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Abstract

Source apportionment and spatiotemporal analysis of

PM: .5 using machine learning and receptor models

Young Su Lee
Department of Civil and Environment Engineering
The Graduate School

Seoul National University

Particulate matter less than 2.5 micrometers (PM>s) has been a pollutant of
interest globally for more than decades, owing to its adverse health effects. For
developing effective PM,s management strategies, it is crucial to identify their
sources and quantify how much they contribute to ambient PM> s concentrations in
time and space. Source apportionment is the key to identifying the characteristics of
PM; 5. Receptor modeling is widely used to identify PM, s sources as a statistical
method of source apportionment. The chemical constituents of PM» s were used as
input data for receptor modeling.

Therefore, this study aimed to investigate the characteristics of PMas using



models of source apportionment and spatiotemporal analysis for effective
management strategies. Two types of modeling were performed for the source
apportionment study. The first is positive matrix factorization modeling, which
identifies a specific source type and its contributions to PM»s from one site. The
second is Bayesian spatial multivariate receptor modeling, which derives major
sources and their contributions to PM» s from multiple monitoring sites. In addition,
machine learning models were used to predict the concentrations of PM» 5, which are
important data for receptor modeling. Machine learning models that can be used to
increase data integrity and applicability to PM, s data were assessed.

The sources of PM»s and their contributions in Siheung, South Korea, were
identified using positive matrix factorization modeling. These 10 sources were
secondary nitrate (24.3%), secondary sulfate (18.8%), traffic (18.8%), combustion
for heating (12.6%), biomass burning (11.8%), coal combustion (3.6%), heavy oil
industry (1.8%), smelting industry (4.0%), sea salt (2.7%), and soil (1.7%). Based
on the derived sources, the carcinogenic and non-carcinogenic health risks due to
PM, 5 inhalation were estimated. The contribution to PM, s mass concentration was
low for coal combustion, heavy oil industry, and traffic sources but exceeded the
benchmark carcinogenic health risk value (1E-06). Therefore, countermeasures on
PM_2s emission sources should be performed based on the PM,s mass concentration
and health risks.

The feature extraction capabilities of the four machine learning models to
predict the chemical constituents of PM, s were assessed by comparing the prediction
accuracy depending on input variables, target constituents for prediction, available
period, missing ratios of input data, and study sites. The concentrations of PM; s

constituents were predicted at three sites (Seoul, Ulsan, and Baengnyeong) in South
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Korea between 2016 and 2018, using four machine learning models: generative
adversarial imputation network (GAIN), fully connected deep neural network
(FCDNN), random forest (RF), and k-nearest neighbor (kNN). The prediction
accuracy identified by the coefficient of determination (R?) between the prediction
and observation was highest in GAIN, followed by FCDNN, RF, and kNN. As the
missing ratios (20, 40, 60, and 80%) of the input data increased, the prediction
accuracy decreased in the four models and was more noticeable in GAIN and kNN,
which are unsupervised models. As the input data period increased, the two deep
learning models, GAIN and DNN, had better applicability than the other models,
RF and kNN. The study sites with more emission sources exhibited lower prediction
accuracy, resulting in the highest R? in the BR island and the lowest in Ulsan. Among
the target constituent groups, ions and trace elements were predicted to have the
highest and lowest R, respectively. This study demonstrated that machine learning
models can be extended for further air pollution studies depending on model features,
required performance, and experimental conditions, such as data availability and
time constraints.

The spatial distributions of five PM, s sources in South Korea were estimated
using Bayesian spatial multivariate receptor modeling. Secondary nitrate, secondary
sulfate, motor vehicle emissions, industry, and sea salts were determined to be
significant contributors to ambient PM» 5 concentrations in South Korea. The spatial
surface of the daily average contribution for each source in South Korea was derived
from measurement data from the eight monitoring sites. The source contributions
predicted by the BSMRM were also validated using held-out data from a test site
(such as Ansan, Daejeon, and Gwangju). These predicted source contributions can

aid in developing effective PM, s control strategies in cities where no speciated PM, s
iii 5
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monitoring stations are available. They can also be utilized as source-specific
exposures in health effect studies, even in cities where no monitoring stations are

available.

Keywords: PM,;s; Source apportionment; Positive matrix factorization; Machine

learning modeling; PM s chemical constituents; Bayesian receptor modeling
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Chapter 1. Introduction

1.1. Background

The atmospheric environment, along with water quality, waste, and soil, is a
major management target for the sustainable prosperity of humans (Arora, 2018;
Sauvé et al., 2016). Research on managing the atmospheric environment began in
the 1950s and has been actively conducted to expand the research area worldwide
(Colvile et al., 2001; Jacobson, 2002; Ramanathan and Feng, 2009). To maintain a
sustainable atmospheric environment, it is necessary to identify the situation and
efficiently manage air pollution (Melamed et al., 2016). According to the World
Health Organization (WHO), “Air pollution is the contamination of air due to the
presence of substances in the atmosphere that are harmful to the health of humans
and other living beings, or cause damage to the climate or materials” (World Health
Organization, 2021).

Air pollutants can be classified into natural and anthropogenic emissions
(Jacobson, 1930; Sharma et al., 2018). (Jacobson, 1930; Sharma et al., 2018).
Naturally occurring air pollutants, such as yellow dust, emissions from forest fires,
and volcanic eruptions, are generated regardless of human activities (Jacobson,
1930). (Jacobson, 1930). Anthropogenic emissions are generated by human activities,
such as power plants and automobile exhaust gases (Popescu and lonel, 2010). A
major concern in atmospheric environment management is anthropogenic emissions,
which have had an impact on human safety (Jacobson, 2012). The London smog
incident is an example in which more than 10,000 people died (Hopke et al., 2020;

Jacobson, 2002). Since then, efforts to control anthropogenic air pollutant emissions
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have begun, such as investigating the sources of air pollution and enacting air
pollution control laws (Hopke, 2016; Jacobson, 2002).

Although there is a reduction in the overall air pollution problem compared with
the past, the WHO estimates that 4.2 million people die prematurely every year due
to outdoor air pollution (World Health Organization, 2021). Since air pollution may
be recognized as a political problem, it may become a cause of conflict between
countries. This problem arises because it is difficult to interpret the air pollution
phenomenon (Seinfeld and Pandis, 2016). Once generated, air pollutants undergo
various reactions and transport processes depending on weather conditions, and their
complexity is high (Arya, 1998). For example, reactions to light, long-distance
transport, dilution by wind, deposition, and precipitation are affected by many
variables in the process (Arya, 1998). This makes the scientific interpretation of the
air pollution problem difficult. Therefore, more air pollution studies are required
(WHO, 2005). The scientific interpretation of air pollution is an important issue that
humans must continue to challenge.

Particulate matter less than 2.5 um in diameter (PM>s), one of the major air
pollutants, is an aerosol composed of various chemical constituents from various
emission sources. PMy s is classified as carcinogenic group 1 by the International
Agency for Research on Cancer (IARC) (WHO, 2005; Widziewicz et al., 2016). This
group is the same as that for arsenic and benzene. PM,s, known to cause
cardiovascular and respiratory diseases, is a crucial air pollutant managed by most
countries globally (Choi et al., 2011). However, most countries do not meet the WHO

recommendations.



Scientific approaches have been proposed by the United States Environmental
Protection Agency (US EPA) to effectively identify and control PM»s (US EPA,
1997). These can be categorized into four main groups. The first was to measure and
analyze the detailed physicochemical characteristics of PM,s. The second is
estimating emissions from sources, such as power plants and vehicles. The third is
to understand the spatial distribution of PM 5 through spatial modeling. Finally, we
aimed to understand the health effects on the human body. Accordingly, various
studies have been conducted in each field.

In this thesis, the scientific approaches presented by the US EPA were
considered. By researching specific topics, we intended to derive the most scientific
results from air pollution research. The following were attempted in this study (1) to
derive monitoring data for a specific site in the Republic of Korea by sampling and
analyzing PM, s and its chemical constituents. This is the only result that is no longer
available in terms of time and place. (2) To estimate the source types and
contributions of PM, s at a specific site based on the sampled data using receptor
models. These results can be used to enhance the understanding of the characteristics
of emissions from sources and spatiotemporal characteristics of PM»s. (3) To predict
the chemical constituents of PM,s using machine learning models. This is the
application of the latest computer science technology to identify the characteristics
of PM s in air pollution. (4) To estimate the spatial distribution of PM, s sources
using a multivariate receptor model. This is the first attempt at multivariate spatial
distribution modeling in the Republic of Korea. This study draws the latest scientific

results from air pollution research.



1.2. Objectives

This thesis aimed to investigate the characteristics of PMys for effective
management strategies using models of source apportionment and spatiotemporal

analysis. The specific objectives for achieving this goal are as follows:

1) To characterize the sources of PMas and the inhalation health risks from
PM, s-bound heavy metals in a medium-sized industrial city.

2) To assess the applicability of feature extraction using machine learning
models to predict the chemical constituents of PMys to improve the
reliability and availability of the data.

3) To predict latent source-specific PM, s, along with uncertainty estimates at
unmonitored sites, using Bayesian multivariate receptor modeling for

spatial prediction on a regional scale.



1.3. Dissertation structure

This dissertation comprises six chapters (Fig. 1.1). Chapter 1 describes the
background, objectives, and dissertation structure. Chapter 2 reviews previous
research related to this study. In Chapter 3, the source apportionment of PM> s and
their health risk by inhalation are demonstrated. Chapter 4 presents the prediction
of PM» s chemical constituents using four machine learning models. The spatial
distribution of PM> s sources in South Korea was estimated using Bayesian spatial
multivariate receptor modeling, as described in Chapter 5. Chapter 6 provides a

summary and the conclusions of the dissertation.



Chapter 1 Introduction

Chapter 2 Literature review

Chapter 4

Prediction of chemical components
of PM, 5 using machine learning
models

Source apportionment of PM, 5
and health risk assessment

Bayesian spatial analysis of
PM, 5 sources

Chapter 6 Conclusions

Fig. 1.1. Structure of the dissertation
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Chapter 2. Literature review

2.1. Source apportionment and receptor modeling of PM:.s

Source apportionment of PM, s is key to identifying the characteristics of
aerosols in the atmosphere (Hopke et al., 2020). As a major tool for source
apportionment, receptor modeling based on chemical mass balance and principal
component analysis, a statistical method, has been widely used to identify PM;s
sources (Choi et al., 2013; Samara et al., 2003; Yang et al., 2013). Hopke et al. (2020)
reviewed the research cases of source apportionment for airborne particulate matter
(PM2s and PMp) from 2014 to 2019 and reported a total of 414 publications
conducted in 58 countries worldwide. The number of case studies was 564 and 243
for PM,s and PM,o, respectively. Fig. 2.1 shows source apportionment cases
worldwide (Hopke et al., 2020). PM> s has been studied more recently than PMo.
The main pollutant from anthropogenic sources is PM» s than PMo; PM» s have many
more adverse health effects (Belis et al., 2013; Dai et al., 2015; Park et al., 2004).

The number of identified sources of PM,s in the literature was primarily
five to eight, despite the total range being one to nine (Hopke et al., 2020). However,
the characteristics of each source can differ by region and period (E. H. Park et al.,
2020; Silva et al., 2020). For example, an industry source is a broad category that
can include many relevant sources, such as power plants, incineration, and smelting
facilities (Choi et al., 2022). The characteristics of the detailed source, such as the
ratio of elements to key elements, differ by region, even though the name of the
source is the same (Lv et al., 2021). There are still many limitations, although the

names of sources are inferred through key elements and the various characteristics
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of each source. It is necessary to accumulate study results that can better reflect the
characteristics of the sources in various regions and times (Hopke, 2016). Table. 2.1
shows the results of the classification of source types and their contributions
worldwide by Hopke (2020). Such studies are continuously needed to infer the
characteristics of a specific region.

In Korea, research results are insufficient. According to Hopke et al. (2020),
there are only five source apportionment studies on PM in South Korea. Since then,
only a few studies have been published on this topic. Table 2.2 shows the research
cases of source apportionment using the PMF model, including domestic and
international journal papers. There are fewer than 10 studies. Due to these challenges,
there are many difficulties in estimating the source of PM in Korea in detail. Through
the accumulation of research results, a consensus can be created on the interpretation
of air pollution phenomena. Therefore, it is necessary to gather data on source

apportionment through various studies.
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Fig. 2.1. Map showing the locations of the sampling sites for PM,s (blue points), PM;y (red points), and combined PM;s/PM;, (purple
points) reported in the identified apportionment publications. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of Hopke et al. (2020)) (Hopke et al., 2020)
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Table 2.1. Tabulation of the fractional apportionments by global region or country (Hopke et al., 2020)

Source Australia Central Eastern Easterm Northern Northern Northem Northern South South South-eastern  Southern Southermn Western Western Western Northem  Southern

and New America  Asia Europe Africa America America  Europe America America Asia Asia Europe Africa Asia Europe  China China

Zealand & -Not -Canada -USA -Brazil - other (M49) (M49)

Caribbean China
No. of reports 4 4 27 20 4 23 148 8 7 4 14 46 86 10 12 60 205 41
PM. 5 (ug/m?) 15.8 275 24.7 25.0 8.5 11.0 149 224 35.1 248 102.5 204 50.7 46.7 156 1009 50.3
Mixed SIA (%) 115 423 31.5 0.0 26.8 46.2 25.0 171 201 239 343 181 213 51.8 36.0 31.0 31.0
Seasalt (%) 7.0 6.8 271 0.2 7.5 7.2 102 16.0 7.8 4.8 18.5 1.4 56 4.5 41 4.1
Dust (%) 5.1 7.2 185 20.0 5.4 24 188 338 13.5 191 9.3 19.8 18.4 6.0 123 89 8.9
Traffic (%) 104 176 238 18.6 8.0 504 235 355 230 252 266 17.9 149 19.2 193 193
Industry (%) 215 3.9 159 6.7 17.8 8.5 325 38.6 154 6.4 59 8.7 1.0 17.7 168 16.8
Biomass. burning (¥)  75.1 101 17.8 138 4.4 154 224 122 163 149 10.7 238 135 12.0 103 103
Coal or no. 6 oil 145 324 79 1.4 11.1 4.4 29.2 138 7.1 56.4 13.0 159 16.1 109 10.9
combustion (%)
Other (%) 120 119 185 24.0 10.1 26.0 4.1 179 15.7 239 10.8 145 15.7 1.5 15.2 105 10.5
PMp (ug/m?) 205 35.4 40.5 138 56.0 16.2 184 289 425 519 928 190.0 323 2202 853 306 164.6 110.0
Mixed SIA (%) 6.0 0.0 48.5 18.6 327 179 21.0 175 262 222 167 353 223 289
Seasalt (%) 13.0 1.0 8.0 4.5 33 156 14.0 16.5 89 22 6.2 101 6.9 6.0
Dust (%) 5.0 1.0 44.0 16.7 441 58.0 243 246 253 28.0 335 222 26.9 373 13.0 305 15.2
Traffic (%) 1.0 8.0 17.2 6.0 3.0 15.8 49 384 23.0 214 208 20.0 166 198 146 256
Industry (%) 48.0 59 11.2 6.6 111 49 19.8 74 17.9 a3 45 121 15.0
Biomass. burning (%) 14.0 17.0 123 33 76 17.0 11.8 94 14.4 143 59
Coal or no. 6 oil 1.0 25.0 41.7 14.0 49 5.6 129 5.7 221 18.0 7.8 202 173
combustion (%)
Other (%) 23.0 8.1 8.7 7.0 314 228 23.0 232 87 35.0 138 9.5 11.0 9.0
13



Table 2.2. Research on source apportionment using PMF model in Korea

Location Period No. of Contribution Reference
source
Seoul,
Daejeon, Secondary sulfate, secondary nitrate, mobile, biomass burning, incinerator, soil, (Kim et al.,
) 2014-2018 9-10 . . . .
Gwangju, industry, coal combustion, oil combustion, aged sea salt 2022)
Ulsan
Secondary sulfate (20.1%), secondary nitrate (19.0%), vehicles (23.3%), oil (Park et al
Seoul 2014-2015 9 combustion (9.07%), soil (8.20%), roadway (3.03%), coal combustion (4.20%), B
. . 2020)
biomass burning (12.2%)
Secondary sulfate (20.8%), secondary nitrate (24.3%), vehicles (15.7%), (Hwang et al
Seoul 2014 10 industry (4.2%), oil combustion (3.4%), soil (2.5%), road dust (1.8%), 2020) g B
incinerator (6.8%), coal combustion (9.3%), wood/field burning (13.8%)
Secondary sulfate (20.7%), secondary nitrate (25.3%), vehicles (14.1%), (Hwang et al
Daejeon 2014 9 industry (1.6%), oil combustion (4.4%), soil (8.1%), road dust (4.0%), coal 2020) g B

combustion (13.4%), wood/field burning (8.4%)
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Busan

Seoul

Daebu

Gyeongsan
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20132014 10

2016.05 -
2016.11
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Secondary sulfate (31%), secondary nitrate (19%), diesel vehicle (6%), gasoline
vehicle (12%), industry (3%), road dust (4%), ship (7%), soil (18%)

Secondary aerosol (31.2%), motor vehicle (19.2%), break and tire wear (3.5%),
coal burning (17.3%), oil combustion (2.0%), waste incineration (9.8%), biomass
burning (6.7%), industry (3.7%), sea salt (4.6%), road dust (1.9%)

Secondary sulfate (29%), secondary nitrate (13%), mobile (22%), oil combustion
(10%), soil (6%), coal combustion (9%), aged sea salt (8%), industrial activities
(1%), non-ferrous smelter (2%)

secondary sulfate (16.0%), secondary nitrate (20.6%), biomass burning (15.5%),
industry (10.4%), soil (7.0%), gasoline (9.1%), incinerator (10.4%), diesel
emission (11.0%)

(Jeong et al.,
2017)

(Park et al.,
2019)

(Kim et al.,
2018)

(Jeong and
Hwang,
2015)

15



The following is a detailed summary of the world's source apportionment
research cases: Han et al. (2017) identified seven sources and their contributions to
PMs based on six-year data in Baton Rouge, Louisiana, United States, using PMF
modeling. The sources identified were secondary sulfate, secondary nitrate,
industrial emissions, traffic, crustal dust, road dust, and sea salt, with contributions

of 38.4,17.6,18.7, 11.5, 6.1, 4.2, and 3.6%, respectively (Han et al., 2017).

Winter Spring

® Secondary Sulfate

m Industry

006 M Crustal Dust
9.19 ug/m* 9.51 ug/m? o Traffic

Summer ® Road Dust
m Sea Salt

 Secondary Nitrate

9.70 ug/m’ 8.96 ug/n’

Fig. 2.2. Seasonal variation of source contributions to PM:s from 2009 to 2014
in Baton Rouge, Louisiana, United States (Han et al., 2017)

Dai et al. (2020) investigated the changes in source contributions of PM2s
after the COVID-19 lockdown. Dispersion-normalized PMF was used for the hourly
PM_s chemical constituents data measured from January 1, 2020, to February 15,
2020, at Nankai University in the Jinan district of Tianjin, China. Fig. 2.2 shows the

time series contribution of PM.s, from the study by Dai et al. (2020). Six sources
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were identified. The differences between the PMF and dispersion-normalized PMF

were analyzed. Additionally, the effects of COVID-19 were studied.

Chinese New Year Eve
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Fig. 2.3. Time series of source contributions estimated using constrained PMF
and dispersion-normalized PMF

Park et al. (2020) investigated the long-term trends of source contributions
of PM_; in Seoul, Republic of Korea. PMF modeling was conducted using data from
2014 to 2015. The results were compared with the study that investigated the sources
of PM_5 from 2003 to 2007 (Heo et al., 2009). The results reveal that the contribution

of mobile sources decreased from 2003 to 2015 (E. H. Park et al., 2020)
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Fig. 2.4. Comparison of the source contributions to PM: s of Seoul, the Republic
of Korea in Heo et al. (left, from 2003 to 2007) and Park et al. (right, from 2014
to 2015)

Positive matrix factorization (PMF) is a widely used model globally as a
tool for source appointment of PMzs. The PMF model was developed and distributed

by the US EPA. Fig. 2.5 shows the execution image of the PMF modeling program.
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Fig. 2.5. The execution image of the PMF modeling program

Karagulian et al. (2015) reported 419 source apportionment studies
conducted in 51 countries worldwide. Among the principal component analysis
methods, positive matrix factorization (PMF), which limits factors to those with
positive values, is one of the most actively used receptor models worldwide,
including in the United States (Han et al., 2017; Paatero and Tapper, 1994; Polissar
et al., 2001), South Korea (Kim et al., 2018; E. H. Park et al., 2020), China (Lv et
al., 2021; Wu et al., 2018; Zhao et al., 2019; Zong et al., 2016), and Vietnam (Cohen
etal., 2010). In addition, there were 539 reported PMF results by Hopke et al. (2020).
The PMF model is the most utilized and studied model among existing receptor
models (Belis et al., 2013; Hopke et al., 2020; Kumar et al., 2022; Pant and Harrison,
2012). The basic calculation formulae and applications of the PMF model are

discussed in Chapter 3.
19



Notably, PMF modeling has error review capabilities, such as bootstrapping
(BS) and displacement (DISP), which lead to relatively accurate source
apportionment and are useful for interpreting source profiles based on domain
knowledge (Hopke, 2016; Paatero, 1997). Due to these advantages, the PMF model
is used the most and is emphasized as an important application point (Hopke et al.,
2020). In addition, new approaches have been proposed to improve usability (Brown
et al., 2015; Du et al., 2021; Wang et al., 2018). More recently, advanced methods,
such as dispersion-normalized (DN) PMF have emerged (Dai et al., 2021, 2020).
Matrix factorization with Bayesian methodology has also been used in receptor
models (Park et al., 2021, 2018; Park and Oh, 2015). It is necessary to increase the

number of research cases in Korea to apply these methods.
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2.2. Toxicity and health risk of assessment PM s

In particular, PM>s is harmful to human health; accordingly, PM>s is
classified as carcinogenic group 1 by the International Agency for Research on
Cancer (IARC) (WHO, 2005; Widziewicz et al., 2016). This group is the same as
that of arsenic and benzene, as described in Chapter 1. PM, s enters the lungs during
respiration, adversely affecting human health (WHO, 2005). Table 2.3 shows the

penetrability according to the aerosol particle size (Manisalidis et al., 2020).

Table 2.3. Penetrability according to particle size (Manisalidis et al., 2020)

Particle size (um) Penetration degree in the human respiratory system
>11 Passage into nostrils and upper respiratory tract
7-11 Passage into the nasal cavity
4.7-7 Passage into larynx
3.3-4.7 Passage into the trachea-bronchial area
2.1-33 Secondary bronchial area passage
1.1-2.1 Terminal bronchial area passage
0.65-1.1 Bronchioles penetrability
0.43-0.65 Alveolar penetrability

Many epidemiological studies have revealed that PM, s causes respiratory
diseases as well as cardiovascular diseases (Atkinson et al., 2014; Hamanaka and
Mutlu, 2018; Hopke et al., 2020; Kim et al., 2015, 2022; Li et al., 2013; Manisalidis
et al., 2020; Thangavel et al., 2022). Diseases caused by PM,s are found to be

cardiopulmonary disease, cerebrovascular diseases, neurodegenerative diseases,
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bronchitis, emphysema, irritation of the eye, asthma, and respiratory infections
(Thangavel et al., 2022). However, the mechanisms by which PM,s affects the
human body are still unclear (Thangavel et al., 2022). At the current level of
understanding, it is hypothesized that PM inhaled into the lungs causes cellular
inflammation, produces free radicals, or causes an imbalance in the nervous system
(Manisalidis et al., 2020; Thangavel et al., 2022).

Table 2.4 shows health complications caused by PM,s (Thangavel et al.,
2022). As shown in Table 2.4, PM, 5 affects health on short-term as well as long-term
exposure. The four effects of PM,s toxicity (1) pulmonary diseases, (2)
cardiovascular diseases, (3) cancers, and (4) neurodegenerative diseases are to be
examined in detail. This primarily refers to the literature review of the health effects
of PM> s exposure (Thangavel et al., 2022). In addition, the figures for each health
effect were referred to because well represented in the same literature (Thangavel et

al., 2022).
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Table 2.4. Health complications caused by PM, s (Thangavel et al., 2022)

Exposure System Affected

Health Effects

Cardiovascular

Increased rates of myocardial infarction and ischemia in those at risk

Exacerbation of cardiac failure

Short term

Respiratory

Increased incidence of arrhythmia
Increased incidence of deep vein thrombosis
Increased incidence of stroke
Increased wheeze
Exacerbation of asthma
Exacerbation of chronic obstructive pulmonary disease
Bronchiolitis and other respiratory infections
Increased incidence of emergency department visits

Cardiovascular

Increased rates of myocardial infarction
Accelerated development of atherosclerosis
Increased blood coagulability

Respiratory
Long term

Increase in systemic inflammatory markers
Increased incidence of pneumonia
Increased incidence of lung cancer

Impaired lung development in children
Development of new asthma

Reproductive

Increased incidence of preterm birth
Increased incidence of low birth weight

Brain

Increased risk of Alzheimer’s
Increased risk of Parkinson’s
Increased risk of neurodegenerative diseases
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Figure 2.6 indicates the underlying mechanisms of chronic obstructive

pulmonary disease and asthma from PM,s (Thangavel et al., 2022). The chemical

constituents of PM» s and PM; s-induced reactive oxygen species (ROS) pose a risk

to the respiratory health (Thangavel et al., 2022; Wu et al., 2016). For example,

increasing levels of PM increase sore throat, cough, sputum production, wheezing,

and dyspnea (Wu et al., 2016).

Pollution-induced airway inflammation (COPD, ASTHMA)

®

Inhalation of pollutants
triggers airway allergic
immune responses

@ DCs migrate to the LN, activate
' DCs sample allergen and allergen-specific T cells and
display pieces of the allergen induce clonal expansion and Ty2

on their surface on MHCII  polarization

®

Ty2 cells produce
inflammatory
cytokines which
induce allergic
inflammation and
asthmatic responses

Tu2

Airway inﬂan;ma(ion
caused by antigen-specific
immune response leads to
COPD, Asthma

Fig. 2.6. An illustration of underlying mechanisms of PM;s-induced chronic
obstructive pulmonary disease and asthma (Thangavel et al., 2022)
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Figure 2.7 shows the pathways by which PM promotes cardiovascular

impairments (Thangavel et al., 2022). Oxidative stress is the primary response to PM

exposure. A recent study suggested that PM.s causes both cardiac and vascular

dysfunctions (Thangavel et al., 2022).

Cardiac dysfunction

Vascular dysfunction

—

—— Cardiac autonomic dysfunction

Parasympathetic dominance

Pathological fibrosis
TGF-B1, GSK-3 3

Electrophysiological abnormalities
*heart rate, blood pressure
vcontractile velocity, peak shortening

Inflammation
*TGF-B1, TNF-a, IL-6, NF-xB

Oxidative stress

*MDA, HO-1, NOS2, Nrf2

Autophagy
Autophagosome, ER stress

Athcroselerosis, thrombosis, and vascular remodelling

*Vascular and systemic inflammation, Vasoconstriction,
hypercoagulation, monocytes, platelets, T lymphocytes, endothelial cell

apoptosis, athcrosclerotic plaques

+Angiogenesis, adhesion to endothelial ccll viability, Thrombosis

Fig. 2.7. Biological pathways whereby PM particles promote cardiovascular

impairments (Thangavel et al., 2022)

A positive correlation between the risk of lung cancer and PM exposure has

been previously reported (Hamra et al., 2014). In addition, the American Cancer

Society’s prospective Cancer Prevention Study II found that PM, s was significantly

positively associated with the death of kidney and bladder cancers from the
monitoring data of 623,048 individuals for 22 years (1982-2004) (Thangavel et al.,

2022; Turner et al., 2017). Figure 2.8 indicates the potential molecular pathways

involved in lung cancer (Thangavel et al., 2022).
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Fig. 2.8. Potential molecular pathways in air pollution-related lung cancer
(Thangavel et al., 2022)

It has also been suggested that PM affects the central nervous system and
causes neurodegenerative diseases (Costa et al., 2017; Thangavel et al., 2022). PM
from diesel exhaust causes electroencephalogram alterations and a general cortical
stress response (Criits et al., 2008). Fig 2.9 shows the effects of air pollution on the

nervous system (Thangavel et al., 2022).
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Fig. 2.9. Effects of air pollution on the nervous system and its possible role in
neurodegenerative disorders (Thangavel et al., 2022)

Research on the health effects of PM,s has revealed its toxicity.
Epidemiological studies, including experiments and molecular analyses, have also
been conducted (Thangavel et al., 2022). However, the toxicity value of PM for
health risk assessment has not yet been determined. To assess possible health risks,
researchers have performed a health risk assessment for each component based on
the concentration of detailed chemical constituents in the PM (Briffa et al., 2020;
Choi et al., 2022; Hu et al., 2012; Khillare and Sarkar, 2012; Kim et al., 2022; Lee
et al., 2022; Sakunkoo et al., 2022; Yang et al., 2013; Zhao et al., 2021; Zheng et al.,
2019). Health risk assessment was conducted using the method described by the US
EPA (US EPA, 2009).

The human health risks caused by PM,s-bound heavy metals were calculated
using this method. The principal pathway considered is the inhalation of ambient air
(Sakunkoo et al., 2022). The health risks posed by heavy metals are divided into non-

carcinogenic and carcinogenic (Fan et al.,, 2021). The International Agency for
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Research on Cancer (IARC) classifies As, Ni, Cd, and Cr as Group 1 (carcinogenic
to humans), Pb as Group 2A (probably carcinogenic to humans), and Group 2B
(possibly carcinogenic to humans) (Zheng et al., 2019). The non-cancer risk was
calculated using the hazard quotient (HQ) (Lee et al., 2022; Zhao et al., 2021; Zheng
et al., 2019). The detailed calculation procedure is described in Section 3.

Zheng et al. (2019) reported health risk assessment results using PM s collected
from 2014 to 2016 in Nanjing, China. The results showed that the carcinogenic risks
were within the tolerance or acceptable level (1x107°~1x107%). The HQ values were
less than 1, which implies that there was no significant risk of non-carcinogenic
effects and was set by the US EPA. Fig. 2.10 showed the health risk assessment of

Zheng et al. (2019).
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Fig. 2.10. Non-cancer (a) and cancer risks (b) of selected trace elements and
their total risk cumulative probabilities (c, d) in PM;s, before and after the
release of pollution control measures (BPCM: Jan.—Nov. 2014 and APCM: Nov.
2015-Jul. 2016). Box and whisker plots are constructed by 25-75" and 5-95"
percentiles, respectively. (Zheng et al., 2019)

Zhao et al. (2021) performed a health risk assessment using PM, s from coal-
fired power plants in Fuxin, China. The non-carcinogenic risk values of As for
children and adults were 45.7 and 4.90, respectively. The carcinogenic risk values of
Cr for adults and children were the highest, with values of 3.66 x 107 and 2.06 x
1073, respectively. These results indicate the need for a response to the high health

impact of PMzs.
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Khillare and Sarkar (2012) evaluated the health effects of Cr and Ni in PM in
Delhi, India. The ILCR values were 1.51x107* and 1.5x1075 for Cr(VI) and Ni,
respectively. It can impact health risks from PM in Delhi, considering lifetime
inhalation exposure.

Sakunkoo et al. (2022) reported the human health risks of PM>s-bound heavy
metals from anthropogenic sources in Khon Kaen Province, Thailand, between
December 2020 and February 2021. According to the results, adults were exposed to
risks that were beyond the safe level, showing a high carcinogenic risk in urban areas
(residential), industrial zones, and agricultural zones.

As shown thus far, there are many cases where non-carcinogenic and
carcinogenic risks are higher than the safety level in health risk assessment studies
conducted in East Asia. However, these studies have a limitation such that it was
possible to evaluate only the components whose toxicity values were provided by
the US EPA. This means that the health impact may be underestimated compared
with the actual health impact. Therefore, the health risk assessment of PM» s needs

to be studied constantly.
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2.3. Machine learning approaches in the prediction of PM; s

Machine learning models, which have recently been in the spotlight, can be
used to interpret complex phenomena (Jordan and Mitchell, 2015). Accordingly,
concepts introduced in computer science are used in the analysis of earth sciences
(Kelp et al., 2020; Zhong et al., 2021). They have been successfully used in flow
pattern analysis, weather analysis, and air quality prediction (Hadeed et al., 2020;
Hu et al., 2017; Lyu et al., 2019; Yao and Ruzzo, 2006).

Recently, attempts have been made to develop models to predict air
pollution using machine learning (Chang et al., 2020; Kelp et al., 2020; Reichstein
et al., 2019; Zhong et al., 2021). Machine learning models work by analyzing data,
looking for specific patterns and rules, and making predictions when given a
sufficient amount of data (Alpaydin, 2020). Previous studies have successfully
predicted the concentrations of PM2s, PM1o, and gaseous air pollutants (such as
sulfur dioxide [SO2], nitrogen dioxide [NO2], and ozone [Os]) using machine
learning (Castelli et al., 2020; Chang et al., 2020; Zhong et al., 2021).

Lyu et al. (2019) improved the accuracy of PM_ s predictions in China using
an ensemble of a deep neural network and a community multiscale air quality
(CMAQ) model. The results indicated that the prediction of accuracy concentration
of PM,s increased from 0.39 to 0.64 in R?, and the root mean squared error (RMSE)
decreased from 33.7 to 24.8 pg/m? (Lyu et al., 2019). Fig 2.11. shows the prediction

accuracy results using (a) the CMAQ model only and (b) the fusion model.
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Fig. 2.11. Scatter plots of (a) raw CMAQ simulations and (b) final fusion
product, evaluated with independent China Meteorology Agency (CMA)
observations in 2016. The green line reflects the linear regression of predictions
against observations; the dashed red line represents the one-to-one line
indicating perfect agreement (Lyu et al., 2019)

Hu et al. (2017) estimated daily average PM2s concentrations in the United
States with an accuracy of R? = 0.80 using the Random Forest (RF) algorithm, a
machine learning technique. Fig. 2.12 shows the prediction results and the
differences between the predicted and observed PM2s concentrations of Hu et al.

(2017).

32



O PM; 5 Monitor

(s e o |
BON -

Fig. 2.12. Annual mean predictions. (a) Annual mean PM; s predictions over the
continental United States for 2011; (b) annual mean PM;s measurements at
ground monitors; (c) difference between annual mean predictions and
observations at ground monitors and difference interpolations over the
continental United States (Hu et al., 2017)

Table 2.5 presents recent studies to predict air pollution using machine
learning models. Most of the studies predicted the concentrations of PM o, PMz 5, O3,
NO,, CO, and SO,. However, most of them predicted the mass concentration of PM
or the concentration of gaseous air pollutants. The use of machine learning in
predicting PM» s constituents has not been reported, even though PM»s chemical
constituents provide information about the origin and hazard of PMz s (Zheng et al.,

2019).
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Table 2.5. Research on predicting air pollution using machine learning models

Location Model used Prediction target Additional data used Prediction accuracy Reference
PM; 5 Aerosol optical depth, land use .
USA RF . . . ; . R? H 1., 201
(Multiple sites) variables, meteorological data 0-80 in (Hu et al., 2017)
Various models Missing value of PM, s )
USA PM .32-0. R? H 1,202
(8 models) (within 24 hours) 22 0.3270.65 in (Hadeed et al., 2020)
USA Ai lity ind SO, 03, NO,, CO, PM ind
e SVR* T quatity index 2 B3 P2 L PR WG gy 104 accuracy (Castelli et al., 2020)
(California) (category) speed, temperature, humidity
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DNN, RF PMs

Chi . .
ma (ensemble) (Multiple sites)
Chile kNN, linear Missing value of PMa s
regression, etc. (Daily average)
Taiwan RNN** PM; s, PMio
iw
(LSTM***) (hourly future)

Numerically modeled data

PMzs, PMio, NOy, O3, CO,

temperature, humidity,
speed, rainfall

wind

SO,, O3, NO, NO,, NOy, CO,

rainfall, data time,
weekday, and hour

month,

0.39-0.64 in R?

0.37-0.91 in R?

30—40% error in
8-hour prediction

(Lyu et al., 2019)

(Quinteros et al.,
2019)

(Chang et al., 2020)

* SVR: Support vector regression
** RNN: Recurrent neural network

***_STM: Long short-term memory
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The commonly used machine learning models include (1) fully connected
deep neural networks, (2) Random Forest, (3) k-nearest neighbor, and (4) generative
adversarial imputation networks.

The fully connected deep neural network is specialized in feature extraction
and is one of the most widely used neural network models for nonlinear regression
(Hinton and Salakhutdinov, 2006; Hwangbo et al., 2021). The DNN model was
trained by adjusting the weights and biases of the hidden layer neurons to correspond
to the input and output data, respectively. For the models, avoiding overfitting and
optimizing hyperparameters is crucial to develop a model with high prediction
accuracy, with training as well as actual field data (Montavon et al., 2018). Fig. 2.13
shows the structure of the deep neural network model. The hyperparameters of the
model are indicated by blue boxes. The input and output data can be adjusted

according to the convenience of the analyst.
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Fig. 2.13. Structure of a deep neural networks model

A generative adversarial imputation network is a missing-value processing
model that competes with learning and improves accuracy using a generator and
discriminator (Li et al., 2019; Nazabal et al., 2020; Yoon et al., 2018). Fig. 2.14

shows the architecture and learning process of the Generative adversarial imputation

network. This model was presented first by Yoon et al. (Yoon et al., 2018). A

generative adversarial imputation network has the characteristic of being able to use
data with missing values without modification (Ivanov et al., 2018) and has been
recently used in various fields for processing missing values (Andrews and Gorell,

2020; Popolizio et al., 2021; Vifias et al., 2020). This is based on the basic assumption

that missing values in the data occur randomly (Yoon et al., 2018).
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Fig. 2.14. Architecture and training process of the generative adversarial
imputation network model

model widely employed for multi-dimensional classification and regression
problems (Breiman, 2001). Various decision trees in RandomForest models are
trained to enhance the model performance (Tella et al., 2021). Fig. 2.15 shows a brief
description of the branch division of a tree and the calculation of the predicted value.
RandomForest has shown outstanding prediction results in situations where the

number of variables is larger than the number of monitored data (Biau and Scornet,

2016).
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Fig. 2.15. Schematic diagram of a tree, branch division, and predicted value
calculation

The k-nearest neighbor algorithm is a non-parametric model for
classification and regression, wherein the prediction object is calculated as the
average of the k values closest to the prediction point (Tella et al., 2021; Yao and
Ruzzo, 2006). The Euclidean distance for the judgment of the nearest neighbor is
used to calculate the distance in the k-nearest neighbor algorithm. Fig. 2.16 shows

the calculation procedure for the unknown value.
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Fig. 2.16. Schematic diagram of the calculation process of k-nearest neighboring

algorithm

Thus far, we have investigated commonly used machine learning models.
However, as mentioned in Table 2.5, there are a few examples of such machine

learning research applications. There are especially few applications in Korea.

Therefore, there is a need to diversify studies on machine learning applications in air

pollution.
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2.4. Bayesian approach in source apportionment

The Bayesian method has been of interest in source apportionment studies
in recent decades (Hopke, 2016). Bayesian factor analysis has advantages that can
overcome challenging problems in factor analysis, such as uncertainty estimation
and rotational ambiguity (Park and Tauler, 2020). Domain knowledge can be
incorporated into parameter estimations in Bayesian source apportionment models
(Park and Tauler, 2020).

Despite these strengths, there have been limited studies on source
apportionment using the Bayesian method. Hopke (2016) pointed out that the
conceptual framework and statistical computations of Bayesian source
apportionment are complex, which makes it difficult to use the model. Bayesian
source apportionment has not been widely applied (Park and Tauler, 2020).
Continuous research is needed to increase usability and exploit its advantages for
advancing source apportionment techniques. This chapter thoroughly investigates
the literature using the Bayesian approach in source apportionment. Table 2.6 shows

the applications of Bayesian factor analysis to source apportionment.
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Table 2.6. Research using Bayesian approach in source apportionment

Research summary Location Reference

- Source apportionment of particle number size distribution using Bayesian Dirichlet
process model UK (Baerenbold et al., 2022)
- Identification of a sources in London Gatwick Airport

- Presenting user-friendly software tools to implement Bayesian multivariate receptor
modeling USA (Park et al., 2021)
- Example analysis of PM; 5 dataset from El Paso, USA (4 sources identified)

- Incorporating latent source profiles and meteorological conditions using Bayesian
hierarchical source apportionment model Taiwan (Tang et al., 2020)
- Identification of major sources in two study areas of northern Taiwan

- Development of Bayesian spatial multivariate receptor model to enable predictions of
source contributions at any unmonitored site USA (Park et al., 2018)
- Identification of 5 sources from 9 monitoring sites in Harris County, Texas

- present a source-specific health effects evaluation approach within a Bayesian
framework that can handle both parameter uncertainty and model uncertainty in USA (Park and Oh, 2018)
source apportionment under Poisson health outcome models
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Presenting a new flexible source apportionment approach, Bayesian quantile
multivariate receptor modeling
Dealing with the non-normality of air pollution data and outliers

Extending the previous Bayesian multivariate receptor modeling to account for (1)
nonnegativity constraints and (2) outliers by considering a heavy-tailed error
distribution

Identification of 6 sources in Phoenix, Arizona

Development of a multipollutant approach that incorporates both sources of
uncertainty into the assessment of source-specific health effects

Development of enhanced multivariate receptor models that can account for spatial
correlations in the multipollutant data collected from multiple sites

Bayesian receptor modeling incorporating a priori information about the source
emissions from national database

Application of the model in 2 locations in USA (Boston, Massachusetts and Phoenix,
Arizona)

Evaluating the source-specific health effects associated with an unknown number of
major sources of multiple air pollutants
Estimating source contributions along with their uncertainties and model uncertainty
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(Park and Oh, 2016)

(Park and Oh, 2015)

(Park et al., 2015)

(Hackstadt and Peng, 2014)

(Peak et al., 2014)



Using Dirichlet distribution to extend the receptor model for time-varying source
profiles
Evaluation of the extended model using the dataset of St. Louis, Illinois

Dirichlet based Bayesian receptor modeling to incorporate a prior information on
source profiles

Comparison the simulation results of the Bayesian receptor modeling to PMF
modeling

Estimating the source spatial profiles using Bayesian approach
Identification of 2-3 sources of PMo in Seoul using the data of 17 monitoring sites

Proposing Bayesian approach that can handle the unknown number of pollution
sources and identifiability conditions

Dealing with model uncertainties in receptor models by using Makov chain Monte
Carlo (MCMC) schemes

Development of time-series extension of multivariate receptor models to account for
temporal correlation in parameter estimation
Application of the model in Atlanta

USA

USA

Korea

USA

USA

(Heaton et al., 2010)

(Lingwall et al., 2008)

(Park et al., 2004)

(Park et al., 2002)

(Park et al., 2001)
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Baerenbold et al. (2022) applied the Bayesian Dirichlet process model for
source apportionment of the particle number size distribution measured near London
Gatwick Airport, UK, in 2019. Nine sources were identified, and the results were
compared with those of Tremper et al. (2022). The estimated particle-size

distributions for each source are shown in Fig. 2.17.
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Fig. 2.17. Particle size distribution for the 9 sources identified by the model.
Solid lines represent the sources which were also found using PMF in Tremper
et al. (2022), while dashed lines are from Baerenbold et al. (2022)

Park et al. (2021) presented user-friendly software tools to implement
Bayesian receptor modeling for the convenience of the investigators. The tools were
developed for use in MATLAB and R software. This is expected to solve the problem
of the low accessibility of Bayesian source apportionment modeling, which has been

mentioned previously (Hopke, 2016; Park and Tauler, 2020).
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Tang et al. (2020) identified major sources in two study areas of northern
Taiwan (Shimen and Taipei) using a Bayesian hierarchical model. The results of
Bayesian receptor modeling were compared with the results of PMF modeling using
simulated data to estimate the performance of the models. Fig. 2.18 shows a
comparison of the source profiles obtained from the Bayesian model and the PMF
model (Tang et al., 2020). The Bayesian model showed a better performance. Based
on these results, Tang et al. (2020) proposed a multivariate source apportionment
model using a Bayesian framework for latent source profiles to incorporate domain
knowledge, such as emissions and meteorological data. This method can be used to

avoid restrictive assumptions (Tang et al., 2020).
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Fig. 2.18. Comparison of the estimated source profiles obtained from the
proposed Bayesian and PMF models with the true values (Tang et al., 2020)

Park et al. (2018) proposed a Bayesian spatial multivariate receptor model

that can incorporate multisite multipollutant data and predict the source

apportionment results at any unmonitored location. The model used 17 volatile

organic compound data collected from nine monitoring sites in Harris County, Texas,

United States, and predicted the source contributions of five major sources (Park et

al., 2018). Fig. 2.19 shows the predicted surface of the source contribution from
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Bayesian spatial multivariate receptor modeling. This is the first study to predict the
surface map of the source contributions using Bayesian receptor modeling. The
method and outcome of this research can considerably aid in developing effective

pollution control strategies in cities with no multi-pollutant data. They are expected

to be used in various applications.
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Park and Oh (2015) proposed a robust Bayesian receptor model to estimate
the uncertainty of source contributions and source profiles by extending previous
Bayesian multivariate receptor modeling to account for (1) non-negativity
constraints and (2) outliers by considering a heavy-tailed error distribution (Park and
Oh, 2015). The proposed robust Bayesian receptor modeling was investigated using
simulated data and monitored PM» s speciation data from Pheonix, Arizona, USA.
Fig. 2.20 and Fig. 2.21 show the results of robust Bayesian receptor modeling of the
simulated data and the monitored data, respectively (Park and Oh, 2015). In the
simulation results, the modeling results tended to agree well when the data contained
outliers (Fig. 2.20). In practical applications, six sources were identified with
uncertainty estimates of 95% posterior intervals (Fig. 2. 21). This approach can
provide uncertainty estimates for both source contributions and profiles, coping with

unknown identifiability conditions.

49 ¥,



Souree

Soung2

Souea3

Souree 1

Souee 2

Source 3

30

=25

15

10

£

=0

a0

140 160

f=ta)

a0

so 80 100 1=z0 140 160 180

=0

o 20 100 1=0 140 160 180
Obsenmtion #

h
RE=1-] 140 160

=0

a0

so 80 100

Observation #

b

1=0 140 180

=Zoo
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outliers (Park and Oh, 2015)
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Fig. 2.21. Time series plots of the estimated source contributions (in pg/m3)
using Method G for 1027 days with their uncertainty estimates (95% posterior

intervals) represented by dashed lines (Park and Oh, 2015)

Hackstadt and Peng (2014) proposed a Bayesian source apportionment

model that incorporates a priori information about source emissions from a national

database. The proposed model was also applied to two locations in the USA (Boston,

Massachusetts, and Phoenix, Arizona). The authors concluded that uncertainties in
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Zn

Heaton et al. (2010) used Dirichlet distribution to extend the receptor model
ocC

for time-varying source profiles. Fig. 2.22 shows the source profile of the zinc
smelter source from the results of time-varying receptor modeling (model proposed
by Heaton et al. (2010)) and time-constant receptor modeling (PMF model). The
authors pointed out that time-varying source profiles were empirically and physically

justifiable and could reduce the estimation error (Heaton et al., 2010).

the source contributions should not be ignored.
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Park et al. (2004) estimated the major source regions of PM o using the data
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Fig. 2.22. Time plot of the six largest elements for the zinc smelter profile as
identified by the Dirichlet process model (solid line). The dashed lines

correspond to the time-constant PMF estimate.
from 17 monitoring sites in Seoul using the Bayesian spatial receptor modeling.



Sixteen candidate models were considered and two models were selected as the best
model based on the value of the estimated marginal likelihood (Park et al., 2004).
Fig. 2.23 shows the result of the Bayesian receptor modeling in winter in Seoul (Park

et al., 2004).

Fig. 2.23. Spatial profiles for (a) Source 1, (b) Source 2, and (c) Source 3 in
Winter. The first letter of each site name corresponds to the actual location of
the monitoring station, and ''-gu'' is omitted from the site name for the space
(Park et al., 2004)

Although the Bayesian approach to air pollution is an emerging field of research
with many advantages, there are not many applications because of the difficulty for
investigators to start (Hopke, 2016). Therefore, additional studies are required to

understand Bayesian methods in receptor modeling and air pollution phenomena.
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Chapter 3. Source apportionment of PM:.s using

PMF model and health risk assessment by inhalation1

3.1. Introduction

Fine particulate matter (PM, s) in the atmosphere is classified as a Group 1
carcinogen by the World Health Organization (WHO) owing to its carcinogenicity
to humans (Anderson, 2009; WHO, 2005). In many countries, PM, s concentration
is used as a major indicator of air quality, and significant efforts have been made to
reduce PM; s pollution (Nazarenko et al., 2021; Riojas-Rodriguez et al., 2016). For
a proper PM,s management, pollution sources should be accurately managed by
determining the relationship between the source characteristics and atmospheric
concentrations (Fang et al., 2020; Kim et al., 2019; Long et al., 2021). However,
when PM; s is released into the atmosphere, it immediately goes through complex
mechanisms such as advection, diffusion, reaction, and deposition; therefore, it is
difficult to identify its source (Anderson, 2009; Riojas-Rodriguez et al., 2016). Thus,
to effectively clarify the mechanisms and characteristics of PM,s pollution and
improve air quality, scientific methods should be applied to identify and quantify
PM, s sources (Belis et al., 2013; Hopke, 2016; Wang et al., 2012). In addition, as
the impacts on human health vary according to PM, s source, management priorities

should be defined based on the evaluation of health impacts and source

1 A significant portion of this chapter was published in the following article: Lee, Y.S., Kim,
Y.K., Choi, E., Jo, H., Hyun, H., Yi, S.-M., Kim, J.Y., 2022. Health risk assessment and source
apportionment of PM2.5-bound toxic elements in the industrial city of Siheung, Korea.
Environ. Sci. Pollut. Res. 1, 1-14. https://doi.org/10.1007/s11356-022-20462-0.
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apportionment (Kim et al., 2015; Yang et al., 2013).

The health risk assessment coupled with source apportionment can be used
to develop more specific environmental health policies because the health risks due
to exposure to PM» s may vary depending on the emission source. (Kim et al., 2019;
Leogrande et al., 2019; Wang et al., 2020; Yang et al., 2013; Zhang et al., 2020). It
is shown that oxidative potentials per PM mass differs greatly depending on the
emission sources such as vehicle exhaust and secondary aerosols (Shiraiwa et al.,
2017). Accordingly, health risk assessments by sources were considered essential for
comprehensive understanding behavior of particulate matter (PM) (Choi et al., 2022;
Fan et al., 2021; Li et al., 2013). Also, although the importance of evaluation of
ambient PM that takes into consideration size, chemical composition, and source of
particles has been pointed out (Cassee et al., 2013), those factors have rarely been
involved in the health or toxicity assessment (Fushimi et al., 2021; Hannigan et al.,
2005; Kim et al., 2020). Recent relevant studies investigate specific sources and
chemical components of air pollution that affect human health and compared the
assessment results to those of other regions, but these studies are still lacking (Fan
etal., 2021). Furthermore, some studies show that health effects are still indicated in
developed countries with low PM> 5 concentrations, it is still necessary to study on
which pollutants and how they affect human health (Ma et al., 2022; Thurston et al.,
2021; Christidis et al., 2019).

To date, far too little attention has been paid to conduct both source
apportionment and health risk assessment simultaneously in middle-sized industrial
cities that could exist in any country in the world, and rather, only some large cities
are being studied (Fu et al., 2021; Hu et al., 2012; Yang et al., 2013). Air pollution is
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generally more severe in industrial areas, owing to local industrial emissions (Fu et
al., 2021; Shende and Qureshi, 2022). The negative impact to human health in these
areas are expected to be greater than those to humans in areas with less pollution
because of the presence of pollutants such as heavy metals, organic carbon (OC), or
elemental carbon (EC) (Kumar et al., 2020; Samara et al., 2003). Therefore, the
method source apportionment integrated with health risk assessment needs to be
applied as a basis for the development of air pollution management policies,
especially in industrial areas.

The main purpose of this study was to identify the sources of PM, s and to
evaluate the health risk of each source type in Siheung, which is a city with national
industrial complexes located in the Republic of Korea. The specific aims of this study
were to (1) identify and apportion PM, s sources with error estimation, (2) assess
health risks of PM> s inhalation and the contribution of each source to these health
risks from heavy metals in PM> s, and (3) identify the characteristics of the sources
that represent higher health risks and explore appropriate PM, s reduction measures
based on a source-based health risk assessment. The target area of this study is a
medium-sized industrial city, which is similar to many other industrial cities

worldwide.
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3.2. Materials and methods

3.2.1 Study site, sampling, and analysis

Siheung City is located at approximately 20 km southwest of Seoul,
Republic of Korea, and it has a population of approximately 0.56 million (as of 2021).
In the southwest of Siheung City, 10,000 factories are located in a national industrial
complex, with an area of approximately 165 million m? (Siheung City's official

website, https://www.siheung.go.kr/english/, last access: 10 August 2021). The main

industrial fields include textiles, chemicals, metal smelting, printing, and paper,
Siheung City has high accessibility to Seoul owing to the highways and nearby ports;
therefore, industrial activities are prominent in that area. It shares city-regional
characteristics with medium-sized industrial cities in other major countries
worldwide. Fig. 3.1 illustrates the location of Siheung City and its industrial
complexes. The daily average PM» s concentrations in Siheung City were compared

with those of other industrial cities in Korea, China, and Germany.
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Fig. 3.1. Locations of this study site (Siheung city and sampling site)

Fig. 3.2 shows the PM, s concentration levels of industrial cities in China
and Germany (Beijing, Shanghai, Hamburg, Kassel), in Korea (Ulsan, Yeosu,
Incheon, and Daebudo), and Seoul, the capital city of Korea. For the data, the air
quality index value obtained from the Air Quality Historical Data Platform

(https://agicn.org/, last access: 10 August 2021) was converted into mass

concentration.
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Fig. 3.2. Average daily PM,s concentration comparisons between the sampling
site and other sites

To quantify the chemical composition of PM,s samples were collected
every three or four times a week over 24 h from November 2019 to December 2020
at the rooftop of Jeongwnag-dong National Air Quality Measuring Station
(37.3472°N, 126.7399°E, shown as a red star in Fig. 3.1), which is approximately 10
m above the ground level. A PM,s sampler (PMS-204, APM Engineering, South
Korea) with three parallel channels was used to collect PM, s samples. Two channels

were installed with Teflon filters (2 um pore size and 47 mm diameter, Measurement

Technology Laboratories, USA) and one channel with a quartz filter (47mm diameter,

Pall Corporation, USA). Each sampler was operated for 24 h at a 16.67 L/min flow
rate. The mass concentration, ionic component, OC, EC, and elemental components
of PM,s were analyzed as follows. The mass concentration was calculated by
measuring the weight of a 24 h dried Teflon filter (PT47P, MTL, US) before and after
sample collection, and then dividing the obtained value by the collected air volume.

The weight of the filters was measured after removing static electricity at a constant
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temperature (21+1.5°C) and humidity (35+5%). Moreover, the weight of the blank
filter was measured and used for correction. lon component analysis was performed
by ion chromatography (930 Compact IC Flex, Metrohm, Switzerland) using a
Teflon filter (TF-10000, PALL, USA). In the analysis, each of the entire sampled
filter was extracted for 120 min in a bath-type sonicator using 40 ml of distilled water,
and then filtered using a 0.45 pm membrane. For OC and EC, a quartz fiber filter
paper (7407, PALL, USA) cut to a diameter of 4 mm in the sampled portion was
used, and the analysis was performed using the thermal optical transmittance (TOT)
method in a carbon analyzer (laboratory OC-EC aerosol analyzer, Sunset Lab, USA),
and the analysis conditions followed the NIOSH 5040 protocol. The trace elements
were analyzed by energy dispersive X-ray fluorescence (ED-XRF) spectroscopy
(ARL QUANT'X ED XRF Spectrometer, Thermo Fisher Scientific, USA) using
Teflon filters (PT47P, MTL, US) without additional pretreatment. Namely, each of
the entire sampled filter was used in the measurement. A total of 29 components were
analyzed. Including the mass concentration analysis, 6 ionic species (NO5", SO4%,
NH4", K*, Na*, and CI'), carbons (OC and EC), and 21 species of elemental
components (Na, Mg, Al, Si, S, Cl, K, Ca, Ti, V, Cr, Mn, Ba, Fe, Ni, Cu, Zn, As, Se,

Br, and Pb) were quantified.
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3.2.2 Positive matrix factorization (PMF) modeling and combined analysis with

meteorological data

The PMF model has been widely used as a method of factor analysis to
derive air pollution sources from speciated sample data (Hopke, 2016; Paatero, 1997;
Paatero and Tapper, 1994). The data matrix can be separated into factor contributions
(G) and factor profiles (F) (United States Environmental Protection Agency (US EPA)

2014). The equation for the PMF model is given by (Paatero and Tapper 1994).

X=GXF+E Eq.3.1

where X is a matrix of the sample dataset (e.g.,n X j matrix, where n is the sampled
date and j is the chemical species of the data), G is the source contribution matrix
(e.g.,n x qmatrix, where q is the source contribution), F is the source profile matrix
(e.g., q x j matrix), and E is a residual matrix (e.g., n X j matrix).

In Eq. 3.1, all elements of matrices G and F are constrained to positive
values. To derive the appropriate G and F matrices, the objective function Q in Eq.

3.2 was minimized (Paatero, 1997).

n m 2
Q= z Z (ei> Eq.3.2
¢ Oij o
where n is the number of samples, m is the number of species, e;; is the residual

(e.g., element of matrix E), and o;; is the data uncertainty (e.g., uncertainty of

chemical species j at date 1).
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The US EPA PMF version 5.0.14 was used to estimate the source
contribution and profile in the target area. The concentration data for the modeling
included the pre-processed chemical composition analysis of 22 substances (NOs",
SO4*, NH4", K*, Na*, CI', OC, EC, Mg, Al, Si, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, As,
and Pb) and PM, s mass concentration. The pretreatment process considered the ratio
of cations and anions in PM, 5, and data were excluded if concentrations were below
the detection limit or when an outlier was detected. If there were duplicate
measurements, one was selected for use. Data with an S/N ratio of 0.2 or less were
also removed. This method is an established procedure reported in previous studies
(Choi et al., 2013; Kim et al., 2018; E. H. Park et al., 2020). The data uncertainty

was calculated using Eq. 3.3, according to the US EPA guidelines (US -EPA 2014).

(5/6) x MDL (if Conc. < MDL)

\/(Conc.x 0.1)2 4 (0.5 x MDL)? (if Conc.> MDL)

where MDL is the method detection limit and Conc. is the concentration (ug/m?) of
the species, (e.g., Xjj). MDL values of the elemental components are listed in Table

3.1.

Table 3.1. Method detection limit (MDL) values of the elemental components
(unit: ng m)

Al Si Ca Ti A\ Cr Mn Fe Ni Cu Zn As Pb

6.69 554 439 372 0201 0.726 0969 7.04 0.609 0242 122 142 3.19
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The data used for the modeling included 95 daily average values. The
number of sources (e.g., q) in the model was selected by repeated modeling.
Moreover, BS and DISP analyses in the US EPA PMF 5.0 were conducted to confirm
the appropriate range of major chemical species by source. These functions are
widely used to investigate errors and rotational ambiguity (Dai et al., 2020b). PMF
results of 8 to 10 factors were considered for the best solution.

The CPF analysis was applied to investigate source directionality and the
PSCF analysis was applied to locate possible source areas. The hybrid single-particle
Lagrangian integrated trajectory (HYSPLIT 5) model and gridded meteorological
data from the US National Oceanic and Atmospheric Administration were used to
calculate air parcel backward trajectories.

The conditional probability function (CPF) enable to analyze the changes
in PMs concentrations for each source according to wind direction and speed
(Carslaw, 2015).. The CPF is defined as CPF = mg/ng, where my represents the
samples above a certain concentration in the wind direction 0, and ng is the total
numbers of samples in the same wind direction. CPF values were visualized using
hourly wind direction and speed data combined with PMF source contributions using
the OpenAir package in R (version 4.0.3, Vienna, Austria). Meteorological data were
obtained from the weather station located at the same position as the sampling site
(37°20'48"N  126°44'24"E) and operated by the Korea Meteorological

Administration (data are available at https://data.kma.go.kr/, last access: 10 August

2021). The upper 25% of PMF source contributions was used as the threshold criteria.
Subsequently, backward trajectory analysis was conducted using the Hybrid
Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model. The
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transboundary airmass transport pathways from the sampling site were predicted.
According to the sampling date, 24 h and 72 h of back trajectories were analyzed in
1 h increments. The possible past routes were tracked using the Global Data
Assimilation System (GDAS) 1-degree meteorological data. The HYSPLIT version
5.0 and PySPLIT, which is a Python-compatible package (Warner, 2018), were used.
The potential source contribution function (PSCF) was calculated based on the
results of the backward trajectory analysis. The PSCF model indicates the
conditional probability of air coming from an area (Ashbaugh et al., 1985) and is

represented by Eq. 3.4.

where m;; is the total number of trajectory endpoints that exceed the threshold
concentration in the i, j grid cell; and n;; is the total number of trajectory endpoints
that pass the i, j™ grid cell. In this study, the threshold concentration for m;; was in
the 70th percentile.

The weighted PSCF (WPSCF) value can lead to more reliable results
because the PSCF value can have high uncertainty in some cases (Polissar et al.,
2001). Therefore, the WPSCF was calculated using Eq. 3.5. In addition, visualization
was performed using WPSCF(n;;) at each grid and interpolated by Kriging. The
results and discussion of the combined analysis with meteorological data is also

provided.
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1.0 X PSCF(n;)  (njj > 3nayg)
0.7 X PSCF(n;j)  (3Nayg > nyj > 1.5n4y4)
0.4 X PSCF(n;;)  (1.5nayg > Njj > Nayg)
0.2 X PSCF(nj;)  (Nayg > ny))

WPSCF(n;;) = Eq.3.5

3.2.3 Health risk assessment

Using the species concentration for each source obtained through PMF
modeling, the health risk was calculated following the guidelines established by the
US EPA (2013, 2009). We evaluated only the substances with toxicity values, similar
to previous studies on health risks of air pollution (Choi et al., 2011a; Fu et al., 2021;
Huetal., 2012; Yang et al., 2013; Zhao et al., 2021). Therefore, the health risk results
of this study did not reflect the ion components, OC, EC, and PMs itself. The health
risk was assessed only for toxic elements in PMzs.

As inhalation is the predominant pathway for human exposure to PM, s
bound toxic elements, we considered only the inhalation pathway for carcinogenic
(As, Cr, Ni, and Pb) and non-carcinogenic (As, Cr, Cu, Ni, Pb, V, and Mn) risk
estimations. For Cr, because its hexavalent and trivalent forms generate different
levels of health impacts, the ratio of hexavalent to trivalent was set to 3:7 by referring
to the abundance ratio in the PM of other industrial cities (Torkmahalleh et al., 2013;
Widziewicz et al., 2016).

The average daily dose of PM,s bound trace elements via inhalation

(ADDinn) was calculated using Eq. 3.6 (US EPA, 2009).

CXET X EF X ED
ADDjp (ug/m®) = AT Eq.3.6

where C represents the mean concentration of a pollutant in the air (ug/m?) over the
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sampling period, and ET is the exposure time (h/d). EF is the frequency of exposure
(365 d/y), ED is the exposure duration (y), and AT is the average time in h
(ED x 365 x24).

The health risk assessment was based on adults residing in Korea. The exposure
parameters used in the cancer and non-cancer risk assessments and their sources are

listed in Table 3.2.

Table 3.2. Exposure parameters and input variables used in health risk
calculation

Factor Definition Unit Value Source
Th tration of .
e concen ra‘lon 0 3 Median, 95 ‘
C the metal in pg/m . This study
. . percentile values
Ambient air
ET Exposure Time hours/day 6 Fan et al., 2021
EF Exposure Frequency  day/year 350 This study

Korean average

ED Exposure Duration year 63.7 (NIER, 2019)

AT Average time hours 558,012

To estimate the carcinogenic risk by inhalation of PM,s bound trace
elements, the incremental lifetime cancer risk (ILCR) was calculated following the
risk assessment guidelines established by the US EPA (2009, 2013). The ILCRix, was

calculated using Eq. 3.7 (US EPA, 2009).

ILCRiun = ADDjnn X IUR Eq. 3.7

where IUR is the inhalation unit risk (m?*/ug).
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According to the US EPA(1998, 2013), an ILCR lower than 1x107° is
regarded as negligible, an ILCR above 1x10is likely to be harmful to human beings,
and an ILCR value between 1x107° and 1x10™* indicates a tolerable risks, but
needing risk reduction plans. The IUR values were based on credible values from
the US EPA's Integrated Risk Information System (IRIS), and the Office of
Environmental Health Hazard Assessment, (OEHHA) from the US EPA (2021),
depending on the element. Table 3.3 shows the IUR values of each element, their

sources, and the calculation results of health effects.
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Table 3.3. Toxicological data and carcinogenic risk of PM,s in Siheung

ILCR

Chemical IUR (m*/ug) Critical effect* Source** ) ) Using 95
Using median ercentile

concentrations p .

concentrations
Lung irritation, decreased production of both red
As 4.3.E-03 blood cells and white cells, deoxyribonucleic acid IRIS 4 47E-06 1.17E-05
(DNA) damage

Cré* 1.2.E-02 Liver and kidney disease, lung cancer IRIS 2 04E-06 4.17E-06
Ni 2.4.E-04 Lung embolisms, lung and nasal cancer IRIS 7.07E-08 1.30E-07
Pb 1.2.E-05 Renal impairment, encephalopathic signs OEHHA 6.92E-08 1.72E-07

* Critical effects indicated the major carcinogenic effects on humans listed in the literature (Briffa et al., 2020)

** The sources listed were the original reference of the value, and the values were downloaded from US-EPA (https://www.epa.gov/risk/regional-
screening-levels-rsls-generic-tables, last access: 10 August 2021
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The hazard quotient (HQ) and hazard index (HI) indicating the non-
carcinogenic risk from PM> s bound toxic elements were calculated using Eq. 3.8 and

Eq. 3.9, respectively (US EPA, 2009).

HQ = ADDin/(RfCix 1,000 ug/mg) Eq. 3.8

HI=Y HQ Eq. 3.9

where RfC; is the inhalation reference concentration (mg/m?) and i is the target
element.

HI is a cumulative metric for HQs for individual toxic elements and
exposure pathway. An HI value > 1 indicates the presence of non-carcinogenic risk,
whereas values < 1 indicate a negligible non-carcinogenic effect. The RfC; values
were determined according to the OEHHA, IRIS, and additional references (Agency
for Toxic Substances and Disease Registry, ATSDR; Michigan Department of
Environmental Quality, MDEQ; California Environmental Protection Agency,
CalEPA) from the US EPA (2021).

The health risks calculated in Siheung were compared to those in Seoul and
Daebudo, of which measured data were obtained from the literature (Kim et al., 2018;
Park et al., 2019). Median values and the same exposure parameters were used in the
health risk estimation for the comparison using consistent manners. The period of
available data was 2013- 2014 for Seoul, 2019- 2020 for Siheung, and 2016 for

Daebudo.
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3.3. Results and discussion

3.3.1 PM;, s mass concentration and chemical speciation

The average mass concentration of PM>s over the sampling period
(11/16/2019 to 10/02/2020) was 23.5 + 13.9 pg/m>. A time series plot is shown in
Fig. 3.3 to compare the PM, s concentration data obtained in this study and those

provided from a national monitoring station (https://www.airkorea.or.kr/, last access:

August 10, 2021).
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Fig. 3.3. PM>.s mass concentration comparisons between the sampled filter and
the nearest national monitoring station. (a): time-series plot, and (b) 1:1 plot

Both time series presented a similar trend, which confirmed the validity of
our data acquisition. High concentrations (over the Korean daily standard of 25
ug/m?) were observed in 37 of the 95 samples, primarily in winter and spring (35
cases from November to May). The detailed concentrations of PM, s and chemical

species (29 species) are summarized in Table 3.4.
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Table 3.4. PM,s species concentrations in Siheung, Korea during the entire
sampling period (11/16/2019 to 10/2/2020)

Arithmetic 25t . 75t .
. . Median . Maximum
Species mean percentile 3 percentile 3
L L T e
PMy s 23,500 13,500 20,600 31,200 74,800
NOs 5,160 993 2,590 7,740 27,200
SO4* 3,580 1,800 3,260 4,380 14,100
NH4* 2,910 1,330 2,710 4,100 12,100
K* 166 58.9 139 239 525
Na* 165 104 144 188 604
Cr 366 59.2 168 477 2,490
oC 5,830 3,760 5,330 7,370 15,400
EC 649 406 561 826 1,908
Na 187 136 172 222 536
Mg 41.0 27.5 34.8 49.7 159
Al 84.1 44.7 72.0 113 265
Si 222 107 185 296 665
S 1,850 1,130 1,740 2,310 6,200
Cl 505 113 248 772 2,560
K 233 108 196 328 766
Ca 51.4 28.2 433 66.6 233
Ti 7.41 4.38 6.37 9.93 20.1
v 0.396 0.196 0.319 0.531 1.41
Cr 2.43 1.21 2.25 3.14 8.25
Mn 16.4 10.5 16.2 21.4 44.5
Ba 6.25 3.01 4.45 7.33 30.9
Fe 188 124 171 239 458
Ni 1.26 0.788 1.14 1.65 3.38
Cu 7.13 1.98 4.77 10.3 45.0
Zn 73.5 424 60.6 98.8 226
As 4.74 1.90 3.34 6.61 27.3
Se 1.63 0.881 1.56 2.22 3.82
Br 13.6 5.99 9.78 14.9 168
Pb 25.7 11.8 21.3 31.6 111

The PM, s concentration levels in Siheung and other cities are shown in Fig.
3.2. The average daily PM, s concentration in Siheung was similar to that in Seoul

and higher than those in Yeosu and Ulsan, which are industrial cities in South Korea.
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Seoul and Siheung are cities located in the northwest of South Korea and are known
to be affected by long-range transport of PM, 5 from China (Bae et al., 2019; Kumar
et al., 2021). The contribution of long-range transport from China to PM s in Seoul
was estimated ranged from 41% to 44% between 2012 and 2016 (Bae et al., 2019),
approximately 20% in August, and approximately 60% in January and February
(Kumar et al., 2021). In comparison to industrial cities of other countries, the average
PM, 5 concentration in Siheung was higher than those in Hamburg and Kassel, in
Germany, and lower than those in Beijing and Shanghai in China. This suggests that
source apportionment coupled with health risk assessment in Siheung may be an
example of a small and medium-sized industrial city with moderate PM, s pollution.

As the measurement and analysis period of this study included the COVID-
19 lockdown or social distancing period in neighboring countries and Korea, we
evaluated possible interferences. A previous study on air quality change in Seoul
under COVID-19 social distancing reported that the monthly average PMas
concentration (from 29 February to 29 March 2020) decreased by 10.4% in 2020,
which was contrary to the average increase of 23.7% over the corresponding periods
in the previous five years (Han et al., 2020). Je et al. (2021) also reported that the
mean PM, s level in 2020 decreased by 16.98 pg/m® nationwide in Korea compared
to 2019, which represented a decrease of 45.45% (p < 0.001). However, significant
reductions in PM, s were observed in Korea even before social distancing owing to
the changes in transboundary PM, s concentration (Kim and Lee, 2018). In China,
the average PM, s concentration during the lockdown period (January to February
2020) was 18 pg/m?, which represented a reduction of 30-60% in most regions (Bai
etal., 2021).
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Although there may be a gap between present results and previous ones,
comparison with previous data is essential to obtain detailed information on PM; s
pollution. A comparison of average concentrations of PM,s bound chemicals
obtained in this study and those by Park et al. (2019) in Seoul indicated that Siheung
had a higher concentration of Cr than Seoul. The average concentrations of As, Pb,
Cr, Mn, Ni, Cu, Zn, and V, which are major toxic elements, were 4.74, 25.74, 2.43,
16.37, 1.26, 7.13, 73.55, and 0.40 ng/m® in Sheung, and 5.53, 38.11, 1.74, 16.93,
2.11, 7.92, 100 and 4.30 ng/m® in Seoul (Park et al., 2019) respectively. The
concentrations of toxic elements except Cr were higher in Seoul than in Siheung.
However, further research is required to determine the impacts of reduced
concentrations attributed to the effects of the COVID-19. When comparing the
concentrations of elements in Siheung and Seoul during the sampling period of this
study, the mean concentrations of Pb, Cr, Mn, Ni, Cu, Zn, and V in Siheung were
1.6,3.0,2.2,4.0,2.8, 2.2, and 1.4 times higher than those in Seoul (Korea Ministry
of Environment and National Institute of Environmental Research, 2022),
respectively. These results might indicate that Siheung has a high concentration of
Cr and other elements because the concentrations were high even during the COVID-
19 lockdown period. This was suggested because these elements are considered
chemical markers of combustion and traffic sources (Farahani et al., 2021), which
were reduced during the lockdown period. In Beijing, the mean concentrations of
PM, s-bounded As, Pb, Cr, Mn, Ni, Zn, and V during the winter of 2018 were 4, 44,
15,34, 8, 110, and 7 ng/m? (Fan et al., 2021), respectively, which are overall higher
than those obtained in Siheung. The concentrations of the clean case presented in the

literature showed similar results to those of Siheung. In Quebedo, Portugal (Silva et
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al., 2020), the concentrations of As, Cr, and Zn were 0.44, 3.55, and 11.0 ng/m°,

which were lower than those in Siheung, Korea.

3.3.2 Source apportionment of PM; s by PMF modeling

The source profile and the time series of PMF factor contribution are shown

in Fig. 3.4 and Fig. 3.5, respectively.
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Fig. 3.4. Source profile results of PMF modeling with DISP errors (The black
bar corresponds to the left axis, and the red dot corresponds to the right axis)
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Fig. 3.5. Source contribution time-series plot of PM, s in Siheung, Republic of

Korea
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Total 10 sources of PM»s were identified, and all major species of the
sources were within the DISP intervals (Fig. 3.4). The R? between observed and
predicted PM; s concentrations for the best solution was 0.92, indicating a reasonable
modeling result. The 10 sources included secondary nitrate, secondary sulfate, traffic,
combustion for heating, biomass burning, coal combustion, heavy oil industry,
smelting industry, sea salts, and soil. The sources with the highest contributions were
the secondary-generated particles (secondary nitrate and sulfate) (Fig. 3.5).

Secondary nitrate had an average contribution of 24.3% to PM,s mass
concentration. The concentration of secondary nitrate was relatively high in the
winter when the temperature was low (Fig. 3.5). The main species of secondary
nitrate are NH4" and NOjs", which are formed in urban air primarily through gas-
particle partitioning (Shi et al., 2019). This occurs because nitrogen oxide and
ammonia gas, which are gaseous precursors in spring and winter, easily react in the
atmosphere producing particulate nitrate (Choi et al., 2013; E. H. Park et al., 2020).
Secondary sulfate (18.8%) was identified by the high concentrations of SO4* and
NH4" (E. H. Park et al., 2020). The contribution of secondary sulfate tended to
increase primarily in the summer. This is considered to reflect the formation of
sulfate in the atmosphere that becomes active when both temperature and humidity
are high (Heo et al., 2009).

Traffic was identified as a source using OC and EC as major indicator
components, and it contributed to 18.8% of the PM,s. The high component ratio of
carbon species exhibited the characteristics of automobile pollutants. Fe is also
considered as an indicator of traffic resuspension as it is emitted from the brake wear

of gasoline and diesel-powered engines (Belis et al., 2013).
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Combustion for heating as a pollution source was characterized by the high
CI content (Tian et al., 2020), and it presented a high contribution from November
2019 to March 2020. This period coincided with the heating periods in Korea and
northern China. The combustion for heating contributed to 12.6% of the PM .

Biomass burning contributed to 11.8% of PM,s, with K as its major
component (Andreae, 1983). Its contribution was identified by the high load of OC
and the medium load of EC (Liu et al., 2017; Moon et al., 2008). In addition, biomass
burning exhibited seasonal characteristics with a high contribution in the winter (Shi
etal., 2014), which is consistent with the increase in the use of wood fire for domestic
heating (Choi et al., 2013).

Coal combustion contributed to 3.6% of PM,s, and As and Pb were
considered its major indicator components. The contribution of coal combustion did
not exhibit any distinct seasonal fluctuations, which was consistent with the
characteristics of local sources. For example, Arsenic is known as a major marker of
coal combustion pollution (Duan and Tan, 2013), and it is known to be largely
emitted from fossil fuel burning.

Industrial sources were divided into heavy oil- and smelting-related sources.
The high ratio of V and Ni was considered a characteristic of heavy oil-based
industrial sources (Jang et al., 2007). For industrial smelting sources, the major
indicators were heavy metal components such as Cu, Cr, Mn, Pb, and Zn (Dai et al.,
2015). The industrial contributions did not show significant seasonal fluctuations.

Sea salt sources were identified by high concentrations of Na, Mg, and K
(E. H. Park et al., 2020). The source was referred to as a fresh seal salt because of

the relatively high concentration of chlorine ions (Han et al., 2017). Its
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concentrations exhibited seasonal characteristics, and the highest contributions were
observed during the winter. Finally, soil sources were identified by the existence of
representative crustal components such as Mg, Al, Si, Ca, and Ti (Liu et al., 2017;
Thorpe and Harrison, 2008) and they contributed to 1.7% of PM>s.

Park et al. (2020) performed PMF modeling in Seoul in 2014-2015 and
isolated 9 sources. The contributions of secondary sources and traffic sources in
Seoul were 6.3 and 5.3 ug/m® higher than those in Siheung, respectively. Unlike in
the study of Seoul (E. H. Park et al., 2020), the industrial smelting source was
extracted in this study probably due to non-ferrous smelter sources in the near
national industrial complex. The existence of a smelting source was also observed in
a PMF modeling study in Daebudo (Kim et al., 2018), near Siheung. In the literature,
Cu, Zn, and Pb have been designated as major markers of industrial smelting sources

(Kim et al., 2018).

3.3.3 Carcinogenic and non-carcinogenic health risks

The uncertainty of health risk estimates coupled with PMF modeling results
was calculated. The difference between the health risks using the measured values
and the health risks coupled with PMF model results was within 10% (data not
shown). The calculated carcinogenic health risks by elements were shown in Table

3.3.

The obtained carcinogenic health risks indicated that both the median and
95 percentile concentrations of As and Cr® exceeded the ILCR value of 1E-06,

whereas the ILCR values of Ni and Pb did not exceed the reference value (Table 3.3).
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These results suggest that air pollution management in Siheung should be based on
pollution sources, focusing on As and Cr sources. This can also be confirmed in Table

3.5, which presents the health risk assessment results by element and source.
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Table 3.5. Estimated carcinogenic risk in Sihueng (median elemental
concentrations used)

Toxic element in PMzs . Sum of
incremental
Source .
cancer risk

As Crb* Ni Pb by source

. 2.93E-07

Secondary nitrate ~ 2.90E-07 - - 2.86E-09 (4.4%)
1.14E-08

Secondary sulfate - - 1.14E-08 - (0.2%)
. 1.07E-06

Mobile 8.34E-07  2.30E-07 - 7.07E-09 (16.0%)
Combustion for 1.44E-07

heating - 1.32E-07 451E-09 7.17E-09 2.1%)
. . 1.75E-07

Biomass burning 1.52E-07 2.12E-08 2.19E-09 - (2.6%)
. 3.28E-06

Coal combustion 3.24E-06 - - 4.02E-08 (48.9%)
. 1.37E-06

Industry (oil) - 1.32E-06  4.93E-08 - (20.4%)
. 3.08E-07

Industry (smelting) - 3.02E-07 - 6.26E-09 (4.6%)
5.51E-08

Sea salts - 5.11E-08 3.53E-09 4.61E-10 (0.8%)
. 6.39E-09

Soil - - 2.60E-10 6.13E-09 (0.1%)

Sum of 4.52E-06 2.06E-06 7.12E-08 7.02E-08 6.71E-06

incremental cancer o 0 o 0
risk by element (67.2%)  (30.7%) (1.1%) (1.0%) (100%)

According to the estimated health risks from PM s sources using the median
concentrations, the sources with high health risk potentials were coal combustion,
oil industries, and traffic, which accounted for 48.9%, 20.4%, and 16.0% of the total
ILCR value, respectively (Table 3.5). The concentration of portioned As and Cr had
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the greatest influence on the health risk values of each source. However, the absolute
contributions of them to PM5 s mass concentrations, were 3.6%, 1.8%, and 18.8%,
respectively (Fig. 3.5). Fig. 3.6 shows annual average contributions of sources to
PM,s mass concentrations and to cumulative cancer risk, and of elements to

cumulative cancer risks.

Bm Secondary nitrate
W Secondary sulfate
. Traffic

s Heating

mmm Biomass burning
mmm Coal combustion
B Industry (oil)
Bl Industry (smelting)
B Sea salts

= Soil

()

i
27z

67.2%

Fig. 3.6. Annual average contributions (a) of sources to PM:s mass
concentrations, (b) of sources to cancer risks, and (c) of elements to cancer risks

The contributions of sources to PM» s mass concentration and to health risks
were very different. Therefore, the contribution of PM,s sources might not be
representative of health risks, which supports the argument that to manage PM; s

with a focus on health risks, the concentration of toxic metal elements should be
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considered rather than total mass concentration. (Farahani et al. 2021).

The concentrations of As and Cr that must be reduced to achieve negligible
health effects were calculated. The results indicate that to reduce the health risks of
As to below 1E-06, the As concentration should be reduced to 1 ng/m? or less, which
represents a reduction of at least 75% compared to the current level. For Cr, the
required concentration reduction was at least 50%. Therefore, there is a need for a
significant reduction in coal combustion, which is the main source of As pollution,
and in emissions from the oil industry, which are the main sources of Cr. In addition,
as the seasonal differences in ILCR were not significant (data not shown), an overall
reduction is necessary, instead of a specific-season reduction plan.

Strengthening the control of pollutants emitted from industrial sources is an
important environmental and public health issue. Therefore, the industrial emission
sources of As and Cr in cities such as Siheung need to be managed, and efforts to
reduce ambient concentrations need to be taken. Owing to the COVID-19 pandemic,
industrial activity and traffic were likely restricted compared to usual rates during
this study. This is supported by Dai et al. (2021), who reported that human activities,
such as industry and transportation, declined during the epidemic outbreak and
spread. Therefore, it is possible that the health risks assessed in this study were
underestimated. Therefore, further studies beyond the pandemic period are needed
for an accurate estimation of health risks.

The calculated ILCR values for Siheung (2019-2020), Seoul (2013-2014),

and Daebudo (2016) are shown in Table 3.6.
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Table 3.6. Estimated carcinogenic and non-carcinogenic risks of PM,s in
Siheung, Seoul, and Daebudo, Korea (median concentration of each element
used)

Toxic Siheung, Korea Seoul, Korea* Daebudo, Korea**
elements _ (2019.11 — 2020. 10) (2013 — 2014) (2016)
in PMzs ILCR HQ ILCR HQ ILCR HQ
As 4.52E-06 7.01E-02 5.70E-06 8.84E-02 2.89E-06 4.47E-02
Cr* 2.06E-06 3.42E-02 1.50E-06 2.50E-02 8.63E-08 1.44E-03
Cr** - 3.99E-03 - 2.92E-03 - 1.68E-04
Cu - 8.63E-04 - 9.49E-04 - 1.07E-03
Ni 7.12E-08  2.12E-02 1.21E-07 3.61E-02 5.75E-09 1.71E-03
Pb 7.02E-08 3.90E-02 1.10E-07 6.09E-02 4.43E-08 2.46E-02
\Y - 8.74E-04 - 1.03E-02 - 2.73E-02
Mn - 7.84E-02 - 8.12E-02 - 3.84E-02

Sum 6.71E-06 2.49E-01 1.35E-05 5.85E-01 3.02E-06 1.39E-01

The results of Seoul were calculated from the data of Park et al. (2019), and
the results of Daebudo were calculated from the data of Kim et al. (2018). The health
risk from As in Siheung (4.52E-06) was lower than those in Seoul (1.35E-05) and
Daebudo (3.02E-06). This result might have been obtained because the Siheung data
reflected an underestimation of the decrease in human activity owing to the COVID-
19 pandemic. The health risk values in Nanjing (Hu et al., 2012) and Beijing (Fan et
al., 2021) in China were 9.04E-06 and 1.67E-06, respectively, which were similar to
the value Siheung. These results indicate that As presents a health risk even at low
concentrations (ng/m?). This is consistent with previous studies suggesting that the
presence of As in the atmosphere is a major public concern for human health
(Widziewicz et al., 2016). Nevertheless, the health risk of Cr*, Siheung, and Seoul
also exceeded 1E-06, and Siheung presented the highest value (2.06E-06); therefore,

Cr pollution in Siheung should be carefully managed. A similar observation of Cr-
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dominated carcinogenic risk from industrial and traffic sources has been reported in
Delhi, India (Khillare and Sarkar, 2012). Hu et al. (2012) and Fan et al. (2021)
reported that the carcinogenic risks of Cr for adults from PM,s in Nanjing and
Beijing were 8.70E-05; and 2.2E-05, respectively, which are approximately 20.9 and
5.3 times the value in Siheung. The industries were identified as Cr sources in this
study (Fig. 3.4). Accordingly, Fan et al. (2021) identified the metal smelting industry
as the main source of Cr.

The non-carcinogenic health risks of all elements were less than 0.1 for both
average and 95 percentile concentrations. Moreover, the HI value was 0.55, which
did not exceed 1, thereby indicating a negligible toxic risk for all elements (Table
3.7). The maximum HQ value was 0.18 for As when the 95 percentile concentration
was used. The calculations using median concentrations indicated that the pollutants
with high toxicity values were the oil industry, coal combustion, and traffic (Table
3.8), which accounted for 37.4%, 30.5%, and 12.2% of the total HQ value,
respectively. In contrast, according to the absolute contributions to PM;s
concentration, their contributions accounted for 1.8%, 3.6%, and 18.8%, respectively
(Fig. 3.5). According to the HQ results, Seoul had a higher non-carcinogenic health
risk (at 0.585, which did not exceed 1) than Siheung and Daebudo. This was
consistent with the results of a similar study in China (Hu et al. 2012), in which the
calculated HI was less than 1 for adults, so that the non-carcinogenic health risks

were considered of relatively low importance.
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Table 3.7. Toxicological data and non-carcinogenic risk in PM s of Siheung

HQ
. A ; ..
Chemical RfC; (mg/m?) Critical effect* Source** Using median Using 95 percentile
concentrations concentrations
As 1.5.E-05 Heart problems, brain damage OEHHA 6.9E-02 1.8.E-01
Allergic contact dermatitis and eczema
6 &
Cr 5.00E-06 aingivitis IRIS 3.4E-02 7.0.E-02
O 1.0.E-04 DNA lesions (rarely toxic compared to ATSDR.2012 4.0B-03 8.1 F-03
hexavalent form)
Cu 2.0.E-03 Insomnia, anxiety, restlessness MDEQ, 2009%*** 8.5E-04 2.4.E-03
Ni 1.4E-05 Asthma, allergic reactions, heart disorders CalEPA 2.1E-02 3.9.E-02
Pb 1.5.E-04 Hypertension, miscarriages, stillbirth IRIS 3.8E-02 9.6.E-02
v 1.0.E-04 Throat pain, headaches, impairment to the ATSDR 3 7E-04 17 B-03
nervous system
Mn 5.00E-05 Hypotension, pneumonia, sperm damage IRIS 7.8E-02 1.5.E-01
HI (Summation) 0.25 0.55

* Critical effects indicated the major non-carcinogenic effects on humans listed in the literature (Briffa et al., 2020)
** The sources listed were the original reference of the value, and the values were downloaded from US-EPA (https://www.epa.gov/risk/regional-screening-

levels-rsls-generic-tables, last access: 10 August 2021)
*** The value from MDEQ was accessed in the chemical update worksheet of the State of Michigan website (https://www.michigan.gov/documents/deq/deq-
rrd-chem-CopperDatasheet 527899 7.pdf, last access: last access: 10 August
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Table 3.8. Estimated non-carcinogenic risk in Siheung (median elemental concentrations used)

Toxic element in PM2s _Sum of
Source mcremgntal
cancer risk by
As Crb* Crdt Cu Ni Pb \Y, Mn source
Secondary nitrate 4.50E-03 - - - - 1.59E-03 - - 6.1E-03 (2.5%)
Secondary sulfate - - - 4.16E-05 3.39E-03 - 3.75E-04 1.08E-03 4.9E-03 (2.0%)
Mobile 1.29E-02 3.84E-03 4.47E-04 9.91E-06 - 3.93E-03 1.44E-04 9.14E-03 3.0E-02 (12.2%)
Combustion for heating - 2.20E-03 2.56E-04 - 1.34E-03 3.98E-03 1.14E-06 - 7.8E-03 (3.1%)
Biomass burning 2.35E-03 3.54E-04 4.13E-05 - 6.51E-04 - - 2.35E-03 5.7E-03 (2.3%)
Coal combustion 5.03E-02 - - 1.29E-05 - 2.23E-02 - 3.07E-03 7.6E-02 (30.5%)
Industry (oil) - 2.19E-02 2.56E-03 1.35E-04 1.47E-02 - 2.96E-04 5.35E-02 9.3E-02 (37.4%)
Industry (smelting) - 5.03E-03 5.87E-04 6.36E-04 - 3.48E-03 - 5.68E-03 1.5E-02 (6.2%)
Sea salts - 8.52E-04 9.94E-05 6.70E-07 1.05E-03 2.56E-04 3.06E-05 1.40E-03 3.7E-03 (1.5%)
Soil - - - 2.70E-05 7.74E-05 3.40E-03 2.73E-05 2.24E-03 5.8E-03 (2.3%)
Sum of incremental 7.01E-02 3.42E-02 3.99E-03 8.63E-04 2.12E-02 3.90E-02 8.74E-04 7.84E-02 0.25 (100%)

cancer risk by element  (28.2%) (13.8%) (1.6%) (0.4%) (8.5%) (15.7%) 0.4%) (31.6%)
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3.3.4 Probable source areas or directions

The probable emission locations were estimated for coal combustion,
industries, and traffic sources, which presented a relatively high carcinogenic risk in
the health risk assessment. The CPF results are shown in Fig. 3.7, and the PSCF
results calculated through 24-h and 72-h back trajectory HYSPLIT analysis are

shown in Fig. 3.8.

(a) Industry (oil) (0.4 pg/m3) (b) Industry (smelting) (0.9 pg/m3)

4

0.05 0.10 0.15 0.20 0.25 0.30 0.2 0.4 0.6 0.8 1
Probability Probability
(c) Traffic (4.22 ﬁg/m3) (d) Coal combustion (0.81 pg/m?3)

[ —
0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 005 010 015 020
Probability Probability
* The center of each figure is the measurement site
** The scale of the circle shows the wind speed (m/s)
Fig. 3.7. The CPF results of (a) industry (oil), (b) industry (smelting), (¢) traffic,
and (d) coal combustion sources
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Fig. 3.8. PSCF results of PM, s sources in Siheung, Republic of Korea,
24-hour back trajectory of (a) Industry (oil); (b) Traffic; (c) Coal combustion,
74-hour back trajectory of (d) Industry (oil); (e) Traffic; (f) Coal combustion

The CPF results for industrial sources indicated that the contribution of oil
industries increased when the southwest winds of less than 4 m/s, that of smelting
industries increased with southeast winds of 6 m/s or more. The results of the back
trajectory analysis showed that the contribution of industries was widely distributed
in southwest areas, from the Shandong Peninsula of China to the Taiwan region.
According to Kim et al. (2018), the CPF of non-ferrous smelter sources pointed to
the southeast of Daebudo, which was consistent with CPF results for smelting
industry sources in this study. There are 4,632 high-tech manufacturing companies
such as metal processing and machinery located in the national industrial complex
of Siheung (as of 2019, Korea Statistical geographic information service,

https://sgis.kostat.go.kr/, last access: last access: 10 August 2021), and more than

240,000 people are working in related industries. PM emitted from such industrial

complexes was presumed to be industry (smelting) sources.
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Coal combustion presented the highest contribution for northwest winds of
approximately 2—6 m/s in the CPF plot (Fig. 3.7). In the 72-h back trajectory analysis
(Fig. 3.8), PSCF was distributed along the Chinese coast from the west coast of
Korea to the southwest of Korea. The results suggested that coal combustion sources
presented high emissions from internal sources. Coal-fired power plants,
petrochemical complexes, and Incheon ports are located around Siheung, so it was
assumed that the influence of various sources was mixed. However, it was difficult
to identify the specific locations, as there were various influencing factors in the
vicinity. Long-term studies are required.

The CPF of traffic source showed that the contribution increased with slow
winds of 3 m/s or less (Fig. 3.7). Siheung City has much traffic because of its
proximity to Seoul and Incheon ports and it is presumed that this trend was well-
reflected. The wind direction pattern also showed a result that was generally
consistent with the arrangement of highways around the target area. The probability

of the western sea of Korea was also high in the back-trajectory analysis (Fig. 3.8).
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3.4. Summary

Ten types of PM> s emission sources were derived using a PMF model in
Siheung, South Korea. Based on the sources derived, the carcinogenic and non-
carcinogenic health risks due to PM,s inhalation were estimated. For coal
combustion, heavy oil industry, and traffic sources, the contribution to PM s mass
concentration was low but exceeded the benchmark carcinogenic health risk value
(1E-06). The carcinogenic risk from PM, s inhalation in Siheung was similar to or
lower than that of Seoul, Republic of Korea and Nanjing, China, and Beijing, China.
Therefore, countermeasures on the PM. s emission sources are better to be performed
not only based on the PM_ s mass concentration but also based on the health risks. In
order to manage the effects of PM,s on human health in industrial cities, it is
necessary to reduce the concentration of major toxic elements (especially As and Cr)
and manage the emission sources. The methodology used in this study, which
combines PMF modeling and health impact assessment, can be used to derive source

types and calculate health impacts by source in other cities.
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Chapter 4. Feature extraction and prediction of PM2s
chemical constituents using machine learning models

4.1. Introduction

There is growing interest in the measurement, management, and reduction
of PM_ s ever since there have been reports on adverse health effects of exposure to
airborne PM s (particulate matter with a diameter of < 2.5 pm) (Hopke et al., 2020;
Kim et al., 2015; Lee et al., 2022). In recent years, the hourly mass concentration of
PM_s are measured in many countries, and these values are made available by the
World Air Quality Index project (https://agicn.org/data-platform/register/). In
addition to determining the total mass concentration of PM2 s, monitoring stations to
determine real-time PM2s chemical constituents with different characteristics in
terms of origin, conversion, and health effects, are increasing globally (Park et al.,
2019; Wang et al., 2018). Accordingly, the quantification of PM.s chemical
composition with high spatial and temporal resolutions is an area of active research
(Hopke, 2016; Shi et al., 2019), and PM. s compositional data are gradually acquiring
the characteristics of big data. As of 2021, 10 national monitoring stations in South
Korea could measure the mass concentration of PMsand its chemical constituents
on an hourly basis in real-time.

Complete and reliable data are not always available despite the high cost
and time required to obtain PM,s chemical composition. Missing values are one of
the most prevalent impediments to data interpretation, making the appropriate use of
the data challenging (Khan and Hoque, 2020). For example, the data of PMzs
chemical constituents measured in Seoul, South Korea, had an average missing ratio
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of 9.43% from 2018 to 2020 (Table 4.1). However, it has been challenging to impute
missing values of the chemical constituents because of the complexity of the
chemical composition of PM;s. Researchers have responded by employing various
fragmentary methods, such as excluding samples with any constituent missing
values or replacing them with mean values (Kim et al., 2018; Park et al., 2019; Shi
et al., 2021). These methods can reduce the data accuracy and the reliability of the
modeling results, such as for source apportionment, relying on such input data.
Prediction of PM,s components may be appropriate to attempt with
nonlinear regression models because of their complexity(Baker and Foley, 2011).
For nonlinear regression modeling of complex data, deep neural network (DNN)
works excellently and has been widely used in many fields such as computer vision,
behavior prediction, language process, and marketing to extract useful features from
datasets(Jordan and Mitchell, 2015). However, little attention has been posed to
predict PM, s components using DNN models because DNN has recently begun to
attract attention in the field of atmospheric environment(Gil et al., 2021).
Therefore, this study aimed to evaluate the applicability of the feature
extraction using machine learning models to predict the chemical composition of
PM,s. Four ML models were employed in this study: generative adversarial
imputation network (GAIN), fully connected deep neural network (FCDNN), RF,
and k-nearest neighbor (kNN). The prediction accuracy of each model was compared
to evaluate the applicability of the models according to the stepwise increase of input
data and changes in targeted components for prediction. Additionally, the effect of
missing ratios and the available period of input data on prediction accuracy by

models were examined. The present study findings can help expand the scope of ML
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model-based interpretation of air pollution.
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Table 4.1. Missing ratio and median values of PM, s chemical speciation data (2018-2020)

Species Missing ratio* (%) Median (ng m*)
BR Seoul Ulsan BR Seoul Ulsan
PM> s 5.26 1.88 2.45 14,000 19,000 13,000
SO& 18.43 9.18 12.14 2,840 2,300 2,660
NOs 18.43 9.18 12.14 1,070 2,370 1,670
Cr 18.7 9.26 12.37 140 140 200
Na* 18.43 9.94 12.62 140 30 80
NH4* 18.43 9.37 12.21 1,340 1,840 2,030
K* 18.43 11.44 24.25 70 50 40
Mg?* 18.43 9.42 12.66 10 10 10
Ca?* 18.48 9.8 13.39 30 30 20
oC 21.95 10.14 11.65 1,510 2,855 2,140
EC 21.95 10.23 11.67 358 730 420
S 10.74 9.16 4.07 1,704 1,548 4,296
K 10.76 9.22 4.07 80 80 80
Ca 10.77 9.2 4.09 32 43 32
Ti 10.78 9.17 4.07 6 6 6
A% 10.77 9.16 4.07 2 2 2
Cr 10.75 9.17 4.07 1 1 1
Mn 10.77 9.16 4.07 5 7 10
Fe 10.75 9.17 4.07 86 148 140
Ni 13.44 9.17 4.07 0.90 0.40 0.84
Cu 16.46 9.27 4.07 4.76 5.17 4.94
Zn 10.78 9.27 4.07 19.6 31.1 353
As 10.97 9.16 4.07 2.14 2.23 1.86
Se 13.43 9.16 4.07 0.6 0.6 0.6
Br 10.75 9.17 4.07 3.43 4.42 5.53
Pb 10.81 9.16 4.07 8.26 12.63 9.51
Average
(except PMas) 14.58 9.43 7.85 - - -

* Total n = 26,305 at respective site
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4.2. Materials and methods

4.2.1. Study Sites and Data Collection

The mass concentrations and chemical constituents of PM. s are measured at
1-h intervals by the Air Quality Research Centers (Korea Ministry of Environment
and National Institute of Environmental Research, 2021), which are operated by The
Korean Ministry of Environment. The data used in this study were measured at
Baengnyeong Island (BR, 37°57'52.9"N, 124°38'02.4"E), Seoul (Seoul,
37°36'35.3"N, 126°56'05.3"E), and Youngnam (Ulsan, 35°34'52.0"N,
129°19'27.0"E) from 2018 to 2020, and represent remote, metropolitan, and
industrial areas, respectively (Fig. 4.1).

Mass concentrations of PM, s were measured using BAM 1020 (Continuous
Particulate Monitor by Met One Instruments, Inc., USA) employing the B-ray
absorption method. Organic carbon (OC) and elemental carbon (EC) were measured
by SOCEC (South Orange County Economic Coalition’s Sunset Laboratory Inc.,
USA) using the thermal-optical transmittance method. lonic species (NOs,, SO4>,
Cl7, K*, and NH4*) were measured using URG-9000D (Ambient lon Monitor by
Thermo Fisher Scientific Corp., USA) employing the ion chromatography analysis
method. PM_s elemental species concentrations were measured using Xact™ 620
(Ambient Trace Elements Monitor by Cooper Environmental Services [CES], USA)
(S. S. Park et al., 2014) via X-ray fluorescence spectrometry (XRF), a non-
destructive analysis method. The guideline for the installation and operation of the

national air pollution monitoring network includes quality assurance/quality control
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(QA/QC) for PM2s component analysis (Korea Ministry of Environment and

National Institute of Environmental Research, 2022).
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Fig. 4.1. Study sites: (a) Baengnyeong (BR), (b) Seoul, and (C) Ulsan

The chemical species (CS) of PM2s were used as part of the input data to
predict missing values using four ML models (Table 4.2). Table 4.1 provides a list
of the types, total number, missing ratio, and median of the chemical composition
data used. Additionally, three groups of input data were used for feature extraction:
time information (T1), air pollutants (AP), and meteorological data (MD) (Table 4.2).
Tl included the hour, month, and weekday of PM2s constituent data. The hourly
concentrations of AP (i.e., PM2s, PMyo, SO, CO, O3, and NO>) measured at the AP

national monitoring station closest to each PM2s component monitoring station were
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obtained from the AirKorea website. The national climate data center operated by
Korea Meteorological Administration provided the MD measured at the automated
synoptic observing system nearest to each PM2s chemical constituents monitoring
station. All input data were min-max normalized for each characteristic data prior to
model training, and each parameter was then subjected to inverse normalization after

modeling.

Table 4.2. Input variables

Classification Variable

PMzs,

lon species (SO4%, NOs', CI-, Na*, NH4*, K*, Mg,*, Cay,*),
Carbons (OC, EC),

Trace elements (S, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Se,
Br, Pb)

Chemical species
(CS)

Time information

() Weekdays, hours, months

Air pollutants
(API)D PM2s, PM1o, SO2, CO, O3, NO;
Temperature, rainfall, wind speed, wind direction, relative
humidity, vapor, dew point, pressure, sunshine, snowfall,
cloudiness, visibility

Meteorological data
(MD)
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4.2.2. Machine Learning Models and Hyperparameter Optimization

Four ML models (GAIN, FCDNN, RF, and kNN), extensively used for
regression analysis or missing value replacement, were applied to predict PM:s
chemical constituents. Two of the four ML models, GAIN and FCDNN, are further
categorized into deep learning models, which use a complex structure of algorithms
called multi-layered artificial neural networks. Additionally, GAIN and kNN are
unsupervised learning models, whereas FCDNN and RF are supervised learning
models requiring separate training and testing. All the models were implemented
using Python 3.8 (Python Software Foundation, USA), while the input pipelines for
the two deep learning models were built using Tensorflow 2.2 (Google Developers,
USA). All codes used for the four ML models in this study are accessible (see Code
Availability at the end of the manuscript).

The GAIN ML model is a missing-value processing model based on a
generative adversarial network, in which a generator and discriminator compete to
learn and improve accuracy (Li et al., 2019; Nazabal et al., 2020; Yoon et al., 2018).
The discriminator is trained to accurately distinguish between real and fake data in a
generated dataset, while the generator, in turn, learns to make it difficult for the
discriminator to distinguish real from fake data (Yoon et al., 2018). In this study, the
GAIN model was constructed as a long-short term memory (LSTM) network suitable
for time series data. The model was separately trained and predicted on each division,
and the results were then concatenated after dividing the data into 10-day period
datasets. The hyperparameter settings that achieved the highest accuracies were
found by manual search. Table 4.3 provides a list of the hyperparameter search

ranges and optimized values.
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Table 4.3. Hyperparameter searching range and optimized values

Model Hyperparameter searching Optimized Hyperparameter
used range
Number of hidden layers: 0 — 4 Number of hidden layers: 2
Number of units in a layer: 500 — Number of units in a layer: 52 —
400 200
GAIN Learning rate; 1E-04 — 1E-02 Learning rate: 5E-04
Hint rate: 0.7 - 0.9 Hint rate: 0.8
Sequence: 120 — 720 Sequence: 240
alpha: 10 — 100 alpha: 10
Activation function: ReLU, tanh, Activation function: LeakyRelLU
LeakyReLU (alpha=0.1)
(alpha=0.1)
Number of hidden layers: 2 — 20 Number of hidden layers: 4 — 8
FCDNN
Number of units in a layer: 32 — Number of units in a layer: 1,300 —
2,048 (increment: 32) 2,000
Learning rate: 1E-06 — 1E-02
Learning rate: 5E-05 — 1E-04
Dropout rate: 0.10 — 0.20
(increment: 0.01) Dropout rate: 0.10 — 0.15
n_estimators: 1 — 2,000 n_estimators: 1,300 — 2,000
RF max_depth: 1 - 30 max_depth: 13 — 30

min_samples_leaf: 1 —30

min_samples_split: 2 — 30

min_samples_leaf: 1 —2

min_samples_split: 2 — 4
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kNN k:2-20 k:3

The FCDNN is specialized in reducing dimensionality and performing
feature extraction through hidden layers and is one of the most widely used neural
network models in regression (Hinton and Salakhutdinov, 2006; Hwangbo et al.,
2021). FCDNN model is trained by adjusting the weights and biases of the hidden
layer neurons to correspond to each input and output data. Overfitting avoidance and
optimization of hyperparameters are important for FCDNN models to have high
prediction accuracy not only with training data but also with actual application data
(Montavon et al., 2018). In this study, the latest technique for auto-optimization of
hyperparameters, Keras-tuner (Asim et al., 2021), was used, and the hyperparameters
with the highest R? were derived after more than 100 repetitions using both
Hyperband and Bayesian search. The search and optimized ranges of
hyperparameters are listed in Table 4.3. The number of training epochs was 200.

RF is a widely employed ensemble model for multi-dimensional
classification and regression problems (Breiman, 2001). Various decision trees in
RF models are trained using input data for feature extraction, which helps enhance
model performance (Tella et al., 2021). The hyperparameters of the RF model were
automatically optimized using the Hyperopt module (Bergstra et al., 2015). In this
study, RF modeling used RandomForestRegressor in the scikit-learn package
(Pedregosa et al., 2011).

kNN is a non-parametric model for classification and regression, wherein
the prediction object is calculated as the average of k values closest to the prediction
point (Tellaet al., 2021; Yao and Ruzzo, 2006). Euclidean distance for the judgment
of the nearest neighbor is used to achieve distance calculations in KNN. Through a
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preliminary analysis adjusting k from 2 to 20, it was set at 3, which produced the
highest prediction accuracy (Table 4.3). KNNImputer in the scikit-learn package was

used for KNN modeling calculation.
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4.2.3. Prediction Scenarios

Two scenarios were applied to compare the prediction accuracy of PMas
constituents by four ML models, as described in Table 4.4. In Scenario #1, stepwise
increase in four groups of input data (ID) and seven combinations of the prediction
target component (PC) were applied. The ID groups were categorized from ID#1 to
ID#4, wherein the larger the number, the more input data were used for prediction,
starting with more accessible variables. The three study sites in Scenario #1 used
three years (2018-2020) of hourly data with a fixed missing ratio of 20%.

In Scenario #2, four periods (1-month, 3-month, 12-month, and 36-month)
with four missing ratios (20%, 40%, 60%, and 80%) were applied to the Seoul site
to compare the prediction accuracies by four ML models according to the changes
in the period and the missing ratio of ID. The missing ratios were determined by
referring to the missing ratio of the actual data. In Scenario #2, the same four ML
models as in Scenario #1 were applied; however, only ID#4 and PC#7 were used in
Scenario #2 (Table 4.4). The number of iterations, n, was set to check the variations
in prediction results. For Scenarios #1 and #2, a total of 2,400 model predictions
were made. the difference in prediction accuracy between the ID periods identified

one-way ANOVA with Tukey’s honestly significant difference (HSD) test.
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Table 4.4. Scenarios used for the prediction of PM,.s chemical composition

Scenario #1 Scenario #2

Classification No. of No. of

Case Case

case case
1 month (2018.12),
. 3 months (2018.10-12),
Period 1 3 years (2016-2018) 4 12 months (2018)
36 months (2016-2018)

Missing ratio
(%) 1 20 4 20, 40, 60, 80

ID#1: CS; ID#2: CS and

TI;
Input data 4 ID#3: CS, Tl, and AP; 1 ID#4

ID#4: CS, TI, AP, and

MD
Location 3 Baengnyeong (BR), 1 Seoul

Seoul, Ulsan
Model 4 EI\TILN FCDNN, RF, 4 GAIN, FCDNN, RF, kNN

PC#1: ions; PC#2:

carbons;

PC#3: trace elements;

PC#4: ions and carbons;
Prediction PC#5: |or15 and trace 1 PCH7
components elements;

PC#6: carbons and trace

elements;

PC#7: ions, carbons, and

trace elements
Iteration 6 - 6 -
Total number 2,016 384

of predictions
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4.2.4. Model Validation and Error Estimation

Fixed seed numbers (322, 777, and 1,004) were intentionally used following the
randomized sampling methods in Pandas to ensure the reproducibility of the
modeling results. There was no data duplication for the training and test. Model
training for FCDNN and RF was performed using 80% of the entire data. The
remaining 20% of the isolated data were compared with the prediction results.
Comparing the observed values (isolated test data) with the predicted values allowed
for model validation and error estimation. The coefficient of determination (R?), root
mean squared error (RMSE), and mean absolute error (MAE) were used for error
estimation. These values are commonly used indices for verifying the accuracy of
regression models. Their formulas and mathematical backgrounds can be found in
the literature (Chicco et al., 2021). The main text presents the R? value, the most
insightful error estimation parameter of the three (Chicco et al., 2021), and compares
it to the other indices to demonstrate the accuracy of the predictions made by the

four ML models.
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4.3. Results and discussion

4.3.1. Hyperparameter Optimization

Table 4.3 provides a list of the four ML models' optimized hyperparameters.
The derived hyperparameters are expressed as ranges because there were variations
in the hyperparameter results depending on prediction constituents and iterations.
The number of hidden layers for deep learning models had optimal ranges with only
a single-digit value. 4-8 hidden layers in FCDNN models and 2 hidden layers in
GAIN were derived as optimized hyperparameters, as shown in Table 4.3. Similarly,
a previous study predicted air quality response to emission changes using a
convolutional neural network with three hidden layers (Xing et al., 2020). An
ensemble model developed with CMAQ predictions using the FCDNN model
applied four hidden layers (Lyu et al., 2019). It implies that single-digit hidden layers
can lead to acceptable prediction accuracy in deep learning models when multi-AP
data are used as ID.

The optimized hyperparameters (e.g., the learning rate of 5E-05-1E-04;
dropout rate of 0.10-0.15; the number of units of 1,300—2,000 for the FCDNN model)
derived for the four ML models in this study (Table 4.3) can be used for starting
points for designing an AP prediction model. These values, however, are not absolute
standards, and for better prediction results, the hyperparameters must be

independently optimized based on the prediction target and available data.
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4.3.2. Prediction Results for Scenario #1

Table 4.5 shows the prediction accuracies of PMzs constituents for all
prediction cases of Scenario #1 at the Seoul site. The prediction results of BR and
Ulsan sites were similar to those of Seoul, according to the stepwise increase of 1D
# and PC # (Table 4.6). Additionally, as shown in Tables S4 and S5, respectively,
the trend of the RMSE and MAE results reflected that of R2. The following

comparison of prediction outcomes uses only R? values.

4.3.2.1. Overall prediction accuracy by the four ML models

The prediction accuracy of the four models for Scenario #1 varied from
0.071 to 0.947 in R? (Table 4.5). The highest R was found in the case of predicting
ions (PC#1) with ID#3 by the GAIN model, and the lowest in the case of predicting
all components in PM2s (PC#7) with ID#1 by the KNN model. Out of the seven PCs,
the GAIN had the highest R? in the six PCs, and FCDNN had the highest R? in the
one PC (PC#2) (marked by a superscript “a” in Table 4.5). The highest R? values for
the seven PCs were greater than 0.875, which indicated that PM2s chemical
composition can be predicted with high accuracy using three-year CS, TI, air quality,
and meteorological data with a 20% missing ratio.

These predicted accuracies can be compared indirectly with other studies
that predicted missing values of PM2s concentrations since there is no study on
predicting missing values of PM2s chemical components (Hadeed et al., 2020;
Quinteros et al., 2019). Quinteros et al. (2019) predicted the missing values of PMas
concentrations at monitoring stations in Chile with an accuracy of 0.37-0.91 of R2.

Hadeed et al. (2020) predicted missing values of short-term PM.s measurements
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(<24 h) in households with an accuracy of 0.32-0.65 of R? when the missing ratio
was 20%. Additionally, the prediction accuracy in literature (Liu et al., 2019) that
predicted trace elements in PM2 s through Weather Research and Forecasting (WRF)
and CMAQ models in China was 0.35-0.91 in R (not R?). If the highest prediction
accuracy for each PC was selected in Table 4.5, R? range from 0.875 to 0.947,
indicating considerably higher prediction accuracy than that of other studies.

The four ML models used in this study, as shown in Tables 3 and S6,
appeared to be more accurate than an existing method for addressing missing values,
which substitutes mean values for the missing values. The R? value between
observation and prediction is calculated to be zero when the missing values in the
same test data set are replaced by the mean values of each PM.s component
concentration (Table 4.9 and Fig. 4.2). Therefore, missing values can be more
effectively compensated using the ML models by feature extraction from ID
(Alpaydin, 2020). Additionally, expectation-maximization (EM) algorithm and
multiple imputation (MI), which are utilized for completely random missing values
in statistics, was used to compare the results of ML models (Fig. 4.7, Fig 4.8, and

Fig. 4.9).
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Table 4.5. Prediction accuracy (R?) of PC#1 to PC#7 by four machine learning
models for Seoul

Coefficient of determination (R?)

PC#l PC#2 PC#3 PC#4 PCH#5 PCH#6  PCH#7
GAIN
ID#1 0938 0921 0.867 0934 0880 0.869 0.880
ID# 0939 0921 0866 0935a 0885 0871  0.886
ID#3 ~ 0.947° 0928 0882 0943 0.896° 0.885° 0.897°
ID#4 0937 0923 0.875° 0934 0895 0880 0.895
FCDNN
ID#1 0898 0936 0.808 0.898 0417 0791  0.403
ID#2 0929 0940 0850 0926 0717 0857 0571
ID#3 0933 0943 0856 0934 0859 0.865 0.832
ID#4 0933 09452 0.860 0933 0.869 0.867 0.861
RF
ID#1  0.788" 0.897 0725 0.803° 0426 0739  0.407
ID#2 0822 0902 0765 0.830 0644 0763  0.549
ID#3  0.831 0912 0769 0832 0736 0777 0.733
ID#4  0.839 0912 0782 0834 0773 0789 0.785
KNN
ID#1  0.812 0.899 0702° 0.820 0.258° 0709 0.071°
ID#2 ~ 0.875 0.899 0.807 0.868 0656 0789  0.458
ID#3  0.902 0915 0833 0900 0817 0832 0.801
ID#4  0.832 0.860° 0746 0.831 0748 0747 0.744

* The standard deviation of all predicted values was within 5% and omitted for brevity.
** The number of datasets for train and test was 15,618 and 3,904 in ID#1 and ID#2; 14,602
and 3,516 in ID#3; 13,976 and 3,494 in ID#4.

2 Values denote the largest R? in the respective PC

> Values denote the smallest R? in the respective PC
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Table 4.6. Prediction accuracy (R?) in BR, Seoul, and Ulsan by machine learning
models

BR’

PC#1  PC#2 PC#3 PC#4  PC#HS PC#H6  PC#7

GAIN

ID#1 0904 0940 0896 0907 0.893 0.899 0.886
ID#2 0902 0937 0898 0911 0890 0.899 0.894
ID#3 0919 0948 0914 0925 0915 0918 0.912
ID#4 0895 0938 0903 0904 0898 0905 0.900
DNN

ID#1 0872 0954 0850 0.877 0497 0.847 0.422
ID#2 0.884 0956 0884 089 0.761 0.882  0.610
ID#3 0905 0958 0910 0912 0.874 0902  0.850
ID#4 0891 0958 0904 0890 0879 0896 0875
RF

ID#1 0778 0919 0.798 0800 0501 0.796 0.425
ID#2 0810 0932 0823 0830 0704 0834 0.612
ID#3 0824 0935 0840 0841 0.794 0.850  0.790
ID#4 0.805 0934 0842 0842 0821 0.857 0.824
kNN

ID#1 0.805 0922 0.786 0.818 0405 0.747 0.143
ID#2 0827 0930 0826 0838 0.654 0818 0514
ID#3 0875 0932 0863 0883 0824 0863 0.805

ID#4 0.800 0.901 0.794  0.816 0.774  0.800 0.773

* The number of datasets for train and test of BR was 11,222 and 2,805 in
ID#1 and ID#2; 10,547 and 2,636 in ID#3; 10,014 and 2,503 in ID#4.
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Table 4.6. Prediction accuracy (R?) in BR, Seoul, and Ulsan by machine learning
models (continued)

Seoul™

PC#1 PC#H2 PC#3 PC#4 PC#HS PCHO  PCH7

GAIN
ID#1 0938 0921 0.867 0934 0880 0.869 0.880
ID#2 0939 0921 0866 0935 0885 0871 0.886
ID#3 0947 0928 0882 0943 0896 0.885  0.897
ID#4 0937 0923 0875 0934 0895 0.880 0.895
DNN
ID#1 0.898 0936 0.808 0.898 0417 0.791  0.403
ID#2 0929 0940 0.850 0926 0717 0.857 0571
ID#3 0933 0943 085 0934 0859 0.865 0.832
ID#4 0933 0945 0860 0933 0869 0.867 0.861
RF
ID#1 0.788 0897 0725 0803 0426 0739  0.407
ID#2 0822 0902 0.765 0.830 0.644 0.763 0.549
ID#3 0831 0912 0.769 0832 0736 0.777 0.733
ID#4 0839 0912 0.782 0.834 0773 0.789  0.785
kNN
ID#1 0.812 0.899 0.702 0820 0258 0.709 0.071
ID#2 0875 0899 0807 0868 0656 0.789  0.458
ID#3 0902 0915 0.833 0900 0817 0.832 0.801

ID#4 0832 0860 0.746 0.831 0.748 0.747 0.744

* The number of datasets for train and test of Seoul was 15,618 and 3,904
in ID#1 and ID#2; 14,602 and 3,516 in ID#3; 13,976 and 3,494 in ID#4.
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Table 4.6. Prediction accuracy (R?) in BR, Seoul, and Ulsan by machine learning
models (continued)

Ulsan™"

PC#1 PC#2 PC#3 PC#4 PC#HS PC#HO  PC#H7

GAIN
ID#1 0.898 0829 0.711 0875 0.767 0.720 0.758
ID#2 0896 0822 0713 0879 0771 0.727 0.771
ID#3 0907 083 0.748 0.890 0.792 0.757  0.787
ID#4 0893 0825 0689 0881 0.759 0.708 0.760
DNN
ID#1 0.852 0.856 0.623 0.834 0312 0.625 0.284
ID#2 0.867 0.870 0.702 0.867 0569 0.736  0.441
ID#3 0.891 0864 0.754 0.890 0.758 0.763  0.750
ID#4 0897 0866 0750 0.890 0.779 0.762  0.775
RF
ID#1 0.753 0803 0597 0.762 0320 0.59%  0.290
ID#2 0780 0809 0631 0.781 0546 0.640  0.467
ID#3 0.793 0.817 0691 0773 0.651 0.687 0.663
ID#4 0821 0823 0.674 0.808 0.667 0.671  0.668
kNN
ID#1 0697 0795 0569 0700 0.127 0531 0.000
ID#2 0.740 0820 0685 0.732 0526 0.667 0.362
ID#3 0838 0821 0726 0833 0718 0.732 0.707

ID#4 0.753 0.757 0593 0.751 0.621 0599 0.623

** The number of datasets for train and test of Ulsan was 14,065 and 3,516 in
ID#1 and ID#2; 13,144 and 3,285 in ID#3; 12,328 and 3,082 in ID#4.

*** The standard deviation of all predicted values was within 5% and omitted for
brevity.
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Table 4.7. Prediction accuracy (RMSE) in BR, Seoul, and Ulsan by machine
learning model (unit: pg/m?)

BR"
PC#1  PC#2 PC#3 PC#4 PCHS  PCHO  PC#H7

GAIN
ID#1 0.655 0365 0.130 0.620 0.442 0.184 0478
ID#2 0.666 0368 0.131 0.616 0491 0.186  0.462
ID#3 0636 0342 0126 0602 0399 0.169  0.446
ID#4 0724 0372 0131 0664 0455 0181 0454
DNN
ID#1 0.675 0302 0.099 0656 0834 0175 0.978
ID#2 0638 0.292 0.099 0643 0569 0.158 0.720
ID#3 0548 0.287 0.091 0503 0400 0.155 0.442
ID#4 0546 0293 0.089 0575 0418 0.150 0.426
RF
ID#1 0.869 0409 0.118 0.792 0850 0.200  0.969
ID#2 0804 0379 0118 0.721 0634 0185 0.728
ID#3 0.734 0377 0116 0678 0541 0.183 0.551
ID#4 0.755 0375 0121 0679 0483 0181 0485
kNN
ID#1 0825 0406 0.118 0775 0909 0.216 1.305
ID#2 0847 0394 0136 0805 0.729 0218 0.822
ID#3 0.751 039 0129 0.697 0534 0193 0.565

ID#4 0929 0489 0.181 0881 0.649 0251  0.658

* The number of datasets for train and test of BR was 11,222 and 2,805 in ID#1 a
nd ID#2; 10,547 and 2,636 in ID#3; 10,014 and 2,503 in ID#4.
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Table 4.7. Prediction accuracy (RMSE) in BR, Seoul, and Ulsan by machine
learning model (unit: pg/m?) (continued)

Seoul™
PC#1 PC#2 PC#3 PC#4 PC#5 PC#6 PC#7

GAIN
ID#1 0.502 0.408 0.090 0486 0.334 0170 0.352
ID#2 0.504 0409 0.090 0490 0326 0170 0.343
ID#3 0476 0393 0.087 0459 0320 0.162 0.323
ID#4 0.525 0403 0.094 0503 0326 0169 0.341
DNN
ID#1 0.517 0369 0.081 0508 0.705 0.189 0.778
ID#2 0.453 0349 0.070 0.446 0.464 0.158 0.585
ID#3 0399 0339 0065 0426 0322 0145 0.375
ID#4 0.407 0328 0.068 0391 0.293 0.137 0.320
RF
ID#1 0.670  0.498 0.107 0.650 0.703 0.215 0.770
ID#2 0593 0481 0.092 0591 0488 0.201 0.582
ID#3 0561 0468 0.092 0571 0462 0.196 0.486
ID#4 0.556  0.457 0.091 0570 0423 0191 0423
kNN
ID#1 0.682 0491 0105 0.657 0.779 0.226  0.898
ID#2 0.636 0484 0105 0.624 0558 0.220 0.662
ID#3 0.578 0.446 0.103 0559 0418 0.193 0.442
ID#4 0.815 0587 0.152 0.796 0554 0259 0.577

** The number of datasets for train and test of Seoul was 15,618 and 3,904 in ID#
1 and ID#2; 14,602 and 3,516 in ID#3; 13,976 and 3,494 in ID#4.
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Table 4.7. Prediction accuracy (RMSE) in BR, Seoul, and Ulsan by machine
learning model (unit: pg/m?) (continued)

Ulsan™"
PC#1 PC#2 PC#3 PC#4 PC#5 PC#6 PC#7

GAIN
ID#1 0.506 0497 0322 0527 0431 0.355 0.456
ID#2 0.516 0508 0.315 0519 0419 0.349 0.430
ID#3 0.458 0512 0.288 0484 0383 0.324 0.405
ID#4 0.534 0490 0320 0532 0424 0347 0434
DNN
ID#1 0.489 0428 0.210 0509 0934 0.266 1.009
ID#2 0.486 0409 0.196 0465 0533 0.243 0.634
ID#3 0413 0439 0179 0415 0412 0233 0434
ID#4 0377 0409 0177 0.39% 0347 0224 0371
RF
ID#1 0.601 0526 0.225 0598 0940 0.294 1.002
ID#2 0569 0518 0220 0571 0567 0.280 0.640
ID#3 0545 0543 0224 0557 0536 0287 0.534
ID#4 0.513 0489 0.231 0527 0482 0.277 0.496
kNN
ID#1 0.661 0538 0239 0.664 1060 0311 1.329
ID#2 0592 0531 0270 0594 059 0320 0.700
ID#3 0.556  0.550 0.284 0557 0478 0.329 0.503
ID#4 0.731 0612 0380 0.717 0582 0.421 0.590

seokok

The number of datasets for train and test of Ulsan was 14,065 and 3,516 in ID#1
and ID#2; 13,144 and 3,285 in ID#3; 12,328 and 3,082 in ID#4.
"™ The standard deviation of all predicted values was within 5% and omitted for brevity.
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Table 4.8. Prediction accuracy (MAE) in BR, Seoul, and Ulsan by machine
learning model (unit: pg/m?)

BR"
PC#1  PC#2 PC#3 PC#4  PCHS  PCHO  PC#H7

MAE

GAIN
ID#1 0220 0.198 0.026  0.220 0.100 0.048 0.117
ID#2 0226 0199 0.025 0218 0.101 0.048 0.109
ID#3 0201 0.182 0.024 0.199 0.089 0.043 0.103
ID#4 0236 0202 0.026 0229 0101 0.048 0.110
DNN
ID#1 0222 0170 0.024 0232 0226 0.049 0.281
ID#2 0217 0166 0.022 0239 0151 0.046 0.213
ID#3 0195 0.164 0.020 0.184 0.107 0.045 0.128
ID#4 0.186 0.168 0.019 0.205 0.100 0.042 0.113
RF
ID#1 0286 0.228 0.025 0282 0.230 0.055 0.279
ID#2 0258 0.208 0.024 0254 0160 0.049 0.209
ID#3 0249 0206 0.024 0247 0134 0.049 0.150
ID#4 0.255 0.204 0.025 0240 0121 0.048 0.133
kNN
ID#1 0.250 0.210 0.025 0.25  0.249 0.059 0.374
ID#2 0257 0209 0.027 0261 0.189 0.059 0.250
ID#3 0222 0199 0025 0225 0120 0.049 0.144

ID#4 0308 0.261 0.036 0305 0.150 0.066  0.166

* The number of datasets for train and test of BR was 11,222 and 2,805 in ID#1 a
nd ID#2; 10,547 and 2,636 in ID#3; 10,014 and 2,503 in ID#4.
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Table 4.8. Prediction accuracy (MAE) in BR, Seoul, and Ulsan by machine

learning model (unit: pg/m?) (continued)

%

Seoul
MAE PC#1 PC#2 PC#3 PC#H4 PC#HS PC#Ho PC#7
GAIN
ID#1 0.182 0.247 0.019 0196 0.080 0.047 0.096
ID#2 0.183 0.247 0.019 0.197 0.079 0.047 0.094
ID#3 0.169 0.231 0.018 0.180 0.075 0.044 0.088
ID#4 0.184 0.239 0.020 0.196 0.078 0.046 0.093
DNN
ID#1 0.198 0.227 0.019 0.212 0.205 0.054 0.254
ID#2 0.167 0.212 0.017 0.183 0.129 0.045 0.192
ID#3 0.151 0.202 0.016 0.175 0.087 0.042 0.114
ID#4 0.151 0.200 0.016 0.164 0.079 0.040 0.096
RF
ID#1 0.261 0309 0.025 0.279 0.203 0.062 0.250
ID#2 0.225 0296 0.022 0.252 0.137 0.058 0.187
ID#3 0.216 0.285 0.022 0.247 0.126 0.056 0.149
ID#4 0.207 0278 0.022 0.241 0.112 0.055 0.126
KNN
ID#1 0.241 0285 0.023 0.260 0.224 0.063 0.300
ID#2 0.223 0.284 0.023 0.250 0.153 0.063 0.219
ID#3 0.199 0.257 0.021 0215 0.104 0.053 0.128
ID#4 0285 0344 0.031 0304 0.133 0.071 0.157

** The number of datasets for train and test of Seoul was 15,618 and 3,904 in ID#

1 and ID#2; 14,602 and 3,516 in ID#3; 13,976 and 3,494 in ID#4.
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Table 4.8. Prediction accuracy (MAE) in BR, Seoul, and Ulsan by machine
learning model (unit: pg/m?) (continued)

Ulsan™
MAE PC#1 PC#2 PC#3 PC#H4 PC#S PCH6  PCHT
GAIN
ID#1 0.197 0.273 0.059 0.217 0.114 0.086 0.133
ID#2 0.199 0.275 0.058 0.216 0.111 0.084 0.125
ID#3 0.174 0.257 0.051 0.195 0.099 0.077 0.115
ID#4 0.202 0.269 0.058 0.218 0.111 0.083 0.124
DNN
ID#1 0.192 0.247 0.044 0220 0.273 0.074 0.318
ID#2 0.198 0.232 0.041 0.208 0.164 0.066 0.214
ID#3 0.164 0232 0.036 0.179 0.119 0.063 0.137
ID#4 0.151 0.234 0.037 0176 0.102 0.062 0.117
RF
ID#1 0.240 0303 0.046 0259 0.275 0.082 0.311
ID#2 0225 0.297 0.044 0.247 0.175 0.077 0.215
ID#3 0.218 0.295 0.045 0.242 0.158 0.076  0.168
ID#4 0.200 0.280 0.045 0.227 0.2142 0.076  0.159
KNN
ID#1 0.248 0300 0.049 0271 0.308 0.087 0.415
ID#2 0.231 0.288 0.054 0256 0.181 0.086 0.236
ID#3 0.204 0.274 0.052 0222 0.128 0.079 0.148
ID#4 0.280 0339 0.075 029 0.160 0.108 0.178

seokok

The number of datasets for train and test of Ulsan was 14,065 and 3,516 in ID#1
and ID#2; 13,144 and 3,285 in ID#3; 12,328 and 3,082 in ID#4.
"™ The standard deviation of all predicted values was within 5% and omitted for brevity.

146 3 ]



30 12 -
)] o ©)F / (d) /
/ 1754 #
25 10 /
15010
T T 20 T e T
5 § 15 § 06 4 § 1007
i i i i
g du e dos L
0801
05 02 .
© R?=000 R?=0.00 R?=0.00 o5 { RZ=000
P ¥ =0.0000% + 5.2079 A y=-0.1903x + 02989 ¥ =0.1438x + 0.0674 ¥ =0.9897x - 0.0017
oo
© 1] 0 00 05 10 15 20 25 30 [ 02 04 Ll o8 10 12 00 (1] 10 15
Prediction (ugim”) Preciction (ugim’) Predicion (ugim’) Predition (ugm’)
o
[} 1 (9)
20 »
% T ; g4
3" £ E
i3 § §s
- / - =
§1° p § 6 E §
8 8 g2
4
05 /
P 1
./ R2=0.00 2, R1=000 R%=000
} < ¥ = 0.3891x + 0,0707 ’ ¥ = 0.0000x + 32793 - = -0,0830x + 09380
UU%M 005 010 015 020 025 030 o0 05 10 15 20 Uﬂﬁ 25 50 75 100 125 150 1 2 3 4 5 L]
Pradiction (ug/m®) Pradicton (jig/m*) Prodiction (ugim®) Prediction (igim®)
200 25 ... 7 025 ey
B 7 200 7
e @ 0] (k) 0
R ) 4 175
I} 20 & 020
1504 . ~ 150 °
% s s t p E s
; g 15 g 125 - ; 0\5-0 y
5 10} H y £ 1008 H p
§ 78| y § 10 § s . § oo
-] [ 8 4 &
501 050 g
05 005 4
261 R2=0. R?=0.00 025 0.00
rd y=-0.367dx + 20133 ¥ y=0.2707x + 0.1487 ¥ = -02284x + 0.0778
00 ¥ - - 00 . - . 000 . . . . 000 ol — . - : |
10 % 2 00 05 10 15 20 25 oo 05 10 15 20 000 008 010 015 020 025
Prediction (ugim’) Prediction (ugim’) Predicion (ug/m®) Predicton (ugim®)
0040 > 008 .
(m) . (n) y o (@ s @
ooss | o014 007
o a 251
000 {8 i 0w01z{ o 006 -
£ o T o T
E a E o E € 201
Snuzari p gooni g Soos 5
§ 0020{ § ooce § 004 5 -s-g
g g H £ |o
§ 00153 § 0006 § 003 F
8 8 8 g 190
0010 { 0004 o002 r
/ / os{ .-
ooos 1 | Ri=000 o000z I/ R%=0.00 oot{ | R?=000 ’ R*=0.00
¥= 046521+ 00010 . ¥ = 00000k + 00011 L/ ¥=0.1396x + 0.0082 ! y= 02876x+ 02928
0000 ono
om0 oot ooz 003 004 0 0005 0510 0015 000 oDz 004 005 008 00 05 10 15 20 25 30
Predition (jig/m”) Prediction (ugim®) Prediction (jg/m”) Prediction {ugim?)
00200
@ oo
001751
002
00150 1
= F ooio
oons §
s o0os
§ 00100+ ]
§ 00075 | g o
00050 4 o004 .
00025 | RZ=000 o - R?=000 0002 R2=000 - R?=000
¥ = -0.4525x + 0.001 = -0.6260x + 0.0670 ) ¥= 057520+ 0.0003 P ¥ =-0.4948x + 00092
00000 ~ . — oo v - - 0.000 - + - - ~ 000 £ - - + + - .
0005 0010 0015 0020 00 02 o4 08 o8 100000010025 0.0050 0007500700 0012500150 000 001 002 003 004 005 006 007]
Prediction (ugim?) Prediction (irg/m”) Prediction (ug/m*) Preciction (ugim’)
0200
(u)
01154 ’
01501 o
Eows 2
% o100
§ oors { /
00050 {
00254 A1=000
¥=-0.0423x + 0077
0000
000 005 010 0.15 020
Predchon (g/m”)

Fig. 4.2. Comparisons of observations and predictions of mean substitution in
Seoul (ID#4, PC#7): (a) NOs5; (b) CI; (¢) Na™; (d) K*; (e) Mg?*; (f) Ca**; (g) OC;
(h) EC; (D) S; () K; (k) Ca; () Ti; (m) V; (n) Cr; (0) Mn; (p) Fe; (q) Ni; (r) Zn;
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(s) Se; (t) Br; (u) Pb

Table 4.9. Prediction accuracy (R?, RMSE, and MAE) of mean substitution

Seoul
PC#1 PC#2 PC#3 PC#4 PC#5 PC#6 PC#7

R2
ID#1 0.000 0.000 0.000 0.000 0.000 0.000 0.000
ID#4 0.000 0.000 0.000 0.000 0.000 0.000 0.000
RMSE
(ng/m?)
ID#1 2.926 1.587 0.528 2.712 1.778 0.737 1.763
ID#4 2.949 1.581 0.521 2.731 1.790 0.731 1.774
MAE
(ng/m?)

ID#1 1.235 1.053 0.116 1.199 0.505 0.226 0.549
ID#4 1.238 1.056 0.115 1.201 0.506 0.226 0.550
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4.3.2.2. Effect of input variables on prediction accuracy by models

Table 4.5 shows the improvement or change in R? by the stepwise increase
of input variables. It indicates that the ML models can extract the features of the
association between PM s constituent concentrations and input variables such as Tl,
AP, and MD. Thus, the influence of time, air quality, or meteorological conditions
on the complex mechanism to form atmospheric PM; s constituents can be explained
by ML models. Notably, when only TI (time, day, month) was added in ID#1,
resulting in ID#2, the R? increased in most prediction cases. The exceptions were
PC#2 and PC#3 by GAIN and PC#2 by KNN (Table 4.5). Even in the case of
predicting all chemical constituents in PM_s (i.e., PC#7), the R? was improved by
adding only TI (e.g., R? from 0.071 to 0.458 in KNN), implying that the patterns of
PM_zs constituent concentrations are affected by time (hour), weekday, and season
(month) and learned by the ML models. Additionally, the prediction accuracy was
improved in ID#3, where AP is folded into the models. R? at ID#3 was higher than
that at ID#1 or ID#2 in all PCs by the four ML models. In the case of PC#7, where
all chemical components of PM,s are targets for prediction, the R? by GAIN,
FCDNN, RF, and KNN models increased from 0.880, 0.403, 0.407, and 0.071 using
ID#1, respectively, to 0.897, 0.832, 0.733, and 0.801 using ID#3. The R? at ID#3
was higher than that at ID#1 or ID#2 in all PCs (Table 4.5) even though the number
of data samples used as known (e.g., training data) in ID#3 (n=14,602) was smaller
than that in ID#1 or ID#2 (n=15,618). It suggested that smaller numbers of sample
data may be supported by more characteristic input variables associated with the

prediction target.
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Meanwhile, the R? by GAIN and kNN models decreased in ID#4, where MD
is added to the models (Tables 3; S3). However, it was found that the differences in
the R? by the KNN model between ID#4 and ID#3 were much larger than those by
the GAIN model. More input variables resulting in lower R? may be explained by
the cumulative addition of input variables in this study. The difference in prediction
accuracy by adding MD to CS as the second input variable was not examined and
MD was added as the fourth input variable. Moreover, the influence of meteorology
on air quality is reflected to some extent in the concentrations of CS (ID#1), TI
(ID#2), and AP (ID#3) and thus, the effect of MD on the prediction accuracy cannot
be compared with that of T or AP, and needs to be studied more in future works. In
contrast, the sharp decrease in the R? by the KNN model by the addition of MD
information may be because of the characteristics of KNN, which do not belong to
the deep learning model. Since it uses the simplest ML method, adding too many
features will make the prediction difficult. Thus, the KNN model appears to be
affected by the so-called “curse of dimensionality (Poggio et al., 2017).” The
application of deep learning models may be more appropriate for PM,s composition
prediction when many input variables (i.e., chemical compositions in PM;s, TI,
gaseous AP, and MD) are used as in this study. As the number of input variables
rises, deep learning models suitable for regression utilizing high-dimensional data
perform better than simple ML models (Alpaydin, 2020; Gao et al., 2017). Compared
to the two ML models (RF, kNN), the two deep learning models (GAIN, FCDNN)
had higher R? for all PCs with ID#4, which had the most input variables (Tables 3;
S3). Owing to the high dimensionality of the supporting data, this study also implies
that deep learning models have exceptional applicability to data on air pollution.
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4.3.2.3. Comparisons of prediction accuracy by targeted components

Prediction accuracy by respective species is presented using the GAIN
model in Fig. 4.3 and Fig. 4.4. The R? for ion species was higher than that for trace
elements when all components were predicted (PC#7). Similar trends by GAIN were
observed by all ML models. In the comparison between predicted and observed
values for NH,* and SO4%, the slope was approximately 1.0, and the R? values were
0.97, which was higher than those of As (0.87) and Cu (0.78) (Fig. 4.3). High R? was
obtained for NOs, SO,*, and NHs* with R? values of 0.97, and thus, the
concentration of secondary aerosols may be effectively predicted from PMas
concentration, TI, AP, and MD. It seems that the secondary aerosol reaction
mechanism is learned by the deep learning model using the SO;, NO, and O;
concentrations and meteorological and time information even though secondary
aerosols are engaged in extraordinarily complex reactions including diffusion in the
atmosphere and chemical reactions depending on the weather and gaseous substance
supply (Liu et al., 2022). Additionally, the high contribution of secondary aerosols
to total PM_s mass concentrations (Kim et al., 2018; E. H. Park et al., 2020) may
help estimate their concentrations effectively from the PM_ s information.

The prediction accuracy was low when trace elements were included in the
prediction targets in all ML models while comparing the results for each PC (Table
4.5). For example, when the trace elements were included in the prediction target
(i.e., PC#3, PC#5, PC#6, and PC#7) with ID#4, the R? of their prediction results
ranked from bottom to the fourth out of seven PC results. This is presumed to be
because the concentration of trace elements accounts for a very small proportion of
the total PM s concentration, and the characteristics supporting the prediction of the
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concentration of trace elements were less included as input variables. Trace elements
are more affected by emission sources than chemical reactions in the atmosphere
(Choi et al., 2022); however, data related to emission sources were not folded into

the models in this study.
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Fig. 4.4. Comparisons of observations and predictions by GAIN model in Seoul
(ID#4, PC#7): (a) Na'; (b) K'; (¢c) Mg™"; (d) Ca™; (e) S; (f) K; (g) Ca; (h) Ti; (i)
V; () Mn; (k) Fe; (1) Ni; (m) Zn; (n) Se; (o) Br; (p) Pb
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4.3.2.4. Variability in prediction accuracy of PC#6 among three cites

The variations in R? were characterized in three study sites, BR, Seoul, and
Ulsan (Table 4.6; Fig.3). Fig. 4.5 shows the prediction results according to the 1D
combination and four ML models for PC#6 at the three sites. The R? decreased in
the order of BR, Seoul, and Ulsan. The BR site with the highest R? has fewer
anthropogenic emission sources, and the Ulsan site with the lowest R? has many
anthropogenic sources. The emissions of PM2s from industrial activity in 2019 were
77, 20,482, 1,197,173 kg in Baengnyeong, Seoul, and Ulsan, respectively (Air
Pollutants Emission Inventory of Republic of Korea, 2019). The prediction accuracy
was lower in cities with more PMys emission from industrial activity. The
westernmost island in Korea, BR, is regarded as a remote place with the least impact
from Korea's emission sources. Two industrial complexes are known to have a direct
impact on Ulsan, a significant industrial city (Choi etal., 2011b; Lee and Hieu, 2011).
It is inferred that lower R? in Ulsan in comparison to that in Seoul and BR for PC#6
corresponds with lower prediction accuracy for the trace element group of PC#3
(Table 4.6). The question of whether prediction accuracy for trace elements and/or
in Ulsan may be increased by using additional input variables related to emission

data from Ulsan industrial complexes remains to be explored in future investigation.
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Fig. 4.5. Comparison of model accuracy by ID# (PC#6): (a) BR, (b) Seoul, and
(¢) Ulsan

156



4.3.3. Prediction Results for Scenario #2

In Fig. 4.6 and Table 4.10, the prediction accuracy for each model for the
Seoul location is displayed with variations in the 1D period (from 1 to 36 months)
and missing ratios (from 20% to 80%). First, the R? was more than 0.8 by the two
deep learning models at a missing ratio of 20% with data over 3 months, suggesting
that a few months' data are sufficient to apply deep learning models in predicting the
concentrations of PM2s components. Second, when the period of ID increased, the
R? of the deep learning models further increased. By contrast, RF and kNN did not
show improvements in R? as the period of the ID increased than those of GAIN and
FCDNN (Fig. 4.6). One-way ANOVA with Tukey's honestly significant difference
(HSD) test identified that the longer the period of ID, the more the significant
differences in prediction results between the models (Table 4.11). This shows that
even though a substantial amount of data is used in this study, the two deep learning
models used can successfully extract the features of data, as shown in earlier research.

(Ciaburro and lannace, 2021).
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Table 4.10. Prediction accuracy (R?) by model according to data input period and missing ratio (ID#4 and PC#7, Seoul)

Missing GAIN DNN RF kNN
ratio 1- 3- 12- 36- 1- 3- 12- 36- 1- 3- 12- 36- 1- 3- 12- 36-

month month month  month month month  month  month month month  month  month month month  month  month

0.2 0.851 0.854 0.879 0.895 0.791 0818 0.824 0.861 0.808 0.795 0.773 0.785 0.791 0.763 0.713 0.744

0.4 0.783 0.813 0.829 0.844 0.744 0.764 0.789 0.822 0.767 0.768 0.749 0.759 0.703 0.722 0.666 0.678

0.6 0.742 0.727 0.754 0.784 0.744 0.736 0.758 0.767 0.742 0.730 0.720 0.714 0.661 0.664 0.612 0.619

0.8 0.596 0.626 0.631 0.686 0.643 0.660 0.675 0.699 0.652 0.659 0.659 0.641 0.551 0.530 0.493 0.514

Table 4.11. One-way ANOVA with Tukey's honestly significant difference (HSD) test results among models according to data input period
(ID#4, PC#7, Seoul, missing ratio 0.2)

P-value
Model Input data period

1-month 3-month 12-month 36-month

GAIN FCDNN <0.001" 0.041" 0.003" <0.001"
GAIN RF 0.003" 0.002" <0.001" <0.001"
GAIN kNN <0.001" <0.001" <0.001" <0.001"
FCDNN RF 0.227 0.204 0.005" <0.001"
FCDNN kNN 0.900 0.005" <0.001" <0.001"
RF kNN 0.227 0.041" 0.002" <0.001"

* Significantly different (significance level of 0.05)
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Prediction accuracy decreased as the missing ratio increased in all models
(Table 4.10). This was anticipated because the learnable data itself decreased.
However, notably, the decrease in accuracy was larger for GAIN and kNN as the
missing ratio increased, compared to the other two models (Fig. 4.6 and Table 4.10).
Since GAIN and kNN are unsupervised learning models that have the ability to
create predictions that are plausible, it may be more challenging for these models to
estimate accurate values in situations when there are inadequate reference data. In
contrast, FCDNN and RF, which are supervised learning models whose training and
testing are distinguished within the given data, were relatively less sensitive to the
increases in the missing ratio. When the missing ratio was 80%, the FCDNN model
had a higher prediction accuracy than that of the GAIN model in all periods (Fig. 4.6

and Table 4.10).
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Fig. 4.6. Comparison of accuracy by model according to data input period and
missing ratio (ID#4 and PC#7, Seoul): (a) 1-month, (b) 3-month, (c) 12-month,
and (d) 36-month data usage
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4.3.4. Features and Performance of Four ML Models

The features and performance of the four ML models used in this study may

be utilized for designing a predictive regression model in other studies. The
prediction accuracy of the GAIN model was the highest (Table 4.5 and Fig. 4.5),
indicating the best performance in predicting missing PM2s constituent values. The
decrease was also the least in the GAIN model even though the R? decreased when
trace elements are predicted (e.g., PC#3, 5, and 6) in all models. These results may
help to explain why the GAIN model has lately gained popularity and is being
applied to a variety of domains for the processing of missing values. (Andrews and
Gorell, 2020; Popolizio et al., 2021; Vifas et al., 2020).
However, prediction accuracy is not the only criterion for selecting a model as other
qualitative pros and cons of the model should be considered. RF and kNN have the
advantages of easy handling and simple algorithms although GAIN and FCDNN
have higher prediction accuracies than RF and kNN and maintained high prediction
accuracy values with an increase in input variables (Table 4.6).

The GAIN model undertakes unsupervised learning, with the main goal to
make missing values appear similar to observed data by identifying hidden patterns
in the data collected. Therefore, it may be difficult to interpret whether AP
characteristics such as physicochemical reactions are learned by the model or not.
Instead, it focuses on producing credible data. This is similar to kNN, which
functions by finding the nearest points using the entire data. In contrast, because
FCDNN and RF are supervised learning models, learning is separately completed

from the training data sets, and the characteristics extracted from I1Ds can be used to
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find the best weights and biases of the models. Therefore, examining the weights and
biases learned by the FCDNN and RF models helps identify the most important
characteristics for predicting each component of PM.s. With repeated usage of the
trained models and a deeper comprehension of atmospheric chemical and physical
processes, this aspect of supervised learning models may potentially offer benefits.
Interqurtile range of min-max normalized value of the data versus the prediction
accuracy (R?) of each model was shown in Fig. 4.10 to investigate the relevance
between the prediction accuracy of ML models and the variability of data used.
Moderate positive correlation in RF, EM, and MI (0.5 <R <0.7). The higher the data
variability, the higher the prediction accuracy of EM and MI model. It is suggested
that the prediction accuracy is high due to the feature extraction performance of deep
learning models, not the concentration variability of the chemical constituents of

PM; s itself.

1.0
Ses T ® g 99 ®
i (N - o = D
09 N S 2 v = PR >
S o+ o o S 8 A d
o a A S -2 A _
A < e
0.8 & & + 2 ’ 4
Py S & A =
o - -
= o s =] -
0.7 - < o - o =] o
& B L =}
- -8 & - g A a ry
¥ 0.6 a =%
2 8 - 8 ” a S GAIN (R"=0.13)
g 0.5 s +  DNN (R=0.40)
§ & 8 s o RF(R=052)
© - = & kNN (R=0.44)
c < 8
s 04 - - EM(R=058)
o - _ = = MI(R=0.59)
E a
g 03 = - Linear regression line of GAIN
a ’ o Linear regression line of DNN
=) = Linear regression line of RF
0.2 = Linear regression line of KNN
Linear regression line of EM
04 Linear regression line of M
Order of species: a
0.0 — As Ca®* Ca K Mg* Ti K Br Na* V 2Zn Fe N Se Ct Cu Pb Cr NO* S04 S NH™ Mn EC oC
0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16
Interqurtile range (IQR) of min-max normalized value * Pearson correlation coefficient

Fig. 4.10. Prediction accuracy (R?) of each constituent by the variability of the
data

165 .__;rxq =N -|-.li ‘_.] T]-
| ;



4.4. Summary

In this study, the feature extraction capabilities of the four ML models to predict
the chemical composition of PM,s were assessed by comparing the prediction
accuracy depending on input variables, target constituents for prediction, available
period, missing ratios of input data, and study sites. The prediction accuracy
identified by the coefficient of determination (R?) between prediction and
observation was highest in GAIN, followed by FCDNN and RF or kNN. As missing
ratios (20%, 40%, 60%, 80%) of input data increased, prediction accuracy decreased
in the four models and was more noticeable in GAIN and kNN, which are
unsupervised models. As the period of input data increased, the two deep learning
models (i.e., GAIN and DNN) had better applicability than the others (i.e., RF and
kNN). In the comparison of prediction accuracy by city, the prediction accuracy was
lower in cities with more particulate matter emission from industrial activity,
resulting in the highest R? in BR island and lowest in Ulsan. Among the target
constituent groups, the ions and trace elements were predicted with the highest and
lowest R?, respectively.

The high prediction accuracy of machine learning models means that features
from data were extracted successfully with the suitable structure of the models
(Alzubaidi et al., 2021). In terms of prediction accuracy, the ability to extract features
from data, the ability to repeat tests following independent training, ease of use or
convenience, and processing speed, each of the four models has strengths and
weaknesses. This study can be used for reference in other studies to predict missing
values of PMys chemical composition by selecting an appropriate model. The

accuracy of prediction of missing values presented in this study was generally high
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and was of a practically applicable level. Machine learning is a timely application
that is ideal for data on air pollution that is growing high-dimensional and has more
precise spatial and temporal needs. This study demonstrates that machine learning
models can be extended for further air pollution studies depending on model features,
required performance, and experimental conditions such as data availability and time

constraint.

Data Availability

The AP data (e.g., PMjo, NO», and CO) are available on the AirKorea website

(https://www.airkorea.or.kr/web/last amb_hour_data?pMENU_NO=123).

The MD can be obtained from the automatic weather stations

(https://data.kma.go.kr/data/grnd/selectAwsRItmList.do?pgmNo=56).

Code Availability

All the scripts used in the study for data processing and analysis are available in the
form of .py or .ipynb files in the following GitHub repository:

https://github.com/hadistar/hadistar, https://github.com/minjae960/GAIN_ TF2
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Chapter 5. Bayesian spatial multivariate receptor
modeling for spatiotemporal analysis of PM2.s sources

5.1. Introduction

Particulate matter less than 2.5 micrometers (PM: ) is a major pollutant of
interest for clean air, and the demand for its reduction continues to increase (Hopke
et al., 2019). Identifying major emission sources and assessing their contributions to
the total PM» 5 concentrations is crucial for developing more targeted enforcement
strategies and effective management of PM»s, which can also be reflected in
environmental health policies. Human health risks due to emission sources in certain
areas can also be evaluated based on the estimated source contributions (Hopke et
al., 2020; Wang et al., 2021). Furthermore, it would be beneficial if the spatio-
temporal distribution of sources could be modeled simultaneously in that it can be
used as an important reference for emission reduction measures or to identify high
incidence areas. (Shi et al., 2021). Regardless of continuous attempts to derive
scientific information about major PM,s sources and their contributions, there
remain many challenges because of the limitations, such as the requirement for high-
resolution data, measurement uncertainty, and modeling and estimation uncertainty
(Diao et al., 2019; Hopke, 2016; Hopke et al., 2020).

For source apportionment of PM; 5, receptor models based on factor analysis,
chemical mass balance (CMB), and principal component analysis (PCA) have been
used over four decades (Hopke, 2016). Karagulian et al. (2015) summarized a total
of 419 source apportionment studies conducted in 51 countries around the world and
identified the 14 types of receptor models utilized from 1986 to 2012. Positive matrix
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factorization (PMF), a type of factor analysis method, and CMB have been mostly
used with 45% and 19% of usage, respectively (Karagulian et al., 2015). Especially,
PMF, the most widely used method for source apportionment in recent decades, has
its uncertainty evaluation capabilities for source compositions, such as bootstrap and
displacement options, although not for source contributions, as well as producing
source compositions and contribution estimates that are interpretable based on
domain knowledge (Hopke, 2016; Paatero and Tapper, 1994; Polissar et al., 2001).
More recently, advanced PMF methods such as dispersion normalized PMF and
window PMF have also emerged to reduce the influence of meteorology on the
source emission patterns (Dai et al., 2020a, 2020b; Hopke, 2021). Also, PMF
modeling research using hourly data rather than daily data has increased the time
resolution of source apportionment with the recent development of measurement
techniques (Dai et al., 2020b; Park et al., 2019; Shi et al., 2019; Wang et al., 2018).
In addition, ensemble approaches such as integrating multiple receptor models and
chemical transport models (CTMs) have been employed to achieve better
performance and improve the CTM forecast. (Hopke, 2016; Sokhi et al., 2021).
However, the challenges such as the rotational ambiguity problem and the difficulty
with incorporating spatial correlation in multi-site data into PMF estimates still exist
(Hopke, 2021). Overall, the source apportionment methods capable of incorporating
spatial correlations in multi-site data into estimation are very limited (Park et al.,
2018).

More recently, there has been growing interest in Bayesian approaches in
receptor modeling (Hopke, 2016). In fact, the Bayesian approaches are increasingly

being used in all social science and engineering fields, including environmental
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engineering, with the development of computational technology (M. H. Park et al.,
2020). Bayesian factor analysis methodology was previously introduced into
receptor modeling as a way to resolve a rotational ambiguity problem as well as
handling the unknown number of sources and providing uncertainty estimates of
source profiles and contributions (E. S. Park et al., 2014; Park et al., 2021, 2018,
2004, 2002; Park and Oh, 2018, 2015; Park and Tauler, 2020). In a Bayesian
approach, each parameter is assumed to have its own probability distribution, called
a prior distribution, of which variability reflects the uncertainty in prior information.
With this important feature, any prior information about pollution sources from the
domain knowledge, in addition to the data, can be incorporated into parameter
estimation in a mathematically rigorous fashion in Bayesian source apportionment
models (Park and Tauler, 2020), which is not possible in non-Bayesian source
apportionment models.

Bayesian spatial multivariate receptor modeling (BSMSM), proposed by
Park et al. (2018), is a Bayesian source apportionment approach that can incorporate
spatial correlations in multi-site multipollutant data into parameter estimation and
enable spatial prediction of source contributions at unmonitored sites. Furthermore,
it can simultaneously deal with model uncertainty resulting from an unknown
number of sources or rotational ambiguity. Therefore, BSMRM has the advantage of
being able to account for both the uncertainty in source apportionment and spatial
correlations in the data in prediction. The first application of BSMRM was based on
17 volatile organic compounds data collected from nine monitoring sites in Harris
County, Texas, USA. The predicted source contributions for five major sources of

the Harris County area were derived incorporating spatial correlations in the VOCs
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data from multiple monitoring sites (Park et al., 2018).

With the recent surge in interest in PM» s management in Korea, the number
of nationally operated PM,s speciation monitoring sites has been increasing.
Accordingly, the level of demand for scientific source apportionment is high in terms
of data utilization, and several PMF modeling and analysis results using national
measurement data have been reported recently (Hwang et al., 2020; Jeong et al.,
2017; Lee et al., 2019; Park et al., 2019). However, there have been no studies on
spatial prediction of source-specific PM, s pollution using multi-site PM, s speciation
data. A source apportionment study applying BSMRM to multi-site PM, s speciation
data in Korea is a timely new attempt. Source apportionment results with spatial
prediction at unmonitored sites (cities) using PM, s speciation data operated at the
national level could be vital information for successful management of PM»s. As
mentioned earlier, prediction of source-specific PM, s pollution at any location can
lead to developing an effective pollution control plan for a city with no PMa;s
chemical speciation monitoring site.

This study aims to predict source-specific PM» s pollution at unmonitored
sites in regional scale by employing BSMRM, which models spatial correlation in
multi-site PM» s chemical speciation data to make spatial predictions. BSMRM will
also be evaluated by verifying the model results based on the held-out test data not
used for model development and estimation. Prediction of unobserved source
contributions from BSMRM at an unmonitored site (a test site) will be compared
with the source contributions estimated by a single-site source apportionment
method, BNFA (Park et al., 2021), based on data from the test site. Finally, maps of

source-specific pollution surfaces over Korea, constructed based on predicted values
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from BSMRM, will also be presented.
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5.2. Materials and methods

5.2.1 Air pollution data

The PM,s chemical speciation data measured for 1/1/2020-12/29/2020
from 8 sites were used for the analysis. Fig. 5.1 shows the location of the monitoring
stations from which the data were obtained. The concentrations of the chemical
components of PM, s for 7 out of those 8 sites (Baengnyeong, Seoul, Ansan, Daejeon,
Gwangju, Ulsan, and Jeju) were obtained from intensive PM, s monitoring stations
operated by the Korean Ministry of Environment (NIER, 2016). Mass
concentrations of PM» s were measured by B-ray absorption method (BAM 1020,
Met One Instruments, Inc., USA). The analysis methods for quantifying the chemical
composition of PM,s are as follows: lonic species were measured by ion
chromatography (URG-9000D ambient ion monitor, URG Corp.). Organic carbon
(OC) and elemental carbon (EC) were measured by thermal-optical transmittance
method (OC-EC Analyzer, Sunset Laboratory Inc., USA). Elemental concentrations
were measured using an ambient elemental monitor (XactTM 620, Cooper
Environmental Services, USA) which is analyzed by X-ray fluorescence
spectrometry (XRF). QA/QC for PM, s and its components data can be found in the
guideline for installation and operation of national air pollution monitoring network
(Korea Ministry of Environment and National Institute of Environmental Research,
2021).

The methods for collecting the data from the remaining one site (Siheung)
are described in detail in Lee et al. (2022). Briefly, the mass concentrations of

Siheung data were obtained by measuring the weight of a 24-hour dried Teflon filter
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(PT47P, MTL, US) before and after sample collection, and then dividing the obtained
value by the collected air volume. The analysis methods for quantifying the chemical

composition of PM; s are also described in detail in Lee et al. (2022).
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Fig. 5.1. Locations of PM; s chemical speciation monitoring sites in South Korea.

Table 5.1 contains the summary statistics for 20 species used in this analysis

and the total PM, s mass concentration based on data from all 8 monitoring sites.
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Table 5.1. Summary statistics for PM, s and its chemical species

Species No.  Species Mean Median Std. Dev. Minimum Maximum
PM_s (ug/m’) 20.5 17.3 13.0 0.846 78.7
Ton (ug/m?®)
1 NOs 4.62 2.55 5.10 0.021 29.1
2 SO4* 3.47 2.86 2.49 0.035 17.8
3 Cl 0.359 0.230 0.388 0.000 2.93
4 Na* 0.112 0.083 0.112 0.000 1.22
5 NH,* 2.84 2.17 2.24 0.007 15.1
6 K* 0.110 0.071 0.120 0.000 0.912
7 Mg* 0.022 0.015 0.025 0.000 0.237
Carbon (ug/m?®)
8 oC 3.17 2.69 2.26 0.000 14.4
9 EC 0.652 0.569 0.452 0.000 2.94
Trace Element (ng/m?)
10 Ca 50.6 40.0 37.5 0.702 283
11 Ti 7.79 6.38 6.40 0.029 91.9
12 A% 0.426 0.218 0.621 0.000 6.87
13 Cr 1.23 0.907 1.29 0.000 114
14 Mn 10.6 8.39 9.31 0.000 79.5
15 Fe 162 145 105 2.48 738
16 Ni 0.978 0.754 0.853 0.000 5.13
17 Cu 6.83 4.33 9.24 0.038 93.2
18 Zn 43.14 353 33.6 0.615 226
19 As 4.81 3.03 6.07 0.000 72.6
20 Pb 15.5 11.2 14.7 0.000 111
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5.2.2 Bayesian spatial multivariate receptor modeling (BSMRM)

In this study, we performed source apportionment of PM, 5 for Korea based
on speciated PM> 5 data collected from multiple monitoring sites by using Bayesian
spatial multivariate receptor modeling (BSMRM) proposed by Park et al. (2018).
The main motivation of BSMRM was to account for spatial correlation in the air
pollution data collected from multiple monitoring sites in modeling and estimation
and predict source contributions at unmonitored sites. For completeness, BSMRM
models are briefly described here again. Let NV be the number of monitoring sites and
T be the number of time points. The basic model for the 7th monitoring site at time ¢

is

XI=ATP+El, t=1,-,T, r=1,-,N, Eq.5.1

where P is a ¢ x J source-composition matrix, X{ = (X, -, X[, 1) is a vector of
observed concentrations on J pollutants at monitoring site » at time ¢, A} =
(A7, -, Xtrq) is a vector of contributions from ¢ sources at monitoring site » at time
t,and Ef = (Efy,- E} ]) is a J-dimensional vector of errors associated with each
observation at the rth monitoring site and time ¢. The elements of P are constrained
to be nonnegative. Park et al. (2018) extended the model in Eq. 5.1 to incorporate
spatial correlation in multi-site multipollutant data into multivariate receptor
modeling by adapting the dynamic factor process convolution model of Calder (2007)
based on the discrete process convolution approach, originally proposed by Higdon

(1998), to modeling spatial data. The discrete process convolution approach
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expresses the spatial process as a sum of the discrete underlying (latent) processes
defined on L locations on a coarse grid {wq, w5, *+, w; }, covering the spatial domain,
smoothed by the kernel x. Park et al. (2018) relaxed the assumption of the known
number of factors and known identifiability conditions of Calder (2007) and handled
uncertainty in the unknown number of factors and identifiability conditions
simultaneously with parameter estimation. They also incorporated physically
meaningful non-negativity constraints (that were not enforced in Calder 2007) for
the source composition profile matrix and the source contribution matrix into the
estimation.

BSMRM considers the following model for the multivariate air pollution
data {X(s,,t),t =1,:+,T} collected from N spatial sites {sy,S,,:*,Sy} over T

time points:

X(s,, t) = K(s,)G,P + E(s,, t) Eq5.2

where s is the spatial location of the rth receptor (r = 1,:--, N), G; represents ¢
underlying processes located at L spatial locations {w,, w5, -, w.} chosen from a
coarse grid that covers a spatial domain, G, ~ N (0,1,,Q), K(s,) = [xk(w; —
sy), -, k(w;, —s,)], k is a smoothing kernel, and E(s,,t) is an iid, mean zero,

Gaussian process on (s, t) with variance X; = diag(of, -, af).

This spatially extended multivariate receptor model makes it possible to
predict source contributions at any locationas K(s)G, by plugging in the estimates

for G, and the corresponding values for K(s) where s is a new location.



Uncertainty in the number of major sources and identifiability conditions
can be handled by considering marginal likelihood (model evidence given the data)
for each model which can be viewed as a measure of model fit (the larger, the better).
Estimation of model parameters and computation of marginal likelihoods can be
performed by Markov chain Monte Carlo (MCMC) methods. The MATLAB codes
for MCMC implementation of BSMRM are also freely available from the

Supplementary Materials for Park et al. (2018).

5.2.3 Application of BSMRM to Korea PM, s speciation data

We applied BSMRM to the PM_ 5 speciation data collected from seven monitoring
sites (except for a test site denoted by a triangle) in Fig. 5.2 in Korea in 2020. The
data for each of Daejeon City, Gwangju City, and Ansan City, are set aside as held-
out data (test data) to use for validation of BSMRM. These 3 sites were selected to
test model validity in inner regions among the monitoring stations to avoid
extrapolation. There were a total of 103 days when PM;s speciation measurements
were made for most of the eight monitoring sites. The number of missing
observations at any given site varies with species, ranging from 0 to 35 days. The
missing observations were imputed by k-nearest neighbor imputation (Little and
Rubin, 2014), namely, using the spatial average of pollutants from three nearest

neighboring sites for each day.

Based on the previous (single-site) studies for different cities in Korea
(Choi et al., 2022, 2013; Heo et al., 2009; Hwang et al., 2020; Kim et al., 2018; Park
etal., 2019; E. H. Park et al., 2020), secondary sulfate, secondary nitrate, traffic, coal
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combustion (including heating), oil combustion, industrial sources, biomass burning,
soil, and sea salt were presumed to be potential candidate sources affecting the region.
This prior knowledge was utilized in prespecification of zeros in the source-
composition profile matrix to achieve model identifiability. Table 5.2 gives the major
species for each of the candidate source types. Minor or absent species from each

source type are candidates for preassigned zeros in source composition profiles.

Table 5.2. Major Species for Candidate Sources Considered in the Analysis

Source Major species
Secondary nitrate NOs and NH4*
Secondary sulfate SO4* and NH4"

Traffic OC, EC, and Cu, Fe
Coal combustion As and Pb, CI (heating)

Industry V, Cu, Cr, Mn, Fe, Ni, Pb and Zn
Biomass burning K*, OC, and EC
Soil Mg, Al, Si, Ca, Ti
Sea salts Na, Mg, K

We constructed a range of different models, resulting from each
combination of varying number of sources and identifiability conditions
(prespecification of zeros), to be compared for the Korea PM,s data. Based on
previous studies on source identification and apportionment of PM,s for South
Korea and the NUMFACT procedure (Henry et al., 1999; Park et al., 2000), we
presumed that the number of major sources was between 5 and 8. For candidate

positions of zeros in P under each g-source model, we used the information on the
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major sources of Korea from previous single-site studies aforementioned. Note that
we use information from previous single-site studies only to find out the plausible
sets of identifiability conditions (absent or minor species for each source type) under
each g-source model. Other than that, the candidate models do not depend on the
results from those previous studies. We compared eight candidate models with
different numbers of sources (¢ = 5, 6, 7, 8) and different identifiability conditions

(prespecification of zeros in P) in Table 5.3.

Table 5.3. Candidate Models for Korea PM, s Data

Prespecification of zeros

Model# q Source No. Spec'ies No. for logmD(*1.0e+04)
preassigned zeros*

1 5 1 2,3,8,15 -2.1007
2 1,3,8,15
3 3,5,6,15
4 4,8,9,10
5 3,8,9,15

2 5 1 2,3,8,15 -2.0952
2 1,3,8,15
3 3,6,10, 15
4 4,7,8,9
5 6,8,9,15

3 6 1 2,3,4,8,15 -2.0986
2 1,3,4,8,15
3 3,5,6,10,15
4 4,7,8,9,10
5 3,6,8,9,15
6 1,2,3,5,8

4 6 1 2,3,4,9,15 -2.0974
2 1,3,4,10, 15
3 3,5,6,7,15
4 4,5,7,9,10
5 3,5,6,8,15
6 2,3,5,8,16
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5.3. Results and discussion

5.3.1 Bayesian spatial multivariate receptor modeling (BSMRM) results

We fitted Bayesian spatial multivariate receptor models to the data
consisting of 20 PM s species (measured in pg/m®) given in Table 5.1 and estimated
source-composition profiles and other model parameters along with marginal
likelihood under each model. Note that Bayesian model comparison can be
performed using the posterior model probability, which is proportional to the
marginal likelihood under the indifference prior model probabilities. A model with
a higher marginal likelihood (or posterior model probability) is thus preferred.
Because concentrations of PM: s species differed by two or three orders of magnitude
and convergence problems may occur when elemental concentrations are on widely
different scales, each element was scaled by its sample standard deviation before
running MCMC. After the run, however, the individual elements of the estimated
source profiles were multiplied by the corresponding sample standard deviations to
bring them back to the original scale so that the relative amounts of species in each
profile are physically interpretable. The following hyperparameter values were used
for generating MCMC samples: ap=0.01, by;=0.01 (j =1, ...,17), ¢y = 0.5 X 1+,
and Cy = 100 X I,+. Also, we set Q =1, as a way to get around a scale invariance

problem for these data. We modeled the underlying process at 9 locations (L=9)
chosen to cover the spatial domain of interest shown in Fig.5.2 with the distance
between adjacent location used as the standard deviation (o) of the Gaussian kernel

used in model fitting (o« =1.7379).
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Fig. 5.2. Separation of locations for validation and underlying locations: Test

site of (a) Ansan, (b) Daejeon, and (c) Gwangju

For model fitting, three different datasets (consisting of data from 7

remaining monitoring sites after excluding a test site) were used as follows: Dataset

1 excluding the Daejeon site, Dataset 2 excluding the Gwangju site, and Dataset 3

excluding the Ansan site. For each model fitted based on each dataset, an

approximate posterior mode is obtained from a preliminary MCMC run, and this is

used for 6¢ = (G, P¢ 2¢) at which the marginal likelihood is calculated. An

approximate posterior mode is obtained by evaluating the joint posterior density for

10,000 iterations after the first 10,000 draws are discarded. A main MCMC run is

then started from 6¢ = (G€, P¢, X¢), and the samples are collected for 10,000
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iterations, without additional burn-in. The estimated marginal likelihood (in logs) for
each model is also provided in Table 5.3. Model# 2 with 5 sources is selected as the
best model because the marginal likelihood for Model# 2 is the highest among the
candidate models considered.

Fig. 5.3 shows the estimated source composition profiles and contributions
under Model 2 based on Dataset 1 (which excludes Ansan City of Fig. 5.2). Fig. 5. 3
(a) shows barplots for elements of estimated source profiles (for common major
sources for the entire region) along with uncertainty estimates represented by error
bars (lower and upper limits of 95% posterior intervals). Note that local sources that
are specific to any single city may not be characterized by this regional modeling.
Fig. 5.3 (b) contains the time-series plots of the predicted source contributions along
with their uncertainty estimates (95% posterior intervals), at a held-out test site
(Ansan City). Major species in the estimated source composition profiles of Fig. 5.3
(a) appear to be consistent with main elements of major PM, s sources for South
Korea identified by previous studies, namely, Secondary Nitrate, Secondary Sulfate,
Motor Vehicles, Industry, and Sea Salt. The estimated yearly mean source
contributions across 7 monitoring sites indicate that Secondary Nitrate, Secondary
Sulfate, and Motor Vehicles play a major role in PM» s emissions for the region,
which agrees with previous studies based on the single-site data for each of the
individual cities. Recall that the main purpose of this study is to predict major PM; s
source contributions at unmonitored locations (cities), and Bayesian spatial
multivariate receptor modeling allows us to predict source contributions at any site

(not just at monitoring sites).
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predicted by BSMRM
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Fig. 5.4 and Fig. 5.5 show the estimated source composition profiles and
predicted source contributions for Daejeon City based on Dataset 2 and Gwangju
City based on Dataset 3, respectively. Note that the estimated source composition
profiles are similar across three cities, while predicted source contributions are

different across those cities as expected.
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5.3.2 Model validation

For validation of the prediction by BSMRM, we estimated source
contributions at a test site (each of Ansan, Dagjeon, and Gwangju sites) using
Bayesian multivariate receptor modeling for the single-site data. We performed
source apportionment at each site by BNFA (Park et al. 2021). Fig. 5.6, Fig. 5.7, and
Fig. 5.8 contain the time-series plots of the source contributions along with their
uncertainty estimates (95% posterior intervals) and bar plots of source compositions,
respectively, estimated using BNFA based on PM s speciation data obtained from

each of the Ansan, Daejeon, and Gwangju sites, respectively.
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Figures from Fig. 5.9 to Fig. 5.11 show predicted source contributions by
BSMRM overlaid with the predicted source contributions by BNFA at each test site.
It can be observed from Fig. 5.3 to Fig. 5.8 that the overall patterns of the source
contributions predicted by BSMRM and those estimated by BNFA are similar except
peaks of the BNFA source contributions are more extreme, which seems to be a
natural consequence of reflecting local conditions at the test site. It needs to be noted
that, due to the sparsity of monitoring sites (only 7 monitoring sites are available for
spatial prediction in this case), the predicted source contribution surface by BSMRM
is supposed to be smoother than the true surface. As the number of monitoring sites
increases, spatial prediction of local peaks will be improved. Other than prediction
of those local peaks, the source contributions predicted by BSMRM appear to be
consistent with the source contributions estimated by BNFA (which may be viewed
as the surrogate for the true source contributions at each test site) and correlations
(R) seem to be reasonable. Considering the very small number of monitoring sites,
spatial prediction of source contributions at an unmonitored site by BSMRM is

deemed to be satisfactory
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5.3.3 Spatial distribution of each source in South Korea

To examine spatial trends of source contributions in South Korea, we
constructed the predicted source contribution surface maps using data from all of 8
monitoring sites. Fig. 5.12 and Fig. 5.13 shows the predicted source contribution
surfaces for secondary nitrate and motor vehicle emissions for eight days in 2020,
which show spatial and daily variations of contributions of secondary nitrate and

motor vehicle emissions, respectively.
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5.4. Summary

In this paper, the source contributions for major sources of PM» s in a regional
scale were predicted and validated using BSMRM for the first time. We assessed the
impact of major sources to ambient PM s concentrations in Korea and predicted
source contribution surfaces using Bayesian spatial multivariate receptor modeling
(BSMRM) based on multi-site PM> 5 speciation data. Secondary Nitrate, Secondary
Sulfate, Motor vehicle emission, Industry, and Sea Salt were determined to be
significant contributors to ambient PM,s concentrations in Korea. The source
contributions predicted by BSMRM were also validated using the held-out data at a
test site (using each of Ansan, Daejeon, and Gwangju, as a test site). Source
contribution surface maps over the entire South Korea were also constructed. These
predicted source contributions can greatly aid in developing effective PM, s control
strategies in cities where no speciated PM» s monitoring stations are available. They
can also be utilized as source-specific exposures in health effects studies even at the

cities where no monitoring stations are available.
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Chapter 6. Conclusions and future work

6.1. Conclusions

The sources and chemical constituents of PM»s pollution were thoroughly
investigated. This study aimed to use source apportionment models and their
spatiotemporal analysis for an effective PM,s management strategy. Detailed
objectives and a summary of the results are described in each chapter. The
conclusions of this thesis corresponding to each goal are as follows:

(1) The sources of PM, s and their contributions in a medium-sized industrial
city, Siheung, South Korea, were identified using positive matrix
factorization modeling. Ten sources were secondary nitrate (24.3%),
secondary sulfate (18.8%), traffic (18.8%), combustion for heating (12.6%),
biomass burning (11.8%), coal combustion (3.6%), heavy oil industry
(1.8%), smelting industry (4.0%), sea salt (2.7%), and soil (1.7%). Based
on the source apportionment results, health risks by inhalation of PM, s
were assessed for each source using the concentration of toxic elements
mentioned. The estimated cumulative carcinogenic health risks from coal
combustion, heavy oil industry, and traffic sources exceeded the benchmark
1E-06. Similarly, carcinogenic health risks from exposure to As and Cr
exceeded 1E-05 and 1E-06, respectively, requiring a risk-reduction plan.
The carcinogenic risk of PM s in Siheung was similar to or lower than that
of mega-cities in Northeast Asia. The non-carcinogenic risk was lower than
the hazard index of 1, implying a low potential for adverse health effects.

The probable locations of sources with relatively high carcinogenic risks
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(2)

were tracked. It is noteworthy that the mass contribution and health risks of
each source in PM» s were different. These results highlight the importance
of PM,s management focusing on health risks. This type of research
evaluating PM> s health risks from sources is rare in South Korea, and it is
necessary to apply this method to other cities to evaluate their health risks

from PM,s.

The feature extraction capabilities of the four ML models to predict the
chemical composition of PM, s were assessed by comparing the prediction
accuracy depending on input variables, target constituents for prediction,
available period, missing ratios of input data, and study sites. The
concentrations of PM, s, which are important and essential information for
the identification of air pollution sources, were predicted at three sites
(Seoul, Ulsan, and Baengnyeong) in South Korea between 2016 and 2018
using four machine learning (ML) models: generative adversarial
imputation network (GAIN), fully connected deep neural network
(FCDNN), random forest (RF), and k-nearest neighbor (kNN). Three PM, s
constituent groups were targeted for prediction, including eight ions, two
carbons, and 15 trace elements. The latest hyperparameter optimization
techniques were used to learn air pollution characteristics from ambient
PM; s-related information, such as time, meteorology, and air pollutant
concentrations. We compared the feature-extraction abilities of the four
models. The prediction accuracy identified by the coefficient of

determination (R?) between the prediction and observation was highest in
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GAIN, followed by FCDNN, RF, and kNN. Based on the availability of
data on time, air pollutant concentrations, and meteorology, or all, 20% of
the data of all PM, s constituent groups were predicted, with R* = 0.897,
0.861, 0.785, and 0.801 by the GAIN, FCDNN, RF, and kNN, respectively.
As the missing ratios (20, 40, 60, and 80%) of the input data increased, the
prediction accuracy decreased in the four models and was predominantly
more noticeable in GAIN and kNN. As the available period of data
increased, the prediction accuracy increased for the GAIN and FCDNN.
Trace elements were predicted to have the lowest R? among the target
constituent groups in all the models. The study sites with more emission
sources showed lower prediction accuracy, resulting in the highest R? in
Baengnyeong Island and the lowest in Ulsan. The missing values of PM 5
chemical constituents could be predicted successfully using machine

learning models.

The source contributions for major sources of PM,s on a regional scale,
including unmonitored sites, were predicted and validated using Bayesian
spatial multivariate receptor modeling (BSMRM) as the first study. The
spatial distributions of five PMz s sources in South Korea were estimated
using BSMRM, which incorporates spatial correlation in data into
modeling and estimation for spatial prediction of latent source contributions.
Secondary nitrate, secondary sulfate, motor vehicle emissions, industry, and
sea salt were identified as significant contributors to PM» s concentrations

in South Korea. The distribution of the daily average contribution for each
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source in South Korea was derived from measurement data from the eight
monitoring sites. The validity of the BSMRM results was also assessed
based on the data from the test site (city), which were not used in model
development and estimation as part of cross-validation. The results of the
validation indicated that the use of the Bayesian spatial multivariate
receptor model was appropriate, with high accuracy. In addition, the
uncertainty of the source contributions was quantified, including
unmonitored sites, which is not possible in other receptor models. The
results of this study could be used to develop effective management

strategies for PMy s.
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6.2. Future work

Limitations or research needs for each chapter are suggested as future works.

)

)

©)

In Chapter 3, the health risks are evaluated only for PM,s constituents
toxicity data available (such as heavy metals). Therefore, the toxicity of
some species, such as organic carbon and ionic constituents, was not
considered. If the toxicity values of other constituents are reflected, the
health effect of PM, s will be estimated to be larger. This indicates that the
health effects of PM> s could be treated more seriously. Further studies that
include other constituents are required.

In Chapter 4, the increased usability of the missing-value corrected data
using the methodology of this study was not evaluated. Missing-value
corrected data can help improve the reliability of receptor models for source
apportionment, such as PMF and Bayesian multivariate receptor models.
Further research is needed to investigate the reliability of missing-value
corrected data using machine learning models in source apportionment
research.

In Chapter 5, the predicted source contribution surface is assumed to be
smoother than the true surface because of the sparsity of the monitoring
sites (limitation of the data). As the number of available monitoring sites
increases, the spatial prediction of local peaks improves. The number of
sources that can be predicted also increased. Further research is required to

increase the number of measurement sites and the period of data collection.

218 2] 2 1 &)



~—

T X F(Abstract in Korean)

r
e
ol
o
£
)
ol
=2
=)
rir
12
of
ol
o
fu
rO
%
4
X,
r\J
offt
[-'O
=
X
k)
o
fu

westy] fleiM e tefd A F3tel disl AR Y] e dd

2
rr
o2
o
e
[-40
5
Mz
S
Py
-
(@)
%)
=
<
(@)
)
)
=4
=
i
—
o
3}
a
o
=
N
)
g
o
=

PMF) Rdgowg o= 3 Hidia ZuAuxe 299 H3&

FAHoE FHer] 8 BEHUG FRAE Wol A thy

ot

2 9% (Bayesian  spatial  multivariate  receptor  modelingm,

BSMRM) o2, o]z oo 54 AFezie g2 ¥ee wuHd

del Fe o9 9L FPA/ AN FEHAL. T, AN
2U5E B8] 2vAHA 299 £9 F44 AE Fo@ ARE

219 ; ] _l,.l:_



T 10745 E=Fskelth. ol A2 2a A4 HAd (24.3%), 24
5

A AR (18.8%), ©)l% 29A(18.8%), YHAAX(12.6%), WEA

2

2(11.8%), A& A4 (3.6%), T+ #A A 299 1.8%), A=A
e A 299 U@.0%), WD AAQ2T7%), BEFA.T7% AT E=EH

odd fuME, uAENA 3 wE A% dTL B7

bt

ol

Asl 4714 Z1ASE Ede] dis dE AR FE A5 i AR,
d= A= 7z " ARG A5 vE, AR o A9S Wstshd
o= AFgxE Hlw H7FEAY. GAIN(Generative Adversarial
Imputation Network), FCDNN (Fully Connected Deep Neural
Network), Random forest (RF), kNN (k—nearest neighboring) 52 2]

47V ZIAs s Bd

o

=l 3 AG M=, aah wR) 9

2016 W15 2018W74K 9] 2uA=] 58t 4% Are] s 4 gefol

220 .-_;rxﬁ-! _CI_‘,I_ 1-]'



m

ik Alole]l ARASE Bel A3

=
—:'7

at

=
=

o

bt

TC -
aw

FCDNN, RF

’

al

o}

=
3L

3}

20%°14  80%7+A]

= 5o

Ao 4

Mz yebst 99

<
LN

kNN

o

5 24l GAINZ kNNeoA 7HA Fo]l ¢ =A YERRLT

Tor

=z «
- T

GAINZ} FCDNNo| t}

il

s

s

=
=

<7F ol H .

g%

RF¢ kNNHT} o= A

1 ¢l 0]
[ B

=

S wreRe AL, ARA]

i

T

tel ti71 e Eokel A o] 717

S

37}

o=

SaMe 878

e =8 293 (BSMRM) &

s

0

=
=

57+

2]

e

1] A A]

o

95 5744

Ay A==
=

gl

S
=

E3, BSMRM

ST

]

[e)

PN
T

1

;o:._

HAE

B

'ﬂ

T
BR

)

A

221



M= Blaste] B

=

NI

.z:l

g AERre 2 et dAel sl o

=
=

8712

)

b)]

)

1 Zu|AHA];

20

=
T

:2019-32839

s

222



	CHAPTER 1. INTRODUCTION 
	1.1. Background 
	1.2. Objectives 
	1.3. Dissertation structure 
	References 

	CHAPTER 2. LITERATURE REVIEW 
	2.1. Source apportionment and receptor modeling of PM2.5 
	2.2. Toxicity and health risk of assessment PM2.5 
	2.3. Machine learning approaches in prediction of PM2.5 
	2.4. Bayesian approach in source apportionment 
	References 

	CHAPTER 3. SOURCE APPORTIONMENT OF PM2.5 USING  PMF MODEL AND HEALTH RISK ASSESSMENT BY INHALATION
	3.1. Introduction 
	3.2. Materials and methods 
	3.2.1 Study site, sampling, and analysis 
	3.2.2 Positive matrix factorization (PMF) modeling and combined analysis with meteorological data 
	3.2.3 Health risk assessment 

	3.3. Results and discussion 
	3.3.1 PM2.5 mass concentration and chemical speciation 
	3.3.2 Source apportionment of PM2.5 by PMF modeling 
	3.3.3 Carcinogenic and non-carcinogenic health risks 
	3.3.4 Probable source areas or directions 

	3.4. Summary 
	References 

	CHAPTER 4. FEATURE EXTRACTION AND PREDICTION OF PM2.5 CHEMICAL CONSTITUENTS USING MACHINE LEARNING MODELS 
	4.1. Introduction 
	4.2. Materials and methods 
	4.2.1. Study Sites and Data Collection 
	4.2.2. Machine Learning Models and Hyperparameter Optimization 
	4.2.3. Prediction Scenarios 
	4.2.4. Model Validation and Error Estimation 

	4.3. Results and discussion 
	4.3.1. Hyperparameter Optimization 
	4.3.2. Prediction Results for Scenario #1 
	4.3.3. Prediction Results for Scenario #2 
	4.3.4. Features and Performance of Four ML Models 

	4.4. Summary 
	Data Availability 
	Code Availability 
	References 

	CHAPTER 5. BAYESIAN SPATIAL MULTIVARIATE RECEPTOR MODELING FOR SPATIOTEMPORAL ANALYSIS OF PM2.5 SOURCES 
	5.1. Introduction 
	5.2. Materials and methods 
	5.2.1 Air pollution data 
	5.2.2 Bayesian spatial multivariate receptor modeling (BSMRM)  
	5.2.3 Application of BSMRM to Korea PM2.5 speciation data 

	5.3. Results and discussion 
	5.3.1 Bayesian spatial multivariate receptor modeling (BSMRM) results   
	5.3.2 Model validation 
	5.3.3 Spatial distribution of each source in South Korea 

	5.4. Summary 
	References 

	CHAPTER 6. CONCLUSIONS AND FUTURE WORK 
	6.1. Conclusions 
	6.2. Future work 

	국문 초록(ABSTRACT IN KOREAN) 


<startpage>19
CHAPTER 1. INTRODUCTION  1
 1.1. Background  1
 1.2. Objectives  4
 1.3. Dissertation structure  5
 References  7
CHAPTER 2. LITERATURE REVIEW  10
 2.1. Source apportionment and receptor modeling of PM2.5  10
 2.2. Toxicity and health risk of assessment PM2.5  21
 2.3. Machine learning approaches in prediction of PM2.5  31
 2.4. Bayesian approach in source apportionment  41
 References  54
CHAPTER 3. SOURCE APPORTIONMENT OF PM2.5 USING  PMF MODEL AND HEALTH RISK ASSESSMENT BY INHALATION 69
 3.1. Introduction  69
 3.2. Materials and methods  72
  3.2.1 Study site, sampling, and analysis  72
  3.2.2 Positive matrix factorization (PMF) modeling and combined analysis with meteorological data  76
  3.2.3 Health risk assessment  80
 3.3. Results and discussion  85
  3.3.1 PM2.5 mass concentration and chemical speciation  85
  3.3.2 Source apportionment of PM2.5 by PMF modeling  89
  3.3.3 Carcinogenic and non-carcinogenic health risks  94
  3.3.4 Probable source areas or directions  103
 3.4. Summary  106
 References  107
CHAPTER 4. FEATURE EXTRACTION AND PREDICTION OF PM2.5 CHEMICAL CONSTITUENTS USING MACHINE LEARNING MODELS  120
 4.1. Introduction  120
 4.2. Materials and methods  124
  4.2.1. Study Sites and Data Collection  124
  4.2.2. Machine Learning Models and Hyperparameter Optimization  127
  4.2.3. Prediction Scenarios  131
  4.2.4. Model Validation and Error Estimation  133
 4.3. Results and discussion  134
  4.3.1. Hyperparameter Optimization  134
  4.3.2. Prediction Results for Scenario #1  135
  4.3.3. Prediction Results for Scenario #2  157
  4.3.4. Features and Performance of Four ML Models  164
 4.4. Summary  166
 Data Availability  167
 Code Availability  167
 References  168
CHAPTER 5. BAYESIAN SPATIAL MULTIVARIATE RECEPTOR MODELING FOR SPATIOTEMPORAL ANALYSIS OF PM2.5 SOURCES  175
 5.1. Introduction  175
 5.2. Materials and methods  180
  5.2.1 Air pollution data  180
  5.2.2 Bayesian spatial multivariate receptor modeling (BSMRM)   183
  5.2.3 Application of BSMRM to Korea PM2.5 speciation data  185
 5.3. Results and discussion  189
  5.3.1 Bayesian spatial multivariate receptor modeling (BSMRM) results    189
  5.3.2 Model validation  196
  5.3.3 Spatial distribution of each source in South Korea  204
 5.4. Summary  207
 References  208
CHAPTER 6. CONCLUSIONS AND FUTURE WORK  214
 6.1. Conclusions  214
 6.2. Future work  218
국문 초록(ABSTRACT IN KOREAN)  219
</body>

