSTM are better clustered for the same class and distinguished for 

different classes. When visualizing the features at the intermediate layers, although 

most features extracted by 1D CNN and LSTM overlapped, the MLCD-applied 

models extract more various and meaningful features than those of the comparative 

models. Specifically, some features of the MLCD-applied models are similar to the 

waveform of the input samples. This indicates that the proposed method can make a 

classifier learn the characteristics of the signals, while removing noise from the 

signals; this is achieved by learning both the denoising task and classification task 

together. 
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1.3 Dissertation Layout 

This doctoral dissertation is organized as follows. Chapter 2 offers the theoretical 

background required to understand each research thrust. Chapter 3 explains the 

ensemble denoising auto-encoder-based dynamic threshold (EDAE-DT) approach 

that is proposed to reduce false alarms in anomaly detection. Chapter 4 describes the 

frequency-learning generative network (FLGN) that is able to generate signals of 

variable lengths. Chapter 5 presents a new learning scheme called multi-task learning 

of classification and denoising (MLCD) to make a classifier robust against noisy data. 

Finally, Chapter 6 concludes this doctoral dissertation with a summary of the 

contributions and suggestions for future research. 
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Chapter 2 Technical Background and Literature Review  

 

Technical Background and 

Literature Review 

 

This chapter offers theoretical background and a comprehensive study of macro- and 

micro-level fault diagnosis approaches of rotating machinery using signals of 

different resolutions. First, Section 2.1 explains the fault diagnosis scheme to 

monitor the health conditions of rotating machinery. Physics-based and data-driven 

approaches are explained in detail. Characteristics of low and high-resolution signals 

from a rotating machine are offered in Section 2.2. Section 2.3 reviews the deep-

learning algorithms that are used in this work. Then, Section 2.4 provides the 

theoretical background for each thrust are described. In particular, anomaly detection 

based on deep learning is presented in Section 2.4.1. The concept of data 

augmentation is provided in Section 2.4.2. Next, Section 2.4.3 introduces the concept 

of health classification using deep learning. Lastly, a summary and discussion of this 

chapter are provided in Section 2.5. 

 

2.1 Fault Diagnosis Methods of Rotating Machinery 

Rotating machinery, which is composed of a shaft and bearings that support the shaft, 
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transfers fluid or electrical energy into mechanical energy and vice versa [4]. Many 

rotating machines are used in various industrial sites; for example, steam turbines, 

gas turbines, and wind turbines are used in power generation. Since these mechanical 

systems operate under harsh conditions, many faults can occur in the systems. These 

faults can lead to severe failure of the systems, which can cause catastrophic disasters. 

To prevent unpredicted accidents, prognostics and health management (PHM) has 

been fervently studied to develop a comprehensive scheme to monitor the health 

conditions of the target system [1]. Specifically, PHM is a comprehensive technique 

that 1) recognizes whether the monitored condition parameters deviate from the 

normal state, 2) diagnoses the health conditions, and 3) predicts the remaining useful 

life or risk of failure [5]. The main effects that can be achieved by PHM are described 

in Figure 2-1. PHM can improve the quality of the product, availability, and 

productivity, ensure reliability and safety, and reduce operation and maintenance 

costs. Consequently, PHM techniques should be applied to rotating machinery to 

operate the systems safely and cost-effectively. 

 

 

Figure 2-1 Purposes of prognostics and health management (PHM) 
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The main objective of this doctoral dissertation is to establish a methodology 

for macro- and micro-level fault diagnosis. Figure 2-2 illustrates physics-based and 

data-driven approaches of fault diagnosis. There are rule-based and health-feature-

based approaches in the physics-based approach. The rule-based method uses 

domain knowledge, and experts determine whether or not the system is normal. In 

the health-feature-based approach, vibration signals are examined by using signal 

processing techniques and statistical analysis, and health features are extracted 

manually; finally, the health condition is predicted by analyzing the health features. 

For example, the condition of a steam turbine is diagnosed as a rubbing condition if 

the second sub-harmonic frequency component becomes greater. The physics-based 

approach is explainable, since it is based on physical or domain rationale. However, 

it usually takes lots of human resources and time for the final decision and heavily 

depends on the domain knowledge.  

The data-driven method uses deep-learning algorithms for fault diagnosis. A 

classifier can autonomously extract features from the input data. A deep-learning 

algorithm is trained with training data to solve the assigned task; thus, lots of samples 

are necessary for the training. If there are not enough samples, the algorithm cannot 

be trained properly so that the diagnostic performance is decreased significantly. The 

data-driven approach can work automatically and shows superior performance 

across various engineered systems, but it requires much data for the training. 

Because of the advantages of deep-learning algorithms, fault diagnosis methods 

utilizing deep-learning techniques have been examined for diverse engineered 

systems [13]. 
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2.2 Low- and High-resolution Signals from Rotating 

Machinery 

Two signals of different resolutions are measured from a rotating machine: 1) 

operation signals and 2) vibration signals. Figure 2-3 describes those signals from a 

steam turbine. Operation signals are multi-variate signals that are relevant to the 

operation of a rotating machine [14]. Various condition parameters are measured to 

monitor the health states of the system; for example, turbine speed, steam 

temperature, steam pressure, and metal temperature are included. The sampling rate 

is very low – 1/60 [Hz] or 1 [Hz] – which means that operation signals have low 

resolution. They are measured in real-time to continuously monitor health conditions. 

(a) (b) 

Figure 2-2 Types of fault diagnosis methods: (a) physics-based method and (b) 

data-driven method 
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Therefore, operation signals are macroscopic data that contain general information 

about the system. 

The other signals that are obtained from rotating machinery are vibration signals. 

Vibration signals have been widely used to analyze the condition of a rotating 

machine since they represent the dynamic characteristics of the system [1]. 

Proximity sensors or accelerometers are utilized to measure the vibration signals. At 

each installation point, two sensors located at 90-degree intervals are used to measure 

two vibration signals that are orthogonal to each other [15]. This is to contain 

 

Figure 2-3 Low- and high-resolution signals from rotating machinery 
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information about asymmetric and anisotropic characteristics of the system. They 

are discrete signals, which are measured at a high sampling rate; 8500 [Hz] or 12800 

[Hz]. According to the Nyquist theorem [16], discrete signals can be perfectly 

reconstructed into continuous signals if the sampling frequency is twice as large as 

the frequency bandwidth. Thus, if the sampling rate becomes greater, the frequency 

resolution becomes finer, which denotes that the vibration signals contain enough 

frequency information; however, more load is placed on data storage devices. The 

sensors are installed whenever a fault occurs, not in real-time, because of the heavy 

load on the storage devices. Also, they are installed locally, rather than globally, 

because those sensors require additional cost and space to install. Consequently, the 

vibration signals can be viewed as microscopic data. 

To sum up, operation and vibration signals have three major differences. First, 

the range of sampling rate is different; operation signals are low resolution, and 

vibration signals are high resolution. Second, operation signals consist of various 

condition parameters, but vibration signals only have signals that are related to 

vibration. Finally, although operations signals are measured in real-time, vibration 

signals are obtained when an anomaly is detected, not in real-time.  

 

2.3 Review of Deep-Learning Algorithms 

As mentioned in Section Figure 2-2, deep learning has been extensively utilized for 

fault diagnosis of rotating machines. Among various deep-learning algorithms, one-

dimensional convolutional neural network (1D CNN) and long short-term memory 

(LSTM) have achieved outstanding performance. Section 2.3.1 provides the concept 
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of 1D CNN, and Section 2.3.2 presents a detailed explanation of LSTM. 

 

2.3.1 One-dimensional Convolutional Neural Network (1D CNN) 

Convolutional neural network (CNN) is a popular deep-learning algorithm; it is 

primarily utilized for image recognition. Three characteristics of CNN – sparse 

connectivity, parameter sharing, and pooling – distinguish CNN from DNN [13]. 

The convolutional layers are locally connected rather than fully connected (sparse 

connectivity). For each filter, the weight is the same across all of the sparse 

connections (parameter sharing); this significantly reduces the number of trainable 

parameters. Pooling is a subsampling layer that provides a statistical summary of the 

input, remaining only the core information. 

Thanks to these properties, CNN has been broadly used in fault diagnosis 

studies. When an image is input, the height of the filter for 2D CNN is smaller than 

the height of the input because pixels are usually correlated locally; the filters move 

in two-dimensional directions, as shown in Figure 2-4(a). Unlike the case of an 

 

 
(a) 

 
(b) 

 

(c) 

Figure 2-4 Moving of filters in CNN: (a) 2D CNN, (b) 1D CNN, and (c) shape of 

a filter 
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image, the multi-channel signals of a rotor system may be correlated with each other, 

rather than correlated locally. Therefore, it is more suitable to make the height of the 

filter the same as the input dimension and let the filter move in a one-dimensional 

direction, as described in Figure 2-4(b). This is a one-dimensional convolutional 

neural network (1D CNN). That is, 1D CNN has the properties of a CNN and can 

learn representation from the multi-channel signals that are correlated widely.  

 

2.3.2 Long Short-term Memory (LSTM) 

LSTM is a variant of recurrent neural networks; LSTM learns long-time-sequence 

patterns by preventing gradient exploding and vanishing problems [14]. LSTM 

consists of three gates and two states. Figure 2-5 describes the structure of an LSTM 

cell whose input and output at time step t are xt and yt, respectively. Eqs. (2.1), (2.2) 

and (2.3) express three sigmoid gates: a forget gate (ft), an input gate (it), and an 

output gate (ot). Eqs. (2.4), (2.5) and (2.6) define an output gate, a cell state (ct) and  

   1

1 , , ,l l l l ln n n n nT T

t xf t hf t f xf hf ff W x W h b W W b   

        (2.1) 

   1
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        (2.2) 

   1

1 , , ,l l l l ln n n n nT T
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   1
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        (2.4) 

 1t t t t tc f c i g      (2.5) 

  tanht t t ty h o c     (2.6) 
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a hidden state (ht), respectively. In the equations, σ(∙) and tanh(∙) refer to the sigmoid 

and hyperbolic tangent function, respectively; nl denotes the number of nodes at layer 

l. A detailed description of the gates and the cell states follows. The forget gate 

regulates the level of information from the previous cell state to remain. The input 

gate controls how much information from the input will be used; the output gate 

determines how much information from the previous cell state will be used for the 

next time step. Finally, as presented in Eq. (2.5), the current cell state is the 

summation of the previous cell state multiplied by the forget gate and current 

information from the input multiplied by the input gate. In this way, the cell state 

 

Figure 2-5 Structure of an LSTM cell 
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conveys important information from the past and from the current input in each 

update. 

 

2.4 Deep-learning-based Macro- and Micro-level Fault 

Diagnosis Methods 

Deep-learning-based fault diagnosis is executed using low- and high-resolution 

signals. Fault diagnosis can be subdivided into two tasks: anomaly detection and 

fault identification. Anomaly and fault look similar, but they are distinctly different 

from each other. Anomaly means that a system deviates from its normal condition 

because of various reasons, including sensor error, environmental disturbance, and 

the occurrence of a fault. The fault is a condition that a mechanical defect occurs in 

the system; the change includes mechanical looseness, contact with other materials, 

and the occurrence of cracks. Due to the physical change, the damping coefficient or 

stiffness of the system may change, which leads to a change in the vibration signals. 

The general procedure of both tasks is described in Figure 2-6. Anomaly detection 

is a task that detects an abnormal change in the target system. Operation signals are 

used for anomaly detection to observe any unusual change in the entire system. The 

flowchart of deep-learning-based anomaly detection is shown in Figure 2-6(a). Using 

the operation signals, an unsupervised learning algorithm like an auto-encoder is 

used to learn the characteristics of normal data; only normal data is required to train 

the modeling algorithm. Then, the residual is calculated, and the threshold is 

determined heuristically or statistically. If the residual exceeds the threshold, it is 

considered that there is an anomaly in the system. Finally, among the various 

operation signals, the signals that are related to the anomaly are identified. A detailed 
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explanation of anomaly detection using deep learning is described in Section 2.4.1. 

Anomaly detection is difficult to be performed with vibration signals of high-

resolution since 1) vibration signals are measured locally and 2) they are not 

measured in real-time. Anomaly detection can be considered as macro-level fault 

diagnosis because it is performed with macroscopic operation signals. 

Fault identification is performed to classify the health conditions of the system. 

The common procedure of fault identification is presented in Figure 2-6(b). First, 

vibration signals are obtained with a high sampling frequency. Other than the normal 

data, signals of various fault conditions are required. Since fault samples are usually 

insufficient compared to normal samples in real industrial fields, data augmentation 

is necessary to augment the minor samples; the data augmentation is reviewed in 

Section 2.4.2. After data augmentation, a supervised learning algorithm like DNN or 

CNN is trained to diagnose the health conditions. The detailed contents of deep-

learning-based fault identification are presented in Section 2.4.3. It is hard to conduct 

fault identification using operation signals of low resolution because operation 

signals cannot contain information about the change in the dynamic characteristics. 

Fault identification can be viewed as micro-level fault diagnosis since it is conducted 

by using vibration signals that are locally measured. 

There have been few attempts to connect anomaly detection and fault 

identification; they are studied separately. The reason that both tasks are individually 

studied is that both tasks are conducted with different types of signals. If both tasks 

are integrated, the target system can be more thoroughly managed with a 

combination of macro- and micro-level fault diagnosis than with single-level 

diagnosis. Figure 2-7 describes the proposed methodology for macro- and micro-
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level fault diagnosis in this doctoral dissertation. Through research thrust 1, an 

anomaly-related part is identified; this is macro-level fault diagnosis. Then, vibration 

signals near the abnormal part are measured. Next, if fault data is insufficient 

compared to the normal data, research thrust 2 augments the minor fault samples. 

Finally, with the augmented data, the health conditions are classified by research 

thrust 3; this is the micro-level diagnosis. In this way, the proposed methodology 

achieves macro- and micro-level fault diagnosis of a rotating machine.  
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(a) 

 

(b) 

Figure 2-6 Fault diagnosis schemes using low- and high-resolution signals: (a) 

anomaly detection and (b) fault identification 
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2.4.1 Anomaly Detection 

Deep-learning-based anomaly detection consists of two major steps: 1) modeling of 

normal data and 2) setting a threshold that becomes a criterion to judge whether or 

 

Figure 2-7 Proposed deep-learning-based methodology for macro- and micro-

level fault diagnosis 
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not the target system is operating normally [17]. The first step is to learn the 

characteristics of the normal data using an unsupervised algorithm, like an auto-

encoder. By training an auto-encoder with a bottleneck layer to reconstruct the input, 

the auto-encoder can learn the essential information of the input signals [17, 18]. If 

a model is well-trained with normal data, the output has little error with normal input 

data; however, there will be significant errors in the output if the input is abnormal 

data. 

The general procedure of deep-learning-based anomaly detection is illustrated 

in Figure 2-8. It is composed of a training step and a testing step. In the training step, 

multi-variate operating signals of the normal condition are measured first. 

Preprocessing is needed because raw signals are improper to be directly used for a 

deep-learning algorithm. Preprocessing methods include filling in missing values, 

removing outliers, treating noise, etc. Next, hyper-parameters of an auto-encoder are 

selected, either heuristically or by grid search [19], random search [20], or Bayesian 

optimization [21]. Critical hyper-parameters, such as the learning rate, should be 

chosen carefully to ensure the maximal performance of a deep-learning algorithm. 

Then, by using the preprocessed normal data and the chosen hyper-parameters, an 

auto-encoder is trained by minimizing the objective function, such as mean squared 

error or mean absolute error. The trained auto-encoder can model the characteristics 

of a normal condition. Finally, a threshold is determined by using the residual, which 

is calculated as the L1 norm or L2 norm of the output and true data. For example, 

given a confidence level (p), a threshold can be set as the value where the cumulative 

distribution function of a residual becomes (1 - p). If the threshold is determined too 

sensitively, false alarms can frequently occur even though there is no abnormality in 
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the system. If it is set too conservatively, few alarms might be generated, even when 

an anomaly occurs. In the testing step, new signals are measured; they can be from 

either a normal or anomaly condition. Those signals are preprocessed using the same 

methods as in the training step. Then, a residual is calculated using the trained auto-

encoder. Finally, the condition of the system is monitored by comparing the residual 

and the threshold.  

Some prior studies related to deep-learning-based anomaly detection for 

turbines have focused on the modeling performance by developing a deep-learning 

 

Figure 2-8 General procedure of deep-learning-based anomaly detection 
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model. Arranz et al. [18] proposed a neural network of a single layer with a sigmoid 

function to characterize the normal data of a combined-cycle gas turbine plant. 

Several models have been trained to detect the condition. For example, Dhini et al. 

[22] developed a multilayer perceptron of a sigmoid function for anomaly detection 

of a steam turbine. The objective function was mean squared error (MSE), and the 

weights were trained by a back-propagation method. Liu et al. [23] developed a 

flowchart for wind turbine anomaly detection by using k-means clustering [24], t-

distributed stochastic neighborhood estimation (t-SNE) [25], and a deep neural 

network. Specifically, k-means clustering and t-SNE were used to extract 

meaningful features from wind turbine data. Lu et al. [26] proposed a stacked 

denoising auto-encoder to consider the noise in the input signals. The auto-encoder 

was trained with a greedy approach, and sparsity was constrained to the hidden layers. 

A convolutional auto-encoder approach was also developed by Lee et al. [27] for 

anomaly detection of a gas turbine. When training the model, the computational cost 

was decreased using the sparse connectivity in the convolutional layer and through 

the reduction of a feature map through the use of a max-pooling layer. 

A few prior studies have concentrated on developing an accurate threshold in 

the field of deep-learning-based anomaly detection. In early work, an intuitive 

threshold, called the N-sigma rule, was defined by using the mean and standard 

deviation of a health index [28, 29]. When the health index was assumed to follow a 

Gaussian distribution, it was considered to be normal when an index existed within 

three times the standard deviation from the mean. Chen et al. [17] proposed a stacked 

denoising auto-encoder to detect anomalies in a wind turbine. A health indicator was 

defined as a Mahalanobis distance (MD) of the residual, and the threshold was 
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determined as the point where the upper tail of the indicator’s cumulative distribution 

function became the confidence level. Zeng et al. [30] proposed a new method that 

combined sparse Bayesian learning and hypothesis testing. Hypothesis testing was 

done to determine whether or not a sample falls into a confidence interval.  

Even if the prior studies have shown good anomaly detection performance, they 

still make false alarms frequently. This is graphically illustrated in Figure 2-9. If a 

threshold is chosen properly, valid alarms are raised before the hard failure. However, 

when a rotating machine operates under the normal state, there can be fluctuation 

due to environmental disturbance, etc. In this situation, it is difficult for the auto-

encoder to learn the normal data well. Furthermore, the constant threshold of the 

conventional approaches can be determined incorrectly. Frequent occurrence of false 

alarms causes unnecessary maintenance, which increases downtime. Therefore, false 

alarms should be reduced for accurate anomaly detection.  

 

 

Figure 2-9 Limitation of the prior studies of anomaly detection 
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2.4.2 Data Augmentation 

Deep-learning-based fault diagnosis studies have shown dramatic advances and 

promising applications in the health monitoring of various types of rotating 

machinery [31-37]. Unlike traditional diagnosis methods that need handcrafted 

features, a deep-learning classifier can autonomously learn meaningful features from 

input data to diagnose the health condition of the target machinery [31, 37, 38]. The 

deep-learning algorithms used in these methods need sufficient labeled samples to 

achieve high performance because they have a lot of trainable parameters. To 

optimize these parameters, a significant amount of data is needed in proportion to 

the number of parameters. However, in a real industrial facility, fault signals are 

scarce because engineered systems should generally operate under normal condition. 

If fault samples are insufficient compared to normal samples, the classifier will be 

biased to the majority normal condition, and minority fault conditions will not be 

classified well [39, 40]; this is called the class imbalance issue. There are mainly two 

methods to handle the issue: an algorithm-level approach and a data-level approach 

[39, 41]. The algorithm-level approach deals with the imbalance issue by modifying 

the loss function to impose more penalty on the misclassification [39, 41]. This 

method can be used as an end-to-end learning scheme, but it requires much 

knowledge about the classifier and the target data [41]. The data-level approach, 

rebalancing the data distribution by controlling the number of samples, can be 

divided into two schemes: undersampling and oversampling methods. An 

undersampling method rebalances the data distribution by reducing the majority 

class, which means that information loss is inevitable [39]. An oversampling method 
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is to balance the distribution by augmenting the minority class [39]. Among these 

methods, the oversampling method is the most versatile since little information is 

lost, and it does not depend on the classifier [39]. 

To augment the minority samples, researchers have fervently studied data 

augmentation approaches using generative networks; variational auto-encoder (VAE) 

and generative adversarial network (GAN) approaches are widely utilized. The 

general architecture of VAE and GAN is presented in Figure 2-10. VAE, which is 

composed of an encoder and a decoder, uses variational inference to fit the 

distribution of latent vectors as a simple distribution, like a Gaussian distribution [7]. 

After training the VAE, a latent vector is sampled from the distribution and entered 

into the decoder; then, the decoder produces a new sample corresponding to the 

latent vector [7]. A GAN is made up of a generator and a discriminator, which are 

 

     
(a) 

 
(b) 

Figure 2-10 Architecture of generative networks: (a) VAE and (b) GAN 
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trained in an adversarial manner. When a latent vector is sampled, the generator 

produces a fake sample to deceive the discriminator; then, the discriminator tries to 

discriminate whether or not the input sample is fake [42]. Although VAE is usually 

more stable than GAN, GAN can generate clearer samples than VAE [43]. 

A small number of prior studies have examined VAE-based signal 

augmentation. Zhao et al. [44] proposed a VAE approach based on a 1D CNN. The 

encoder and the decoder were composed of several convolution and max-pooling 

layers. When validating the generation performance using a rolling bearing dataset, 

this approach generated new samples similar to the training data and enhanced the 

classification accuracy. Zhang et al. [45] used VAE to develop a semi-supervised 

fault-diagnosis scheme. The developed VAE model was composed of an encoder, an 

external classifier, and a decoder; the classifier predicted the label, given a latent 

vector. Che et al. [46] combined VAE and meta-learning for bearing fault diagnosis. 

That proposed VAE, which consisted of various fully connected layers, generated 

the minority fault signals; then, a metric-based meta-learning model was trained with 

those generated signals. Some studies have employed GAN to produce fault signals. 

A generative model based on an auxiliary classifier generative adversarial network 

(ACGAN) was proposed by Shao et al. [47]. The discriminator in ACGAN 

performed two classification tasks; the first task was to classify whether the input of 

the discriminator was real or not, and the other was to classify the label of the input 

data. Enhanced GAN was proposed to generate imbalanced vibration signals [48]. A 

deep convolutional generative adversarial network (DCGAN) with 1D CNN was 

used to construct the model. Later, Gao et al. [49] proposed an augmenting scheme 

based on WGAN-GP. The proposed network was more stable than both the DCGAN 
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and the ACGAN approaches. When tested with various classifiers, including logistic 

regression and random forest, the performance results of the classifiers were 

improved when trained by new samples produced by the proposed network. Suh et 

al. [50] developed a new generative network to oversample the fault data of an 

induction motor by using a Wasserstein generative adversarial network with gradient 

penalty (WGAN-GP) and DCGAN. When validating a CNN-based classifier with 

various imbalance ratios, the proposed approach improved the classification 

performance in most cases. A sparsity-constrained generative adversarial network 

(SC-GAN) was designed to augment the minority data [51]. In the work, a sparse 

auto-encoder was trained first and the encoder and the decoder became the 

discriminator and the generator, respectively; a fully connected layer was added at 

the end of the decoder. By imposing sparsity on the GAN, it could achieve more 

stable generation and learn the important frequency components of the input signal. 

Peng et al. [52] proposed WGAN with hierarchical feature matching (HFM) to 

produce bearing fault signals. Wasserstein loss was used to make the training 

procedure stable and HFM was developed so that the features of the generated 

signals of each condition were close to those of the true signals. 

Although the previous VAE or GAN-based augmentation studies have shown 

outstanding generation performance, they have two limitations: 1) the lengths of the 

generated signals are not changeable, and 2) wrong samples can be produced if latent 

vectors are incorrectly sampled. Figure 2-11 describes these two limitations. First, 

the signals generated by the conventional models have the same length because the 

network architecture cannot be changed. The length of the generated signal and the 

input signal is the same. Longer or shorter signals cannot be generated using these 
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methods. Second, incorrect samples can be produced if the latent vectors that will be 

entered into the generator are sampled improperly. As described in Section 2.4.2, 

latent vectors are sampled from a Gaussian or uniform distribution, and the generator 

produces a new sample, given the sampled latent vectors. When a GAN is trained 

with image samples, it has been found that each latent dimension is related to a visual 

property of an image, including rotation, thickness, etc. [53]. However, in the case 

of vibration signals, the physical meaning of the latent space has not been discovered 

yet. This makes it difficult to set up the standards for the sampling procedure to 

prevent generating invalid samples. 

 

2.4.3 Health Classification 

Deep-learning-based health classification studies have drawn much attention due to 

their high performance and automated feature extraction ability. The objective of 

 

Figure 2-11 Limitations of the VAE or GAN-based models  
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health classification is to predict the label condition of the given sample. Figure 2-

12 shows the graphical expression of health classification modeling.  

Let the input sample be x, the model be F() whose parameters are W, and the output 

class be c. Then, the health classification modeling becomes as follows: 

    | ;P y c x F x W    (2.7) 

This means that a classifier learns the probability distribution when the output class 

is equal to c, given a sample x. To learn the function F(), the objective function 

should be defined first. When there are two classes, the objective function becomes 

binary cross-entropy. Also, in the case of more than three two classes, categorical 

cross-entropy is used as the objective function. Both functions are defined as follows: 
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Figure 2-12 Health classification modeling 
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where yi is the true class, 𝑦̂ is the output, B is the number of samples, and C is the 

number of classes. Using a training data, the parameters of a classifier are optimized 

by back-propagation [54]. After forward propagation to compute the output, the 

gradient of the parameters about the loss function is calculated in reverse order from 

the output layer to the input layer. After calculating all gradients, it is updated by the 

gradient descent rule. This is mathematically expressed as follows: 

 1k k

k

L
W W

W
 

 


  (2.10) 

where k is the iteration number and η is the learning rate. Other than the stochastic 

gradient descent rule, adaptive momentum estimation (Adam) has been widely used 

because Adam can reach the optimum point fast and stably [55].  

Many prior studies have developed new deep-learning-based classifiers using 

various deep-learning algorithms. Oh et al. [56] suggested a rotor system diagnosis 

scheme by training a restricted Boltzmann machine with a proposed vibration 

imaging method. Wu et al. [57] and Long et al. [58] used a 1D CNN and 2D CNN 

to diagnose the states of rotating machinery, respectively. Also, Zhao et al. [59] 

developed a new fault diagnosis method for a planet bearing using a CNN. Islam et 

al. [60] utilized a CNN to construct a bearing classifier that extracted features 

automatically from the wavelet packet transformation of an acoustic emission signal. 

In addition, Nguyen et al. [61] and Bruin et al. [62] developed fault diagnosis models 

by using LSTM. They focused on the capability of LSTM, which can understand the 

sequential context in the time-series signals. 

Despite the outstanding performance of the conventional methods, they can be 
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affected by the noise in the input data. Figure 2-13 illustrates the noise issue in health 

classification. If the test data has a similar data distribution to that of the training 

data, the classifier can well predict the label of the test data. However, in a real 

industrial field, the measured signals can be corrupted by much noise due to 

mechanical or environmental causes. Thus, newly measured signals have different 

distributions due to the noise, which leads to performance degradation. Consequently, 

this noise issue should be addressed for noise-robust health classification. 

 

2.5 Summary and Discussion 

The objective of this doctoral dissertation is to develop a deep-learning-based 

methodology for macro- and micro-level fault diagnosis using signals of different 

resolutions. First, the concept of PHM and fault diagnosis are reviewed in Section 

 

Figure 2-13 Limitation of the prior studies of health classification 
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2.1. Since two types of signals of different resolutions are measured from a rotating 

machine, the characteristics of both signals are studied in Section 2.2. Section 2.3 

presents the literature review of deep-learning algorithms that are utilized in this 

work. By using low- and high-resolution signals, anomaly detection and fault 

identification are conducted, respectively; Section 2.4 provides the literature review 

about both tasks. Section 2.4.1 explains the concept of anomaly detection and 

reviews the previous studies. When fault signals are insufficient compared to normal 

data, data augmentation is required to increase the number of fault samples; a 

literature review about data augmentation is presented in Section 2.4.2. Section 2.4.3 

offers the theoretical background of health classification and the prior studies about 

it. 
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Chapter 3 Ensemble Denoising Auto-encoder-based Dynamic Threshold (EDAE-DT) for Anomaly Detection 

Equation Chapter (Next) Section 1 

Ensemble Denoising Auto-encoder 

based Dynamic Threshold (EDAE-

DT) for Anomaly Detection 

 

In this chapter, an ensemble denoising auto-encoder-based dynamic threshold 

(EDAE-DT) is newly proposed to reduce false alarms in anomaly detection. An 

ensemble denoising auto-encoder (EDAE) is trained to model the normal data of a 

steam turbine. A deep neural network is selected as the base model of the EDAE 

because it is most widely used in the field of anomaly detection of engineered 

systems [18, 22, 26, 63]. An ensemble technique can reduce the generalization error 

by averaging the output of several models [64]. A denoising task can further improve 

the reconstruction performance by learning how to remove noise in the input [65]. 

After training the EDAE, the dynamic threshold (DT) calculates a variable threshold 

according to the output of the EDAE by computing the upper confidence limit from 

the joint distribution of that output and the residual. The threshold value is 

determined dynamically with respect to the output. After anomaly detection, to 

identify the part that is related to the anomaly, a new sensitivity is defined by using 

the maximum values of the residual and the threshold. Through this enhancement, 

the operators are able to investigate the specific parts related to the sensitive 
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condition parameters, which can reduce maintenance costs. In this research, two 

datasets from a thermal power plant are used to validate the proposed EDAE-DT. 

Each dataset consists of several operating parameters and has a sampling frequency 

of 1 [sample/min]. To confirm the effect of the ensemble and denoising techniques 

in the modeling process, the proposed EDAE approach is compared with AE and 

DAE methods; the AE method is used in [22, 66], and the DAE approach is used in 

[17, 26]. Since the performance of a deep-learning algorithm varies according to its 

architecture, the modeling performances of AE, DAE, and EDAE are compared with 

various numbers of hidden layers. Then, the anomaly detection performance of 

EDAE-DT is compared with previous anomaly detection methods; specifically, the 

N-sigma method [28, 29] and the MD-based method [17]. N-sigma is chosen for 

comparison because it is simple and intuitive; MD is selected since a threshold is 

determined statistically from a single health index extracted from multi-variate 

signals. For quantitative validation, several metrics are newly defined for the 

evaluation of anomaly detection performance. In addition, to validate the 

performance of the fault diagnosis, a confusion matrix is used by labeling the 

detected status as normal or anomaly. The validation results indicate that the 

proposed method detects anomalies with significantly fewer false alarms, as 

compared with conventional methods, while also detecting anomalies faster than 

experts. 

The remainder of this chapter is structured as follows. Section 3.1 provides the 

theoretical background of the conventional deep-learning-based anomaly detection 

methods. Section 3.2 explains the proposed method in detail. Performance 

evaluation metrics are presented in Section 3.3. The validation data is provided in 
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Section 3.4, and Section 3.5 shows the validation results. Finally, Section 3.5.3 offers 

the conclusion of this study. 

 

3.1 Background: Deep-learning-based Anomaly Detection 

In this section, the conventional studies about deep-learning-based anomaly 

detection are reviewed. First, the studies to model the normal data are presented. 

Then, the prior studies to set a threshold are investigated. 

 

3.1.1 Conventional Methods to Model the Normal Data  

An auto-encoder (AE) is an unsupervised learning algorithm that is trained to 

reconstruct its input. It has been widely used to model the characteristics of normal 

data. The basic architecture of an AE is illustrated in Figure 3-1. Given multi-variate 

operation signals, including vibration, temperature, and pressure, they are entered 

into an encoder and are reconstructed in the decoder; the architectures of both parts 

are usually symmetric. The representation of the (l+1)-th layer becomes as follows: 

  1l l l lf  a W a b   (3.1) 

where f() is the activation function; al+1 is the output of the l-th layer; Wl and bl are 

the weight and bias between the l-th layer and the (l+1)-th layer. To induce the non-

linear dimensionality reduction of the input, the final layer of the encoder has smaller 

hidden nodes than those of the input layer [67]. In this way, the encoder extracts the 

essential information from the input data. Then, a decoder reconstructs the input 
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from the encoded information. The AE is trained by minimizing the mean squared 

error (MSE) or the mean absolute error (MAE). In this study, MAE is used because 

MAE is more sensitive to local variations of input data [68]. The mathematical 

expression of MAE is defined as follows: 
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M

i i
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M 

  x x   (3.2) 

where xi is the sample at time index i, and M is the number of samples. When an AE 

is successfully trained with normal data of a steam turbine, it can be said that the AE 

models the normal condition of the turbine.  

Other than the AE, a denoising auto-encoder (DAE) is also widely employed. 

Its architecture is the same as AE; the difference is the input. Noise is added to the 

input, and the DAE predicts clean data, which is the data before the noise is added. 

Since the DAE has the ability to reconstruct the input data while removing the noise, 

the performance of the DAE is usually better than that of the AE. 

 

 
 

Figure 3-1 Architecture of an auto-encoder (AE) 
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3.1.2 Conventional Methods to Set a Threshold 

Nelson’s N-sigma method and the Mahalanobis-distance-based (MD) method are the 

most widely used methods to set a threshold. Both methods set a constant threshold; 

the N-sigma method is intuitive, and MD extracts a single health indicator from 

multi-variate signals. In the N-sigma method, mean (μk) and standard deviation (σk) 

are calculated from the L1 residual of the k-th parameter. Then, the threshold in N-

sigma method is determined as below: 

 
k k kt N      (3.3) 

where N is selected heuristically or as the value that satisfies the confidence level (p).  

The MD method is different from the N-sigma method. The residual of the k-th 

parameter is computed as the difference between the true and predicted output as 

follows: 

 , ,k k true k predr y y    (3.4) 

Then, a monitoring indicator at the l-th sample is calculated as follows: 

    1
T

l l lt   r r S r r   (3.5) 

where r  and S are the mean vector and covariance matrix of the residual, 

respectively. After that, the probability distribution function of the indicator t is 

computed by kernel density estimation. Finally, the threshold is set as the point such 

that the cumulative distribution function of t becomes (1 - p). 
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3.2 Ensemble Denoising Auto-encoder-based Dynamic 

Threshold (EDAE-DT) 

To detect anomalies of rotating machinery with fewer false alarms, an ensemble 

denoising auto-encoder-based dynamic threshold (EDAE-DT) is newly proposed. 

The overall procedure of EDAE-DT is described in Figure 3-2. Similar to the 

conventional anomaly detection procedure, the proposed method consists of training 

and testing steps. In the training procedure, operating signals of the normal condition 

are measured from the steam turbine. In the preprocessing step, the missing values 

are filled by linear interpolation of nearby values, outliers are removed by the 6-

MAD (median absolute deviation) method, and moving average filtering is applied 

for smoothing. Finally, the signals are min-max scaled.  

Next, EDAE is trained as follows. The learning rate and the number of latent 

nodes are selected by Bayesian optimization. Figure 3-3 illustrates the architecture 

of EDAE. The denoising auto-encoder (DAE) has a symmetric architecture around 

the latent layer. Dropout is applied to the intermediate hidden layers (orange circle), 

except the latent layer; the dropout rate is set as 0.1. Each model is trained with noisy 

input signals; they are added using different white-gaussian noise (ε) with the same 

signal-to-noise ratio for each model. That is, if xn
i denotes the n-th parameter value 

at time index i, all clean signals (x) and corrupted signals (x̃i) for the j-th model 

become like Eq. (3.6). Then, the loss function of the j-th model (Lj), the output of the 

EDAE (yi), and the residual of j-th tag at i-th index (rj
i) become like Eq. (3.7). In Eq. 

(3.7), B is the mini-batch size, Qj() is the learned representation of model j, and M 

is the number of models; M is set as five in this work. rj
i is non-negative since it is 

the L1 norm of the output and the target value. By learning how to denoise the input 
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signals, the reconstructing performance can be enhanced. Also, the ensemble 

technique can improve performance by reducing the uncertainty in the outputs. 
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Figure 3-2 Procedure of EDAE-DT 
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After training the EDAE, the dynamic threshold (DT) is computed; each step is 

described graphically in Figure 3-4. For each parameter, let the output of EDAE be 

 

 

Figure 3-3 Architecture of EDAE 
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y = [ytr;yval]
T, and the corresponding residual be r = [rtr;rval]

T. Both variables are 

obtained by Eq. (3.7); index i and j are ignored for convenience. The joint probability 

distribution f(y,r) is obtained by kernel density estimation using a Gaussian kernel. 

The bandwidth is estimated by Scott’s rule [69]. Then, for each yk (black dotted line) 

of the regular grid size, the marginal distribution h() is obtained as shown in Eq. 

(3.8). 
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The denominator plays the role of normalization to make the integral of h() equal to 

1. Next, using a pre-defined confidence level (p), the critical point (qk) for each yk is 

calculated so that qk satisfies Eq. (3.9). 
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Figure 3-4 Concept of dynamic threshold (DT) 
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Those critical points are linearly interpolated, and the upper and lower tails are 

flattened as follows: 
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Here, ylower and yupper are chosen as 0.8 times of minimum of y and 1.2 times of the 

maximum of y, respectively. The reason for flattening is that interpolation is usually 

inaccurate in those regions. Then, a critical function (g(y)) can be defined with 

respect to each parameter, which is the blue line in Figure 3-4. When ym is the 

EDAE’s output for unseen data, g(ym) becomes the threshold value. If the residual is 

greater than g(ym), the system is considered to have an anomaly, since the residual 

exceeds the confidence limit. 

After detecting an anomaly by EDAE-DT, to find the condition parameters 

related to the anomaly, a sensitivity is newly defined as follows: 
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where sj is the sensitivity of the j-th parameter, r(yj) is the residual of yj, yj,total is the 

union of (yj,tr;yj,val;yj,te), and g() is the critical function. If sj is positive, an alarm is 

produced for the parameter; it can be said that no alarm occurs if sj is negative. Also, 

a greater value of sj indicates a more sensitive parameter. This sensitivity value can 

give a clue to the plant operators about which parameters are relevant to the 

abnormality. 
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3.3 Performance Evaluation Metrics  

As described in Section 2.4.1, deep-learning-based anomaly detection methods 

consist of two main steps: modeling of normal data and anomaly detection. 

Accordingly, two kinds of metrics are newly defined for quantitative validation; 

metrics for modeling performance and for anomaly detection performance. The 

proposed metrics are summarized in Table 3-1. RMSE (root mean squared error) of 

validation data is defined to quantify the modeling performance because it is the 

most widely used metric for regression [70, 71]. In the formulation, T is the time 

length of the validation data, N is the number of condition parameters; xj
i and yj

i are 

j-th parameters at time index i and the ensembled output of it, respectively. RMSE 

indicates how well an algorithm reconstructs the input data, which means modeling 

the normal data. The smaller this metric, the better the algorithm learns the normal 

data.  

Definitions of false alarms and valid alarms are needed to define metrics for 

anomaly detection performance. Figure 3-5 describes the meaning of both alarms. In 

Figure 3-5, Ttr, Tval, and Tte are the time lengths of the training, validation, and test 

data, respectively; the black line is the residual, and the dotted blue line is the 

threshold. Training, validation, and test data might be continuous or not; however, 

they should be in the order of time, not overlapped. An alarm occurs when the 

residual exceeds the threshold. False alarms are alarms that arise in the training and 

validation periods; these are expressed in the orange regions. Valid alarms, expressed 

in the gray region, are alarms that occur in the test period, since a change due to an 



48 

 

anomaly will occur in the test period. In this context, three metrics – α, β, and δ – are 

newly proposed to quantify the anomaly detection performance. α and β are the 

numbers of false alarms and valid alarms per hour, respectively. In the formulation 

of Table 3-1, F and V, mathematically defined in Eq. (3.12), are sets of false alarms 

and valid alarms; in the equation, fs is the sampling frequency. A small α means that 

anomaly detection is reliable; a large α denotes that anomaly detection is so sensitive 

that the operator might be confused by too many false alarms. In contrast, the larger 

the value of β, the better an algorithm is sensitive to the change of the system due to 

an anomaly. α is more crucial than β from the viewpoint of reliability only if β is 

greater than 0. δ is defined as the difference between the detection time of experts 

(Te) and the first detection of a valid alarm (V0). It is desirable for δ to be positive; 

otherwise, there is no reason to use that anomaly detection algorithm. As for the units 

of the metrics, RMSE has no dimension because input signals are normalized, and α, 

β are times per hour; the unit of δ is days.  
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Table 3-1 Defined evaluation metrics 

Performance type Notation Definition Formulation Unit 
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3.4 Description of the Validation Datasets  

Two datasets were collected from a steam turbine of domestic thermal power plant 

A. The power capacity of each generator of plant A is 500 [MW]. The operating 

signals of the steam turbine were measured by an OSIsoft PI system. The PI system 

organizes various signals from the entire power plant. 24 parameters related to the 

steam turbine were measured for this dataset; the meaning and the unit of each 

parameter are provided in Table 3-2, and the sensor locations are illustrated in Figure 

3-6. Also, the sampling rate, data configuration, and several types of anomaly 

information for the two datasets are summarized in Table 3-3. The sampling rate is 

1 [sample/min], and the number of parameters is 24 for the two datasets. Since EDAE 

should be designed to learn the characteristics of the normal condition well, the 

length of the training data is set as around 4-5 months, to be long enough to allow 

accurate modeling of the normal condition. The validation data is set to a length of 

 

Figure 3-5 Definition of false alarms and valid alarms 
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1 week, and the length of test data is around 1 day, including the experts’ detection 

time Te. The test period is inevitably short, since a turbine is usually stopped after 

any anomaly is detected. For dataset A1, training, validation, and test data are 

successively constituted; however, the configuration is not successive for dataset A2. 

The number of training samples is around 170,000 for both datasets. For case A1, the 

shutdown began at 13:30:00 on 10/31/11, and the turbine was re-operated at 03:20:00 

on 11/10/11. Here, and throughout, the date format is month/day/year; for instance, 

10/31/11 is October 31, 2011. In the case of A2, the turbine started to stop at 02:00:00 

on 12/19/13; it was restarted at 19:40:00 on 12/19/13 after maintenance. The 

anomaly cause of A1 is a high vibration in the x-direction at the 4th turbine bearing, 

detected by the operator at 12:20:00 on 10/31/11; the anomaly-related parameter is 

also analyzed as vibration in the x-direction at bearing #4 by experts. The anomaly 

reason for A2 is leakage at the crossover pipe; this was discovered by the operator at 

20:40:00 on 12/18/13. For A2, among the pressure and temperature of crossover pipe 

signals, experts determined that the pressure of the crossover pipe is significantly 

related to the anomaly; on the other hand, the temperature is relatively slow to change 

due to the anomaly.  

Figure 3-7 illustrates preprocessed-signal trends of anomaly-related parameters 

determined by experts; units are not expressed since they are normalized. The 

vertical black-dotted line is the anomaly detection time by the experts. For case A1, 

the variation scale of the training and validation periods are similar to each other. 

However, vibration increased significantly in the test period near 14:00:00 on 

10/30/11. That is, the change due to the anomaly is valid in the test period of A1. The 

variations of training and validation data for case A2 are also similar. However, the 
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variation in the test period is not valid, as compared to case A1; this means that for 

A2 it will be harder to detect the anomaly than it was for A1. 
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Table 3-2 Condition parameter information of datasets A1 and A2 

No. Parameter Unit Notation 

1 Vibration in the x-direction at bearing #1 mm x1 

2 Vibration in the y-direction at bearing #1 mm x2 

3 Vibration in the x-direction at bearing #2 mm x3 

4 Vibration in the y-direction at bearing #2 mm x4 

5 Vibration in the x-direction at bearing #3 mm x5 

6 Vibration in the y-direction at bearing #3 mm x6 

7 Vibration in the x-direction at bearing #4 mm x7 

8 Vibration in the y-direction at bearing #4 mm x8 

9 Vibration in the x-direction at bearing #5 mm x9 

10 Vibration in the y-direction at bearing #5 mm x10 

11 Vibration in the x-direction at bearing #6 mm x11 

12 Vibration in the y-direction at bearing #6 mm x12 

13 Vibration in the x-direction at bearing #7 mm x13 

14 Vibration in the y-direction at bearing #7 mm x14 

15 Vibration in the x-direction at bearing #8 mm x15 

16 Vibration in the y-direction at bearing #8 mm x16 

17 Vibration in the x-direction at bearing #9 mm x17 

18 Vibration in the y direction at bearing #9 mm x18 

19 Metal temperature of the crossover pipe °C x19 

20 Steam temperature of the crossover pipe °C x20 

21 Pressure of the crossover pipe psi x21 

22 Steam pressure of the hot reheater line kg/cm2g x22 

23 
Pressure of upstream of the low-pressure 

bypass valve 
kg/cm2g x23 

24 Pressure of the hot reheater outlet line kg/cm2g x24 
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Figure 3-6 Sensor locations of a steam turbine 
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Table 3-3 Data description of datasets A1 and A2 

Dataset A1 A2 

Sampling rate [sample/min] 1 

Number of condition parameters 24 

Data 

configuration 

Training data 06/30/11 to 10/23/11 02/12/13 to 07/12/13 

Validation data 10/23/11 to 10/30/11 08/01/13 to 08/08/13 

Test data 10/30/11 to 10/31/11 12/18/13 to 12/19/13 

Anomaly detection time by experts (Te) 10/31/11 12:20:00 12/18/13 20:40:00 

Start time of shutdown 10/31/11 13:30:00 12/19/13 02:00:00 

Restart time after maintenance 11/10/11 03:20:00 12/19/13 19:40:00 

Cause of anomaly 
High vibration in the x-direction at 

bearing #4 
Leakage at crossover pipe 

Anomaly-related parameter by experts 
Vibration in the x-direction at 

bearing #4 (x7) 
Pressure of crossover pipe (x21) 
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Figure 3-7 Trends of preprocessed anomaly-related condition parameters: (a) x7 for A1 and (b) x21 for A2 
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(a) 

 
(b) 

  
(c) 

 
(d) 

Figure 3-8 Architecture of four auto-encoders: (a) 3 layers, (b) 5 layers, (c) 7 layers, and (d) 9 layers 
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3.5 Validation of the Proposed Method 

For dataset A1, EDAE, AE, and DAE are trained with four different depths of hidden 

layers, as described in Figure 3-8; specifically, 3 layers, 5 layers, 7 layers, and 9 

layers. The gray circles show the input or output nodes, the green circles represent 

the latent nodes, and the orange circles are the intermediate hidden nodes. For DAE 

and EDAE, noise with a signal-to-noise-ratio of 5 [dB] is added to the input signals. 

Training epochs and batch size are set as 60 and 64, respectively. EDAE is ensembled 

with five DAEs. The confidence level of each threshold method is set as 1e-3. 

 

3.5.1 Case Study 1: Dataset A1 

For the four different architectures in Figure 3-8, modeling performances of AE, 

DAE, and EDAE are compared to each other. The critical hyper-parameters – the 

number of latent nodes and learning rate – are chosen by Bayesian optimization. The 

number of iterations is 12, and the acquisition function is chosen as expected 

improvement (EI). The convergence results of the optimization are summarized in 

Figure 3-9; the y-axis denotes the minimum validation loss until the iteration. The 

MAE of the validation data is converged in every case, which means a local optimum 

has been reached. Table 3-4 shows the Bayesian optimization results with respect to 

the different depths of the hidden layers. To make a bottleneck layer, the number of 

latent nodes is constrained to be less than the number of hidden nodes in the layer 

that is before the latent layer. The optimal learning rate decreases as a model 

becomes deeper because a small learning rate has the advantage of optimizing a 

complex neural network. Using the optimized critical hyper-parameters, the three 

algorithms are trained. The training and validation losses per epoch of the AEs, 
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DAEs, and EDAEs are organized in Figure 3-10. The red circles, blue triangles, 

green squares, and purple plus-shaped lines represent the results for 3 layers, 5 layers, 

7 layers, and 9 layers, respectively. For each EDAE, the averaged losses of five 

DAEs are illustrated. The training losses are converged during the training procedure, 

and the validation loss is usually greater than the training loss. The difference 

between the converged training loss and the validation loss decreases in order for 

AE, DAE, and EDAE, respectively. This means that EDAE suffers the least from the 

overfitting issue.  

RMSE values for trained AE, DAE, and EDAE are summarized in Figure 3-11. 

DAE shows a smaller RMSE value than AE, due to the denoising task. The RMSE 

values of EDAE are smaller than those of AE and DAE in every case. In particular, 

the RMSE value for an EDAE of 3 layers is the smallest. This means that the EDAE 

of 3 layers learns the normal condition better than other approaches. This is because 

a light neural network is enough to model the training data, whose input dimension 

is just 24. In the case of light data, a neural network with many hidden layers may 

have a severe overfitting problem. Consequently, the EDAE of 3 layers is selected 

for further study.  

After training the EDAE of 3 layers using the training data, N-sigma, MD, and 

DT are obtained. Figure 3-12 represents the averaged anomaly detection metrics of 

those thresholds. When seeing the metric β, N-sigma produces 42.2934 valid alarms 

per hour, while DT generates slightly fewer valid alarms; the β value of MD is too 

small, as compared to the other two methods. Also, DT generates the first valid alarm 

faster than the experts by 0.78 days. While MD triggers the first valid alarm slower 

than experts, N-sigma triggers the alarm earlier than experts by 0.84 days, which is 
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slightly faster than DT. However, the metric for false alarms (α) shows that DT 

generates far fewer false alarms than either N-sigma or MD. Specifically, the α value 

of DT is about 32.92% of that of N-sigma. In summary, the results show that EDAE-

DT can detect an anomaly faster than experts, while generating the fewest false 

alarms, as compared to the conventional methods. 

Based on the newly proposed sensitivity in Eq. (3.11), the top three anomaly-

sensitive parameters were selected; these are presented in Table 3-5. As you can see, 

vibration in the x-direction at bearing #4 (x7) is the most sensitive parameter. This 

coincides with the sensitive parameter that is analyzed by the experts. The α value 

of that parameter is 0.0519 times per hour, which means that there is one false alarm 

every 20 hours, on average. On the other hand, the β value is 55.3907 times per hour, 

which shows that the most sensitive parameter can generate frequent valid alarms. 

Figure 3-13 illustrates the critical function of x7, and Figure 3-14 presents the 

output, residual, and dynamic threshold of x7. In Figure 3-14(a), the first column 

shows the results of the training data, the second column shows those of validation, 

and the third column shows those of the test period. In the first row of Figure 3-14(a), 

the blue line is the true data, and the yellow line is the output. In the second row of 

Figure 3-14(a), the blue line is the residual, and the yellow plot is the dynamic 

threshold. The vertical black-dotted line denotes the time required for detection by 

experts. Since the residual is the L1 norm of the output and true data, the residual is 

not negative. Because a critical function produces a threshold for the EDAE’s output, 

it is good for training and validation samples to be located under the critical function 

to mitigate the false alarm issue; this can be seen in Figure 3-13. Unlike the training 

and validation samples, test samples cross the function; this means that alarms occur 
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during the test period. Thus, it is confirmed that DT can effectively reduce false 

alarms, while generating valid alarms. 

The diagnostic performances of N-sigma, MD, and DT are compared using 

classification metrics – precision, recall, accuracy, and F1 score – and a confusion 

matrix. The true labels of samples are annotated as binary; the samples during 

training and validation periods are labeled as normal, and the ones in the test period 

are labeled as an anomaly. The predicted label is obtained for each parameter as 

follows: 
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where yn
i is a predicted label, rn

i denotes a residual, and tn
i is a threshold of the n-th 

parameter at time index i. Then, a single label at time index i (yi) is calculated by 

averaging the predicted outputs of all parameters as follows: 
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Table 3-6 shows the averaged diagnostic performance metrics over 10 independent 

trials for dataset A1. As you can see, MD has inaccurate results, as compared to N-

sigma and DT. The recall and accuracy of DT are greater than those of N-sigma, but 

the precision and F1 scores of DT are slightly smaller than those of N-sigma. That 

is, the diagnostic performances of DT and N-sigma are similar to each other. This is 

because 1) the labeling might be wrong due to the lack of exact label information, 

and 2) the number of faulty samples is far smaller than that of normal samples. The 
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predicted labels for x7 are described in Figure 3-15. A blue line denotes a residual, a 

yellow line is a threshold, a black dotted line denotes Te, and a red circle is the 

predicted label of a sample. For MD, a health index is illustrated instead of the 

residual. Though MD classifies most of the samples during training and validation 

periods as normal, it also misclassifies the test samples as normal. This is consistent 

with the results of Figure 3-12, which denotes that the valid alarm rate of MD is the 

smallest. DT and N-sigma seem to have similar prediction results. The confusion 

matrices of the model used in Figure 3-12 are illustrated in Figure 3-16. The label of 

normal samples is 0, and that of the faulty ones is 1. The float value is the number 

of predicted samples over that of total samples, and the value in parentheses is that 

of predicted samples. From the confusion matrices, it can also be found that MD 

misclassifies the fault samples as normal. Also, DT and N-sigma have similar 

classification performance, which is also shown in Table 3-6 and Figure 3-15. 
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(a) 

 
(b) 

 
(c) 

Figure 3-9 Convergence plots with dataset A1: (a) AE, (b) DAE, and (c) EDAE 
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Table 3-4 Bayesian optimization results of AE, DAE, and EDAE for dataset A1 

# of hidden 

layers 

Hyper-

parameters 
AE DAE EDAE 

3 layers 
# of latent nodes 11 25 15 

Learning rate 0.004466 0.010000 0.000674 

5 layers 
# of latent nodes 25 18 10 

Learning rate 0.000873 0.001267 0.000120 

7 layers 
# of latent nodes 11 14 9 

Learning rate 0.000744 0.006773 0.000594 

9 layers 
# of latent nodes 2 4 7 

Learning rate 0.004984 0.001319 0.000120 
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(a) AE3, AE5, AE7, and AE9 

  

(b) DAE3, DAE5, DAE7, and DAE9 

  

(c) EDAE3, EDAE5, EDAE7, and EDAE9 

Figure 3-10 Training and validation losses of auto-encoders for dataset A1: (a) 

AEs, (b) DAEs, and (c) EDAEs 
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Figure 3-11 RMSE of AE, DAE, and EDAE with respect to four different architectures for dataset A1 

AE DAE EDAE
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Figure 3-12 Averaged anomaly detection metrics of three thresholds for dataset A1; N-sigma, MD, and DT 

N-sigma MD DT
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Table 3-5 Anomaly detection performance of the top three parameters of A1 

Condition parameters s α [times/hour] β [times/hour] δ [days] 

Vibration in the x-direction at bearing #4 (x7) 0.9218 0.0519 55.3907 0.9174 

Vibration in the x-direction at bearing #3 (x5) 0.8716 0.0366 55.1921 0.9139 

Vibration in the y-direction at bearing #5 (x10) 0.8395 0.04408 55.3510 0.9167 
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Figure 3-13 Critical function of x7 for dataset A1 
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Figure 3-14 Output and residual results of EDAE for dataset A1 
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Table 3-6 Averaged diagnostic performance of 10 trials for dataset A1 

Metrics Precision Recall Accuracy F1 score 

N-sigma 0.919 0.992 0.993 0.958 

MD 0.003 0.006 0.987 0.004 

DT 0.918 1.000 0.999 0.957 

 

 

 



72 

 

 

 
(a) N-sigma 

 
(b) MD 

 
(c) DT 

Figure 3-15 Predicted label for x7, as determined by the diagnostic methods: (a) 

N-sigma, (b) MD, and (c) DT 

Residual Threshold Te Predicted label
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(a) N-sigma 

 

(b) MD 

 

(c) DT 

Figure 3-16 Confusion matrices of the diagnostic methods for dataset A1: (a) N-sigma, (b) MD, and (c) DT 
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3.5.2 Case Study 2: Dataset A2 

As in case A1, the modeling performances of AE, DAE, and EDAE with respect to 

the different numbers of hidden layers are compared to each other. For AE, DAE, 

and EDAE, the critical hyper-parameters are selected by Bayesian optimization. The 

optimization settings are the same as in the case of A1. The convergence plots are 

organized in Figure 3-17. The minimum objective function is converged during the 

optimization, which denotes that a local optimum has been found. Bayesian 

optimization results of AE, DAE, and EDAE are summarized in Table 3-7. In the 

same manner, as that used for A1, the number of latent nodes is upper-bounded with 

the number of nodes of the previous layer to build a bottleneck architecture. As can 

be seen, the learning rate is generally decreased when the number of hidden layers 

increases. This is because a small learning rate is suitable for finding an optimal point 

in a more complex network. The three algorithms are trained with optimized hyper-

parameters. The training and validation MAEs per epoch are summarized in Figure 

3-18; the legend is the same as in Figure 3-10. The losses of five DAEs of each 

EDAE are averaged. The training and validation losses are converged in most cases. 

In addition, the difference between the training loss and validation loss of EDAE is 

smaller than those of AE and DAE.  

Figure 3-19 illustrates the RMSE values of trained AE, DAE, and EDAE for 

four different architectures. As shown in the figure, for each architecture, RMSE 

values decrease in the order of AE, DAE, and EDAE. The RMSE value of EDAE 

for the 3-layer scenario is smaller than that of the others. This illustrates that an 

EDAE of three layers can model the normal data remarkably well, better than the 

other approaches. Deeper EDAEs show worse modeling performance than the 
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EDAE of 3 layers. The reason for this is that the deeper models suffer an overfitting 

problem. Therefore, the EDAE of 3 layers is analyzed in detail.  

Three thresholds – N-sigma, MD, and DT – are calculated using the EDAE’s 

output. Averaged anomaly detection metrics of those methods are described in 

Figure 3-20. First, the α value of N-sigma is the highest among the thresholds; this 

implies that the false alarm problem is the most severe when using N-sigma. MD 

falls in second place, and DT shows the smallest α. This indicates that the false alarm 

issue is not severe for DT, as compared to N-sigma and DT. The valid alarm rate β 

value of DT is 43.5976; this means DT triggers valid alarms about 43 times per hour. 

MD’s β is 0.0423, which represents that MD triggers fewer valid alarms than N-

sigma and DT; that is, MD is least sensitive to the change of multi-variate time-series 

data that arises due to an anomaly. Finally, δ values of DT and N-sigma are 0.5765; 

this describes that those methods detect an anomaly faster than experts by around 13 

hours. In contrast, the δ value of MD is negative, which means that MD’s detection 

is slower than experts. In summary, EDAE-DT produces the fewest false alarms, 

while triggering valid alarms faster than experts. Thus, DT is superior to the N-sigma 

and MD methods.  

After validating the superior anomaly detection performance of EDAE-DT, 

parameters that are sensitive to the change of input due to the anomaly are selected, 

as outlined in Table 3-8. Those parameters are sorted in descending order based on 

the sensitivity. It turns out that the pressure of the crossover pipe has the largest 

sensitivity value, which matches the true anomaly cause shown in Table 3-3. Also, 

the false alarm rate of the parameter is around 0.052 times per hour, which is quite 

small. The valid alarm rate value is 57.9296 times per hour, which also describes 
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that the parameter is sensitive to the change of input data that happens due to an 

anomaly. Although there are temperature-related parameters at the crossover pipe 

(e.g., the metal temperature of the crossover pipe), these parameters are not selected 

as anomaly-sensitive parameters. The reason for this is that a change in temperature 

is slower than that of pressure when there is a sudden change in a system. Thus, 

pressure is a better choice for anomaly detection.  

Figure 3-21 is the critical function of x21, and Figure 3-22 shows the output and 

residual of x21. The legends are the same as those shown in Figure 3-13 and Figure 

3-14, respectively. In the training and validation periods, the output of EDAE is 

similar to the true data; this indicates that EDAE can model the normal condition 

successfully. Furthermore, the greater error lies in the output of the test period. In 

Figure 3-21, the black line is the critical function. As you can see, the critical function 

exists over the training and validation points; this illustrates that false alarms can be 

diminished. Specifically, the residual of the test data increases gradually, crossing 

the critical function. Therefore, it can be validated that the dynamic threshold 

determined by the critical function can trigger valid alarms. 

The performance of fault diagnosis of the N-sigma, MD, and DT approaches is 

compared through the use of classification metrics and a confusion matrix. The 

labeling method is the same as that used in the case of dataset A1. The averaged 

performance metrics over 10 independent trials are summarized in Table 3-9. DT 

has the greatest recall, accuracy, and F1 score, as compared to other methods; the 

precision of DT is almost the same as that of N-sigma. Therefore, it can be said that 

DT has a more accurate diagnostic performance, as compared to the other methods. 

This matches with the facts found in Figure 3-20. However, the gaps in the diagnostic 
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metrics between DT and N-sigma are not dramatic, as compared to the results in 

Figure 3-20. This is because 1) some samples might be wrongly labeled due to the 

absence of exact label information, and 2) the number of normal samples is much 

greater than that of faulty ones. Figure 3-23 describes the predicted labels for x21; in 

the case of MD, a health index is plotted in place of the residual. MD mainly 

misclassifies the test samples as normal. Though DT and N-sigma have similar 

prediction results, the false alarm rate of DT is smaller than N-sigma when 

considering the training and validation samples. From the model employed in Figure 

3-20, confusion matrices of those three methods are calculated in Figure 3-24. 

Likewise, for the results of case A1, the classification performances of DT and N-

sigma are similar to each other. Also, MD mainly predicts fault samples as normal, 

which denotes that its valid alarm rate is very small. 
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(a) 

 
(b) 

 
(c) 

Figure 3-17 Convergence plots with dataset A2: (a) AE, (b) DAE, and (c) EDAE 
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Table 3-7 Bayesian optimization results of AE, DAE, and EDAE for dataset A2 

# of hidden 

layers 

Hyper-

parameters 
AE DAE EDAE 

3 layers 
# of latent nodes 5 18 13 

Learning rate 0.009310 0.007051 0.000651 

5 layers 
# of latent nodes 15 11 15 

Learning rate 0.000565 0.001846 0.000257 

7 layers 
# of latent nodes 12 16 7 

Learning rate 0.000079 0.001746 0.000196 

9 layers 
# of latent nodes 6 7 6 

Learning rate 0.000031 0.002122 0.000201 

 
 



80 

 

 

(a) AE3, AE5, AE7, and AE9 

 

(b) DAE3, DAE5, DAE7, and DAE9 

 

(c) EDAE3, EDAE5, EDAE7, and EDAE9 

Figure 3-18 Training and validation losses of auto-encoders for dataset A2: (a) 

AEs, (b) DAEs, and (c) EDAEs 
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Figure 3-19 RMSE of AE, DAE, and EDAE with respect to four different architectures for dataset A2 

AE DAE EDAE
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Figure 3-20 Averaged anomaly detection metrics of three thresholds for dataset A2; N-sigma, MD, and DT 

N-sigma MD DT
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Table 3-8 Anomaly detection performance of the top three parameters of A2 

Condition parameters s α [times/hour] β [times/hour] δ [days] 

Pressure of the crossover pipe (x21) 0.9273 0.0520 57.9296 0.7639 

Pressure of upstream of the low-pressure 
bypass (x23) 

0.8216 0.0610 59.1549 0.7639 

Pressure of the hot reheater outlet line (x24) 0.8184 0.0507 59.1127 0.7639 
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Figure 3-21 Critical function of x21 for dataset A2 
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Figure 3-22 Output and residual results of EDAE for dataset A2 
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Table 3-9 Averaged diagnostic performance of 10 trials for dataset A2 

Metrics Precision Recall Accuracy F1 score 

N-sigma 1.000 0.967 0.999 0.983 

MD 0.006 0.003 0.984 0.004 

DT 0.997 1.000 1.000 0.999 
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(a) N-sigma 

 
(b) MD 

 
(c) DT 

Figure 3-23 Predicted label for x21, as determined by the diagnostic methods: (a) 

N-sigma, (b) MD, and (c) DT 

Residual Threshold Te Predicted label
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(a) N-sigma 

 

(b) MD 

 

(c) DT 

Figure 3-24 Confusion matrices of the diagnostic methods for dataset A2: (a) N-sigma, (b) MD, and (c) DT 
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3.5.3 Analysis and Discussion 

Since the confidence level (p) affects detection performance, the performance of the 

proposed method is investigated with respect to various confidence levels: p = [1e-

01, 1e-02, 1e-03, 1e-04, 1e-05]. Figures 3-25 and 3-26 describe the critical functions 

and detection performance metrics of the datasets A1 and A2, respectively. As 

presented in Eq. (3.9), the critical points shift up in the residual direction as p gets 

smaller, which causes the critical function to move upward. This can be found in 

both Figures 3-25(a) and 3-26(a). Also, as can be seen from the detection 

performance results, α converges as p becomes greater than or equal to 1e-03 for 

both cases. β and δ decrease respectively when α increases; this means that the 

detection performance degenerates. This is because the threshold value increases as 

the critical function rises in the residual direction. As a result, it makes sense to set 

the confidence level as 1e-03 when making a trade-off among the three factors: 

minimizing α and maximizing β and δ. 

The effect of the number of models (M) in EDAE is also analyzed. Though 

using more models in the ensemble technique usually presents better performance, 

the number of models cannot be increased infinitely because of computational cost. 

Figures 3-27 and 3-28 describe the modeling and anomaly detection performance 

results according to M = [3, 5, 7, 9, 11] for the datasets A1 and A2, respectively. In 

Figure 3-27, the EDAE of M =5 achieves the smallest RMSE value and the lowest 

false alarm rate (α); it also shows the greatest valid alarm rate (β). The δ value of the 

EDAE of M = 5 is slightly less than the greatest value, which is achieved by the 

EDAE of M = 7. When seeing Figure 3-28(a), the smallest RMSE value is obtained 

by the EDAE of M = 5. As can be seen from Figure 3-28(b), the EDAE of M = 5 
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presents better detection performance than other cases. It shows the greatest δ value, 

while achieving a small α value and a great β value. In summary, setting M = 5 is 

reasonable when considering the modeling and anomaly detection performance 

results.  
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(a) 

 

(b) 

Figure 3-25 Anomaly detection performance with respect to the confidence level 

for dataset A1: (a) critical functions and (b) detection performance metrics 
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(a) 

 

(b) 

Figure 3-26 Anomaly detection performance with respect to the confidence level 

for dataset A2: (a) critical functions and (b) detection performance metrics  
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(a) 

 

(b) 

Figure 3-27 Performance according to the number of models in EDAE for dataset 

A1: (a) modeling performance and (b) anomaly detection performance 



94 

 

 

 

 

(a) 

 

(b) 

Figure 3-28 Performance according to the number of models in EDAE for dataset 

A2: (a) modeling performance and (b) anomaly detection performance 
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3.6 Summary and Discussion 

This research proposes an EDAE-DT for accurate anomaly detection of a steam 

turbine. The EDAE approach can model the normal data successfully through its 

denoising task and its ensemble technique. The denoising task makes EDAE robust 

against noise, and the ensemble technique can improve the reconstruction 

performance. The DT method is developed to minimize false alarms in anomaly 

detection. By employing the joint probability distribution between the output of a 

model and the residual, a variable threshold is determined so that it satisfies the 

confidence limit according to the variation in the input. A sensitivity is newly defined 

by DT to find the condition parameters related to an anomaly. As a result, after an 

anomaly is detected, sensitive parameters can be identified. To quantitatively 

evaluate the anomaly detection performance, three performance metrics are newly 

defined. The proposed method is validated with two steam turbine datasets by using 

the metrics. Among the four different architectures, EDAE of 3 layers has a superior 

modeling performance than other auto-encoders. Also, the EDAE-DT approach 

generates much fewer false alarms, as compared to conventional methods, and alerts 

valid alarms faster than experts. It is also discovered that the most sensitive 

parameter, determined by the proposed sensitivity, matches with the true abnormal-

related parameter. This can be helpful for the operators by localizing an area for 

inspection. 

  

Sections of this chapter have been published as the following journal article:  

1) Jin Uk Ko, Kyumin Na, Joon-Seok Oh, Jaedong Kim, and Byeng D, Youn, “A new 

auto-encoder-based dynamic threshold to reduce false alarm rate for anomaly 

detection of steam turbines,” Expert Systems with Applications, Vol. 189, pp. 116094, 
2022. 
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Chapter 4 Frequency-learning Generative Network (FLGN) for Data Augmentation 

 

Frequency-learning Generative 

Network (FLGN) for Data 

Augmentation 

Equation Chapter (Next) Section 1 

In this chapter, a new generative network called frequency-learning generative 

network (FLGN) is proposed 1) to generate signals of variable lengths at specific 

time ranges and 2) to ensure that there is little possibility of generating dissimilar 

samples. Though the proposed method completely differs from VAE and GAN, the 

proposed method is called a “generative network” since it is based on a neural 

network and tries to produce new signals. To generate signals at specific time ranges, 

the input becomes a time vector, and the output is set as the amplitude vector at that 

time. The key idea is the Fourier series, which indicates that a signal can be 

decomposed into several sinusoidal signals [72]. The proposed network is composed 

of three parts; a frequency extractor (FE), a phase extractor (PE), and a magnitude 

extractor (ME). Those extractors extract the stochastic frequency feature, the phase 

feature, and the magnitude feature, respectively. An attention block is utilized for 

each extractor so that it can focus on the important features. A deterministic 

frequency is learned in the form of a trainable parameter in a neural network. Then, 

a sine-basis is generated using the deterministic frequency parameter, the stochastic 
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frequency feature, and the phase feature. Then, the magnitude extractor extracts a 

magnitude feature using the sine-basis. Finally, a bias is added to the dot product of 

the sine-basis and the magnitude feature; this becomes the output of the proposed 

network. Through the research presented in this chapter, the proposed approach is 

verified by applying it to three datasets; a simulated signal, an RK4 dataset that was 

measured from a testbed of GE Bentley Nevada, and an open machinery fault 

database called MAFAULDA [73]. The generation performance is evaluated 

qualitatively and quantitatively. The validation results indicate that the proposed 

method can accurately generate signals for various time ranges, as desired. 

Furthermore, the proposed model can effectively learn the frequency components in 

the target signal. Specifically, when interpreting the proposed network by visualizing 

the attention score, it is found that the proposed model can focus on the characteristic 

frequency components. 

The remainder of this chapter is organized as follows. Section 4.1 presents the 

theoretical background of the proposed method. Section 4.2 provides the proposed 

method in detail. The experimental implementation setting is offered in Section 4.3. 

Section 4.4 shows the descriptions of the validation datasets, and the validation 

results are presented in Section 4.5. Finally, the conclusion of this study and 

suggestions for future work are offered in Section 4.6. 

  

4.1 Background: Fourier Series  

Fourier series denotes that a periodic function is represented as the summation of 

sinusoidal waves [72]. Given a function x(t), whose period is T, the Fourier series 
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expression of the function becomes as follows: 
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Here, cn is the magnitude, ϕk is the phase, and c0 is the bias. They are defined as 

follows: 
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The Fourier series can be interpreted as approximating a periodic function using 

frequency information such as magnitude, frequency, and phase. Inspired by this, the 

proposed method is developed. The motivation is graphically illustrated in Figure 4-

1. To make a signal at a desired time range, the input is time. Then, feature extractors 

make magnitude, frequency, and phase. From this frequency information, another 

feature extractor computes sine-bases. Finally, the sine-bases are summed to yield 

the target signal. 
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4.2 Frequency-learning Generative Network (FLGN)  

In this section, a novel generative model called frequency-learning generative 

network (FLGN) is explained in detail. The proposed method is developed to 

generate vibration signals of variable lengths and to minimize the risk of generating 

incorrect signals. The problem is formulated first with two assumptions: the target 

signal is stationary, and the training and test data have the same label conditions. 

Then, the detailed procedure of the proposed approach is described. Finally, the 

deep-learning settings to reflect signal processing knowledge are elucidated.  

 

4.2.1 Problem Formulation 

First, the problem that the proposed scheme is designed to address is formulated. The 

proposed method, which generates a signal at a desired time range, is developed 

 

Figure 4-1 Motivation of the proposed method 

 

𝑐𝑛
𝜙𝑛
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under the following assumptions: 

1) It is assumed that the target signal is measured under a constant-speed 

condition. This means that the signal is stationary and that the frequency 

components remain constant. 

2) The training and test data are assumed to have the same label conditions. 

For example, if the proposed model is trained with rubbing data, the 

proposed method will generate signals of the rubbing condition at different 

time ranges. 

Let Dtrain = {ti
tr, x(ti

tr)}M
i=1 be the training dataset and 𝐹(⋅) be the proposed 

model. Here, 𝑡𝑖
𝑡𝑟  is the time at the i-th index, 𝑥(𝑡𝑖

𝑡𝑟) is the amplitude at the time 

𝑡𝑖
𝑡𝑟 , and 𝑀  is the number of training samples. Then, the output of FLGN is 

𝑥(𝑡𝑖
𝑡𝑟) = 𝐹(𝑡𝑖

𝑡𝑟) . When test data is Dtest = {tj
te}M

j=1, the proposed method will 

generate 𝑥(𝑡𝑗
𝑡𝑒). The time range of the test data can be changed as desired by the 

user. 

 

4.2.2 Overall Procedure of FLGN 

To produce signals of various lengths, a frequency-learning generative network 

(FLGN) approach is newly proposed in this research. Figure 4-2 illustrates the 

schematic diagram of the proposed method. The input is a time vector {𝑡}𝑖=1
𝑀 , and 

the output is {𝑥(𝑡)}𝑖=1
𝑀 , which is the amplitude vector at the corresponding time 

vector. There are three feature extractors; specifically, a frequency extractor (𝐹𝐸), 

a phase extractor (𝑃𝐸), and a magnitude extractor (𝑀𝐸). These all consist of 
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several fully connected (FC) blocks, one sample-wise average (SA) layer, and an 

attention block. FC block (𝑚, 𝑄(⋅)) consists of 1) a fully connected layer where the  

(a) 

 

(b) 

 

(c) 

Figure 4-2 Schematic illustration of the proposed method: (a) architecture, (b) FC 

block, SA layer, and activation function, and (c) attention block 
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number of nodes is 𝑚, 2) a batch normalization layer, and 3) an activation function 

𝑄(⋅). The SA layer is used to sample-wisely average the feature, and an attention 

block is added to further focus on the important part of the averaged feature. The 

attention block is developed based on the squeeze and excitation network [74]. Using 

the attention blocks in each extractor, the proposed model can focus on the important 

frequency, phase, and magnitude features.  𝑖 is a trainable parameter to learn the 

deterministic frequency and   𝑖 is a feature used to learn the stochastic frequency; 

where  = 1,… ,𝑁𝑓  and 𝑁𝑓  is the dimension of the frequency features.   𝑖  is 

used because the frequency components can slightly change due to environmental 

disturbances, despite the constant-speed condition. 

The input and output sizes of the main modules in FLGN are shown in Table 4-

1. Let the length of the desired time range be 𝐵; then, the size of the input layer is 

𝐵  1. FE and PE output a stochastic frequency feature (  𝑖) and a phase feature 

(𝜙𝑖), as presented in Eq. (4.6). The dimensions of both features become 1  𝑁𝑓; the 

first dimension is changed from 𝐵  to 1 by the SA layer. ( 𝑖 + 𝛼    𝑖)  will 

become the final frequency at the i-th index, which is constrained to be exist in the 

range of 0 and half of the sampling frequency ( 𝑠). 𝛼 is a hyper-parameter to 

control the effect of   𝑖 . If the input signal has mostly deterministic frequency 

components, a small 𝛼 will be more proper. ( 𝑖 ,   𝑖 , 𝜙𝑖) are combined to make a 

sinusoidal basis ( 𝑖) in the sine-basis layer, as shown in Eq. (4.7). The output size 

of the sine-basis layer is 𝐵  𝑁𝑓. Using the sine-basis, ME extracts a magnitude 

feature ( 𝑖) like Eq. (4.8). The output dimension of ME is 1  𝑁𝑓. Finally, a bias 

( 0) is added to the dot product of the sine-basis feature and the magnitude feature, 

as in Eq. (4.9). It is similar to the Fourier series, which approximates a signal as the 
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summation of sinusoidal signals. This becomes the final output (𝑥(𝑡)) of FLGN, 

whose dimension is 𝐵  1; this is same as the size of the input time vector. The 

objective function is mean squared error (MSE), as presented in Eq. (4.10). In the 

equation, j is the sample index, and B is the number of samples; for the training, B 

becomes the batch size. In Table 4-1, the input and output layers share the same size 

𝐵  1. Since B can be determined as a user want, it is confirmed that the proposed 

method can generate signals of variable lengths. 
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Table 4-1 Input and output size of main modules in FLGN 

Module Input size Output size 

Input layer 𝐵  1 𝐵  1 

FE 𝐵  1 1  𝑁𝑓  

PE 𝐵  1 1  𝑁𝑓  

Sine-basis layer 1  𝑁𝑓  𝐵  𝑁𝑓  

ME 𝐵  𝑁𝑓  1  𝑁𝑓  

Output layer 1  𝑁𝑓  𝐵  1 
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The training procedure is described in Table 4-2. Given training data whose 

amplitude is min-max scaled, hyper-parameters, including batch size, 𝑁𝑓, frequency 

range ( , 𝑞), 𝛼, the learning rate (𝜂), and the number of training epochs are chosen 

first. Next, the deterministic frequency parameters are initialized by uniform 

distribution 𝑈( , 𝑞). The parameters in FE and PE are initialized by the He uniform 

Table 4-2 Training procedure of FLGN 

Input: Training data 𝐷𝑡𝑟𝑎𝑖𝑛 = {𝑡𝑖
𝑡𝑟, 𝑥(𝑡𝑖

𝑡𝑟)}
𝑖=1

𝑀
; batch size 𝐵 ; 𝑁𝑓 ; 

deterministic frequency range ( , 𝑞); 𝛼; learning rate 𝜂; training epochs 

Output: Model configuration of FLGN 

I) Parameter initialization 

Deterministic frequency parameters  𝜑𝑓 = ( 1, … ,  𝑁𝑓)  

Trainable parameters in FE and PE  𝜑1 

Trainable parameters in ME  𝜑2 

Total trainable parameters  𝜃 = (𝜑𝑓 , 𝜑1, 𝜑2) 

Initialize 𝜑𝑓 with uniform distribution 𝑈( , 𝑞) 

Initialize 𝜑1 with the He uniform initialization method 

Initialize 𝜑2 with the He normal initialization method 

II) Mini-batch training 

while validation loss does not converge do 

  for epoch = 1 to training epochs do 

for batch = 1 to ⌈
𝑀−𝐵

⌊𝐵/8⌋
⌉ do 

Draw mini-batch samples {(𝑡1, 𝑥(𝑡1)),… , (𝑡𝐵, 𝑥(𝑡𝐵))} from 𝐷𝑡𝑟𝑎𝑖𝑛 

Compute 𝑥 = 𝐹(𝑡; 𝜃) 

Calculate loss function 𝐿(𝑥, 𝑥) in Eq. (4.10) 

Update parameters 𝜃 ← 𝜃  𝜂
𝜕𝐿

𝜕𝜃
 

end for 

  end for 

end while 
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initialization method [75], and those in ME are initialized by the He normal 

initialization method [75]. The proposed model is trained by mini-batch learning 

until the validation loss converges. The mini-batch samples are drawn to be 

overlapping; the stride is set as ⌊(𝐵/8)⌋. After the training is finished, the developed 

model can predict the amplitude in the test time range. 

 

4.2.3 Deep-learning Implementation Details to Reflect Signals 

Processing Knowledge 

First, because it is sometimes unknown which frequency is dominant, the 

deterministic frequency ( 𝑖)  is initialized with uniform distribution 𝑈( , 𝑞) . 

( , 𝑞) should satisfy the following condition: 0 ≤  < 𝑞 <  𝑠/ . In particular, the 

range can be chosen using prior knowledge about the frequency information in the 

target signal. For example, if it is known that frequency components of the target 

signal exist around 60 [Hz], the range can be selected as (50, 70). 𝑁𝑓 should be 

large enough to have the ability to learn most frequency components. For instance, 

if there are over 10 sub-harmonics of the fundamental frequency, setting 𝑁𝑓 less 

than 10 makes it difficult to learn most of the frequency information. Also, the 

frequency ( 𝑖 + 𝛼    𝑖) is constrained to be between 0 and the Nyquist frequency 

( 𝑠/ ) to satisfy the Nyquist-Shannon sampling theorem [16]. In addition, the phase 

feature (𝜙𝑖) is restricted to exist between    and  . To do this, the following 

activation function Eq. (4.11) is applied to the end of the phase extractor. 

    %(2 )g h h        (4.11) 

Here, “ ” is the modulus operator. The function  ( ) is a periodic function, whose 
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period is   ; it is plotted in Figure 4-3. Finally, L1 regularization is applied to the 

deterministic frequency parameters ( 𝑖)  to make any useless frequency 

components zero [76]; the regularization scale is 1e-4. A regularizer combining L1 

and L2 penalties is also applied to the magnitude extract for a similar reason; the 

scale value is 1e-4. This regularization can restrict most parameters to be small; that 

is, the magnitude features, except the features about the characteristic frequencies, 

will become small.  

 

4.3 Experimental Implementation Setting 

This section introduces the rest of the hyper-parameter conditions of the proposed 

method and the evaluation scheme. To rigorously validate its generation 

performance, FLGN is validated by both qualitative evaluation and quantitative 

evaluation. 

 

 

Figure 4-3 Trend of activation function g(h) 
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4.3.1 Hyper-parameter Setting 

The Adam optimizer is used to optimize the parameters of FLGN [55]. The initial 

learning rate is 5e-4, and the learning rate decay ratio is 1e-7. No bias is used at any 

fully connected layer. For an attention block, the reduction hyper-parameter   is 

chosen as 20. A batch normalization layer and an exponential linear unit (ELU) are 

employed with each fully connected layer. A new activation function  ( ), which 

is defined in Eq. (4.11), and a sigmoid function are used right before the SA layer in 

PE and ME, respectively. Batch size, 𝑁𝑓 , and 𝛼 are chosen differently for each 

dataset. In particular, the batch size should be large enough to contain the most 

frequency information. When training the proposed method with a mini-batch 

method, the batch size plays a role in the sequence length. Thus, if the batch size is 

too small, the mini-batch sample will not involve enough frequency components 

since the frequency resolution will be too big. 

 

4.3.2 Evaluation Scheme 

Given a time vector as the input, the proposed model generates the signal of that time 

range. Here, to test the proposed method, the generation performance is evaluated 

both qualitatively and quantitatively. For the qualitative evaluation, the true and the 

generated signals are visualized in the time domain and in the frequency domain, 

respectively. Magnitude spectrums of the true and the generated signals are 

compared in the frequency domain. If the generated signal is similar to the true one, 

both signals will also appear similar in both domains. 

Similarity metrics and handcrafted features are computed for the quantitative 

evaluation. Root mean squared error (RMSE) and the correlation coefficient values 
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are calculated to identify how similar a generated signal is to the true signal. Features 

of both domains are also computed for quantitative evaluation. Time-frequency 

features are not considered because it is assumed that the signal is stationary [77]. If 

the generated and true signals are similar, those feature values will also be similar. 

The features of both domains, referring to [78], are summarized in Table 4-3. Here, 

𝑋 is the amplitude in the time domain, 𝑁 is the length of 𝑋,   is the frequency, 

and  ( ) is the power spectrum function of 𝑋 . RMS is relevant to the kinetic 

energy of the signal, and skewness and kurtosis can reflect the statistical 

characteristics of the signal. Shape factor, impulse factor, and crest factor describe 

how much the signal is similar to a sinusoidal waveform. The frequency center and 

root mean squared frequency (RMSF) indicate the fundamental frequency of the 

signal. Finally, the root variance frequency (RVF) shows how spread out the 

frequency components are. 

The generation performance is further investigated using an auto-encoder. If the 

signals produced by the FLGN method are similar to the true signals, the auto-

encoder that is trained only with the true signals will successfully reconstruct the 

generated signals. Figure 4-4 graphically illustrates the evaluation based on the auto-

encoder. An FLGN model is trained, and the auto-encoder is trained using the true 

signals; its objective is to reconstruct the true data. Finally, the latent space is 

visualized, and RMSE and correlation coefficient between the signals reconstructed 

from the true and generated signals are computed. If the produced signals are similar 

to the true signals, both signals will be reconstructed successfully. Thus, the latent 

vectors of both signals will be close to each other and RMSE will be small, and the 

correlation coefficient will be near 1. 
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Table 4-3 Time-domain and frequency-domain features 

Domain Feature Notation Definition 

Time 

domain 

RMS 𝑋𝑟 𝑠 √
 𝑋𝑖

2𝑁
𝑖=1

𝑁
 

Skewness 𝑋𝑠𝑘𝑒𝑤 
 (𝑋𝑖  𝑋 𝑒𝑎𝑛)

3𝑁
𝑖=1

(𝑁  1) 3
 

Kurtosis 𝑋𝑘𝑢𝑟𝑡  
 (𝑋𝑖  𝑋 𝑒𝑎𝑛)

4𝑁
𝑖=1

(𝑁  1) 4
 

Shape factor 𝑋𝑠𝑓 
𝑋𝑟 𝑠

𝑀   (|𝑋|)
 

Impulse 

factor 
𝑋𝑖𝑓 

𝑀 𝑥(𝑋)

𝑀   (|𝑋|)
 

Crest factor 𝑋𝑐𝑓 
𝑀 𝑥(𝑋)

𝑋𝑟 𝑠
 

Frequency 

domain 

Frequency 

center 
𝑋𝑓𝑐 

∫    ( )  
∞

0

∫  ( )  
∞

0

 

RMSF 𝑋𝑟 𝑠𝑓 (
∫  2   ( )  
∞

0

∫  ( )  
∞

0

)

1/2

 

RVF 𝑋𝑟𝑣𝑓 (
∫ (  𝑋𝑓𝑐)

2   ( )  
∞

0

∫  ( )  
∞

0

)

1/2
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(a) 

 

 

 

 

(b) (c) 

Figure 4-4 Performance evaluation using an auto-encoder: (a) procedure, (b) 

architecture of the auto-encoder, and (c) FC block in the auto-encoder 
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4.4 Description of the Validation Datasets 

The developed method is validated on three datasets. The first dataset is a simulated 

signal (D1), which contains impulsive signals and the signal of a low-frequency 

component. Two types of periodic impulsive signals with frequencies of 10 [Hz] and 

25 [Hz] are involved to simulate the repeated impulsive fault. The low frequency is 

5 [Hz], and white-Gaussian noise is added. The sampling frequency is determined as 

2000 [Hz]. Figure 4-5 describes the time-domain and frequency-domain trends. The 

mathematical expression of the simulated signal is presented in Eq. (4.12); where “∗” 

is the convolution operator. The characteristic frequencies are 5 [Hz], 330 [Hz], and 

500 [Hz].  

The second dataset is the RK4 dataset (D2), which was measured from a GE 

Bently-Nevada testbed. The testbed setup is presented in Figure 4-6(a). The time-

domain and frequency-domain trends are described in Figure 4-7. For this dataset, 

vibration signals were measured using two proximity sensors located at 90-degree 

intervals. The sampling frequency is 8500 [Hz], and the experiment was conducted 

in a steady-state condition of 3600 [rpm]; thus, the fundamental frequency ( 0) is 60 

[Hz]. There are five health conditions in this dataset, including normal, misalignment, 

unbalance, oil whirl, and rubbing. Detailed information about the experiment can be 

found in [79]. Among the five health states, rubbing and oil whirl conditions are 
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examined in this study. As shown in Figure 4-7, the sub-harmonic components at 

  0 and   0 exist in the rubbing signal and the oil whirl signal contains the 0.5 0 

component.  

MAFAULDA (D3) [73] is used as the third validation dataset. This dataset was 

measured from a Machinery Fault Simulator (MFS) testbed. Figure 4-6(b) shows the 

setup of the MAFAULDA testbed, and Figure 4-8 presents the time-domain and the 

frequency-domain trends of the imbalance and the horizontal misalignment 

conditions. There is a disc and a shaft that is supported by two rolling bearings; 

accelerometers are located at two points. The sampling frequency is 51200 [Hz], 

which is the highest among the three validation datasets. The dataset includes various 

fault conditions with different levels of fault severity and rotating speed; the rotating 

speed range is 700 ~ 3,600 [rpm]. More information about the testbed is described 

in [80]. In this research, imbalance and horizontal misalignment signals of 1,800 

[rpm] are examined. Among the three datasets (D1, D2, and D3), only the 

MAFAULDA signals are wavelet-denoised and low-pass filtered to remove 

unnecessary frequency components [81]; the cutoff frequency is set as 1000 [Hz]. 

The fundamental frequency ( 0) for both conditions is 30 [Hz]. For the imbalance 

condition, the fundamental frequency is dominant. The horizontal misalignment 

signal has many frequency components, including sub-harmonic components at   0, 

  0, 4 0, and 7 0. Since the signals of D3 are much noisier than the others, it can 

be estimated that generating those signals will be the most difficult task.  

The training, validation, and test data configurations are summarized in Table 

4-4. For the simulated signal, the signal from 0 [sec] to 4 [sec] is used as the training 

data; the signal from 4 [sec] to 5 [sec] is employed as the validation data. Signals 
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from 0 [sec] to 1.50 [sec] and from 1.50 [sec] to 2.50 [sec] are used as the training 

and validation data for the RK4 dataset. In the case of MAFAULDA, training, and 

validation samples are determined as the samples from 0 [sec] to 1.00 [sec] and from 

1.00 [sec] to 1.20 [sec], respectively. For each dataset, three test data samples with 

different time ranges are utilized to verify the proposed model. The size of each test 

data sample is chosen differently to verify the generation performance related to 

signals of variable lengths.  

Table 4-5 shows the hyper-parameters of each dataset. For D1 and D2, batch 

size and 𝑁𝑓 are selected as 512 and 1000, respectively. The frequency range is from 

0 to 1000 [Hz], and the training epochs is chosen as 800. Since D3 has the largest 

sampling rate among the three datasets, the batch size and 𝑁𝑓 are set to be greater 

than their values for the other datasets. In particular, for each dataset, the batch size 

is set large enough to contain most sub-harmonic components of the fundamental 

frequency. The important hyper-parameter 𝛼 is chosen by the grid search method 

[19]. 𝛼 is selected from [0.001, 0.01, 0.1, 1.0, 10.0] to achieve the smallest MSE. 

Details of this process are summarized in Section 4.5.4. 
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(a) 

 
(b) 

Figure 4-5 Time-domain and frequency-domain plots of the simulated signal: (a) 

time-domain and (b) magnitude spectrum 

5 [Hz]
500 [Hz]

330 [Hz]



115 

 

 

 

 

 

 

(a) 

 

(b) 

Figure 4-6 Testbed setups: (a) RK4 dataset and (b) MAFAULDA 
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(a) 

 
(b) 

Figure 4-7 Time-domain and frequency-domain plots of the rubbing and oil whirl signals of the RK4 dataset: (a) time-

domain trend and (b) magnitude spectrum  
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(a) 

 
(b) 

Figure 4-8 Time-domain and frequency-domain plots of the imbalance and horizontal misalignment signals of 

MAFAULDA: (a) time-domain trend and (b) magnitude spectrum 
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Table 4-4 Configuration of the training, validation, and test data of each dataset 

Dataset 
Start time ~ end time [sec] (Number of samples) 

Training (Tr) Validation (Val) Test1 (Te1) Test2 (Te2) Test3 (Te3) 

Simulated signal 
(D1) 

0.00 ~ 4.00 
(8000) 

4.00 ~ 5.00 
(2000) 

5.00 ~ 7.00 
(4000) 

7.00 ~ 8.50 
(3000) 

8.50 ~ 9.50 
(2000) 

RK4 dataset 

(D2) 

0.00 ~ 1.50 

(12750) 

1.50 ~ 2.50 

(8500) 

2.50 ~ 3.50 

(8500) 

3.50 ~ 4.25 

(6375) 

4.00 ~ 4.50 

(4250) 

MAFAULDA 
(D3) 

0.00 ~ 1.00 
(51200) 

1.00 ~ 1.20 
(10240) 

1.20 ~ 2.20 
(51200) 

2.20 ~ 2.70 
(25600) 

2.70 ~ 2.95 
(12800) 

 

 

Table 4-5 Hyper-parameters of each dataset 

Dataset Batch size 𝑵  (𝒑,𝒒) 𝜶 Training epochs 

Simulated 
signal (D1) 

512 1000 (0, 1000) 0.1 800 

RK4 dataset 

(D2) 
512 1000 (0, 1000) 0.01 800 

MAFAULDA 
(D3) 

2048 1200 (0, 1000) 0.01 800 
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4.5 Validation of the Proposed Method 

Three datasets are employed to validate the proposed approach. One is a simulated 

signal, which contains periodic impulsive signals and a signal with a low-frequency 

component. The second dataset is RK4 data, which was measured from a testbed of 

GE Bentley Nevada. The third dataset is a machinery fault database (MAFAULDA), 

which is an open dataset offered by [73]. The proposed FLGN is validated using the 

evaluation schemes presented in Section 4.3.2. The validation results show that the 

signals generated by FLGN are very similar to the true signals. Also, the results show 

that frequency components are successfully learned by the proposed method. 

 

4.5.1 Case Study 1: Simulated Signal 

The training and validation loss curves are analyzed first to confirm whether the 

training process is finished correctly; the curves are shown in Figure 4-9. In the 

figure, the blue line is the loss curve of the training data, and the red-dotted line is 

that of the validation data. The y-axis of the figure is limited to exist between 0 and 

0.20. As shown in the figure, the validation loss decreases as the training loss 

decreases; further, both losses converge when the training is almost over. Since the 

validation loss does not increase while the training loss decrease, it can be concluded 

that an overfitting problem does not occur. Moreover, it seems that the losses slowly 

decrease during 10 ~ 100 epochs. This infers that FLGN does not initially learn the 

dominant frequency; however, it can learn the correct frequency as the training 

proceeds.  

In addition to the loss curves, the validation batch samples are compared. Figure 
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4-10 describes the validation samples at the 20th, 400th, and 780th epochs. In the figure, 

the blue line denotes the true sample, and the red line is the generated sample. 

Initially, the generated signal is very different from the true sample; the impulsive 

components are not captured in the generated signal. At the 400th epoch, though a 

more similar signal is generated, there are still some errors in the generated signal. 

However, the errors decrease further as training progresses, and the sample generated 

by FLGN at the 780th epoch is almost identical to the true sample.  

For the three test data samples (Te1, Te2, and Te3) in Table 4-4, the generated 

signal is compared with the true signal (as shown in Figure 4-11) by visualizing them 

in the time domain and in the frequency domain, respectively. The blue line means 

the true signal, and the red line denotes the produced signal. As can be seen from the 

time-domain results, the generated signal is almost the same as the true signal in all 

cases. Two periodic impulse signals and the low-frequency component of 5 [Hz] are 

learned well. Also, it can be found that FLGN can generate signals well even when 

the lengths of Te1, Te2, and Te3 are varied. This cannot be achieved by conventional 

VAE or GAN-based models; these prior models can only produce a signal that has 

the same size as that of the final hidden layer of the generator. The magnitude 

spectrum results of the generated and true signals are also similar in all cases. 

Furthermore, the characteristic frequencies – 5 [Hz], 330 [Hz], and 500 [Hz] – are 

learned well by FLGN.  

Next, the similarity metrics – RMSE and correlation coefficient – are computed 

and shown in Figure 4-12. For each data sample, the metrics are calculated based on 

the true signal and the generated signal. The blue line with triangles presents the 

RMSE curve, and the red line with circles denotes the curve of the correlation 



121 

 

coefficient. The RMSE value of the training data is the smallest, and that of Te3 is 

the greatest. Specifically, the further away from the time range of the training data, 

the greater the RMSE value. This is natural because the performance of a deep-

learning algorithm usually degrades as the input data becomes more dissimilar to the 

training data. For the correlation coefficient, meanwhile, the coefficient remains at 

about 1.0 for all data. This means that the generated signals are highly correlated 

with the true signals. This can be interpreted to mean that the generated signals are 

nearly identical to the true ones.  

The features in Table 4-3 are calculated and shown in Figure 4-13. Here, the 

red bar with downward lines means the feature of the true signal, and the gray bar 

with upward lines presents that of the generated signal. First, since RMS, skewness, 

and kurtosis are similar to each other, the generated signal has kinetic energy and 

statistical characteristics that are similar to the true signal. The shape factor, impulse 

factor, and crest factor of the generated signals are also similar to those of the true 

signals. This indicates that the sinusoidal characteristics are similar. Finally, since 

the frequency center, RMSF, and RVF of both signals are almost the same, it can be 

argued that the frequency components are also similar.  

The performance of the developed method is verified using an auto-encoder; 

the architecture of the auto-encoder is illustrated in Figure 4-4(b). Figure 4-14 

presents the visualization of the latent vectors, which are encoded from the true and 

generated signals. The red circle denotes the latent vectors of the true signals, and 

the blue x-marker means those of the generated signals. As can be seen from the 

figure, the latent vectors of the generated signals are close to those of the true signals. 

This means that the produced signals are similar to the true signals. This can also be 
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found in Table 4-6, which shows the RMSE and the correlation coefficient between 

the signals reconstructed from the true and the generated signals. RMSE values are 

small, and the coefficient values are around 1. This quantitatively verifies that the 

proposed method can produce signals that are similar to the target signals. 

In summary, the signal produced by FLGN is similar to the true signal when 

comparing the results in the time domain and in the frequency domain. The generated 

signal is highly correlated to the true one, and the handcrafted features of both signals 

are significantly similar to each other. Also, the proposed method can generate 

signals of variable lengths well. Therefore, it can be said that the proposed FLGN 

produces a signal of variable length that is similar to the target signal. 

 

 

Figure 4-9 Training and validation loss curves in Case 1 
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(a) (b) (c) 

Figure 4-10 Time-domain visualization of validation batch samples for epochs in Case 1: (a) 20th epoch, (b) 400th epoch, 

and (c) 780th epoch 

True Output
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(a) 

(b) (c) 

Figure 4-11 Time-domain trend and magnitude spectrum of each test data in Case 

1: (a) Te1, (b) Te2, and (c) Te3 
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Figure 4-12 Similarity metric curves in Case 1 



126 

 

 

 

 
 

 

(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 

Figure 4-13 Time-domain and frequency-domain features in Case 1: (a) RMS, (b) 

skewness, (c) kurtosis, (d) shape factor, (e) impulse factor, (f) crest factor, (g) 

frequency center, (h) RMSF, and (i) RVF 

True Output
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure 4-14 Visualization of the latent vectors in Case 1: (a) Tr, (b) Val, (c) Te1, 

(d) Te2, and (e) Te3 
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4.5.2 Case Study 2: RK4 Testbed Dataset 

Figure 4-15 shows the training and validation loss curves for the rubbing and oil 

whirl conditions. The range of the y-axis is constrained to exist between 0 and 0.20. 

For the rubbing condition, the training and validation losses decrease gradually until 

the 200th
 epoch; then, both losses remain constant until the 350th epoch. After that, 

both losses converge at the end of the training procedure. The losses of the oil whirl 

condition decrease with fluctuation until the 200th epoch; after that, both losses 

decrease and converge gradually. For both conditions, since the gap between the 

final training and validation losses is small enough, it can be concluded that any 

overfitting issue is not severe.  

The batch samples of validation data are compared with the generated samples 

while the training procedure progresses. Figure 4-16 presents both signals at the 20th, 

400th, and 780th epochs of the rubbing and oil whirl conditions. The legend is the 

same as that of Figure 4-10. The generated signals are not similar to the true signals 

initially for either condition. However, as the training procedure proceeds, the 

Table 4-6 RMSE and correlation coefficient between the signals reconstructed 

from the true and generated signals in Case 1 

Data RMSE Correlation coefficient 

Tr 0.0160 0.9994 

Val 0.0271 0.9983 

Te1 0.0349 0.9974 

Te2 0.0445 0.9957 

Te3 0.0548 0.9939 
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generated signals are almost the same as the true ones. This means that FLGN is 

trained well for both conditions. 

The results of the three test data samples – Te1, Te2, and Te3 – are described in 

Figure 4-17. The legend is the same as that of Figure 4-11 of Case 1. As you can see 

from the results of the rubbing condition, the generated signal is very similar to the 

true signal in the time domain. The magnitude spectrum results are also similar to 

each other. The fundamental frequency (  0  = 60 [Hz]) and the fault-related 

frequencies (  0 and   0) are identical for all cases. For the oil whirl condition, the 

signals produced by FLGN are similar to the true signals in both domains. In 

particular, the generated signals have characteristic frequency components at  0 

and 0.5 0. However, unlike the rubbing condition, the error between the generated 

and true signals is greater. This is because the signal of the oil condition has a greater 

spectral smearing effect than that of the rubbing condition; consequently, it is more 

difficult to learn the frequency components for the oil whirl condition. 

The RMSE and correlation coefficient between the true signal and the generated 

signal are calculated and presented in Figure 4-18. The legend is identical to that of 

Figure 4-12 of Case 1. In both conditions, the training data has the smallest RMSE 

value, and the RMSE value increases as the input time range moves farther away 

from the training time range. The reason for this phenomenon is the same as that 

described in Case 1; that is, the performance of a neural network often deteriorates 

as the test data becomes increasingly different from the training data. Examining the 

correlation coefficient curves, we find that the coefficient of the rubbing condition 

is almost 1.0, and that of the oil whirl condition is greater than 0.8. This means that 

the generated signal is significantly correlated to the true signal. 
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To further validate the similarity between the true data and the generated data, 

the features in Table 4-3 are computed to examine the similarity between both signals. 

Figures 4-19 and 4-20 show the results of the rubbing and oil whirl conditions, 

respectively. The true and generated signals share similar RMS values, which means 

that the energy of the signals is similar. The skewness and kurtosis of both signals 

are also similar. This indicates that the statistical properties are also similar. Also, 

since the shape factor, impulse factor, and crest factor of the produced signals are 

similar to those of the true ones, it can be confirmed that the produced signals have 

sinusoidal properties that are similar to those of the true signals. Furthermore, both 

signals have very similar frequency center, RMSF, and RVF values. This means that 

the dominant frequency information is almost identical when comparing the true and 

generated signals.  

The proposed method is evaluated using an auto-encoder. Figures 4-21 and 4-

22 show the visualization of the latent vectors of the rubbing and oil whirl conditions, 

respectively; the legend is the same as that of Figure 4-14. For most cases, the latent 

vectors of the signals generated by the FLGN method overlap those of the true 

signals. Specifically, for the oil whirl condition, the latent vectors of the produced 

signals are close to those of the true signals, even if some of the latent vectors spread 

out. The RMSE and correlation coefficient values of both conditions are summarized 

in Tables 4-7 and 4-8, respectively. As can be seen from the tables, RMSE values 

are small, and the correlation coefficient values are close to 1. This means that the 

generated signals are statistically similar to the true signals. 

In summary, we validated the generation performance of FLGN for Case 2 in 

various ways. The validation results show that the proposed model is able to produce 
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signals of different lengths well. For both conditions, the generated signals are 

significantly correlated to the true ones and have similar handcrafted features. 
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(a) 

 
(b) 

Figure 4-15 Training and validation loss curves in Case 2: (a) rubbing and (b) oil whirl 



133 

 

 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 4-16 Time-domain visualization of validation batch samples for various epochs in Case 2: (a-c) 20th, 400th , and 780th 

epochs of rubbing and (d-f) 20th , 400th , and 780th epoch of oil whirl 

True Output
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(a) 

 
(b) 

 
(c) 

Figure 4-17 Time-domain trend and magnitude spectrum of each test data in Case 

2: (a) Te1, (b) Te2, and (c) Te3 
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(a) 

 

(b) 

Figure 4-18 Similarity metric curves in Case 2: (a) rubbing and (b) oil whirl 
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(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 

Figure 4-19 Time-domain and frequency-domain features of the rubbing condition 

in Case 2: (a) RMS, (b) skewness, (c) kurtosis, (d) shape factor, (e) impulse factor, 

(f) crest factor, (g) frequency center, (h) RMSF, and (i) RVF 

True Output
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(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 

Figure 4-20 Time-domain and frequency-domain features of the oil whirl 

condition in Case 2: (a) RMS, (b) skewness, (c) kurtosis, (d) shape factor, (e) 

impulse factor, (f) crest factor, (g) frequency center, (h) RMSF, and (i) RVF 

True Output
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure 4-21 Visualization of the latent vectors of the rubbing condition in Case 2: 

(a) Tr, (b) Val, (c) Te1, (d) Te2, and (e) Te3 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure 4-22 Visualization of the latent vectors of the oil whirl condition in Case 

2: (a) Tr, (b) Val, (c) Te1, (d) Te2, and (e) Te3 
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Table 4-7 RMSE and correlation coefficient between the signals reconstructed 

from the true and generated signals of the rubbing condition in Case 2 

Data RMSE Correlation coefficient 

Tr 0.0270 0.9989 

Val 0.0368 0.9982 

Te1 0.0426 0.9980 

Te2 0.0600 0.9959 

Te3 0.0694 0.9951 

 

 
 

Table 4-8 RMSE and correlation coefficient between the signals reconstructed 

from the true and generated signals of the oil whirl condition in Case 2 

Data RMSE Correlation coefficient 

Tr 0.0471 0.9937 

Val 0.1066 0.9786 

Te1 0.1506 0.9641 

Te2 0.1885 0.9517 

Te3 0.2082 0.9473 
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4.5.3 Case Study 3: MAFAULDA 

In this case, the signals of the imbalance and horizontal misalignment conditions are 

studied. The training and validation loss curves are shown in Figure 4-23. As shown, 

the training and validation losses decrease smoothly for the imbalance condition. For 

the horizontal misalignment condition, both losses also converge; however, there is 

much fluctuation. This is because the signal of the horizontal misalignment condition 

has more complex frequency components than that of the imbalance condition; this 

can be confirmed by examining the results in Figure 4-8. Since the difference 

between the training and validation losses is low enough at the end of the training 

procedure, it can be concluded that the overfitting problem is not severe in either 

condition.  

Figure 4-24 describes the generated and true signals at the 20th, 400th, and 780th 

epochs for the imbalance and horizontal misalignment conditions. The legend is 

identical to that of Figures 4-10 and 4-16. Also, the results are similar to those shown 

for Case 1 and Case 2. Though the generated signals are not similar to the true signals 

initially, they become similar to the true samples as the training procedure progresses. 

Even if there is much noise in the true signal, as found for Case 1 and Case 2, FLGN 

can effectively produce similar signals to the true signals. 

The results of the test data are presented in Figure 4-25. The legend is identical 

to that of Figures 4-11 and 4-17. In the imbalance condition, the generated and true 

signals are similar to each other, when comparing them in the time domain. Also, 

both signals have an identical fundamental frequency component ( 0 = 30 [Hz]). In 

the horizontal misalignment condition, although the true signal has many sub-

harmonic signals at    0 ( =  ,… ,9), it is found that FLGN can learn most sub-
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harmonic signals and that the generated signals are similar to the true signals.  

Next, the similarity metrics are computed to quantitatively evaluate the degree 

to which the generated signal is similar to the true signal. Figure 4-26 presents the 

results for the imbalance and horizontal misalignment conditions. The legend is the 

same as that of Figures 4-11 and 4-16. For the imbalance condition, though the 

RMSE value of the test data is larger than that of the training data, the correlation 

coefficient remains greater than 0.9. This means that the generated signal is highly 

correlated to the true signal. This is also found in the results of the horizontal 

misalignment condition. The coefficient is larger than 0.7, while the RMSE value of 

the test data also increases compared to the training data. The gap between the test 

and training data is wider in the horizontal misalignment case. This is because there 

are more sub-harmonic components and noise components than in the imbalance 

condition. The phenomenon where the RMSE value increases from the training data 

to test data is also recognized, and the reason is estimated to be the same. 

The handcrafted features of the imbalance and horizontal conditions are 

calculated and shown in Figures 4-27 and 4-28, respectively. Like Case 1 and Case 

2, most features of the produced signals are similar to the true ones. However, in 

some features, including the impulse factor, frequency center, RMSF, and RVF, the 

gap between the generated and the true signals is greater than those of Case 1 and 

Case 2. This is because dataset D3 has more sub-harmonic and noise components.  

The generation performance of the FLGN method is verified through the use of 

an auto-encoder. The latent vectors of the imbalance and horizontal misalignment 

conditions are visualized in Figure 4-29 and Figure 4-30, respectively. The legends 



143 

 

are identical to those of Figures 4-21 and 4-22. Although the latent vectors of the 

true signals are more complicated than those of Case 1 and Case 2, those of the 

generated signals are similar to the true signals. This is also discovered in Tables 4-

9 and 4-10, which present the RMSE and correlation coefficient values of both 

conditions. The RMSE values are less than 0.22, and the correlation coefficient 

values are greater than 0.96 for both conditions. This proves that the signals 

generated by the proposed approach are similar to the true signals. 

In conclusion, when validating the proposed method by applying it to the 

MAFAULDA, not only does the proposed method have the ability to learn the 

frequency information well, but it can also generate signals of variable lengths well. 
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(a) 

 
(b) 

Figure 4-23 Training and validation loss curves in Case 3: (a) imbalance and (b) horizontal misalignment 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 4-24 Time-domain visualization of validation batch samples for various epochs in Case 3: (a-c) 20th, 400th , and 780th 

epochs of imbalance and (d-f) 20th , 400th , and 780th epoch of horizontal misalignment 

True Output
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(a) 

 
(b) 

 
(c) 

Figure 4-25 Time-domain trend and magnitude spectrum of each test data in Case 

3: (a) Te1, (b) Te2, and (c) Te3 

True Output
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(a) 

 

(b) 

Figure 4-26 Similarity metric curves in Case 3: (a) imbalance and (b) horizontal misalignment 
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(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 

Figure 4-27 Time-domain and frequency-domain features of the imbalance 

condition in Case 3: (a) RMS, (b) skewness, (c) kurtosis, (d) shape factor, (e) 

impulse factor, (f) crest factor, (g) frequency center, (h) RMSF, and (i) RVF 

True Output
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(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 

Figure 4-28 Time-domain and frequency-domain features of the horizontal 

misalignment condition in Case 3: (a) RMS, (b) skewness, (c) kurtosis, (d) shape 

factor, (e) impulse factor, (f) crest factor, (g) frequency center, (h) RMSF, and (i) 

RVF 

True Output
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure 4-29 Visualization of the latent vectors of the imbalance condition in Case 

3: (a) Tr, (b) Val, (c) Te1, (d) Te2, and (e) Te3  
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure 4-30 Visualization of the latent vectors of the horizontal misalignment 

condition in Case 3: (a) Tr, (b) Val, (c) Te1, (d) Te2, and (e) Te3  
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Table 4-9 RMSE and correlation coefficient between the signals reconstructed 

from the true and generated signals of the imbalance condition in Case 3 

Data RMSE Correlation coefficient 

Tr 0.0281 0.9985 

Val 0.0582 0.9951 

Te1 0.0653 0.9933 

Te2 0.1631 0.9676 

Te3 0.1849 0.9620 

 

 

 

Table 4-10 RMSE and correlation coefficient between the signals reconstructed 

from the true and generated signals of the horizontal misalignment condition in 

Case 3 

Data RMSE Correlation coefficient 

Tr 0.0678 0.9922 

Val 0.1539 0.9836 

Te1 0.1582 0.9765 

Te2 0.1917 0.9741 

Te3 0.2149 0.9716 
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4.5.4 Analysis and Discussion 

Grid search [19] is performed to tune 𝛼 for each dataset. The grid is [0.001, 0.01, 

0.1, 1.0, 10.0] and the value that achieves the smallest MSE is chosen. When 

computing the final frequency that combines the deterministic frequency and the 

stochastic frequency feature, 𝛼  controls the relative effect of the stochastic 

frequency feature. If 𝛼 is small, the deterministic frequency will become dominant; 

otherwise, the stochastic frequency will be important. The results for Te3 are 

described in Figure 4-31. The x-axis and y-axis are described in the log scale. In 

Case 1, an 𝛼 of 0.1 shows the smallest MSE value. In Case 2 and Case 3, an 𝛼 of 

0.01 achieves the smallest MSE value. Also, a small 𝛼 results in better performance 

in general; 𝛼  of 10.0 shows the largest MSE in all cases. This means that the 

deterministic frequency is more important than the stochastic frequency. This is 

because the validation datasets follow the assumption that the signals are stationary; 

thus, it is unnecessary to impose great weight on the stochastic frequency. 

To interpret the proposed network, the attention score in ME is visualized with 

the frequency ( 𝑖 + 𝛼    𝑖)  and the magnitude ( 𝑖) . Figure 4-32 shows the 

results of Te3 of Case 1 and Case 2, and Figure 4-33 present those of Case 3. The 

frequency components ( 𝑖 + 𝛼    𝑖 ,  𝑖)  are compared with the magnitude 

spectrum of the true signals, which are offered in Figures 4-5(b), 4-7(b), and 4-8(b). 

In Case 1, the magnitude spectrum is similar to the spectrum obtained by FFT. The 

attention score is high near the characteristic frequencies – 5 [Hz], 330 [Hz], and 500 

[Hz]. This denotes that the proposed model is able to focus on the characteristic 

frequencies well. This result is also found in Case 2. The learned frequency features 

are similar to the magnitude spectrum of the true signals. When seeing the attention 
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score, the sub-harmonic components – 60 [Hz], 120 [Hz], and 180 [Hz] – are 

dominant, and there are few components other than those sub-harmonic components. 

The reason why the unimportant components have a very small magnitude is because 

of the strong regularization applied to ME. Because the attention score is very high 

at the sub-harmonic frequencies, it can be argued that the proposed method also 

concentrates on the sub-harmonic components well in Case 2. For Case 3, the 

magnitude spectrum of the proposed method is similar to the true spectrum, which 

is shown in Figure 4-8(b). As can be seen from the attention score, the network 

focuses well on the sub-harmonics, including 30 [Hz], 60 [Hz], 90 [Hz], and 120 

[Hz]. But, the sub-harmonic at 210 [Hz] is less concentrated, and other frequency 

components except the sub-harmonics are focused. This is because the proposed 

model is distracted by the noise components. 
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(a) 

 

(b) 

(c) 

Figure 4-31 Grid search results for Te3: (a) Case 1, (b) Case 2 (Rubbing), and (c) 

Case 3 (Horizontal misalignment) 
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(a) 

 
(b) 

 

(c) 

Figure 4-32 Visualization of the attention score for Te3: (a) Case 1, (b) rubbing 

condition in Case 2, and (c) oil whirl condition in Case 2 
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(a) 

 

(b) 

Figure 4-33 Visualization of the attention score for Te3 in Case 3: (a) imbalance 

condition and (b) horizontal misalignment condition 

30 [Hz]

30 [Hz]

90 [Hz]

210 [Hz]

150 [Hz]
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4.6 Summary and Discussion 

In this research, a new generative network called FLGN is newly proposed to 

generate signals of various lengths. Unlike VAE or GAN-based models, the 

proposed method is a new generative model that is designed and trained based on 

signal processing knowledge; therefore, the proposed approach has the capability to 

learn the frequency information of the training data. The proposed method consists 

of three extractors – the frequency extractor, the phase extractor, and the magnitude 

extractor. Those extractors can extract the frequency, phase, and corresponding 

magnitude in the training signal. Three datasets – a simulated signal, the RK4 dataset, 

and MAFAULDA – are utilized to validate the proposed model. The proposed 

method is evaluated both qualitatively and quantitatively. The validation results 

denote that the proposed approach can generate signals that are sufficiently similar 

to the true signals. Specifically, the fundamental frequency and its sub-harmonics 

are very similar to each other. The hyper-parameter study of 𝛼 indicates that a small 

𝛼 achieves better performance for a stationary signal. Also, when interpreting the 

network by visualizing the attention score, it can be found that the proposed method 

can focus on the characteristic frequency components. 

 

 

Sections of this chapter have been published or submitted as the following journal article:  

1) Jin Uk Ko, Jinwook Lee, Taehun Kim, Yong Chae Kim, and Byeng D. Youn, 

“Frequency-learning generative network (FLGN) to generate vibration signals of 
variable lengths,” Expert Systems with Applications, 2022 
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Chapter 5 Multi-task Learning of Classification and Denoising (MLCD) for Health Classification 

Equation Chapter (Next) Section 1 

Multi-task Learning of 

Classification and Denoising 

(MLCD) for Health Classification 

 

This section proposes a multi-task learning of classification of denoising (MLCD) 

scheme to make a classifier robust against noisy data. The proposed method is a 

learning scheme that simultaneously learns classification and denoising, with hyper-

parameters optimized by the Bayesian method [21]. Among various hyper-parameter 

optimization methods, including grid search [19] and random search [20], we chose 

the Bayesian method because it outperforms conventional methods [21]. 

Classification is chosen as the primary task because this study focuses on the 

diagnosis of a rotor system; that is, classifying the condition of the system. MLCD 

proposes simultaneous learning of these tasks rather than learning classification after 

denoising. By enabling an explicit denoising capability while classifying the health 

condition, MLCD improves the diagnostic performance by adding a regularization 

effect from learning the auxiliary task (denoising) and decreases the computational 

time required, as compared with the computational time that would be required to 

learn classification sequentially, after denoising. To validate the effect of MLCD on 

noisy signals, MLCD is integrated with two popular deep-learning algorithms; 
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LSTM and 1D CNN. The two MLCD-based algorithms, MLCD-LSTM and MLCD-

1D CNN, are compared with LSTM and 1D CNN, respectively, by using rotor 

testbed data; these are ablation tests to validate the effect of MLCD. The 

performance of each algorithm is maximized by choosing critical hyper-parameters 

through Bayesian optimization. The results of the case study support that MLCD-

LSTM and MLCD-1D CNN show improved test accuracy for various noisy inputs, 

respectively. By visualizing the intermediate features and the t-distributed Stochastic 

Neighboring Embedding (t-SNE) [25] results of the high-level features, it was found 

that MLCD-based algorithms extract noise-robust and various features, which also 

contain the sinusoidal characteristic of the input signals. 

 

5.1 Background: Multi-task Learning 

Multi-task learning (MTL) is a learning strategy that forces an algorithm to solve 

more than two tasks simultaneously [82]. Among the tasks, the main task is called 

the primary task. The other tasks used to help the primary task are called auxiliary 

tasks. By learning the auxiliary tasks simultaneously, the performance of the primary 

task can be improved because the auxiliary tasks prevent the algorithm from being 

overfitted to the primary task [83]. The neural network structure of MTL is shown 

in Figure 5-1, where there are three types of layers: the input layer, the shared layers, 

and the task-relevant layers. A shared representation for all tasks is learned in the 

shared layers, while a representation specific to each task is learned in the task-

relevant layers. Note that T1 indicates a primary task and { 𝑖}𝑖=2
  denote auxiliary 

tasks. Examples of tasks include classification, regression, and denoising [84].  
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To develop a noise-robust fault diagnosis algorithm, the proposed scheme 

defines the primary task as classification and the auxiliary task as denoising of the 

input signals. Given input signals {𝑥̃𝑛}𝑛=1
𝑁  and target label vectors {𝑦𝑛}𝑛=1

𝑁 , 

classification seeks to find the function 𝑦𝑛 =  (𝑥̃𝑛). The denoising task predicts 

clean samples {𝑥𝑛}𝑛=1
𝑁 , given noisy samples {𝑥̃𝑛}𝑛=1

𝑁  where 𝑥̃𝑛 = 𝑥𝑛 + 𝜀; 𝜀 is 

noise. That is, the step of denoising seeks to find the relationship 𝑥n =  (𝑥̃𝑛). 

 

5.2 Multi-task Learning of Classification and Denoising 

(MLCD) 

This section delineates the proposed multi-task learning of classification and 

denoising (MLCD) scheme to make a classifier robust against noisy signals. The 

overall procedure of the MLCD scheme and its integration with LSTM and 1D CNN 

are presented in this section. 

 

Figure 5-1 Architecture of a neural network with multi-task learning 
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5.2.1 Overall Procedure of MLCD 

To solve the noise issue, multi-task learning of classification and denoising (MLCD) 

is newly proposed. In the proposed method, an algorithm learns the classification 

and denoising simultaneously. In the final layers of classification and denoising, 

softmax and linear activations are selected, respectively. Then, the outputs of the 

classification (𝑦̂𝑐 𝑓) and denoising (𝑦̂𝑑𝑒𝑛) are expressed as follows: 
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where K denotes the number of classes; D denotes the dimension of the input signals; 

zi = wi
Th + bi is the linear summation of the previous layer (h) with weight vector (wi) 

and bias (bi) corresponding to the ith node of the final layer; {zk
clf}K

k=1 and {zj
den}D

j=1 

denote the final linear projections in the classification and denoising, respectively. 

The designed objective function (LMLCD) is defined as follows: 
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where Lclf and Lden are loss functions of classification and denoising; cross entropy 

loss and mean absolute error, respectively; Wshd, Wclf, and Wden denote the trainable 
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parameters in the shared, classification-relevant, and denoising-relevant layers, 

respectively; β is a weighting hyper-parameter; 𝑦𝑛
𝑐 𝑓 = [𝑦𝑛1

𝑐 𝑓 , … , 𝑦𝑛𝑘
𝑐 𝑓 ,… , 𝑦𝑛𝐾

𝑐 𝑓]
𝑇

 is 

a true one-hot vector corresponding to an input 𝑥̃𝑛; 𝐵 is batch size; ||||1 denotes the 

L1 norm. Then, the parameter updating rules become as follows: 

 1 clfk k den
shd shd k k

shd shd

L L
W W

W W
 

 
   

  
  (5.4) 

 
1 clfk k

clf clf k

clf

L
W W

W



 


  (5.5) 

 
1k k den

den den k

den

L
W W

W
 

 


  (5.6) 

where k is the kth iteration during training; η is the learning rate. η and β are critical 

hyper-parameters because η regulates the extent of training, and β controls the 

relative importance between the tasks. For most studies, hyper-parameters are 

chosen heuristically for simplicity. However, a manual hyper-parameter setting 

cannot ensure the maximal performance of an algorithm; for example, too large η 

can cause the training not to converge, and too large β can ignore the learning of 

classification. Therefore, in this study, the critical hyper-parameters are chosen by 

Bayesian optimization [21]. Bayesian optimization finds the solution by using a 

surrogate model and Bayesian updating. After choosing optimal hyper-parameters, 

the total parameters (Wshd,Wclf,Wden) are trained as expressed in Eqs. (5.4), (5.5) and 

(5.6). 

MLCD improves generalization performance for two reasons. First, learning 

the denoising task gives hints for classification so that the algorithm learns more 
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meaningful features in the shared layers. This enables an MLCD-based algorithm to 

extract more diverse and meaningful features rather than similar and simple ones. 

Second, Lden plays a role as the regularization term for classification, which prevents 

the algorithm from being overfitted to classification. Thus, the final features at the 

classification-relevant layer will be distinguished better according to the classes. For 

these reasons, MLCD-based algorithms can achieve improved generalization 

performance. 

The entire procedure of the developed fault diagnosis approach is described in 

Figure 5-2. There are three main parts to the method: data acquisition, data 

preprocessing, and fault classification with denoising. First, raw vibration signals are 

measured from a rotor system with perpendicularly located proximity sensors. These 

raw signals are not suitable to use directly because the number of sample points per 

cycle is not synchronized. In addition, the anisotropic characteristics of faults might 

not be involved well in the raw signals depending on the directions of the sensors. 

Thus, in the data preprocessing step, the raw signals are processed to be used as input 

to the deep-learning-based algorithms. Finally, the preprocessed data are used to 

train the deep-learning algorithm, such as LSTM or 1D CNN.  

Among many candidates, LSTM and 1D CNN are employed in this research; 

these are the two most widely used algorithms in fault diagnosis studies. LSTM 

learns the sequential context in the input through several gates and cell states; 1D 

CNN learns meaningful representation by sliding filters – whose heights are equal 

to those of the input – in the time direction. The critical hyper-parameters are chosen 

by Bayesian optimization. The Bayesian method, which finds the optimal solution 

by surrogate function and Bayesian updating, can provide superior results, as 
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compared to traditional methods like random search and grid search. After finding 

optimal hyper-parameters, the algorithm is trained to learn both tasks. Features are 

extracted in the shared layers automatically, and they are summarized through the 

fully connected layers of task-relevant layers for both tasks. Note that classification 

and denoising are learned simultaneously in training; however, only classification is 

turned on during testing. 

 

5.2.2 Integration with LSTM: MLCD-LSTM 

 

Figure 5-2 Overall procedure of the newly proposed method 
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Based on the related works outlined in Section 5.1, LCD-LSTM is developed in this 

research by integrating MLCD with LSTM. The architecture of MLCD-LSTM is 

shown in Figure 5-3. The ODR signals are generated along the half circumference 

in 15˚ intervals; this adds up to 12 signals. The sequence length of the input is 64, 

which is the same as the number of sample points of two revolutions. Thus, the input 

dimension becomes 12-by-64. Then, two LSTM layers of 24 hidden nodes are 

stacked. All hidden states of the second LSTM layer are used for denoising, while 

only the final hidden state of LSTM is used for the classification. The outputs of 

LSTM are connected to the task-relevant fully connected layers (FC1C, FC1D); the 

number of hidden nodes at each FC1 is 256. These two FC1 layers are connected to 

the final layers (FC2C, FC2D), which give the output corresponding to the 

classification and denoising, respectively. The fully connected layers of the 

denoising (dotted black line) are inactivated in the test procedure. Note that the 

LSTM algorithm, which is compared with MLCD-LSTM, has the same architecture 

except for the denoising part. The batch size and training epoch are both set as 100. 

The hyperbolic tangent function and the rectified linear unit (ReLU) are selected as 

the activation functions of the LSTM layers and the fully connected layers, 

respectively. 

 

5.2.3 Integration with 1D CNN: MLCD-1D CNN 

MLCD-1D CNN is developed by applying MLCD to 1D CNN. The architecture of 

MLCD-1D CNN is described in Figure 5-4. The shapes of the input and output are 

the same as those of MLCD-LSTM. A total of four 1D convolutional layers and two 

max-pooling layers are used for the shared part. The number of filters in each 
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convolutional layer is 8, 16, 32, and 32, respectively. The stride of filters in each 

convolutional layer is 1. The size of the max-pooling is set to 2. The output of the 

final pooling layer is connected to two intermediate fully connected layers (FC1C, 

FC1D) of 128 hidden nodes. These two FC1 layers are connected to the final layers 

(FC2C, FC2D), which produce the final output of the classification and denoising 

tasks, respectively. Similar to MLCD-LSTM, the fully connected layers for the 

denoising task are not activated during the testing procedure. The architecture of the 

1D CNN algorithm, which is compared with MLCD-1D CNN, is the same as that of 

MLCD-1D CNN, except for the denoising part. The batch size and training epoch 

are both chosen as 100. The leaky-rectified linear unit (LeakyReLU) and ReLU are 

chosen as the activation functions of the convolutional layers and the fully connected 

layers, respectively. 
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Figure 5-3 Architecture of MLCD-LSTM 
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Figure 5-4 Architecture of MLCD-1D CNN 
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5.3 Preprocessing Techniques 

The details of the preprocessing step are illustrated in Figure 5-5. First, the raw 

signals are angular resampled to synchronize the number of sample points in a cycle 

by rearranging the rotation angle of a rotor equally [85, 86], as shown in Figure 5-5 

(a). The rotation angle is obtained from the tacho signal. Then, to capture the 

directional characteristics of the fault, omnidirectional regeneration (ODR) signals 

[79] are generated from the resampled signals by rotational transformation, as shown 

in Figure 5-5 (b). The ODR signals can be considered as signals that are measured 

at several circumferential positions; thus, they contain more information about the 

system than the raw signals. Next, white gaussian noise is added to the ODR signals. 

The noisy ODR signals and the clean ODR signals are considered noisy and clean 

samples, respectively. The noisy signals of all labels are scaled with respect to the 

normal data to preserve the relative magnitude information. The noisy signals 

become the input of an MLCD-applied classifier, and the clean signals are the target 

output of the classifier. Finally, to make the signals be entered into LSTM and 1D 

CNN, the m noisy ODR and clean ODR signals of each class are sampled with a 

given sequence length (l) and stride (s); then, the number of final samples becomes 

(m - l)/s. The sequenced signals of all classes are concatenated and shuffled. 
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(a) 

 
(b) 

 
(c) 

Figure 5-5 Graphical explanations of preprocessing: (a) angular resampled 

signals, (b) omnidirectional regeneration signals, and (c) sequenced signals 
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5.4 Description of the Validation Datasets 

The RK4 dataset was obtained to validate the performance of the proposed MLCD 

method. Figure 4-6(a) shows the experimental setup of a GE Bently-Nevada RK4 

testbed, which has been used in many fault diagnosis studies of rotor systems [56, 

79, 87-91]. The experimental settings, including the sampling rate and rotating speed, 

are the same as in Section 4.4. Five health states, including normal and four fault 

states – unbalance, misalignment, rubbing, and oil whirl – were acquired, since those 

faults are the most common types of faults of a rotor system [92]. Each state was 

measured three times. There are some differences among data sets, though the state 

(label) remains the same. The raw signals are angular resampled so that there are 32 

samples in each cycle. The ODR signals were generated by rotating the resampled 

signals from 0˚ to 90˚ at 15˚ intervals. Four levels of white gaussian noise of signal-

to-noise ratio (SNR) – 10, 1, 0, -1 [dB] – were added, where the SNR in decibels is 

defined as follows: 

 
1010log

signal

dB

noise

P
SNR

P

 
  

 
  (5.7) 

Psignal and Pnoise denote the power of the signal and noise, respectively. The noisy 

(blue line) and clean signals (red dotted line) of each dataset are illustrated in Figures 

5-6, 5-7, and 5-8. As the SNR gets smaller, the clean signals are more distorted by 

the noise. After scaled about normal signals, they were sampled with a sequence 

length of 64 and stride of 8; then, the number of training samples of each state 

became 7048. More information about the testbed and data is provided in [77]. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5-6 Signal trends of set 1: (a) SNR of 10 [dB], (b) SNR of 1 [dB], (c) SNR 

of 0 [dB], and (d) SNR of -1 [dB] 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5-7 Signal trends of set 2: (a) SNR of 10 [dB], (b) SNR of 1 [dB], (c) SNR 

of 0 [dB], and (d) SNR of -1 [dB] 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5-8 Signal trends of set 3: (a) SNR of 10 [dB], (b) SNR of 1 [dB], (c) SNR 

of 0 [dB], and (d) SNR of -1 [dB] 
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5.5 Validation of the Proposed Method 

This section provides the results and analysis of the proposed MLCD method when 

validating the proposed method with the RK4 dataset. Two developed models – 

MLCD-LSTM and MLCD-1D CNN – are evaluated in terms of test accuracy and 

intermediate feature analysis. 

 

5.5.1 Case Study 1: MLCD-LSTM 

The optimized hyper-parameters of LSTM and MLCD-LSTM are summarized in 

Table 5-1. Figure 5-9 compares the average classification accuracy of 10 repeated 

tests of each case with the optimized hyper-parameters. x [dB]  y [dB] denotes that 

the algorithm is trained with an input where the noise of SNR of x [dB] is added and 

tested with the same data set added by SNR of y [dB] noise. The error range is one 

standard deviation from the mean accuracy. A large variance in accuracy means a 

large uncertainty in the results when there is a small disturbance in the input. When 

set 1 is used for training, MLCD-LSTM shows 10% to 25% better performance in 

all cases, as compared to LSTM. In addition, the overall variances of MLCD-LSTM 

are lower than those of LSTM. In particular, when an SNR of 1 [dB] is used, the 

proposed MLCD method decreases the variances significantly, as compared with the 

results from LSTM. If set 2 is used as training data, MLCD-LSTM also shows better 

test accuracy than LSTM. For the cases of SNRs of 10, 1, and 0 [dB], MLCD-LSTM 

shows similar test accuracy to LSTM. However, when an SNR of -1 [dB] is used, 

MLCD-LSTM shows a test accuracy of around 80%; whereas that of LSTM is 

around 40%, which is half of that of MLCD-LSTM. In this case, the variance of 

MLCD-LSTM is less than that of LSTM, which means the uncertainty in the 
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prediction is decreased through the use of the proposed MLCD method. Finally, 

when set 3 is used, the average test accuracies of MLCD-LSTM are greater than 

those of LSTM in all cases. In particular, when an SNR of 1 or -1 [dB] is used for 

training, the test accuracy of MLCD-LSTM is around 90%; whereas the performance 

of LSTM is around 80% and 60%, respectively. Comparing the variances of MLCD-

LSTM and LSTM, MLCD-LSTM reduces variance significantly when an SNR of -

1 [dB] is used for training. Although MLCD-LSTM slightly increases the variance 

when an SNR of 0 [dB] is trained, MLCD-LSTM shows greater test accuracy than 

LSTM. Overall, MLCD-LSTM improved generalization performance, as compared 

to LSTM. This is because learning the auxiliary task prevents the algorithm from 

being overfitted toward classification by giving a regularization effect, as discussed 

in Section 5.1. 

Figure 5-10 provides a visualization of features at the FC1C of set 3 by t-SNE 

for three cases: SNR of 0 [dB]  -1 [dB] in (a) and (b), SNR of 1 [dB]  -1 [dB] in 

(c) and (d), and SNR of 10 [dB]  -1 [dB] in (e) and (f). Testing with an SNR of -1 

[dB] is selected since it is the most difficult situation for a fault diagnosis algorithm. 

The better an algorithm trains, the better the features at the FC1C are classified. As 

you can see from Figures 5-10(a) and (b), while LSTM cannot distinguish normal, 

misalignment, and rubbing states, MLCD-LSTM diagnoses those states much better 

because the extracted features are distinctive according to the states. Figures 5-10(c) 

and (d) show that MLCD-LSTM also classifies normal, misalignment, and rubbing 

states much better than LSTM. In the case of an SNR of 10 [dB]  -1 [dB], as shown 

in Figures 5-10(e) and (f), given normal, misalignment, and rubbing states, the 

extracted features of LSTM are severely overlapped. However, MLCD-LSTM can 
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extract more distinguishable features from those states than LSTM. In particular, the 

normal state is diagnosed well from the misalignment and rubbing states by MLCD-

LSTM. To summarize, since the features at the FC1C are better distinguished, as 

compared with LSTM, MLCD is shown to improve the fault diagnosis performance, 

given noisy input signals. 

From the analysis of t-SNE, it is discovered that LSTM mostly confuses the 

rubbing state with others. To understand this fact a little more, the intermediate 

features at the shared layers – LSTM1 and LSTM2 in Figure 5-3 – are visualized in 

Figure 5-11 for the case of set 3 and an SNR of 0 [dB]  -1 [dB]. When a test sample 

in Figure 5-11(a) is given, the features of MLCD-LSTM are shown in Figure 5-11(b) 

and (c), and those of LSTM are shown in Figures 5-11(d) and (e). Three facts can be 

discovered from the results. First, it can be found that the noise is removed more and 

more as it passes through more layers in MLCD-LSTM. Second, compared to the 

features of LSTM, those of MLCD-LSTM are quite similar to sinusoidal waves. In 

particular, as you can see from Figures 5-11(c) and (e), most features of MLCD-

LSTM are more similar to the true rubbing signal in Figure 5-8 than those of LSTM. 

Third, when comparing Figure 5-11(b) with (d) and Figure 5-11(c) with (e), 

respectively, while most features of LSTM overlap with each other, those of MLCD-

LSTM show more various trends than those of LSTM. This indicates that MLCD 

enables the algorithm to extract more meaningful features, as compared to single-

task learning of classification. Therefore, when significant noise exists in the input, 

MLCD-LSTM can understand the sinusoidal characteristic of the input signals better 

and extract a wider variety of features than LSTM. 
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Table 5-1 Bayesian optimization results of LSTM  

 SNR [dB] Algorithm η (10-3)  β 
Validation 

accuracy 

Set 1 

10 
LSTM 0.0267 - 1.0000 

MLCD-LSTM 0.9482 0.4578 1.0000 

1 
LSTM 3.5488 - 1.0000 

MLCD-LSTM 3.0938 1.3642 0.9979 

0 
LSTM 0.3487 - 1.0000 

MLCD-LSTM 11.3084 48.9001 0.9997 

-1 
LSTM 0.1000 - 1.0000 

MLCD-LSTM 12.2952 58.4489 1.0000 

Set 2 

10 
LSTM 0.1000 - 1.0000 

MLCD-LSTM 6.6706 12.0396 1.0000 

1 
LSTM 3.8200 - 1.0000 

MLCD-LSTM 2.3300 1.6878 1.0000 

0 
LSTM 2.0691 - 1.0000 

MLCD-LSTM 8.8012 44.7087 0.9989 

-1 
LSTM 32.0522 - 1.0000 

MLCD-LSTM 2.5600 1.4894 1.0000 

Set 3 

10 
LSTM 0.1000 - 1.0000 

MLCD-LSTM 1.9932 0.1000 1.0000 

1 
LSTM 0.1000 - 1.0000 

MLCD-LSTM 8.5376 10.6941 1.0000 

0 
LSTM 0.3140 - 1.0000 

MLCD-LSTM 2.5695 0.1000 0.9994 

-1 
LSTM 15.4718 - 1.0000 

MLCD-LSTM 1.6954 0.1000 0.9971 
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Figure 5-9 Average test results of LSTM and MLCD-LSTM 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 5-10 t-SNE visualization of features at FC1C with set 3: (a) LSTM, SNR 

of 0 [dB]  -1 [dB], (b) MLCD- LSTM, SNR of 0 [dB]  -1 [dB], (c) LSTM, 

SNR of 1 [dB]  -1 [dB], (d) MLCD- LSTM, SNR of 1 [dB]  -1 [dB], (e) 

LSTM, SNR of 10 [dB]  -1 [dB], and (f) MLCD- LSTM, SNR of 10 [dB]  -

1 [dB] 

Normal Unbalance Misalignment Rubbing Oil whirl
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

Figure 5-11 Visualization of intermediate features at the shared layers of LSTM and MLCD-LSTM with a rubbing test 

sample: (a) test sample, (b) after the first shared layer of MLCD-LSTM, (c) after the second shared layer of MLCD-LSTM, 

(d) after the first shared layer of LSTM, and (e) after the second shared layer of LSTM  
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5.5.2 Case Study 2: MLCD-1D CNN 

The optimized hyper-parameters of 1D CNN and MLCD-1D CNN are tabulated in 

Table 5-2. Using the optimal hyper-parameters, each algorithm was trained and 

tested 10 times. The test results of MLCD-1D CNN and 1D CNN are shown in Figure 

5-12. The results describe that the test accuracy of the proposed MLCD-1D CNN is 

better than that of 1D CNN in most cases. For set 1, MLCD-1D CNN shows better 

test accuracy than 1D CNN in all cases. In particular, when an SNR of 0 [dB] is 

trained, the mean test accuracy of MLCD-1D CNN is much greater than that of 1D 

CNN, while the variance of MLCD-1D CNN is far smaller than that of 1D CNN. 

This indicates that the MLCD method improves the generalization performance. In 

the case of set 2, there is little difference in the test accuracy between MLCD-1D 

CNN and 1D CNN when an SNR of 10 [dB] is used. However, when an SNR of 1 

or 0 [dB] is used for training, the MLCD-1D CNN shows slightly better accuracy 

and less variance than 1D CNN. When set 3 is used, both MLCD-1D CNN and 1D 

CNN show almost 100 % test accuracy for the case of an SNR of 10 [dB]. For the 

case of an SNR of 1 [dB], MLCD-1D CNN shows slightly better performance than 

1D CNN. However, when an SNR of 0 [dB] or -1 [dB] is used for training, the 

average accuracy of MLCD-1D CNN is almost 100%, while that of 1D CNN is under 

80%. Moreover, the variance of test accuracy decreases considerably when the 

proposed MLCD method is used. In summary, MLCD-1D CNN shows an enhanced 

generalization performance because learning the denoising task gives a 

regularization effect to the classification task, as discussed in Section 5.1. 

The features at the FC1C layer of set 1 are analyzed by using t-SNE in Figure 

5-13 for three cases: SNR of 0 [dB]  -1 [dB] in (a) and (b), SNR of 1 [dB]  -1 
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[dB] in (c) and (d), and SNR of 10 [dB]  -1 [dB] in (e) and (f). Since the algorithms 

are more affected by the noise as the SNR level becomes smaller, the test case is 

chosen as an SNR of -1 [dB]. From Figures 5-13(a) and (b), it is found that MLCD-

1D CNN classifies all states well, while 1D CNN confuses the misalignment and 

rubbing states. Moreover, MLCD-1D CNN clusters the features of each label better 

than 1D CNN: the features of some labels – normal, unbalance, and oil whirl – of 

1D CNN are not clustered well. Figure 5-13(c) shows that it is difficult for 1D CNN 

to diagnose normal and rubbing conditions since the features of 1D CNN of normal 

and rubbing are close to each other. However, as shown in Figure 5-13(d), the 

features of normal and rubbing states of MLCD-1D CNN are clustered further apart 

than those of 1D CNN. Figures 5-13(e) and (f) show that while 1D CNN confuses 

normal, misalignment, and rubbing states, MLCD-1D CNN can extract more 

distinctive features from those states, which are located further from each other. In 

addition, MLCD-1D CNN also learns better-clustered features for the unbalance and 

oil whirl states. In short, it can be said that the generalization performance of MLCD-

1D CNN is improved because the features at the FC1c are classified better than those 

of 1D CNN. 

To understand the results better, the intermediate features at the first two 

convolutional layers – Conv1 and Conv2 in Figure 5-4– are visualized in Figure 5-

14 for the case of set 1 and an SNR of 0 [dB]  -1 [dB]. Along with LSTM cases, 

the rubbing state is chosen since it is the hardest state for 1D CNN to diagnose 

accurately. There are three findings from the analysis. First, for both 1D CNN and 

MLCD-1D CNN, more noise in the input signal is removed as it passes through more 

convolutional layers; however, the extent of denoising is greater for MLCD-1D CNN. 
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This is because a higher level of representation for classification and denoising is 

learned as the input goes through more convolutional layers. Second, the features of 

MLCD-1D CNN are more similar to sinusoid waves, which means that MLCD-1D 

CNN can learn about the waveform of the input signal better than 1D CNN. 

Interestingly, the 8th features (from upside to downside and from left to right) in 

Figure 5-14(b) and the 13th and 16th features in Figure 5-14(c) are quite similar to the 

true rubbing signal (red dotted line) in Figure 5-6(d). Lastly, when checking the 

similarity of features at the shared layers, the features of MLCD-1D CNN are more 

diverse than those of 1D CNN. In particular, almost half of the features at Conv2 of 

1D CNN are similar to a w-shape, as shown in Figure 5-14(e). Consequently, given 

noisy input, MLCD-1D CNN learns the characteristic of the signal waveform better 

and generates noise-robust and more diverse features, as compared to 1D CNN. 
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Table 5-2 Bayesian optimization results of 1D CNN  

 SNR [dB] Algorithm η (10-3)  β 
Validation 

accuracy 

Set 1 

10 
1D CNN 0.1000 - 1.0000 

MLCD-1D CNN 0.1000 10.0000 1.0000 

1 
1D CNN 0.1000 - 1.0000 

MLCD-1D CNN 0.1000 10.0000 1.0000 

0 
1D CNN 9.5624 - 1.0000 

MLCD-1D CNN 0.1000 10.0000 1.0000 

-1 
1D CNN 0.1000 - 1.0000 

MLCD-1D CNN 0.1000 10.0000 1.0000 

Set 2 

10 
1D CNN 0.1000 - 1.0000 

MLCD-1D CNN 0.1000 10.0000 1.0000 

1 
1D CNN 0.1000 - 1.0000 

MLCD-1D CNN 0.1000 10.0000 1.0000 

0 
1D CNN 0.1000 - 1.0000 

MLCD-1D CNN 0.1000 10.0000 1.0000 

-1 
1D CNN 0.1842 - 1.0000 

MLCD-1D CNN 0.1000 10.0000 1.0000 

Set 3 

10 
1D CNN 0.1000 - 1.0000 

MLCD-1D CNN 0.1000 10.0000 1.0000 

1 
1D CNN 0.0244 - 1.0000 

MLCD-1D CNN 0.1000 10.0000 1.0000 

0 
1D CNN 4.0523 - 1.0000 

MLCD-1D CNN 0.413 15.2443 1.0000 

-1 
1D CNN 1.6411 - 1.0000 

MLCD-1D CNN 0.1000 10.0000 1.0000 
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Figure 5-12 Average test results of 1D CNN and MLCD-1D CNN  
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 5-13 t-SNE visualization of features at FC1C with set 1: (a) 1D CNN, SNR 

of 0 [dB]  -1 [dB], (b) MLCD-1D CNN, SNR of 0 [dB]  -1 [dB], (c) 1D CNN, 

SNR of 1 [dB]  -1 [dB], (d) MLCD-1D CNN, SNR of 1 [dB]  -1 [dB], (e) 1D 

CNN, SNR of 10 [dB]  -1 [dB], and (f) MLCD-1D CNN, SNR of 10 [dB]  -

1 [dB] 

Normal Unbalance Misalignment Rubbing Oil whirl
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

Figure 5-14 Visualization of intermediate features at the shared layers of 1D CNN and MLCD-1D CNN with a rubbing test 

sample: (a) test sample, (b) after the first shared layer, MLCD-1D CNN, (c) after the second shared layer, MLCD-1D CNN, 

(d) after the first shared layer, 1D CNN, and (e) after the second shared layer, 1D CNN 
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5.6 Summary and Discussion 

In this research, we proposed a new training scheme called MLCD for noise-robust 

fault diagnosis. The key idea of MLCD is to improve the generalization performance 

of fault diagnosis through multi-task learning of classification and denoising using 

optimal hyper-parameters that are chosen by Bayesian optimization. MLCD was 

integrated with LSTM and 1D CNN; then, MLCD-LSTM and MLCD-1D CNN were 

newly developed. For each RK4 testbed data set, each algorithm was trained and 

tested with different SNR levels repeatedly. From the results and analysis, two 

conclusions can be made. First, the visualization of intermediate features shows that 

MLCD-based algorithms extract more meaningful features where the greatest 

amount of noise is removed and learn the representation of the signal waveform 

better. Second, when the high-level features at FC1C are visualized in two-

dimensional space by t-SNE, the features of MLCD-based algorithms are classified 

better according to the five states. This means that the generalization performance of 

fault diagnosis is improved despite noisy input. In future work, tasks other than 

denoising will be researched to find the optimal combination with classification for 

noise-robust fault diagnosis. 

 

Sections of this chapter have been published as the following journal article:  

1) Jin Uk Ko, Joon Ha Jung, Myungyon Kim, Hyeon Bae Kong, Jinwook Lee, and 

Byeng D, Youn, “Multi-task learning of classification and denoising (MLCD) for 

noise-robust rotor system diagnosis,” Computers in Industry, Vol. 125, pp. 103385, 
2021. 
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Chapter 6 Conclusion 

 

Conclusion 

 

6.1 Contributions and Significance  

This doctoral dissertation proposes a deep-learning-based methodology for macro- 

and micro-level fault diagnosis using operation and vibration signals. The proposed 

methodology consists of three novel studies: (1) an ensemble denoising auto-

encoder-based dynamic threshold (EDAE-DT) to reduce false alarms by considering 

the fluctuation in the normal data; (2) a frequency-learning generative network 

(FLGN) to generate signals of variable lengths by learning the frequency information; 

and, (3) multi-task learning of classification and denoising (MLCD) approach to 

improve classification performance against noise by concurrently learning the 

denoising capability. The research in this dissertation provides the following 

contributions to the area of deep-learning-based fault diagnosis of rotating 

machinery. 

 

Contribution 1: Development of a new anomaly detection technique that 

reduces false alarms by considering the fluctuations in the 

normal data. 
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This doctoral dissertation proposes an ensemble denoising auto-encoder-based 

dynamic threshold (EDAE-DT) to reduce false alarms in anomaly detection. 

Concretely, EDAE is a new modeling method that is able to learn the normal data 

well by using an ensemble technique with five DAEs. Together, the ensemble 

technique and denoising task enable the modeling performance to be improved. DT 

is developed to set a variable threshold by considering the joint distribution of the 

output of the EDAE and the residual. After calculating the joint distribution, it is 

discretized, and critical points are determined as the point where the upper tail of the 

marginal distribution becomes a confidence level; a critical function is obtained by 

linearly interpolating the critical points. This critical function computes a threshold 

value with respect to each output value. In summary, by 1) improving the modeling 

performance and 2) setting a threshold dynamically, the EDAE-DT achieves 

accurate anomaly detection, while generating the lowest number of false alarms of 

available methods. 

 

 

Contribution 2: Suggestion of an innovative generative network to generate 

stationary signals of variable lengths by using the Fourier 

series.  

This doctoral dissertation proposes a novel method called frequency-learning 

generative network (FLGN) to generate signals of variable lengths. FLGN is an 

innovative generative network, which is completely different from the prior VAE or 

GAN-based models. The FLGN approach consists of three feature extractors – a 

stochastic frequency extractor, a phase extractor, and a magnitude extractor – and a 
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sine-basis layer. A deterministic frequency is learned in the form of a trainable 

parameter; the stochastic frequency, phase, and magnitude are extracted in the form 

of features. The frequency and phase are used to construct a sine-basis, and that basis 

is entered into the magnitude extractor. The output of FLGN is obtained by adding a 

bias to the dot product of the magnitude vector and sine-basis vector. The proposed 

FLGN generates signals that are similar to the true signals, even if the lengths of the 

signals change. It is also found that the FLGN learns the characteristic frequency 

components in the training data well. In particular, through the use of an attention 

block at each extractor, it is discovered that the proposed FLGN approach focuses 

well on the characteristic frequencies. 

 

Contribution 3: Suggestion of a new training scheme to make a classifier robust 

against noise by using multi-task learning. 

This doctoral dissertation develops a new training scheme called multi-task learning 

of classification and denoising (MLCD) to make a classifier robust against noise. 

The proposed MLCD scheme learns the classification task, while learning the 

denoising task simultaneously. The multi-task learning technique enables improved 

generalization performance of a classifier. MLCD can be applied to any deep-

learning algorithm regardless of its architecture. In this research, it is integrated with 

LSTM and 1D CNN. The MLCD-applied classifier has improved classification 

performance even if there is a large amount of noise in the input signal. MLCD also 

results in the classifier having less uncertainty in its output. Furthermore, not only 

does an MLCD-applied classifier have the ability to remove the noise in the input 
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signal, but the classifier also extracts meaningful and sinusoidal features. Overall, 

the MLCD-applied classifier extracts more discriminative features, as compared to 

a classifier without MLCD.  

 

6.2 Suggestions for Future Research 

This doctoral dissertation proposes an innovative methodology for macro- and 

micro-level fault diagnosis of rotating machinery using operation and vibration 

signals. Even if the proposed studies solve the limitations of the conventional 

approaches, there are still several research topics that need to be addressed further to 

enhance the performance of the resulting fault diagnosis. The following suggestions 

are specific recommendations for future research. 

 

Suggestion 1: Validation of the proposed methods with signals under variable-

speed conditions 

The studies in this doctoral dissertation research were validated with signals that 

were obtained under constant-speed conditions. This means that the signals were 

stationary; their frequency information did not change with respect to time. However, 

some rotating machines, including motors and wind turbines, rotate under variable-

speed conditions. Therefore, in future work, the proposed method should be 

validated with non-stationary signals under variable-speed conditions to broaden the 

applicability of the proposed studies. 
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Suggestion 2: Improvement of classification performance for extremely 

imbalanced data 

In real industrial fields, fault samples are usually insufficient compared to normal 

samples; sometimes, fault samples might be extremely scarce. Although research 

thrust 2 augments fault samples given short signals, the generation performance will 

be decreased if the samples are extremely insufficient. Thus, an advanced fault 

diagnosis method should be developed for improved classification performance 

under extremely imbalanced data.  

 

Suggestion 3: Development of a fault diagnosis scheme considering the domain 

discrepancy issue 

Even when studying the same type of rotating machinery, measured signals can have 

various distributions according to the machines’ various operating conditions. The 

performance of an algorithm is decreased if the test data has a different distribution 

than the training data; this is called the domain discrepancy issue. Domain adaptation 

is a research area that seeks to solve the domain discrepancy issue. Therefore, to 

make the proposed methodology work well on various mechanical systems, a novel 

fault diagnosis approach should be developed to mitigate the domain discrepancy 

issue through the use of domain adaptation techniques. 
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국문 초록 

 

회전기계 내 저해상도 및 고해상도 

신호를 활용한 딥러닝 기반  

거시적 및 미시적 고장 진단 방법론 
 

서울대학교 대학원 

기계항공공학부 

고 진 욱 

 

회전기계는 제조 및 발전과 같이 다양한 산업 현장에서 널리 

사용되고 있다. 회전기계의 예기치 못한 고장은 막대한 경제적, 인적 

손실을 야기할 수 있다. 이러한 상황을 예방하기 위해서, 회전기계의 

건전성 상태를 정확히 관리하는 것을 목표로 하는 고장 진단 연구가 

주목을 받고 있다. 고장 진단 기법들은 목표 시스템의 이상을 정확히 

감지하고 건전성 상태를 식별하는 것을 목표로 한다. 최근에는 딥러닝 

기반 연구들이 자동적으로 유의미한 특성인자를 추출하는 능력 덕분에 

뛰어난 진단 성능을 보이고 있다. 

회전기계에서는 해상도가 서로 다른 운전 신호 및 진동 신호가 

취득된다. 저샘플링 주파수로 취득되는 운전 신호는 실시간으로 

얻어지고, 시스템을 전반적으로 관리할 수 있는 다양한 종류의 상태 
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변수를 포함하고 있다. 진동 신호는 고샘플링 주파수로 측정되고 

실시간이 아니라, 고장이 발생하면 취득된다. 해상도가 다른 두 신호를 

활용해서 고장 진단의 두 가지 하위 테스크인 이상 감지 및 고장 식별이 

수행된다. 운전 신호를 가지고 수행되는 이상 감지는 시스템의 이상을 

가능하면 빨리 감지하는 것을 목표로 한다. 이것은 거시적 수준의 고장 

진단으로 여겨진다. 이상 감지 수행 시, 정상 데이터는 비지도 학습 

방식으로 모델링 되고, 잔차 신호가 계산된 후에 기준치가 결정된다. 

잔차 신호가 기준치를 초과하면, 해당 시스템은 이상이 있다고 

판단된다. 고장 식별은 진동 신호를 사용해서 시스템의 건전성 상태를 

분류하는 것을 목표로 한다. 이것은 미시적 수준의 고장 진단으로 

여겨진다. 지도학습 방식을 활용해 딥러닝 기반 진단기를 학습시킨다. 

그러므로 많은 양의 라벨 데이터가 학습에 필요하다. 실제 산업 

현장에서는 고장 데이터가 부족하기 때문에, 부족한 고장 데이터를 

증량하기 위한 데이터 증량 기법이 필수적이다. 최근에는 변분적 

오토인코더나 적대적 생성 신경망을 활용한 증량 기법이 널리 연구되고 

있다.  

이상 감지와 고장 식별은 각자 따로 연구되었다. 만약 두 테스크가 

통합된다면, 거시적 및 미시적 고장 진단이 수행될 수 있다. 하지만, 

딥러닝 기반 거시적 및 미시적 고장 진단 기법을 개발하는 데 해결해야 

할 세 가지 문제점이 있다. 첫째, 기존 이상 감지 기법들은 시스템에 

아무 이상이 없어도 오감지를 빈번하게 발생시켰다. 기존 방법들은 정상 

데이터를 부정확하게 모델링하거나 기준치를 잘못 설정해서 정상 

데이터에 존재하는 변동을 고려하지 못한다. 둘째, 기존 생성 신경망 

기반 모델들은 구조적 특징에 기인한 한계점을 갖고 있다. 다양한 

길이의 신호가 만들어질 수 없고, 잠재 벡터가 잘못 샘플링되면 잘못된 



211 

 

 

샘플이 생성될 수 있다. 건전성 분류와 관련된 마지막 이슈는 분류기의 

성능이 입력 데이터의 노이즈에 영향을 받을 수 있다는 점이다. 

노이즈는 데이터 분포를 왜곡할 수 있기 때문에, 분류기가 노이즈가 

있는 데이터를 올바르게 분류하는 것은 어렵다. 

이러한 현황을 바탕으로, 본 박사학위 논문에서는 회전기계 내 운전 

및 진동 신호를 활용한 딥러닝 기반 거시적 및 미시적 고장 진단 기법을 

제안한다. 첫 번째 연구는 오감지를 줄이는 이상 감지를 위해서, 새로운 

모델링 및 기준치 설정 기법들을 제안한다. 제안하는 모델링 방법은 

오토인코더에 앙상블 및 디노이징 기법을 적용하여 개발됐다. 또한, 

결과값과 잔차 신호 사이의 결합분포를 사용해서 동적 기준치를 

설정하는 기법도 개발됐다. 이를 통해, 제안하는 방법은 정상 데이터의 

변동을 고려하여 오감지를 상당히 줄일 수 있다. 두 번째 연구에서는 

다양한 길이의 신호를 만들기 위한 새로운 생성 모델을 제안한다. 

제안하는 네트워크는 입력과 출력이 시간 및 진폭이고, 학습 데이터의 

주파수 정보를 학습하도록 설계됐다. 제안하는 모델은 나이키스트 

이론과 같은 신호 처리 지식을 반영하기 위해서 신중히 설계됐다. 학습 

후에, 제안하는 방법은 원하는 시간대의 다양한 길이의 신호를 만들 수 

있다. 또한, 제안하는 네트워크는 어텐션 블록 덕분에 특성 주파수 

성분에 집중할 수 있다. 세 번째 연구는 분류와 디노이징 테스크를 

동시에 배우는 학습 기법을 제안한다. 제안하는 기법에서는 두 가지 

테스크를 동시에 학습하기 위해서 다중 테스크 학습 기법이 사용된다. 

제안하는 기법은 네트워크 종류에 상관없이 어떠한 딥러닝 알고리즘에 

적용될 수 있다. 제안하는 방법으로 학습된 분류기는 건전성 상태를 잘 

분류할 뿐만 아니라, 입력 신호의 노이즈도 제거할 수 있다. 
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