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Abstract

A Study of Deep Learning-based Spall Size 
Distribution Estimation for Rolling Element 

Bearing Diagnosis

Hwayong Jeong

Department of Mechanical Engineering

The Graduate School

Seoul National University

   When a rolling element bearing (REB) fails, the most common reason is the spall 

caused by rolling contact fatigue. In previous studies, when a ball passes through a

spall, a step response with a low-frequency appears due to the effect of entering to

the spall and an impulse response with a high-frequency appears when exiting the

spall in the acceleration signal. Since the entry event signal is relatively weaker than 

the exit event signal and noise, research to date have attempted to estimate the 

location of the entry event using various signal processing technic such as noise 

reduction and strengthening the entry event features. However, in signal processing, 

manual parameter selection for finding the characteristics of entry event varies on 

bearing geometry and operating condition and since the parameter selection is 

empirical, the accuracy may differ accordingly. In addition, the spall size reflected 

in the signal also has uncertainty due to the geometry of the real spall and the 

uncertainty of rotation due to random slip. To overcome this difficulty, a deep 

learning-based approach was proposed in this study. The proposed architecture 

learned through analytic simulation signals which was generated by similar 
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geometry and operating conditions to test data, the spall size was estimated without 

manual parameter selection. By obtaining the mean and variance from the estimated 

values obtained from the models trained with several kernels and strides, the spall 

size distribution was obtained. The proposed method was validated through 

experimental data. Through the performance analysis results, the proposed method

was effective.

Keywords : Spall size estimation

Rolling element bearing

Fault diagnosis

Denoising Autoencoder

Convolutional neural network

Ensemble learning
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Chapter 1. Introduction

1.1 Introduction

Rolling element bearing (REB) is a major element of a rotating machinery and 

its failure is the main reason for failure of the system[1][2][3]. By estimating the 

severity of bearing fault through condition monitoring, not only can major accidents 

be prevented in advance, but also appropriate maintenance strategies can be 

established to minimize maintenance costs. 

The failure modes of REBs are classified into several categories, such as rolling 

contact fatigue, wear and plastic deformation and there are many reasons why they 

occur[4]. However, the most common reason of failure in well-installed, well-made 

bearings is spall due to rolling contact fatigue and the spall grows as the fault 

progresses. Therefore, spall size estimation can be a good means of severity 

estimation. By Epps[5] and Dowling[6], two main features originating from the 

rolling element passing through the spall were reported. The first originates from the 

entry event when the ball enter the spall, while the second results from the exit event 

when the ball contacts the edge of the spall. As the size of the spall increases, the 

separation between the entry and exit event increases and if the events can be 

extracted from the acceleration signal, the size of the fault can be estimated correctly. 

In actually, however, the events are weak and easy to be masked by noise. 

Numerous studies have attempted to find the exact location of the entry-exit 

events. Sawalhi et al. used an autoregressive (AR) model as a pre-whitening for 

enhancing the energy of entry event relative to the exit event and a frequency band 
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selection with the complex Morlet wevelets[7]. Smith et al. suggested a low-pass 

filtering and steep roll-off to find the entry event point and envelope analysis is 

utilized to recognize the impact[8]. Cui et al. suggested the matching pursuit method 

to find the location of the entry and exit events by a step-impulse atom[9]. Chen et 

al. used variational mode decomposition (VMD) to separate the entry and exit event 

and used cross-correlation to find the spall size[10]. Zhang et al. suggest natural 

frequency perturbation (NFP) method which find the small variation of average 

frequency of a specific frequency band between the entry event and the exit event 

frequency band in the Wigner-Ville distribution (WVD)[11]. However, in previous 

signal processing methods, the parameters like frequency bands are manually 

selected to find the characteristics of the entry-exit events because those vary 

depending on the bearing geometry or operating conditions and the accuracy may 

differ accordingly, which is thus in need to more investigation into the parameter 

selection. To overcome the parameter-dependent results, convolutional neural 

network-based methods for extracting spall size-related features were studied. Guo 

et al. suggest hierarchical adaptive deep convolution neural network (ADCNN) to 

recognize the fault-pattern and fault severity evaluation[12]. However, these 

methods have only focused on classifying discrete fault sizes learned in the input 

domain. The actual spall size is continuous, and it is impossible to secure enough 

spall size data to sufficiently cover it with classification. And also, the entry-exit 

event reflected in the signal is not constant due to the uncertainty of the real spall 

shape or the uncertainty of rotation due to random slip. This thesis proposed a novel 

rolling element bearing spall size distribution estimation method using regression 

based deep learning. After converting the 1D acceleration signal into a time-

frequency representation (TFR) through continuous wavelet transform based on 

complex Morlet wavelets and reducing noise that prevents finding entry-exit events 
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through a denoising autoencoder (DAE), the spall size is estimated using 

convolutional neural network with support vector regression (CNN-SVR). Since the

architecture learns to find the entry-exit event-related features in the TFR during the 

training process, it can overcome the difficulties of manual parameter selection that 

varies from case to case. Then, the spall size distribution is estimated based on the 

average and variance of predicted values obtained from several models that have 

adjusted the kernel and stride size of CNN-SVR model. 
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1.2 Dissertation Layout

This thesis proceeds as follows. The basic concept of the spall size estimation

is introduced in section 2. Section 3 describes the proposed spall size distribution

estimation method and section 4 presents the validation of the proposed method

using the experimental dataset. The conclusions are presented in section 5.
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Chapter 2. Research Background

In this section, the method of calculating the spall size through the time interval 

of the entry-exit event is briefly reviewed to provide a theoretical background of the 

proposed spall size distribution estimation method.

2.1  Spall Size Estimation Through the Time Interval

Through the time interval between an entry event and an exit event, spall size 

is calculated. Figure 2-1 shows the moments when the entry event and the exit event 

occur. Since the entry event occurs when the rolling element center enters the spall, 

it is based on when the center of the rolling element is perpendicular to the entrance 

of the spall zone as shown in Figure 2-1(a). The exit event is based on an impulse 

signal that occurs when a rolling element comes into contact with the trailing edge 

of the spall zone as shown in Figure 2-1(b).

Figure 2-1. The moments of occurrence of the entry-exit event: (a) The entry event 
and (b) the exit event
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Since the entry event and the exit event for one rolling element occur 

sequentially, if the time interval between the two events is known, the spall size can 

be estimated through the time. In particular, in the case of a small spall, which is not 

enough to reach the bottom of the spall zone, the distance that the rolling element

passes is half of the spall size as described in Figure 2-1(b). Using this, the size of a 

relatively small spall is calculated based on the geometry of the corresponding 

bearing as follows.

�� =
��

�(�� + �)
×
1

��
( 2-1 )

�� =
��

�(�� − �)
×

1

�� − ��
( 2-2 )

where ��, �� are time interval of entry-exit event of outer and inner raceway, 

��, �� are spall size of outer and inner raceway respectively, �� is the pitch diameter, 

� is the ball diameter and �� is the rotor frequency. �� is the cage frequency

�� =
��
2
× �1 −

�

��
cos �� ( 2-3 )

where � is the contact angle.

Therefore, the spall size can be calculated as follows.

��, �� =
���(�� ± �)(�� ∓ � cos �)

2��
× ∆� ( 2-4 )

where ∆� is the time difference between entry and exit events.
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Chapter 3. Spall size distribution estimation for REB

In this section, the proposed spall size distribution estimation for REBs using 

denoising autoencoder (DAE) and convolutional neural network with support vector 

regression (CNN-SVR) considering the uncertainty in rotational speed is discussed. 

The proposed spall size estimation model aims to improve the performance of 

estimation without additional frequency parameter setting through the regression

process based on deep learning. Afterward, through the ensemble of spall size 

estimation models, the distribution of spall size is obtained from the signals which 

have the rotational uncertainty of REBs caused by the random slip of rolling 

elements. Figure 3-1 shows the overall procedure of the proposed method. The left 

side of the Figure 3-1 shows the process of training the architecture with the 

simulated acceleration signal of REB with the spall, and through inputting the actual 

acceleration signal to the trained model the spall size estimation is performed.

Through the ensemble of the spall sizes, which are obtained by several models, the 

spall size distribution is estimated. The detail procedures are described in the 

following subsections.
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Figure 3-1. The overall procedure of the proposed spall size distribution estimation 
method
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3.1 Transformation of Input Signal

By determining the temporal location of the entry and exit events from the 

acceleration signals of the REB with a spall, the spall size can be estimated by the 

time interval of two events. The shape of the entry event response in the time domain 

is the steep roll-off that occurs just after entry and the shape of the exit event response 

is the impact [13]. However, the entry event is masked by noises or signals of other 

mechanical elements used with REB, so it is difficult to accurately find the temporal 

location of the entry event in the time domain. In the REB acceleration signals with 

spall, when the rolling element passes over the spall, the entry event which is a low 

frequency component and the exit event which is a high frequency component are 

observed in sequence[7][13][14][15][16][17]. Therefore, by utilizing the frequency 

characteristic, a time frequency representation can be a good way to determine the 

temporal location of event responses. Considering the frequency characteristic and 

the waveform characteristics, continuous wavelet transform (CWT) is used as time-

frequency representation. The acceleration signal of entry-exit event response shown

in Figure 3-2(a) is transformed using CWT based on complex Morlet wavelet, as 

shown in Figure 3-2(b). In order to enhance the entry event signal, which is weak 

compared to the exit event signal, the vibration image is generated by normalizing 

the CWT image by time, as shown in Figure 3-2(c).
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Figure 3-2. Pre-processing of raw signal: (a) the raw entry-exit event signal, (b) 
continuous wavelet transform based Morlet wavelet and (c) normalized continuous 

wavelet transform for each time
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3.2 Signal Generation for Training

In order to train the deep learning models introduced in the section 3.3 and 3.4, 

signals similar to real ones are needed. In this thesis, analytically simulated bearing 

fault signals with entry-exit events were used to consider the performance of 

denoising and spall size estimation. The bearing fault vibration model with entry-

exit event is the model in [7]. The model (�) included the impulse response (��), the 

step response (��) and the noise signal (�(�)). The model is expressed as

�� = ��
�
� sin(2���)

( 3-1 )

�� = ��
�
�� ���(

2���

6
) + ��

�
�� ( 3-2 )

� = �� + �� +�(�) ( 3-3 )

where �, τ is the natural frequency (Hz) and the damping time constant (s). In 

order to generate similar to the actual signal, the parameters of the actual bearing 

signal such as natural frequency, damping time constant, spall size, rotational speed 

and geometric parameters are used to generate the simulated signal.
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3.3 Denoising Autoencoder (DAE)

The estimation of spall size is possible through the difference between the entry 

event time and the exit event time. In order to estimate the correct spall size, the

correct location of entry-exit event is needed. The exit event, which is an impulse 

response, is relatively easy to detect from noise because of its high amplitude, but 

the entry signal is masked by noise and its location is inaccurate. Therefore, it is 

necessary to effectively remove the noise of the signal. However, it is not easy to 

completely remove noise except for features related to spall size. Therefore, a 

denoising autoencoder (DAE) was used to learn the process of removing features 

unrelated to the entry-exit events. DAE is an autoencoder which receives a noised 

data and is trained to predict the denoised data of the input data[18][19][20]. Figure 

3-3 shows the input image and the output image of DAE model. Since it is hard to 

obtain an original signal from which only noise has been removed in the real 

acceleration signal, the analytically simulated signals and their noise samples are 

used for training. The noise was added to the original signal as similar signal to noise 

ratio (SNR) to the actual signal. Figure 3-4 shows the encoding and decoding process 

of DAE. The objective function is that the difference between the noise-free data and 

the data with noise is minimized. Through this process, the encoder and decoder are 

trained to preserve the features related to the entry-exit event response while 

reducing unrelated features.
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Figure 3-3. The input image and the output image of DAE model

Figure 3-4. The model structure of the DAE
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3.4 Spall Size Estimation Through the Time Interval

In this study, a CNN-SVR model to learn the features needed to estimate the 

spall size of REB is proposed. The CNN architecture learns various characteristics 

of the input signal through assigning each object’s weights and biases and 

distinguishes each object accordingly and the SVR layer classify the features as the 

spall size[21][22][23][24][25].

Figure 3-5. The model structure of the CNN-SVR

Figure 3-5 shows the whole model structure of the CNN-SVR. The CNN 

structure is composed of three feature extraction layers and global average pooling 

(GAP) layer. Three feature extraction layers are structurally identical, including 2D 

convolution layer, batch normalization, max pooling layer and dropout. The input is 

a binary matrix, which is the denoised signal. 

The first layer is a 2D convolution layer which is designed for extracting the 

important local features. CNNs are classified into 1D, 2D, 3D, etc. according to the 

dimensionality of the input data and how the filter slides across the data. A 1D CNN 

is effective when derives interesting features from data and where the location of the 

feature within the segment is not highly relevant[26]. In this case, the entry-exit event 
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response is observed in a low frequency band and a high frequency band, so it is 

effective to use 2D CNN to distinguish occurrences in different frequency band and 

temporal location. The Rectified linear unit (ReLU) is used as the activation function 

to the convolution outputs. ReLU has a high computational efficiency and can 

alleviate the gradient disappearance problem[27]. The second layer is a max pooling 

layer connected with the outputs of previous layer. Each of the pooling windows only 

outputs the max value of its respective convolution layer outputs. After pooling layer,

the dropout layer is stacked. Through the dropout, some elements are randomly zeros 

and performs a scale transformation for the non-zero parts[29][30]. In this study, the 

drop rate is 0.25. Therefore, the model should use the rest of the information to adapt 

to the target. After three feature extraction layers, GAP layer is stacked. The GAP

technique could reduce the parameters and model[31][32]. By GAP, the overfitting

risk of the model could further reduce. The features as output of last GAP layer are

input to the SVR classifier to predict the spall size. The main target of SVR is to find 

an optimal hyperplane �(�) = 0, and �(�) is defined as follows.

�(�) = � ∙ � + �
( 3-4 )

where � is the support vector, � is the weight parameter, and � is a scalar 

threshold. To obtain the optimal hyperplane, the positive slack variable �� is used 

to solve the following optimization problem

min
1

2
‖�‖� + ����

�

���

( 3-5 )

��(� ∙ �� + �) ≥ 1 − �� , � = 1,2, … , �
( 3-6 )

where � is a regularization parameter which penalizes the errors. At last, the 
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linear function �(�) is transferred into a regressive function by applying a kernel 

function. The function for regression is derived as follows:

�(�) =�(�� − ��
∗) exp(−

‖�� − �‖�

2��
)

�

���

+ � ( 3-7 )

where ��  and ��
∗  are the Lagrange multipliers and �  is a positive real 

number.
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3.5 Spall Size Ensemble

The optimum parameters of the architecture are determined through the spall 

size measured by the signal, and the size of the spall can be estimated. However, 

because of the rotational uncertainty caused by a random slip of rolling elements, the 

measured signal containing entry-exit events also has uncertainty. Due to the 

uncertainty of the signal, accurate spall size estimation is difficult with one 

optimization architecture. Therefore, by estimating the spall size through the 

architectures that adjusted the kernel and stride, the result values derived through the 

predicted values of each model. To integrate the result values, an ensemble averaging 

technique was applied, which is the ensemble learning methodology used to improve 

the prediction performance[33]. Since there are candidate models with high accuracy 

and low accuracy depending on the data, a weighted average is used for the result to 

consider that degree to the ensemble average. The distribution of predicted values 

for each model is derived by estimated values for each model with samples extracted 

from experimental data. A weighting parameter to be used for the weighted average 

is derived by comparing the distribution of each model with the distribution of the 

true value. KL divergence (����) is used for weight parameter. The smaller ���� , 

the greater the probability that the two distributions being compared are close. In 

order to consider this characteristic, the result value is derived as

������ =
∑�1 − ����������

�

∑�1 − �����
( 3-8 )

where �����
� is the predicted value of n�� model and ������ is the ensembled spall 

size of the candidate models. Through the predicted spall sizes with ensemble 

constructed by experimental data, a spall size distribution is constructed.
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Chapter 4. Experimental Validation

In this section, the proposed spall size distribution estimation for bearing spall 

size is demonstrated using acceleration signal from bearing testbed data from Seoul 

National University (SNU). The performance of the proposed method is discussed 

based on the result.

4.1 Experimental Setting

To validate the proposed method, the experimental data collected from REB 

testbed were used. Figure 4-1 shows the REB testbed of SNU. The test bearing is 

located at the right end of the shaft, which is coupled by a motor shaft, and two loads 

are installed to apply axial and radial forces by hydraulic pump respectively. The 3-

axis accelerometer is mounted vertically on the test bearing housing. The test 

bearings were NSK 7202A angular contact ball bearings and the artificial fault with 

a size of 0.602mm at the contact point was arranged as shown in Figure 4-2. The 

data acquisition was conducted at the rotating speed of 240, 360, 480 and 600rpm 

under 260kgf axial loading and 229kgf radial loading and the sampling frequency 

was 25.6 kHz. Each sample is 4000 sample points long and 50 samples were used 

for each rotating speed.
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Figure 4-1. Rolling element bearing testbed of SNU

Figure 4-2. Artificial fault of test bearing with 0.602mm



20

4.2 Training Signal Generation

To train the DAE and CNN-SVR models introduced in section 3.3 and 3.4, 

analytically simulated bearing fault signals with entry-exit events were used. The 

bearing fault vibration model with entry-exit event is the model introduced in section 

3.2. In order to be similar to the actual bearing signal, the natural frequency is set to 

4000 (Hz) and the damping time constant is set to 0.001 (s) and the step response is 

scaled by 1/10. The signal was sampled at frequency of 25600 Hz. Since the 

analytically simulated signal is a signal that imitates the actual bearing signal, the 

time interval between the entry-exit event are set based on the actual bearing 

geometry. The test bearing is NSK 7202A angular contact ball bearing, and the 

bearing geometry parameters used to generate the signal are shown in the Table 4-1.

Table 4-1. NSK 7202A angular contact ball bearing geometry parameters

Parameter Value

Inner ring diameter (mm) 15

Outer ring diameter (mm) 35

Ball diameter (mm) 5.9

Contact angle (°) 30

Number of balls 11

The time interval between the starting points of the step response and the 

impulse response is the spall size of the bearing and the interval between the starting 

points of impulse response is the time interval for the ball to pass through the spall. 

Therefore, the interval of step-impulse response was set based on BPFI, and the 

interval of impulse was set based on the spall size of outer race fault introduced in 
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Section 2, and each equation is as follows.

���� =
���
2
(1 +

�

�
��� �) ( 4-1 )

∆� =
2����

���(�� − �)(�� + � cos �) ( 4-2 )

where �  is the number of balls, ��   is the rotor frequency and ∆�  is the 

interval of step-impulse response. In this case, the rotor frequency was set to 4, 6, 8 

and 10 Hz.

Figure 4-3. Analytically simulated entry and exit event signal: (a) the exit event 
signal (impulse response), (b) the entry event signal (step response) and (c) the 

entry-exit event signal (step-impulse response)
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A step response and impulse response with the interval based on BPFI were 

generated as shown in Figure 4-3(a) and (b). These two responses were added by the 

interval of the step-impulse response to represent the bearing fault signal with outer 

race spall as shown in Figure 4-3(c). 

Figure 4-4. Bearing experiment data and analytically simulated data: (a) 
experiment data, (b) simulation data with no noise and (c) simulation data with 

Gaussian noise

Figure 4-4 shows the experiment data and the simulation data with no noise and 

with Gaussian noise. As shown in Figure 4-4(b) and (c), the simulation data were 

generated based on the equations used in section 3.2 and scaled based on real 

experiment data as shown in Figure 4-4(a).
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Table 4-2. Configuration of the training and test dataset of SNU bearing testbed
Dataset Number of samples Spall size (mm) Speed(RPM)

Training 100 in each case 0.3, 0.5, 0.7, 0.9 240, 360, 480, 600

Test 50 in each case 0.602 240, 360, 480, 600

The whole dataset used in training and test process is described in 
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Table 4-2. Experiments were carried out at four levels of speed, and accordingly, the 

simulation signal was also generated based on four levels of speed. A signal with 

SNR of 50, 40 and 30dB of Gaussian noise added was generated to be used in DAE. 

In addition, the training data was set to 0.3, 0.5, 0.7 and 0.9 mm of spall size so that 

it does not overlap with the true value to check whether the architecture derives a 

value related to the spall size rather than simply classifying it through learning the 

training data.
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4.3 Result

For comparison with the proposed method, the results of the two previous 

studies and the result of the proposed method without ensemble was used. The first 

method is a signal separation method that separates and measures the entry-exit event 

section on the time axis. This method is very fast and has high physical 

interpretability, but there is a problem due to the entry event that is easy to be masked 

to noise. The second method is a natural frequency perturbation method that 

measures using the average frequency of a selected frequency band in the Wigner-

Ville spectrum, which is the time frequency representation. Since the entry-exit event 

is a low-high frequency event respectively, this TFR based method is valid even in a 

noisy environment. However, as this technique is very sensitive and sophisticated, 

this method has a problem in that the result is different depending on the selected 

frequency band.

For comparison of each result, KL divergence was used as a performance metric 

and the spall size distribution of the real bearing is set to mean(μ) 0.602mm and 

variance(σ) 0.006mm, which is 1 percent of the mean.
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Figure 4-5. The spall size estimation result of the signal separation method at four 
RPM conditions

Figure 4-6. The spall size estimation result of the natural frequency perturbation 
method at four RPM conditions
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Figure 4-7. The spall size estimation result of the proposed method without 
ensemble at four RPM conditions

Figure 4-5,6,7 shows the spall size estimation result of the signal separation 

method, the natural frequency perturbation method and the proposed method without 

ensemble and the upper and lower limits of actual spall size set as μ+3σ. In order to 

compensate for the uncertainty inherent in the signals, 20 CNN-SVR models with 

adjusted kernels and strides were generated and each result was derived. Through 

the KL divergence between the distribution of the true value made from μ and σ 

and the distributions of the result values of each model and the equation 3-8, the 

weighted parameter is calculated.
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Figure 4-8. The spall size estimation results of 20 models (blue dot) and the 
weighted averaging result (red dot) at four rpm condition

Comparing the three methods, the result value to which the weighted ensemble 

average is applied is most likely within the 6-sigma range of the true value as shown 

in Figure 4-8. For quantitative comparison, the mean and variance were calculated 

by assuming a normal distribution for each result value. Table 4-3 and Table 4-4 

shows the mean and variance result of four methods at four conditions. The variance 

of the proposed method is most similar to the true value compared to other methods.
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Table 4-3. Mean and variance derived from the results at 240 and 360 rpm of the 
four methods.

240 RPM 360 RPM

� [��] � [��] � [��] � [��]

True spall size 0.602 0.006 0.602 0.006

Signal separation 0.553 0.074 0.576 0.063

Natural frequency

perturbation
0.603 0.045 0.607 0.034

Proposed method

w/o ensemble
0.595 0.046 0.601 0.038

Proposed method

w/ ensemble
0.587 0.010 0.602 0.009
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Table 4-4. Mean and variance derived from the results at 480 and 600 rpm of the 
four methods.

480 RPM 600 RPM

� [��] � [��] � [��] � [��]

True spall size 0.602 0.006 0.602 0.006

Signal separation 0.554 0.048 0.562 0.053

Natural frequency

perturbation
0.613 0.049 0.620 0.050

Proposed method

w/o ensemble
0.605 0.053 0.603 0.045

Proposed method

w/ ensemble
0.602 0.013 0.599 0.012
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Figure 4-9. KL divergence results at four rotation speed of four methods

To quantitatively confirm the result, the KL divergence for each rotational speed 

was extracted. Figure 4-9 shows the KL divergence results at each speed of four 

methods. In the case of the signal separation method, the variance was calculated to 

be very large, so the KL divergence was very high, whereas in the case of NFP 

method, the KL divergence was relatively low because the frequency band was 

selected for each sample. The proposed method without ensemble estimated the spall 

size to a similar extent to the NFP method, and the result of adding the ensemble to 

this showed a very high similarity with the distribution of the actual values.
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Chapter 5. Conclusions

In this study, the spall size distribution estimation for rolling element bearing

using regression based deep learning was proposed.

In order to estimate the spall size through the time difference between the entry 

and the exit event, the time-frequency representation, CWT, was normalized by time 

to enhance the amplitude of the entry signal feature. The DAE is used to remove the 

features unrelated to the entry-exit event through a signal modeled analytically on a 

target signal and a noise signal with Gaussian noise. Then, the spall size of the target 

signal can be extracted from the signals learned through the CNN-SVR model.

Through the weighted ensemble averaging, the spall size was estimated considering 

the rotational uncertainty due to the random slip of the balls, and through this, the 

spall size distribution was estimated.

To quantify the performance of the proposed method, the research described in 

this study employed KL divergence. The proposed method was demonstrated by 

experimental data from SNU bearing testbed data. By comparing the signal 

processing methods which use the time-frequency representation and the deep 

learning method without ensemble, the proposed method efficiently estimates spall 

size distribution.
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국문 초록

구름요소 베어링 진단을 위한

딥러닝 기반 스폴 크기 분포 추정 연구

서울대학교 공과대학

기계공학부 대학원

정 화 용

구름 접촉 피로로 인한 스폴은 구름 요소 베어링 파손의 가장

일반적인 원인이며 스폴 크기 추정은 심각도를 추정하는 좋은 방법이 될

수 있다. 기존 연구에서는 구름 요소가 스폴 영역을 지나가는 과정에서,

진입할 때 저주파 단계 응답이 나타나고, 이탈할 때 고주파의 충격

응답이 나타난다고 알려져 있다. 진입이벤트 신호는 이탈이벤트 신호 및

노이즈에 비해 상대적으로 약하기 때문에 지금까지의 연구에서는 노이즈

감소, 진입이벤트 특성인자 강화 등의 다양한 신호처리 기술을 이용하여

진입이벤트의 시간적 위치를 추정하고자 하였다. 그러나 신호처리에서

진입이벤트의 특성을 찾기 위한 매개변수 선택은 베어링 형상이나 작동

조건 등에 따라 다르며, 선택이 경험적이므로 정확도가 경우에 따라

다를 수 있다. 또한 신호에 반영된 스폴의 크기도 실제 스폴의 일정하지

않은 모양에 의한 불확실성과 베어링 구름요소의 임의 미끄러짐으로

인한 회전의 불확실성을 가지고 있다. 이러한 어려움을 극복하기 위해
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본 연구에서는 딥러닝 기반 접근 방식을 제안한다. 테스트 데이터와

유사한 형상 및 작동 조건인 해석적 시뮬레이션 신호를 통해 학습된

제안모델은 매개변수의 수동적 선택 없이 스폴의 크기를 추정한다. 여러

커널과 스트라이드가 선택되어 만들어진 여러 훈련모델에서 얻은

추정값을 통해 평균과 분산을 구하여 파편 크기 분포를 추정한다. 

제안된 모델은 고장을 인가한 베어링을 통해 얻어진 실험 데이터로

검증한다. 성능 분석 결과는 제안된 접근 방식이 효과적임을 나타낸다.

주요어 : 스폴 크기 추정

        구름 요소 베어링

        고장 진단

        디노이징 오토인코더

        합성곱 신경망

        앙상블학습
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