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Abstract
Speech Activity and Speaker Change Point Detection for On-
line Streams

The main focus of this thesis lies on two closely interrelated tasks,
speech activity detection and speaker change point detection, and
their applications in online processing. These tasks commonly play
a crucial role of speech preprocessors utilized in speech-processing
applications, such as automatic speech recognition or speaker di-
arization. While their use in offline systems is extensively covered
in literature, the number of published works focusing on online use
is limited. This is unfortunate, as many speech-processing applica-
tions (e.g., monitoring systems) are required to be run in real time.

The thesis begins with a three-chapter opening part, where the
first introductory chapter explains the basic concepts and outlines
the practical use of both tasks. It is followed by a chapter, which
reviews the current state of the art and lists the existing toolk-
its. That part is concluded by a chapter explaining the motivation
behind this work and the practical use in monitoring systems; ulti-
mately, this chapter sets the main goals of this thesis.

The next two chapters cover the theoretical background of both
tasks. They present selected approaches relevant to this work (e.g.,
used for result comparisons) or focused on online processing.

The following chapter proposes the final speech activity detection
approach for online use. Within this chapter, a detailed description
of the development of this approach is available as well as its thor-
ough experimental evaluation. This approach yields state-of-the-art
results under low- and medium-noise conditions on the standardized
QUT-NOISE-TIMIT corpus. It is also integrated into a monitoring
system, where it supplements a speech recognition system.

The final speaker change point detection approach is proposed in
the following chapter. It was designed in a series of consecutive
experiments, which are extensively detailed in this chapter. An ex-
perimental evaluation of this approach on the COST278 database
shows the performance of approaching the offline reference system
while operating in online mode with low latency.

Finally, the last chapter summarizes all the results of this thesis.

Keywords: Deep Neural Networks, Online Streams, Speech Activ-
ity Detection, Speaker Change Point Detection, Weighted Finite-
State Transducers.



Abstrakt
Detekce řeči a změny mluvčího v online vysílání

Disertační práce je věnována dvěma si blízkým řečovým úlohám
a následně jejich použití v online prostředí. Konkrétně se jedná
o úlohy detekce řeči a detekce změny mluvčího. Ty jsou často ne-
dílnou součástí systémů pro zpracování řeči (např. pro diarizaci
mluvčích nebo rozpoznávání řeči), kde slouží pro předzpracování
akustického signálu. Obě úlohy jsou v literatuře velmi aktivním
tématem, ale většina existujících prací je směřována primárně na
offline využití. Nicméně právě online nasazení je nezbytné pro ně-
které řečové aplikace, které musí fungovat v reálném čase (např.
monitorovací systémy).

Úvodní část disertační práce je tvořena třemi kapitolami. V té prv-
ní jsou vysvětleny základní pojmy a následně je nastíněno využití
obou úloh. Druhá kapitola je věnována současnému poznání a je do-
plněna o přehled existujících nástrojů. Poslední kapitola se skládá
z motivace a z praktického použití zmíněných úloh v monitorovacích
systémech. V závěru úvodní části jsou stanoveny cíle práce.

Následující dvě kapitoly jsou věnovány teoretickým základům obou
úloh. Představují vybrané přístupy, které jsou buď relevantní pro
disertační práci (porovnání výsledků), nebo jsou zaměřené na pou-
žití v online prostředí.

V další kapitole je předložen finální přístup pro detekci řeči. Po-
stupný návrh tohoto přístupu, společně s experimentálním vyhod-
nocením, je zde detailně rozebrán. Přístup dosahuje nejlepších vý-
sledků na korpusu QUT-NOISE-TIMIT v podmínkách s nízkým
a středním zašuměním. Přístup je také začleněn do monitorovacího
systému, kde doplňuje svojí funkcionalitou rozpoznávač řeči.

Následující kapitola detailně představuje finální přístup pro detekci
změny mluvčího. Ten byl navržen v rámci několika po sobě jdoucích
experimentů, které tato kapitola také přibližuje. Výsledky získané
na databázi COST278 se blíží výsledkům, kterých dosáhl referenční
offline systém, ale předložený přístup jich docílil v online módu a to
s nízkou latencí.

Výstupy disertační práce jsou shrnuty v závěrečné kapitole.

Klíčová slova: detekce řeči, detekce změny mluvčího, hluboké
neuronové sítě, online vysílání, vážené konečné stavové převodní-
ky.



Contents

Introduction 16

1 State of the Art 18
1.1 Speech (Voice) Activity Detection . . . . . . . . . . . . . . . . . . . . 18
1.2 Speaker Change Point Detection . . . . . . . . . . . . . . . . . . . . . 19
1.3 Existing Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2 Motivation and Goals 22
2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2 Practical Use in TVR Monitoring System . . . . . . . . . . . . . . . 23
2.3 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Selected Approaches to Speech (Voice) Activity Detection 25
3.1 ITU-T G.729 Annex B . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 ETSI Advanced Front-End . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3 Model-Based Likelihood Ratio . . . . . . . . . . . . . . . . . . . . . . 28
3.4 Long-Term Spectral Divergence . . . . . . . . . . . . . . . . . . . . . 29
3.5 GMM-Based Approach . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.6 Subband Noncircularity . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.7 Complete-Linkage Clustering . . . . . . . . . . . . . . . . . . . . . . 32
3.8 DNN-Based Approach . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.9 Conditional Random Fields . . . . . . . . . . . . . . . . . . . . . . . 36
3.10 Simultaneously Trained Online Decoder . . . . . . . . . . . . . . . . 37

4 Selected Approaches to Speaker Change Point Detection 38
4.1 BIC-Based Approach in LIUM Toolkit . . . . . . . . . . . . . . . . . 38
4.2 Bayesian Fusion Method . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.3 XBIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.4 LLR-Based Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.5 Adapted GMMs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.6 i-vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.7 ASR-Based Approach . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.8 NN-Based Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.9 Deep Speaker Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.10 Segmentation in Online Diarization . . . . . . . . . . . . . . . . . . . 49

5 Proposed Speech Activity Detection Approach 51
5.1 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.1.1 Overall Accuracy Metrics . . . . . . . . . . . . . . . . . . . . 51
5.1.2 Change Point Quality Metrics . . . . . . . . . . . . . . . . . . 52
5.1.3 Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . 54

5.2 Data Used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

7



5.3 Baseline DNN-Based Approach . . . . . . . . . . . . . . . . . . . . . 55
5.4 Smoothing the Output from DNN . . . . . . . . . . . . . . . . . . . . 57
5.5 Using Artificial Training Data . . . . . . . . . . . . . . . . . . . . . . 58
5.6 Improved Context-Based Smoothing . . . . . . . . . . . . . . . . . . 59
5.7 Tuning of Hyper-Parameters . . . . . . . . . . . . . . . . . . . . . . . 61

5.7.1 Width of Hidden Layers . . . . . . . . . . . . . . . . . . . . . 61
5.7.2 Number of Hidden Layers . . . . . . . . . . . . . . . . . . . . 62
5.7.3 Activation Functions of Neurons . . . . . . . . . . . . . . . . 63
5.7.4 Context Window Size . . . . . . . . . . . . . . . . . . . . . . 64
5.7.5 Number of Epochs . . . . . . . . . . . . . . . . . . . . . . . . 65
5.7.6 Local Normalization . . . . . . . . . . . . . . . . . . . . . . . 66

5.8 Complex Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.8.1 Convolutional Neural Networks . . . . . . . . . . . . . . . . . 67
5.8.2 Time Delay Neural Networks . . . . . . . . . . . . . . . . . . 68

5.9 Online Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.10 Evaluation on QUT-NOISE-TIMIT Corpus . . . . . . . . . . . . . . 69

5.10.1 QUT-NOISE-TIMIT Corpus . . . . . . . . . . . . . . . . . . 69
5.10.2 Evaluation Protocol . . . . . . . . . . . . . . . . . . . . . . . 70
5.10.3 Low-Noise Conditions . . . . . . . . . . . . . . . . . . . . . . 71
5.10.4 Medium-Noise Conditions . . . . . . . . . . . . . . . . . . . . 72
5.10.5 High-Noise Conditions . . . . . . . . . . . . . . . . . . . . . . 73
5.10.6 Online Performance . . . . . . . . . . . . . . . . . . . . . . . 74

5.11 Evaluation in Real Speech Transcription System . . . . . . . . . . . . 74
5.11.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . 75
5.11.2 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . 77

6 Proposed Speaker Change Point Detection Approach 78
6.1 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.2 Data Used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.3 Reference Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.4 Initial Approach Based on DNN and WFST . . . . . . . . . . . . . . 80
6.5 Enhanced Training Dataset . . . . . . . . . . . . . . . . . . . . . . . 82
6.6 Acoustic Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.7 Convolutional Neural Networks . . . . . . . . . . . . . . . . . . . . . 85
6.8 Context Window Size . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.9 WFST with a Forced Length of Transition . . . . . . . . . . . . . . . 86

6.9.1 Online Application . . . . . . . . . . . . . . . . . . . . . . . . 87
6.9.2 Offline Application . . . . . . . . . . . . . . . . . . . . . . . . 87

6.10 Local Normalization . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.11 Evaluation on Whole COST278 Database . . . . . . . . . . . . . . . 88

6.11.1 COST278 Database . . . . . . . . . . . . . . . . . . . . . . . 88
6.11.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . 88
6.11.3 Online Comparison . . . . . . . . . . . . . . . . . . . . . . . . 89
6.11.4 Offline Comparison . . . . . . . . . . . . . . . . . . . . . . . . 90
6.11.5 Training Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

8



7 Conclusions 92

References 94

Author’s Publications 112

A Additional Tables 114

9



List of Figures

2.1 A diagram presenting the joint application of SAD and SCP detection. 24

3.1 A flowchart of the selected voice activity detection algorithm pre-
sented in ITU-T G.729 Annex B. . . . . . . . . . . . . . . . . . . . . 25

3.2 An overview of the recommended front-end VAD algorithm in ETSI
Standard (ES). In this example, the buffer is set to 7 frames, the
sequence of ones to at least 3 frames, and once reached, the hangover
timer is set to 5. The final output is in the last row, where ones mark
speech frames and zeros non-speech ones. . . . . . . . . . . . . . . . . 28

3.3 A flowchart of the selected VAD algorithm: long-term spectral diver-
gence. VAD = 1 marks speech, VAD = 0 means non-speech. . . . . . 30

4.1 A flowchart of the multi-pass offline SCP detection in the LIUM toolkit. 39
4.2 A Bayesian fusion method. . . . . . . . . . . . . . . . . . . . . . . . . 41
4.3 An example of the 10-frame concatenation with a step of 3 frames. . 47
4.4 An example of the fuzzy labeling technique. In this case, a two-frame

window around the change points is labeled as speaker change. The
label values linearly decrease further from the actual change points. . 50

5.1 An example of utilized frame-based evaluation. S marks speech
frames, NS non-speech ones while H expresses hits, and M misses. . . 51

5.2 An example of aligned detected and reference change points (black
lines). H marks hits, I insertions and D stands for deletions. Orange
and blue dashed lines indicate the reference and decoded threshold
boundaries, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.3 An example of latency calculation. The upper row displays the actual
change point placements decided by the decoder (black lines). The
middle row marks the moments the decoder outputs the labels (black
lines), and finally, the bottom row shows the latencies for each change
point, which are then averaged. . . . . . . . . . . . . . . . . . . . . . 54

5.4 An example of annotation of a development recording. . . . . . . . . 55
5.5 A feed-forward DNN used in SAD. . . . . . . . . . . . . . . . . . . . 56
5.6 A transducer modeling the input signal for SAD. . . . . . . . . . . . 57
5.7 A transducer representing the basic smoothing model for SAD. . . . . 57
5.8 An illustration of SAD artificial data mixing. . . . . . . . . . . . . . . 59
5.9 A transducer representing the context-based smoothing model for SAD. 59
5.10 An example of the creation and annotation of two newly concatenated

recordings. The first one (left) illustrates the transition from speech
to non-speech, where E S marks the end of speech while S NS means
the start of non-speech. The other one (right) shows an opposite
transition, from non-speech to speech, where E NS expresses the end
of non-speech and S S stands for the start of the speech. . . . . . . . 60

10



5.11 An illustration of the width of a hidden layer of DNN. . . . . . . . . 61
5.12 An illustration of the number of hidden layers of DNN. . . . . . . . . 62
5.13 An overview of various activation functions. . . . . . . . . . . . . . . 63
5.14 An illustration of the context window size of DNN. . . . . . . . . . . 64
5.15 An example of a 0.1-second context window size (5-1-5). . . . . . . . 65
5.16 A graphical illustration of the influence of the number of training

epochs on results of SAD. . . . . . . . . . . . . . . . . . . . . . . . . 66
5.17 An example of local mean normalization within a 0.1-second long

window (5-1-5). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.18 An example of a 1-1-1 input context in a 3-layer TDNN. . . . . . . . 68
5.19 An example of the evaluation protocol for the QUT-NOISE-TIMIT

corpus (low-noise target environment). . . . . . . . . . . . . . . . . . 71
5.20 An evaluation of QUT-NOISE-TIMIT corpus in the low-noise target

environment. In left: a comparison of results of the proposed approach
with various SAD approaches. In right: a detailed performance of the
proposed approach in all scenarios. The contribution of MR and FAR
to HTER bars is displayed by darker and lighter shades, respectively. 72

5.21 An evaluation of QUT-NOISE-TIMIT corpus in the medium-noise
target environment. In left: a comparison of results of the proposed
approach with various SAD approaches. In right: a detailed perfor-
mance of the proposed approach in all scenarios. The contribution
of MR and FAR to HTER bars is displayed by darker and lighter
shades, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.22 An evaluation of QUT-NOISE-TIMIT corpus in the high-noise target
environment. In left: a comparison of results of the proposed approach
with various SAD approaches. In right: a detailed performance of the
proposed approach in all scenarios. The contribution of MR and FAR
to HTER bars is displayed by darker and lighter shades, respectively. 74

5.23 An example of alignment between reference and transcription in
speech transcription evaluation. . . . . . . . . . . . . . . . . . . . . . 76

6.1 An example of an annotation of training data for SCP detection. . . . 79
6.2 A feed-forward DNN used in the SCP detection. . . . . . . . . . . . . 81
6.3 A transducer modeling the input signal for SCP detection. . . . . . . 82
6.4 A transducer representing the transduction model for SCP detection. 82
6.5 An example of additional data, rich in artificial cuts (with annotation). 82
6.6 An example of additional data: speaker-homogeneous recording with

deep breaths and hesitations. Annotation is shown in the second row. 83
6.7 An overview of the deep bottleneck feature extractor. . . . . . . . . . 84
6.8 A transducer representing the transduction model with the forced

transition for SCP detection. . . . . . . . . . . . . . . . . . . . . . . . 86
6.9 A comparison of the proposed SCP detection approach (tuned for on-

line use) with the reference system on the whole COST278 database.
Lighter columns mark the reference system while the darker ones
indicate the proposed approach. . . . . . . . . . . . . . . . . . . . . . 89

11



6.10 A comparison of the proposed SCP detection approach (tuned for of-
fline use) with the reference system on the whole COST278 database.
Lighter columns mark the reference system while the darker ones in-
dicate the proposed approach. . . . . . . . . . . . . . . . . . . . . . . 90

6.11 A comparison of the proposed SCP detection approach (tuned for on-
line use) trained on the enhanced data, training dataset of COST278
database, and combined data. The lightest columns mark the sys-
tem trained on the enhanced data; the middle columns indicate the
system trained on the training subset of the COST278 database, and
finally, the darkest columns denote the system trained on both datasets. 91

12



List of Tables

5.1 An overview of utilized data for SAD. . . . . . . . . . . . . . . . . . . 55
5.2 Summarized results of the proposed SAD approach described in detail

in Chap. 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.3 Results of experimental evaluation focusing on the width of hidden

layers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.4 Results of the experiment focused on the number of hidden layers. . . 63
5.5 Results of experimental evaluation focused on the use of different

activation functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.6 Results showing the influence of the context window size on the per-

formance of SAD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.7 Results of the experiment focusing on the use of local mean normal-

ization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.8 Results comparing CNNs and TDNN with a feed-forward DNN. . . . 68
5.9 An overview of the distribution of recordings in QUT-NOISE-TIMIT

corpus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.10 Summarized results of the proposed SAD approach on the QUT-

NOISE-TIMIT corpus in all target environments. Overall results and
results in each of the scenarios across all target environments are
shown as well. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.11 Results summarizing the real-time performance of the proposed ap-
proach on the QUT-NOISE-TIMIT corpus. . . . . . . . . . . . . . . . 75

5.12 An overview of utilized evaluation datasets for speech transcription. . 76
5.13 An evaluation of the proposed SAD approach in a real speech tran-

scription system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.1 An overview of utilized data for SCP detection. . . . . . . . . . . . . 79
6.2 Summarized results of the proposed SCP detection approach de-

scribed in Chap. 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.3 Results of the experiment exploring various feature extraction tech-

niques. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.4 Results exploring the influence of the context window size on SCP

detection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.5 Results of the experiment studying varied durations of forced transi-

tions in the WFST. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.6 Results of the experiment focusing on the use of local mean normal-

ization for SCP detection. . . . . . . . . . . . . . . . . . . . . . . . . 87
6.7 Summarized results comparing the proposed SCP detection approach

with the reference system on the whole COST278 database. . . . . . 89
6.8 Summarized results studying the influence of different training data

on the performance of the proposed SCP detection approach tuned
for online use. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

13



A.1 Influence of the number of epochs on the performance of SAD. . . . . 114
A.2 A detailed overview of recordings of QUT-NOISE-TIMIT corpus. . . 114
A.3 Extended results of the proposed speech activity detection approach

in each scenario of QUT-NOISE-TIMIT corpus across all target en-
vironments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

A.4 Extended results of online performance of the proposed speech ac-
tivity detection approach in each scenario of QUT-NOISE-TIMIT
corpus across all target environments. . . . . . . . . . . . . . . . . . . 116

A.5 Summarized results comparing the proposed SCP detection approach
(both online and offline configurations) with the reference system on
all of the COST278 languages. . . . . . . . . . . . . . . . . . . . . . . 117

A.6 Summarized results exploring the influence of different training data
on the performance of the proposed SCP detection approach (tuned
for online use) on all languages of COST278 database. . . . . . . . . 118

14



List of Abbreviations

ASR Automatic Speech Recognition
BIC Bayesian Information Criterion
BTN Bottleneck
CLC Complete-Linkage Clustering
CNN Convolutional Neural Network
CRF Conditional Random Field
DNN Deep Neural Network
DSR Distributed Speech Recognition
FAR False Alarm Rate
FBC Filter Bank Coefficient
FER Frame Error Rate
GLR Generalized Likelihood Ratio
GMM Gaussian Mixture Model
GRU Gated Recurrent Unit
HMM Hidden Markov Model
HTER Half-Total Error Rate
KL Kullback-Leibler
LL Log-Likelihood
LLR Log-Likelihood Ratio
LSP Line Spectrum Pair
LSTM Long Short-Term Memory
LTSD Long-Term Spectral Divergence
LTSE Long-Term Spectral Envelope
MFCC Mel-Frequency Cepstral Coefficient
MR Miss Rate
NN Neural Network
PC Percent Correct
RNN Recurrent Neural Network
RTF Real-Time Factor
SAD Speech Activity Detection
SC Speaker Clustering
SCP Speaker Change Point
SNR Signal-to-Noise Ratio
TDNN Time Delay Neural Network
TV Total Variability
TVR Television and Radio
UBM Universal Background Model
VAD Voice Activity Detection
WAcc Word Accuracy
WER Word Error Rate
WFST Weighted Finite-State Transducer

15



Introduction

Nowadays, an increasingly overwhelming amount of audio data is produced every
day by various media streams (television, radio, etc.) as well as many other sources
(e.g., the Internet). Unfortunately, most of this data lacks labels (annotations, tags)
of any kind that would be useful for a wide range of applications; in this case, for
speech processing. The aforementioned labels vary greatly; they can, e.g., include
speech transcription, subtitles, translation, change of speaker, or name of the played
song, to name a few. They can even carry time stamps, which can be further utilized
for audio searching, indexing, or data retrieval. Speech Activity Detection (SAD; or
closely related Voice Activity Detection [VAD]) and Speaker Change Point (SCP)
detection (often called speaker segmentation) are among the tasks that can create
such labels. The former is a task of identifying and labeling speech and non-speech
segments in an utterance while the latter, for a given utterance, finds and labels
changes between different speakers (i.e., it is a task of detecting exact moments
when a change of speaker occurs). As their output, both of these tasks split the
recording into segments (speech/non-speech or speaker-homogeneous) and provide
start- and end- time stamps of these newly defined blocks.

In general, speech activity detection and speaker change point detection are
closely interrelated tasks. As such, they form an integral preprocessing component
of many speech processing applications including, e.g., speaker verification and iden-
tification, language, gender or emotion detection, audio indexing and retrieval, or
automatic speech transcription. Specifically, in speech transcription, implementa-
tion of SAD can significantly speed up the processing as well as increase the overall
performance as the non-speech segments are omitted from transcription. This is
more beneficial for broadcast streams consisting of a lot of non-speech events (e.g.,
music stream radios). Finally, SAD usually plays the role of the preprocessor even
for SCP detection, which is only run on obtained speech segments.

Speaker change point detection, in conjunction with Speaker Clustering (SC),
results in a speaker diarization system. Speaker diarization focuses on answering
the question “who spoke when?” (i.e., it breaks down the recording into speaker-
homogeneous segments and clusters the segments according to the speaker’s iden-
tity), and it can be further extended into speaker verification and identification
systems. The research is driven by challenges held by the National Institute of
Standards and Technology (NIST). Additionally, SCP detection can be employed for
tasks such as rich transcription, dialog detection, speaker tracking, multi-speaker de-
tection, and more. Lastly, the extracted speaker-homogeneous segments can also be
used as training data for speaker-adaptive approaches to Automatic Speech Recog-
nition (ASR).

The diverse applications of speech activity detection and speaker change point
detection make both of these tasks popular research topics. Numerous research
groups and research centers compete worldwide and propose novel approaches in
pursuit of improving the state-of-the-art results. Challenges are also being held
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quite regularly (e.g., segmentation task by NIST) to push the field even further.
The popularity of these research topics can also be documented by large amounts
of papers accepted at international conferences on signal/speech processing, such as
Interspeech or International Conference on Acoustics, Speech and Signal Processing
(ICASSP). With the recent boom in deep learning in mind, SAD and SCP detec-
tion attract more and more researchers every day, and much exciting work is being
published every year.

The remainder of this thesis is organized as follows: In Chap. 1, a summary is
presented of the state-of-the-art approaches to both speech activity detection and
speaker change point detection. It is supplemented with a compendium of existing
systems. Chapter 2 explains the overall motivation for this thesis as well as its
practical use for author’s lab (SpeechLab) at the Technical University of Liberec
(TUL). Ultimately, it also sets the main goals. A detailed overview of selected
approaches to SAD and SCP detection is given in Chap. 3 and 4, respectively.
Chapters 5 and 6 describe in detail the experimental setup and the designing process
from the initial stages of development to the final proposed SAD approach and SCP
detection approach. All of these steps are supported by a diverse set of experiments.
Portions of the original publications are reused and expanded upon here. Specifically,
it is [1–3] for SAD and [4] for SCP detection, all published during the author’s Ph.D.
studies. Finally, the thesis is concluded in Chap. 7.
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1 State of the Art

At present, speech activity detection and speaker change point detection are gen-
erally treated as machine learning tasks. Recently, deep learning has extensively
been applied to both of these tasks to improve their performance, and subsequently
the results achieved. Both of these tasks are usually performed in two consecutive
phases: feature extraction and classification. Moreover, both can be run in an offline
or online mode. In the former mode, no additional restrictions are applied, and low
latency and real-time processing are not vital. However, they become crucial in the
latter mode. Furthermore, an online decoder may only perform one left-to-right pass
through the input data. These additional restrictions result in a limited amount of
published work for online processing.

1.1 Speech (Voice) Activity Detection
As already stated above, the majority of the existing speech activity detection ap-
proaches operate in two subsequent phases: feature extraction and speech/non-
speech classification.

In the former phase, the classic approaches for feature extraction utilize en-
ergy [5], zero-crossing rate [6] or auto-correlation function [7]. The family of more
complex features, which have also been successfully applied, includes Mel-Frequency
Cepstral Coefficients (MFCCs) [8, 9], multi-resolution cochleagram features [10],
pitch related features [11], multi-band long-term signal variability features [12] or
i-vectors [13]. Bottleneck (BTN) features extracted from Deep Neural Networks
(DNNs) have also been proposed [14, 15]. In practice, various combinations of indi-
vidual features are often used to achieve the best possible results (e.g., [16–18]).

In the latter phase, various classification algorithms can be used, such as support
vector machines [19] or Gaussian Mixture Models (GMMs) [20–22]. In recent years,
various deep neural network architectures have been frequently employed, includ-
ing fully connected feed-forward DNNs [8, 23, 24], Convolutional Neural Networks
(CNNs) [25, 26], dilated CNNs [27] or Recurrent Neural Networks (RNNs) [28–30].
More complex approaches, such as jointly trained DNNs [31], boosted DNNs [10],
a combination of DNNs and CNNs [32] or a combination of augmented statistical
noise suppression and CNNs [33], have also been proposed. Furthermore, an adap-
tive context attention model was suggested in [34]. The output from a given classifier
can also be smoothed to further improve the accuracy of the detection. Over the
years, various techniques, such as the Viterbi decoder [8] or Weighted Finite-State
Transducers (WFSTs) [35], have been applied for this purpose.

Most of the previously mentioned works primarily aim at offline application,
or the focus is not specified in the given publications. The limited amount of ap-
proaches developed namely for the online task include, for example, Conditional
Random Fields (CRFs; with Viterbi decoder) [36] or accurate endpointing with
expected pause duration [37]. An unsupervised approach to real-time VAD was in-
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troduced in [38, 39]. Another approach in [40] utilizes short-term features. Recently,
a causal voice activity detector based on DNNs has been suggested in [41]. In [42],
an online speech activity detector using simultaneously trained neural networks is
shown. Finally, the authors of [43] studied the impact of lowering the representation
precision of DNN weights and neurons on the accuracy and delay of VAD.

In general, the majority of the papers listed above opt for their own data, which
makes a comparison between different SAD approaches much harder. Probably the
most commonly utilized dataset is QUT-NOISE-TIMIT [44] corpus. However, its use
is limited as well. In 2015, MUSAN [45], a new standardized corpus for the training
of SAD, was presented. It has become quite popular since then. Recently, AVA-
Speech [46], a densely labeled dataset of speech activity in movies, was published as
well.

1.2 Speaker Change Point Detection
In the literature, speaker change point detection commonly utilizes SAD as a pre-
processor, and it is thus carried out only on speech segments. Furthermore, it is
usually done without any prior knowledge about the identity or even the number
of speakers in the recording (i.e., it is treated as a speaker-independent task). Sim-
ilar to SAD, most of the existing SCP detection approaches are designed in two
consecutive phases: feature extraction and change point detection itself.

In the first phase, various types of input features have been applied over the
years. In the early years, more straightforward ones were successfully employed,
such as zero-crossing rate or pitch [47]. Mel-frequency cepstral coefficients [48, 49]
were probably the most commonly used features, followed by Line Spectrum Pairs
(LSPs) [50]. Recently, the main focus has shifted to crafting more complex features
capturing more speaker-specific information. Nowadays, i-vectors [51, 52] are the
go-to features for most state-of-the-art systems. Alternatively, deep neural networks
have also been successfully utilized to extract complex features [53, 54]. Further-
more, d-vectors were presented in [55], yielding excellent results. The latest trend
goes in the direction of deep speaker embeddings [56–58] designed for end-to-end sys-
tems. Lately, x-vectors have successfully been adapted for speaker diarization [59].
In practice, the best results are often achieved by a combination of several of the
features mentioned above.

In the second phase, the SCP detection approaches can be divided into three
main categories: metric-, model- and hybrid-based. The first type requires a dis-
tance metric to be defined first. After that, usually, two adjacent windows are shifted
alongside the recording, and the distance between them is computed. If the distance
is larger than a predefined threshold (fine-tuning is the main issue), a change point
is detected. The most commonly used distance metrics include the Bayesian In-
formation Criterion (BIC) [60–62], the Generalized Likelihood Ratio (GLR) [63],
the Gaussian divergence [64], the Kullback-Leibler (KL) divergence [65], or one-
class support vector machines [66]. DISTBIC segmentation was proposed in [67]
as well. A model-based approach utilizes trained models from labeled audio data
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to detect speaker change points. Among the most common approaches, there are
the Hidden Markov Models (HMMs) [68], the Gaussian mixture models [69], and
the eigenvoice-based models [70]. Deep learning approaches based on DNNs [54,
71], CNNs [72, 73], unidirectional [74], or bidirectional [75, 76] Long Short-Term
Memory (LSTM) RNNs all yield excellent results. Finally, hybrid-based approaches
combine the metric and model-based ones to employ the advantages of both worlds
(e.g., [77]).

Most of the approaches cited so far were designed with regard to the best possible
quality of detection, and all of them are, of course, applicable to offline processing.
However, the earlier discussed restrictions of online application are usually not taken
into account during design, and the usability of these methods for online mode is
therefore limited (or not discussed in the respective papers). That means that the
number of approaches explicitly designed for real-time processing (e.g., of broadcast
news) is much smaller. In the early years, an online two-step SCP detector utiliz-
ing the Bayesian fusion method for fusing multiple features was proposed [78, 79].
Other works focused on BIC [80, 81], XBIC [82], Log-Likelihood Ratio (LLR) [83],
GMMs [69, 84, 85], or Gaussian mixture model – Universal Background Model
(GMM-UBM) [86]. In [87], the authors explored BIC, i-vectors, and within-class
covariance normalization for speaker diarization. The use of i-vectors for diarization
was also investigated in [88]. Features extracted from Neural Network (NN) were
explored in [89]. Finally, the authors in [90] studied in detail the influence of the
online environment of several SCP detection approaches on a diarization system.

Several commonly used datasets are cited in the literature for training and eval-
uation of speaker change point detection. One of the first regularly used datasets
was Hub-4 [91]. The French datasets ESTER [92], ETAPE [93], and REPERE [94]
have also been frequently utilized. SCP detection can also be evaluated on multi-
lingual database COST278 [95, 96]. Some other notable datasets are CALLHOME
and NIST SRE. However, most of the published works report their results on only
one preferred dataset making the system comparison rather difficult.

1.3 Existing Systems
The majority of the existing systems cover both speech activity detection and speaker
change point detection, as well as additional speech processing tasks. These sys-
tems are usually designed for either speaker diarization or speaker recognition.
One of the speaker recognition tools is an open-source ALIZÉ Speaker Recogni-
tion toolkit [97, 98], which provides support for SAD and SCP detection based on
HMMs [99]. Speech activity detection is also covered in the Spear [100] toolkit.
LIUM Speaker Diarization [101, 102] is probably the best-known toolkit for speaker
diarization. It was initially developed for French ESTER2 evaluation campaign for
diarization of broadcast news, and it provides tools for feature extraction (MFCCs),
speech activity detection (HMMs), gender detection, speaker segmentation (GMMs,
BIC), and speaker clustering. It also comes with a pre-trained broadcast model
for immediate use. DiarTK [103] is another toolkit based on GMMs focused on
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multistream speaker diarization. Alternatively, pyannote is a reasonably new op-
tion (written, as the name suggests, in Python) providing scripts for speech activity
detection [75], speaker change point detection [75], speaker embeddings (with pre-
trained models) [56], and speaker diarization pipeline [104]. It is based on LSTM
RNNs, and it yields promising results. Another newer Python toolkit for speaker
diarization is S4D [105]. It supports speech activity detection (based on GMM-
HMM via SIDEKIT [106]) and speaker segmentation based on Gaussian divergence
and BIC. Recently, speaker diarization based on DNN embeddings (specifically,
x-vectors) [107] has been added to the Kaldi toolkit [108]. Pre-trained models are
available as well. Finally, a new toolkit explicitly designed for VAD was released and
applied in [34]. It provides implementations of several deep learning architectures
for modeling, namely adaptive context attention model, DNNs, boosted DNNs, and
LSTM RNNs. Other notable systems, such as CMU Segmentation toolkit, AudioSeq
or SHoUT toolkit, can be utilized as well, but their newer counterparts usually out-
perform them.
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2 Motivation and Goals

A detailed examination of the current state of the art in speech activity detection,
as well as speaker change point detection, reveals two prominent features: a) deep
learning is pushing the field further; and b) there is a significant lack of online SAD
and SCP detectors. With this information, it is feasible to set up the motivation
and consequently, the main goals of this thesis.

2.1 Motivation
Over the past few years, significant breakthroughs [109] have been achieved in deep
learning. These breakthroughs have resulted in many novel approaches in various
research fields, such as speech recognition [110–112], visual object recognition [113,
114], natural language processing [115, 116], and more, all yielding excellent results
as compared with the previously used conventional techniques. These successes have
understandably led to further application of deep neural networks to a much more
varied range of research tasks. In this case, deep learning is applied to speech activity
detection and speaker change point detection. Lately, several papers dealing with
this topic have been published for both tasks, yet there is a lot of room for further
experimentation, tuning up, and improvements. Performance in the online mode,
especially, can be further enhanced.

Speech activity detection and speaker change point detection represent a very
active research topic due to their varied use in a wide range of speech processing
applications. Over the years, most of the published works have strictly focused on
the offline use as it allows more freedom during the design of the detector. It is also
easier to tune the performance of an offline system to achieve excellent results (i.e.,
multiple passes through data, processing of whole recording, a fusion of methods,
etc.) than its online counterpart. Moreover, for many applications, it is a perfectly
viable and even preferred solution. However, some applications (e.g., Television
and Radio [TVR] monitoring systems) need to operate in real time and with low la-
tency. These additional restrictions usually result in somewhat limited performance.
Extension of the existing offline methods to their online use is a commonly cumber-
some and complicated process, which is even quite often impossible. Moreover, the
performance is usually affected as well. When designing an approach that may be
used in a real-time application, it is generally more convenient to circumvent these
restrictions from the initial stages of development. Online speech activity detec-
tion and speaker change point detection approaches (based on deep learning) that
would reach results at least comparable with their offline counterparts would be very
beneficial for many real-time speech processing applications (e.g., TVR monitoring
system) in both commercial and research spheres (i.e., they could push the field
further).
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2.2 Practical Use in TVR Monitoring System
The author’s lab has been focusing on speech processing and speech recognition
for a long time. The TVR monitoring system developed at SpeechLab@TUL in
cooperation with the NanoTrix company carries out 24/7 online transcription of
radio and TV broadcasts in various languages. In the peak hours (during the day),
it transcribes up to 120 streams in parallel in real time. During the non-prime
hours (mostly at night), it still processes at least 20 online streams every second.
The daily average ranges from 60 to 80 simultaneously transcribed online streams.
Approximately “133” days (3,196 hours or 750 GB) of recordings are being processed
every day. Daily, the biggest chunk of the transcribed data consists of Polish (80
broadcasts monitored), Czech (47) and Slovak (12) broadcasts. However, a wider
range of Slavic languages, such as Russian (approximately 20 broadcasts monitored),
Bulgarian (20), Croatian (10) or Serbian (10), etc., are being transcribed as well.

Integration of speech activity detection and speaker change point detection ap-
proaches into this existing system would be beneficial for many reasons. First, SAD
would be used as a preprocessor for online streams to filter out non-speech events
and run the transcriber only on speech ones. This should result in a significant
reduction of processing time, and it should ease the CPU load as well (if the stream
contains a lot of non-speech segments, e.g., music stream radios). It should also yield
a better accuracy of transcriptions as the non-speech parts are omitted from being
transcribed (i.e., less gibberish). Furthermore, the obtained speech segments would
be used as inputs into the SCP detection and potentially other speech processing
applications.

Second, the SCP detector would find and label transitions from one speaker
to another. These newly defined labels would ease the handling of online streams
as they would provide additional information about the content. They would also
segment the streams into smaller speaker-homogeneous chunks, which could eas-
ily be further utilized. These chunks form a starting point for a full diarization
system, which could be extended to speaker verification and identification systems
to provide the transcribed streams with even more valuable information. The fi-
nal detected segments could also be extracted and used as training data for future
speaker-adaptive approaches to speech recognition. A diagram showing the joint
use of SAD and SCP detection in the final system is shown in Fig. 2.1.

Unfortunately, none of the existing tools providing the SAD and SCP detection
functionality is a good fit for the requirements of the TVR monitoring system for
several reasons. Firstly, the tools are usually fine-tuned for specific conditions (tele-
phone conversations, broadcasts [e.g., LIUM Speaker Diarization toolkit is tuned on
French broadcasts], etc.) which may be unsuitable for TVR monitoring system. In
the end, it would be necessary to train new acoustic models on proper data, which
could be quite problematic and time-consuming. Secondly, the majority of the stan-
dardized tools are based on older technologies (mostly GMM-based), and nowadays,
they do not yield state-of-the-art results. There are a few recent approaches based
on deep learning, but extensive testing of the performance would be needed. Most
importantly, none of the tools is primarily designed for online use, which is crucial
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Figure 2.1: A diagram presenting the joint application of SAD and SCP detection.

for TVR monitoring systems. Usually, a whole recording is required, and some of the
systems even perform multiple passes through the data (e.g., LIUM Speaker Diariza-
tion toolkit). It might not even be possible to adjust the tools to operate in online
mode. Lastly, the TVR monitoring system is a distributed computational system,
in which every task is represented by a corresponding docker image. This brings
further requirements, such as good scalability or fast and stable implementation.

To sum up, integration of any of the existing systems would be a difficult task,
and it might not even fulfill all the requirements in the end. For this reason, a
preferable solution is a new, fully crafted design of online SAD and SCP detection
perfectly fitting the respective TVR monitoring system.

2.3 Goals
The main goals of this thesis are thus to:

I. develop speech activity detection approach and speaker change point detection
approach that:

1. utilize state-of-the-art techniques, specifically including DNNs;
2. allow for robust speech/non-speech and speaker change point detection;
3. operate in an online mode with low latency in order to process real-time

streams;
4. can be integrated into the existing TVR monitoring system developed at

the author’s lab in cooperation with the NanoTrix company;

II. verify the proposed approaches and compare their results on publicly available
datasets with selected existing approaches/toolkits.
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3 Selected Approaches to Speech (Voice)
Activity Detection

Due to the sheer amount of published work focused on the task of speech activity
detection (see Sect. 1.1 for an overview of state of the art), this chapter only presents
a detailed description of selected SAD (VAD) approaches relevant to this thesis.
These approaches were chosen for two main reasons. Either they are utilized for
comparison purposes (i.e., with the proposed SAD approach), or they are focused
on an online application.

3.1 ITU-T G.729 Annex B
The G.729 [117] is a toll-quality speech coding algorithm adopted by the Interna-
tional Telecommunication Union (ITU). It was designed for multimedia and personal
communication services. Later, Annex A for G.279 (G.279A) [118], providing a re-
duced complexity version of the speech coding algorithm, was developed for digital
simultaneous voice over data. Further coding improvements could be achieved by
dropping the bit rate when speech is not present. To do this, a voice activity de-
tector identifying speech and silence/noise events needed to be crafted at first. The
Annex B for G.279 (G.279B) [119] thus defined a robust frame-based voice activity
detector, and subsequently, a low-bit-rate silence compression scheme. Note that
this section only covers the VAD algorithm, for more information about the silence
coding and reconstruction, refer to the respective paper [119].

A flowchart of the VAD algorithm is shown in Fig. 3.1.

parameters extraction

no yes

difference parameters

initial VAD decision

decision smoothing

update noise parameters

start

end
noise energy 

thresholds met?
end

Figure 3.1: A flowchart of the selected voice activity detection algorithm presented
in ITU-T G.729 Annex B.
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As shown in the flowchart, the VAD algorithm operates in several consecutive
phases. In the first one, a set of 4 parameters is extracted. These instantaneous
parameters are computed for each frame. They focus on the energy and spectral
content of the acoustic signal, and they were chosen based on classification power,
robustness, and computational demands. Specifically, the parameters are:

• linear prediction spectrum;

• full-band energy;

• low-band (0 to 1 kHz) energy;

• zero-crossing rate.

Due to the varied nature of the background noise in recordings (e.g., transition
from home to a busy street), an estimation of its characteristics is needed. A set of
parameters similar to the instantaneous ones is kept for this reason, and it is getting
updated over time (i.e., running averages of background noise characteristics). These
are called estimated noise parameters.

In the second phase, the final inputs to voice activity detection are computed.
These are not the instantaneous parameters, but the differences between them and
estimated noise parameters. These final inputs are called spectral distortion, full-
band energy difference, low-band energy difference, and zero-crossing difference, and
their exact formalism can be found in the respective paper [119].

In the third phase, an initial VAD segmentation is obtained using pattern recog-
nition. For each frame, the four computed difference parameters are projected into
a four-dimensional Euclidean space, where parameters for active speech occupy a
certain hypervolume while the parameters for non-speech are clustered in another.
A piecewise linear three-dimensional decision boundary then separates these hyper-
volumes and marks the initial speech and non-speech regions. Note that the decision
boundary was determined by the authors by visually inspecting a vast number of
projected parameters of an extensive dataset.

So far, the VAD segmentation is done for each frame independently. However,
the standard duration of speech (or non-speech) events is at least several frames.
For this reason, in the fourth phase, a smoothing algorithm utilizing several past
frames is applied. In [119], the authors defined four different smoothing rules:

• speech segment is extended to the current frame if the energy of the current
frame is above a certain threshold;

• speech segment is extended to the current frame if two previous frames were
speech ones, and the absolute energy difference between current and previous
frames is under a certain threshold (only applied twice);

• non-speech segment is extended to the current frame if ten previous frames
were non-speech ones, and the absolute energy difference between current and
previous frames is under a certain threshold;
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• current speech frame is corrected to a non-speech one if the energy of the
frame is below the noise energy thresholds by a certain margin, and neither of
the first two smoothing rules was applied.

After enforcing all these smoothing rules, the final VAD segmentation is obtained.
In the final phase, the running averages of background noise characteristics are

updated if the background noise energy thresholds are met.

3.2 ETSI Advanced Front-End
Degradation in the performance of speech recognizer on speech transmitted over
mobile channels is to be expected due to, e.g., low bit rate or transmission errors.
To prevent this degradation, Distributed Speech Recognition (DSR) systems replace
the speech channel with an error protected data channel transmitting parametrized
speech to the recognizer. The DSR systems are thus formed by two main parts, a
front-end one performing the signal parametrization and transmission and a back-
end one doing the transcription. The ETSI Standard (ES) [120, 121] covered the
former part. Besides, the standard also described a recommended front-end VAD
algorithm, which filters out non-speech segments.

The front-end VAD algorithm can be divided into two stages: frame-based detec-
tion and a decision stage. In the former stage, Mel-warped Wiener filter coefficients
are applied as inputs, and as authors in [120] stated, the detector exploits the energy
associated with voice onset, where the energy for each frame is obtained from:

• energy values across the whole spectrum;

• energy values over a part of the spectrum (containing fundamental pitch);

• acceleration of the variance of energy values (in the lower half of the spectrum).

After computing all three metrics, these are compared with predefined thresholds
(see the standard for exact values), and a binary value for each measurement is given:
1 for suspected speech or 0 for suspected non-speech. Note that these metrics were
designed to complement each other and to provide the voice activity detector with
inputs robust to noise for the latter (decision) stage.

The two main components of the decision stage are a buffer of fixed size (i.e.,
seven frames in the given standard – 1 current frame, and 6 following frames) and
a value called hangover timer. For each frame, the decoder makes a binary decision
based on the three input metrics: 1 (suspected speech) if at least one of the metrics
is 1, 0 (suspected non-speech) otherwise. The resulting value gets stored in the first
component – buffer. Once the buffer is filled up, the decision algorithm can start.
For the next frame, the oldest value in the buffer is shifted out, and the new one
is inserted. This results in a frame delay of the size of the buffer minus one (i.e.,
six frames in this case). The second component, the hangover timer, decides the
final output. During the decoding, for each frame, the algorithm searches the buffer
for the longest sequence of ones (suspected speech). If the sequence is greater than
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a given threshold, the hangover timer is set to a predefined positive value (see the
standard for the exact numbers). If not, it is lowered by 1. Finally, if the value
of the hangover timer is greater than 0, the frame is considered speech, otherwise
non-speech. This allows the decoder to smooth the transitions between speech and
non-speech events effectively. An overview of the whole recommended front-end
VAD algorithm in ETSI Standard is illustrated in Fig. 3.2. More information about
the standard and all its components can be found in [120].
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Figure 3.2: An overview of the recommended front-end VAD algorithm in ETSI
Standard (ES). In this example, the buffer is set to 7 frames, the sequence of ones to
at least 3 frames, and once reached, the hangover timer is set to 5. The final output
is in the last row, where ones mark speech frames and zeros non-speech ones.

3.3 Model-Based Likelihood Ratio
Similar to G.279 Annex B (see Sect. 3.1), the authors of [122, 123] focused on crafting
a robust voice activity detection algorithm designed for speech coding applications.
They explored the possibility of improving the decision rule, which is used to deter-
mine the presence or absence of speech in a recording by comparing the statistics
of the current frame with estimated noise statistics. To make improvements, the
authors first proposed the use of a statistical model in [122], where the decision rule
comes from the likelihood ratio test by estimating unknown parameters using the
maximum likelihood criterion. Later on (specifically, in [123]), a decision-directed
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method for the estimation of the unknown parameters was suggested as a further
improvement to the decision rule.

In the second paper [123], the authors also presented a hangover (smoothing)
scheme, which is used to smooth the initial voice activity decisions. This scheme
is based on hidden Markov models; it models a sequence of frames as a first-order
Markov process. After enforcing this smoothing scheme, the final VAD decisions are
obtained for each frame.

Finally, according to the results presented in [123], the final VAD approach
yielded better performance than the VAD of G.279B, especially under low Signal-
to-Noise Ratio (SNR) conditions. It also required fewer optimized parameters.

3.4 Long-Term Spectral Divergence
The main focus of [124], similarly to the previously showcased works in this chapter,
was on crafting a noise-robust voice activity detector. However, unlike the previous
works, the primary goal here was not an improvement in speech coding but a better
performance of a follow-up speech recognition system (i.e., a similar goal to this the-
sis). Specifically, the authors studied the benefits of utilizing long-term information
of speech signals on voice activity detection and, consequently, speech recognition.

The VAD algorithm they proposed utilizes a long-term speech window instead of
instantaneous parameters (as opposed to, e.g., VAD of G.279B). It is based on the
estimation of the Long-Term Spectral Envelope (LTSE). The speech/non-speech de-
cision rule is then determined by a Long-Term Spectral Divergence (LTSD) between
the speech and noise (the LTSE is compared to the average noise spectrum).

Formally, the N -order LTSE of a (noisy) signal x[n], which is segmented into
overlapping frames, can be defined as:

LTSEN(k, l) = max(X(k, l + j))j=+N
j=−N , (3.1)

where X(k, l) is an amplitude spectrum for the k band at frame l.
From LTSE, it is possible to express the N -order LTSD as:

LTSDN(l) = 10 log10

(
1

NFFT

NFFT−1∑
k=0

LTSE2
N(k, l)

N2(k)

)
, (3.2)

where N(k) is the average noise spectrum magnitude for the k band, and NFFT is
the total number of bands. The respective paper also suggested that the ideal value
of the LTSD order is 6 (the best compromise between high discrimination decision
rule and minimalization of the average number of decision errors). More detailed
information about finding the ideal order and discrimination power of LTSD can be
found in the given paper [124].

The VAD algorithm runs in several phases, which are shown in the flowchart
in Fig. 3.3. It begins with an initialization phase during which the mean noise
spectrum is estimated by averaging the noise spectrum magnitude. After that, the
input signal is segmented into overlapping frames. For each frame, the spectrum
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Figure 3.3: A flowchart of the selected VAD algorithm: long-term spectral diver-
gence. VAD = 1 marks speech, VAD = 0 means non-speech.

X(k, l) is obtained by applying a context window of size 2N + 1 frames. In the two
following phases, the LTSE is estimated based on Eq. (3.1) and, consequently, the
decision rule is derived from LTSD, which is computed using Eg. (3.2). The decision
threshold is also adapted according to the measured noise energy. A hangover scheme
is present, as well. However, it is only applied at low SNR levels, where it is used to
delay transitions from speech to non-speech. If the noise level is low, the hangover
scheme is not active. Last, during non-speech segments, the noise spectrum N(k)
is updated. Note that the delay of the VAD algorithm is N frames because the
decision for each frame is based on the context window of size 2N+1 frames around
the actual frame (N preceding frames, the current frame, and N following frames).

The authors also compared their proposed VAD algorithm to the most com-
monly utilized VAD approaches. They focused on two tasks – speech/non-speech
discrimination and utilization of VAD in a speech recognition system. Their results
show superior performance for both tasks over the other standard VAD approaches,
e.g., G.729B. The detailed results are described in the paper [124].

3.5 GMM-Based Approach
Over the years, many approaches to speech (voice) activity detection have utilized
Mel-frequency cepstral coefficients (e.g., [8, 9]) as features, and Gaussian mixture
models (e.g., [8, 20, 21]) for classification. However, this section showcases the ap-
proach detailed in [44] because it is used for comparison purposes later in this thesis.
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Additionally, the respective paper presented not only the GMM-based approach but
also a standardized QUT-NOISE-TIMIT corpus.

The cepstral features, MFCCs [125], are the first component of the showcased
paper. These features are widely utilized for many speech processing applications,
including speech recognition or speech activity detection. They are known for their
discrimination power. MFCCs are usually computed in several consecutive steps:

1. the windowed input signal is segmented into (overlapping) frames;

2. the magnitude spectrum is obtained by taking fast Fourier transformation;

3. the magnitudes are mapped on Mel-scale using triangular filters, for each filter,
the powers (or magnitudes) are summed;

4. the logarithm of the summed powers (or magnitudes) is taken;

5. the final MFCCs are obtained by taking discrete cosine transformation of the
logarithm of the summed powers (or magnitudes);

6. optionally, cepstral mean subtraction can be used for normalization, and/or
differential (∆) and acceleration (∆∆) coefficients can be computed.

In [44], the authors did not reveal their specific setting they used for extraction of
MFCCs.

As a second component, probabilistic Gaussian mixture models are utilized as a
binary classifier. Naturally, the two classifiable classes are speech and non-speech.
For this reason, two M -mixture GMMs are used to model the distributions of the
two respective classes [126]:

P (xi|H1) =
M∑

m=1

c1m
1√

(2π)D|Σ1m|
exp

(
−1

2
(xi − µ1m)

′ Σ−1
1m (xi − µ1m)

)
, (3.3)

P (xi|H0) =
M∑

m=1

c0m
1√

(2π)D|Σ0m|
exp

(
−1

2
(xi − µ0m)

′ Σ−1
0m (xi − µ0m)

)
, (3.4)

where xi is the input feature vector at the frame i, H1 and H0 denote the speech
and non-speech hypothesis, D marks the dimensionality of the input, and finally, cm,
µm and Σm mark the parameters of the mth mixture (note that the exact number
of mixtures was not discussed in the showcased paper). These parameters are the
mixture weight, mean and covariance, respectively.

In the following step, the Log-Likelihoods (LLs) of the speech and non-speech
models at frame i can be computed. From them, it is possible to express the log-
likelihood ratio as their difference:

LLRi = log (P (xi|H1))− log (P (xi|H0)) . (3.5)
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Next, in [44], the system is smoothed by a 1-second median filter designed to suppress
short-term variation. Finally, a threshold tuned on training data is applied, and the
final speech/non-speech segmentation is obtained (i.e., speech output for frames
with the LLR greater than the threshold and non-speech for the rest).

The parameters of the models (mixture weights, means, and covariances [cm, µm,
Σm]) were estimated during the training phase. Unfortunately, the exact training
procedure applied in the showcased paper was not given. However, the GMMs for
VAD are usually initialized by an iteration of the k-means clustering [127] and then
refined with maximum likelihood estimation by running several iterations of the
expectation-maximization algorithm [128] (as shown, e.g., in [8, 20]).

The experimental evaluation using the QUT-NOISE-TIMIT corpus shows excel-
lent performance under all noise conditions. The detailed results can be seen in the
respective paper [44].

3.6 Subband Noncircularity
Throughout the years, many speech (voice) activity detection approaches have used
spectral features. However, most of these approaches only utilize magnitude (or
energy) of the complex-valued spectral representation and completely ignore the rest
of the information. In [129], the authors explored this additional information as well
as its effects on the performance of VAD in a noisy environment. Specifically, they
inspected the second-order statistical behavior of complex data. They exploited a
property of complex subbands of speech and noise – the second-order noncircularity,
which is also known as impropriety. Higher impropriety usually suggests a presence
of speech. In their work, two VAD methods were proposed:

• an unsupervised method designed for single-channel data (this method does
not rely on non-speech segments to estimate the noise parameters);

• a supervised method designated for two-channel data.

Instinctively, both of these methods employ features based on the impropriety. An
exhaustive explanation of the proposed methods (and impropriety-based features)
is available in the given paper [129].

The authors reported their achieved results on the QUT-NOISE-TIMIT corpus.
The results (for both methods) show excellent performance and at least comparable
numbers to approaches introduced in Sect. 3.3 and 3.4 under all noise conditions.
The only exception was a scenario with high amounts of reverberation. The detailed
results for both single- and two-channel methods are in the respective paper [129].

3.7 Complete-Linkage Clustering
In [22], the authors focused on robust voice activity detection under high noise con-
ditions. They used their previous work based on GMMs and MFCCs [44] (described
in Sect. 3.5) as a baseline and extended it with Complete-Linkage Clustering (CLC),
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which was incorporated for the purpose of making the final speech/non-speech de-
cision. In addition, the authors also implemented their approach to the task of
audio-visual voice activity detection (for specifics, refer to the respective paper [22]).

Because their new work is built upon the older one, both share many similari-
ties. First, the MFCCs are employed as input features. Specifically, 19-dimensional
MFCCs (including zero coefficient, delta coefficients, and feature warping) are uti-
lized. Next, two 16-mixture GMMs are used to model the distributions of speech
and non-speech. These were trained, as previously, on subsets of the QUT-NOISE-
TIMIT corpus (following the recommended training/testing protocol as specified
in [44]).

One of the differences lies in the computation of the log-likelihoods of the speech
and non-speech models. These are newly not computed per frame, but instead for
a sequence of frames (i.e., short segments):

LLs
X = logP (X|H1) =

I∑
i=1

logP (xi|H1) , (3.6)

LLns
X = logP (X|H0) =

I∑
i=1

logP (xi|H0) , (3.7)

where segment X is a sequence of I frames (i marks the ith frame of this sequence),
H1 and H0 denote the speech and non-speech hypothesis, and the definitions of
P (xi|H1) and P (xi|H0) were already given in Eq. (3.3) and (3.4), respectively. In
practice, the authors set the length of these segments to 5 frames (50 ms). For each
segment, the log-likelihoods of the speech and non-speech models can be utilized to
express the log-likelihood ratio as:

LLRX = LLs
X − LLns

X . (3.8)

The completely new component of the proposed approach is the complete-linkage
clustering. This agglomerative clustering technique is used to merge the segments
based on the computed log-likelihood ratios. To do this, a pairwise dissimilarity
score between all pairs of segments needs to be defined first. The authors expressed
this score (between two segments Xi and Xj) as:

d(i, j) =
1

|LLRXi
− LLRXj

|
, (3.9)

where LLRXi
and LLRXj

are the log-likelihood ratios of segments i and j, respec-
tively. From the definition, this score is lower for similar segments (either speech or
non-speech) and higher for more diverse ones (one speech and one non-speech).

The CLC algorithm runs in iterations as follows. First, the dissimilarity scores
for each segment pair are computed, and the two most similar segments are merged
into a new cluster. Next, the scores between this new cluster and the remaining
segments need to be updated. For each remaining segment, the new score is set to
the highest dissimilarity score between all of the segments of the new cluster and
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the respective remaining segment. After that, this whole process is repeated until
only two final clusters remain.

The last step is to decide which of the two clusters represent speech. This can
be done by computing the log-likelihood ratios of both clusters. If the LLR of the
first cluster is greater than the LLR of the second cluster, it is considered as speech,
otherwise non-speech.

Finally, the authors also implemented a hangover scheme based on their previous
work [7]. For each speech segment, a portion of the recording before (300 ms) and
after (500 ms) the corresponding segment is also labeled as speech. If the speech
segment is shorter than 250 ms, and there is no other speech segment in close
proximity, it is relabeled as non-speech. After enforcing this smoothing scheme, the
final speech/non-speech segmentation is obtained.

The main advantage of this approach is that there is no threshold tuning, and it
can be easily applied to multiple audio domains. On the other hand, the algorithm
fails if there is no speech (non-speech) event in the recording. However, this can be
solved by appending a short dummy speech (non-speech) segment to each recording.

The results reported by the authors yielded overall significant improvements on
the QUT-NOISE-TIMIT corpus over the previous GMM-based approach under all
noise conditions. These improvements were the most noticeable under high noise
conditions. The results are presented in detail in the corresponding paper [22].

3.8 DNN-Based Approach
The authors of [8] focused on applying speech activity detection to videos uploaded
to a video-sharing website – YouTube. Usually, the noise conditions under which
these YouTube videos are recorded vary greatly. This is not ideal for the standard
GMM-based approach to SAD, whose performance starts to degrade quickly if the
noise conditions are not static. For this reason, the authors explored the possibility
of replacing GMMs with deep neural networks.

In their work, they utilized a portion of HAVIC corpus [130], which was manually
annotated for speech, music, noise, and singing at the Linguistic Data Consortium.
These annotations were used to define four environments for the speech/non-speech
decisions: music present, noise present, singing present, and clean. Two approaches
to SAD were trained and evaluated on this data:

• GMM-based approach:
The baseline GMM-based approach is similar to the approach described in
detail in Sect. 3.5. For inputs, it extracts 13-dimensional MFCCs, which are
normalized per file to have zero mean and identity variance. The final input
feature vector is formed by concatenating the normalized features and their ∆
and ∆∆ coefficients (i.e., it is 39-dimensional).
For classification, two 128-mixture GMMs are employed to model the distri-
butions of speech and non-speech. The training of these two GMMs was done
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as described earlier in Sect. 3.5. The GMMs were first initialized by an it-
eration of the k-means clustering and then finalized by 20 iterations of the
expectation-maximization algorithm.
To make the speech/non-speech decision, the authors apply two different seg-
mentation schemes. The first one corresponds to the one described in Sect. 3.5.
For each frame, the decision is made by comparing the log-likelihood ratio
(Eq. (3.5)) to a predefined threshold (tuned on the test set to achieve the
best equal error rate). The latter scheme generates decisions per frame by
Viterbi decoding [131] of the log-likelihoods of GMMs using a 2-state HMM
(speech/non-speech) [8]. The parameters of HMM (state-transition probabil-
ities and state priors) were set to the observed values in training data.

• DNN-based approach:
The second approach is based on feed-forward deep neural networks. It uses
the same 13-dimensional MFCCs, which are also normalized per file to have
zero mean and identity variance. In this case, instead of using the ∆ and ∆∆
coefficients, a 0.8-second context window is exploited. The final input feature
vector is thus formed as a concatenation of 40 previous frames, the current
frame, and 40 following frames.
For classification, a binary (speech/non-speech) fully connected feed-forward
DNN was trained. For the training phase, its hyper-parameters were set to:

• 3 hidden layers;
• 512 neurons per hidden layer;
• ReLU activation function;
• 2 output neurons (softmax units)
• mini-batches size of 50;
• 0.001 learning rate;
• momentum of 0.9;
• 50 epochs.

Similar to the GMM-based baseline, two different segmentation schemes are
used to make the speech/non-speech decision. The first one makes the decision
for each frame by comparing the speech state posterior (from DNN) to a
predefined threshold (tuned on the test set to achieve the best equal error
rate). The latter scheme, as before, generates decisions per frame by Viterbi
decoding using a 2-state HMM (speech/non-speech). The inputs to the Viterbi
decoding are the log-likelihoods computed by dividing the state posteriors
(from DNN) by the state priors (from training data).

From the results the authors published in [8], two major conclusions can be
made. First, the segmentation scheme using Viterbi decoding yielded better SAD
performance than the thresholding scheme, and second, the DNN-based approach
significantly outperformed the GMM-based baseline on data drawn from YouTube.
The specific results can be seen in the corresponding paper [8].
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3.9 Conditional Random Fields
In [36], the authors focused on developing a new speech activity detection approach
designed specifically to be incorporated in an online speech recognition/speaker di-
arization system. As a baseline, they used their BBN Broadcast Monitoring System,
which provides automatic rich transcriptions in real time. The SAD portion of this
system was originally done by a phone-class decoder [132]. However, this approach
was prone to over-segmenting resulting in, e.g., fragmented words. For this reason,
the authors proposed a new SAD approach, which can scale the speech boundary in
real time. They also evaluated the influence of this new approach on both speech
transcription and speaker diarization tasks in an online environment.

The proposed SAD approach is operated in two phases – silence detection and
speech/non-speech labeling. In the first phase, an energy-based silence detection is
applied to eliminate the silence frames from the speech/non-speech labeling and to
provide initial segmentation change points. The approach uses a dynamic energy
threshold which is calculated for 5-second chunks as:

Ei = Ei
min +K

(
Ei

max − Ei
min

)
, (3.10)

where i is the index of ith 5-second chunk, Ei
max and Ei

min are the average energies
of the top 5% of highest and lowest energies, respectively, and K is a tunable param-
eter. To estimate this threshold, an initial SAD segmentation is done using GMMs
by comparing the speech and non-speech log-likelihoods (see Sect. 3.5). For each
chunk, if the initial segmentation says there is less than 1 second of speech, a fixed
energy threshold is applied, and the frames with energy lower than the threshold
are labeled as silence frames. The adjacent silence frames are joined into segments,
and only segments longer than a set duration (Dmin – second tunable parameter)
are considered as the final silence.

For the latter phase (speech/non-speech labeling), which is performed only on
non-silence segments, conditional random fields [133] first used for VAD in [134] are
utilized. In their work, the authors model sequence-level labels instead of frame-level
ones (all frames in the respective segment have the same label). The CRFs give the
posterior probability of label sequence y (y = [y1 . . . yt]) given an input sequence z
(z = [z1 . . . zt]). CRFs thus maximize the conditional probability P (y|z) [36]:

P (y|z) = 1

Z(z)
exp

(∑
t

(∑
i,j∈S

wijfij (yt−1, yt) +
∑

i∈S,d∈D

vidgid(yt, zt)

))
, (3.11)

where Z(z) is a constant used for normalization, S marks the possible labels (speech,
non-speech), wij is the weight for state-transition between two neighboring segments,
fij is defined as:

fij =

{
1, yt−1 = i and yt = j

0, otherwise
, (3.12)
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D is the feature set, vid is the weight of node features (for node features, the log-
likelihoods of speech/non-speech GMMs are used), and gid is expressed as:

gid =

{
zt[d], yt = i

0, otherwise
, (3.13)

where zt[d] is the dth feature of zt [36]. Finally, the parameters of CRFs are estimated
by L-BFGS [135], and Viterbi decoding is utilized to find the most likely sequence
of labels y.

In their experimental evaluation, the authors showed that two different SAD
configurations (one for speech recognition and one for speaker diarization) obtained
by choosing different parameters (K and Dmin) were beneficial to the performance
of both follow-up tasks. In both tasks, the authors were able to outperform their
baseline system. As usual, more details are available in the respective paper [36].

3.10 Simultaneously Trained Online Decoder
The main focus of [42] was on improving the performance of online speech activity
detection. In this approach, the authors utilized standard signal processing tech-
niques as well as deep learning to simultaneously train the SAD decoder. They also
explored different input features, such as spectral flux and spectral variance.

The proposed SAD approach consists of three main components, which are all
integrated into the training process. The first component provides early speech
activity score given a short context of input features (spectrograms). It is based on
a convolutional neural network. The CNN is composed of several convolutional (3),
max-pooling (3), and fully connected (5) layers. The stated details are 3×3 window,
6 kernels, and ReLU units for convolutional layers and 256 neurons, and ReLU units
for standard fully connected ones. The last fully connected layer is for computing
the score, and it has a single neuron.

The goal of the second component is to smooth the early activation score by a
2-second window (within the paper, the authors also experimented with different
values). For this task, a single neuron with a linear activation function is employed.

As a part of the third component, a fixed output layer with fixed bias (0) and
weights (−1 and 1) is added (i.e., positive posterior indicates speech, negative non-
speech). The final component itself is a differentiable decoding process. The max-
pooling decoder uses a window of scores (0.5 seconds) and searches for a maximum
score. If the maximum score is positive, the output is speech, otherwise non-speech.
This results in speech segments with duration, which is at least equal to the length
of the window.

The authors presented their promising results on a Czech radio broadcasting
corpus. The detailed results, which also provide a comparison of different input
features, can be seen in the corresponding paper [42]. In the future, the authors
intend to continue improving their approach by introducing additional components.
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4 Selected Approaches to Speaker Change
Point Detection

Speaker change point detection is probably an even more active research topic than
SAD. For this reason, this chapter only presents a detailed description of selected
approaches to SCP detection (a brief overview of the state of the art is available
in Sect. 1.2). These selected approaches were chosen for two main reasons. Either
they serve as a reference system (for comparison purposes with the proposed SCP
detection approach), or they are applicable in online mode.

4.1 BIC-Based Approach in LIUM Toolkit
The LIUM Speaker Diarization toolkit1 [101, 102] is open-source software (written in
Java) designed for multi-pass offline speaker diarization of (mostly) broadcast news.
As such, it provides tools for feature extraction (MFCCs computation), speech activ-
ity detection, gender detection, speaker change point detection, and speaker cluster-
ing. At first, it was developed for the French ESTER2 evaluation campaign, where
it won the best results for speaker diarization of broadcast news [136]. In [101],
the authors also discussed an application to a different domain – telephone con-
versions. Nowadays, the toolkit is freely available for download, and it comes with
pre-trained and fine-tuned models for TV and radio broadcasts. For different do-
mains, the models would need to be crafted from scratch (to match the broadcast
performance).

The LIUM toolkit performs the SCP detection by first running feature extraction,
which is followed by the application of four major steps – BIC segmentation, BIC
clustering, Viterbi decoding, and boundary adjustments (see flowchart in Fig. 4.1).

The toolkit utilizes sphinx4, a Java speech recognition library, for computation
of features (MFCCs). Different configurations of MFCCs are applied for different
steps of the SCP detection. For the first two steps (i.e., BIC segmentation and BIC
clustering), the extracted MFCCs are 13-dimensional with the zeroth coefficient
included. No normalization is applied. For the remaining steps, ∆ coefficients are
added, and the zeroth coefficient is dropped.

The first step, BIC segmentation, is done by performing two consecutive passes
through the input recording. The initial pass provides an early metric-based esti-
mation of change points placements, and it closely follows the approach described
in [65]. The distance metric applied here is the generalized likelihood ratio, which is
computed using Gaussians with full covariance matrices [101]. The GLR is computed
between a pair of 2.5-second (neighboring) sliding windows (i and j) as follows [137]:

GLRi,j = 2n log |Σ| − n log |Σi| − n log |Σj| , (4.1)
1https://projets-lium.univ-lemans.fr/spkdiarization/
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Figure 4.1: A flowchart of the multi-pass offline SCP detection in the LIUM toolkit.

where n is the length of the window (i = j), and |Σi|, |Σj| and |Σ| are the determi-
nants of covariances of the first, second and both (merged) windows, respectively.
The two neighboring windows are shifted alongside the recording, and the GLR is
computed for each shift. The initial change points are then placed in the spots,
where the GLR reaches a local maximum. The second pass refines these initial
change points by merging consecutive segments of the same speaker based on the
Bayesian information criterion. For every two neighboring segments (i and j), ∆BIC
is computed using full covariance Gaussians as [101]:

∆BICi,j =
ni + nj

2
log |Σ| − ni

2
log |Σi| −

nj

2
log |Σj| − λP , (4.2)

where ni and nj are the lengths of the first and second segment, |Σi|, |Σj| and |Σ|
are the determinants of covariances of the first, second and both (merged) segments,
respectively, λ is a tunable parameter, and P is a penalty factor, which is set in LIUM
toolkit to:

P =
1

2

(
d+

d (d+ 1)

2

)
+ log (ni + nj) , (4.3)

where d is the dimension of the input features. The two neighboring segments are
merged in one if ∆BIC is greater than 0. Alternatively, other distance metrics, such
as Gaussian divergence [64] or Kullback-Leibler distance [65], are also implemented
in the LIUM toolkit.

In the second step, an algorithm based on hierarchical agglomerative clustering is
applied. In the beginning, each of the segments defined in the first step is considered
as an initial cluster. After that, ∆BIC is computed for each cluster pair, and the
pair with the highest positive ∆BIC score is merged into a new cluster. This is
repeated in iterations until there are no cluster pairs with positive ∆BIC. Note that
∆BIC is computed as in Eq. (4.2) with the only exception that i and j represent
clusters instead of segments.

The third step performs the resegmentation of the input recording based on the
Viterbi decoding. Each of the clusters obtained from the previous step is modeled
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by an HMM with one state, represented by a GMM with eight mixtures (learned
over the segments of the cluster by the expectation-maximization algorithm). The
log-penalty between two HMMs is set empirically. Finally, the Viterbi decoding is
run to generate the new speaker change points.

Due to the often imperfect placements of these new speaker change points (e.g.,
within words), a set of rules defined experimentally is employed in the last step.
Specifically, the placements are refined by (slightly) moving the speaker change
points towards regions with low energy. This step concludes the SCP detection
portion of the LIUM toolkit and results in the final speaker-homogeneous segments.

The follow-up applications (e.g., speech activity detection, gender detection, and
speaker diarization), training procedures (for crafting new models), results (of di-
arization), and programming tips (for functionality extensions) are all well-discussed
in the respective papers detailing the LIUM Speaker Diarization toolkit [101, 102].

4.2 Bayesian Fusion Method
The main focus of the authors of [78, 79] was in crafting unsupervised real-time
SCP detection (and speaker tracking) approach tuned for broadcast news. For this
reason, the authors worked with no prior knowledge of the number or identity of the
speakers. The SCP detection portion of the proposed algorithm is covered in three
main steps – feature extraction, potential change point detection, and refinement.
The authors also proposed a Bayesian fusion method to fuse multiple input features.
Speaker tracking is done based on the obtained speaker-homogeneous segments [79].

The SCP detection approach starts with a preprocessing and feature extraction
step. The input audio stream is divided into 3-second segments (windows) with a
2.5-second overlap. A voice activity detection algorithm is run on these segments to
filter out non-speech parts (the details of the VAD were not given, only references
to previous works [138, 139] are available). For each segment, three different types
of input features are extracted per 25 ms non-overlapping frames. Specifically, the
features are MFCCs, LSPs [140] (both commonly utilized for speech processing),
and pitch (used here to differentiate between male and female speakers). Cepstral
mean subtraction is applied for normalization purposes.

Since the proposed SCP detection approach is metric-based, a distance needs
to be defined first. The authors opted for a distance derived from the Kullback-
Leibler divergence [141]. Assuming that each segment is modeled as a Gaussian, KL
divergence between two segments (i and j) can be defined as [79]:

KLi,j =
1

2
tr
[
(Σi − Σj)

(
Σ−1

j − Σ−1
i

)]
+

1

2
tr
[(
Σ−1

j − Σ−1
i

)
(µi − µj)(µi − µj)

T
]

,
(4.4)

where Σi and Σj are the estimated covariance matrices of the first and second
segments, respectively, and µi and µj are their estimated mean vectors. Since the
means can be easily biased by environmental conditions [78], the authors ignore the
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second part of Eq. (4.4) and use distance called divergence shape [142]:

Di,j =
1

2
tr
[
(Σi − Σj)

(
Σ−1

j − Σ−1
i

)]
. (4.5)

Note that this distance is greater if the two segments come from different speakers.
At the start of the second step (initial SCP detection), a speaker model is es-

timated for each segment (as they are processed). These speaker models are later
used in the refinement step (and speaker tracking). The divergence shape is com-
puted between two neighboring segments using only the LSPs (MFCCs and pitch
are utilized for refinement). A speaker change point (between these two segments)
is detected if:

Di,i+1 > Di+1,i+2

Di,i+1 > Di−1,i

Di,i+1 > λ .

(4.6)

The first two conditions guarantee that the speaker change point is placed in a local
maximum, while the last one prevents false speaker change points in low peaks by
applying an automatic threshold. If no speaker change point is detected, the algo-
rithm assumes that both segments come from the same speaker, and it updates the
corresponding speaker model (comprised of LSPs, MFCCs, and pitch) accordingly.
Explicitly, the speakers are modeled by the GMMs with up to 32 mixtures.

The automatic threshold is set up rather to produce false speaker change points
than to omit the real ones. For this reason, the goal of the last refinement step is
to eliminate the false speaker change points by merging neighboring speaker models
(segments) if the speaker is the same. All features are employed, and MFCCs, LSPs,
and pitch distances between the previous speaker model and the model of the current
segment are computed. These distances are then fused using a Bayesian decision
engine, as shown in Fig. 4.2, to obtain a more reliable decision. If the computed
likelihood ratio is greater than a given threshold, the potential speaker change point
is considered real; otherwise, it is removed (and the speaker model is updated again).

P(H|f2)

segment 1 segment 2

MFCCs distanceLSPs distance pitch distance

Bayesian decision engine

P(H|f1) P(H|f3)

P(H|F)

Figure 4.2: A Bayesian fusion method.
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The achieved results show that the proposed algorithm is capable of performing
SCP detection in real time. It can be approximately 6.5 times faster. The detailed
results, as well as more information about the implementation of SCP detection and
speaker tracking, can be found in the respective papers [78, 79].

4.3 XBIC
In [82], the authors proposed a novel (probability-based) distance metric designed
for unsupervised metric-based speaker change point detection. This metric, called
XBIC, computes cross probabilities between two neighboring windows (modeled
with a Gaussian distribution) shifted along the speech audio stream. To detect
the exact placement of the speaker change points, a two-pass algorithm is used as
a complement to the metric. Both the metric and the detection algorithm were
developed to be a part of a real-time SCP detection system and thus offer a fast and
stable implementation.

Given two HMMs (one for each window) defined by λ1 = (A1, B1, π1) and λ2 =
(A2, B2, π2), the data sets Θ1 = {θ1(1), ..., θ1(N1)} and Θ2 = {θ2(1), ..., θ2(N2)} can
be generated by each of the two. The XBIC between two segments (windows) i and
j can be then defined as [82]:

XBICi,j = P (Θi|λj) + P (Θj|λi) , (4.7)

where

P (Θi|λj) =

Ni∑
k=1

log p(θi(k)|λj) and P (Θj|λi) =

Nj∑
k=1

log p(θj(k)|λi) . (4.8)

In other words, the XBIC expresses the dissimilarity between two neighboring win-
dows by computing the cross probabilities of each segment given the model of the
other segment. Smaller values of XBIC represent more dissimilar segments hinting
at potential speaker change point candidates.

Speaker change point detection is started by feature extraction. Specifically, 32-
dimensional MFCCs (consisting of 16 static and 16 ∆ coefficients) are computed.
The following detection algorithm operates in two passes (similarly to [61]). In the
first pass, two fixed-sized (neighboring) windows are shifted alongside the recording
with a step of 0.1 seconds, and the XBIC between them is computed. Once a speaker
change point is found (i.e., XBIC is smaller than a predefined threshold, and it is
in local minimum), a second pass is initiated. In the second pass, two smaller fixed-
sized (neighboring) windows slide around the detected speaker change point with a
smaller step of 0.01 seconds to find its more precise placement (using XBIC). When
the second pass is done, the detected speaker change point is considered final, and
the algorithm proceeds from the next frame (it also returns to the first-pass stage).

The authors compared the XBIC approach with a standard BIC-based one on a
broadcast news database. The results show that XBIC yielded at least comparable
results on the Hub-4 [91] evaluation datasets. More details can be found in the given
paper [82].
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4.4 LLR-Based Approach
The main difficulty of the metric-based approaches to SCD detection (e.g., based on
BIC or XBIC) is the need to define and fine-tune a threshold (or penalty factor),
which is used to determine if a potential speaker change point is real or false. This
generally means that the approaches perform well in the target domain (i.e., where
the threshold was tuned), but their performance drops everywhere else. In [83], the
authors tried to solve this issue by proposing a robust metric, which does not require
such tuning. Their implementation is also suitable for real-time use.

Given two segments containing sequences of feature vectors, X = {x1, ..., xNx}
and Y = {y1, ..., yNy} (where Z marks the concatenation of X and Y ), the LLR can
be computed to express the dissimilarity between the two segments by a hypothesis
test. The null hypothesis (H0) assumes that there is no change point between the
two segments. The authors model the data Z using a GMM with two components.
The estimates of the parameters (θZ) are computed by the expectation-maximization
algorithm. At last, the log-likelihood of Z under the null hypothesis can be expressed
as:

L0 =
Nx∑
i=1

log p(xi|θz) +
Ny∑
i=1

log p(yi|θz) , (4.9)

where p(x|θ) is the likelihood of a feature x given θ [83].
The other hypothesis, H1, assumes the existence of a speaker change point be-

tween the two segments. In this case, θx and θy denote the estimates of the parame-
ters of the Gaussian densities of sequences X and Y , respectively. The log-likelihood
L1 can be then defined as:

L1 =
Nx∑
i=1

log p(xi|θx) +
Ny∑
i=1

log p(yi|θy) . (4.10)

Finally, the log-likelihood ratio between the two segments can be computed as:

dLLR = L1 − L0 . (4.11)

Because the authors set the number of parameters of both models to the same value,
the log-likelihoods are directly comparable. That means a positive dLLR suggests a
speaker change point. On the other hand, if the value is negative, both the segments
should be from the same speaker. Note that there is no threshold tuning.

The speaker change point detection starts with the extraction of 24-dimensional
MFCCs from the acoustic stream. The authors chose to implement a window-
growing SCP detection approach [60, 143]. At first, a window of initial size is placed
at the beginning of the stream. The algorithm assumes that a potential change
point is located in the middle of this window (i.e., it divides the window into two
same-sized segments). The LLR is computed between the two segments. If it is
positive, the potential change point is considered real, the window is moved beyond
the decoded change point, and it is also shrunk to 1 second. If the LLR is negative,
the window is enlarged (by 1 second), and the procedure is repeated until a change
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point is found or the window reaches its maximum allowed size (i.e., 20 seconds).
In that case, the start of the window shifts to the right.

The authors compared their proposed approach with an approach based on BIC
on the Hub-4 evaluation dataset [91]. The results show that their approach (without
tuning) reached comparable performance with the best-tuned BIC-based approach.
The detailed results can be found in the given paper [83].

4.5 Adapted GMMs
In metric-based SCP detection, one of the issues that can arise is caused by phonetic
variation. Generally, if two (short) segments (windows) belong to the same speaker
and at the same time, their phonetic content is different enough, a false change
point may be produced by the decoding algorithm. In [69], the authors tackled
this issue by proposing a new probabilistic SCP detection approach (based on their
previous work [144]). Particular focus was given to the computational efficiency of
the introduced algorithm.

The SCP detection approach first extracts 20-dimensional linear predictive cep-
stral coefficients from the audio stream. After that, two same-sized (2-second) ad-
jacent windows (consisting of speech segments X = {x1, ..., xN} [left window] and
Y = {y1, ..., yN} [right window]) are shifted alongside the recording (by 0.1 seconds).
For each shift, two GMM-based speaker models (θX and θY ) are obtained from these
two windows using a single-step Bayesian adaptation of an independent universal
background model θUBM (a GMM trained on a large amount of data from different
speakers). Note that the GMMs are used instead of single Gaussian models to ad-
dress the phonetic variation issue described earlier. To compare the two windows,
the authors use the following metric:

p = log p(Y |θX)− log p(Y |θUBM) + p(X|θY )− log p(X|θUBM) . (4.12)

Its value is computed at each shift and if it is greater than a predefined threshold, a
speaker change point is placed in between the two windows. The authors called their
approach adapted model-based bilateral scoring-based speaker change detection.

The rest of the showcased paper [69] is focused on making the proposed approach
as computationally efficient as possible. This process, the real-time settings, as well
as detailed results, are all well-presented. The results show an improvement over
the standard BIC-based SCP detection on broadcast data.

4.6 i-vectors
The authors of [52] proposed a novel metric-based approach to speaker change point
detection designed for the meetings domain using the i-vectors. The i-vectors provide
representation for each utterance in the form of a low-dimensional feature vector
with a fixed length. The i-vectors were first introduced in [145] for the task of
speaker verification, where they achieved excellent (state-of-the-art) results. Since
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then, they have been successfully applied to many speech processing tasks, such
as speaker recognition [146], speaker diarization [147], or language recognition [148,
149]. In the showcased paper, the authors applied the i-vectors to the task of speaker
change point detection.

In [145], Total Variability (TV) space, which contains both the speaker and chan-
nel variabilities simultaneously (as opposed to joint factor analysis modeling [150],
in which there are two distinct spaces defined – speaker space and channel space),
was first introduced. This space is defined by a total variability matrix, which con-
tains the eigenvectors with the largest eigenvalues of the total variability covariance
matrix [52]. In this space, given an utterance, a speaker- and channel-dependent
GMM supervector M (formed as a concatenation of means of all mixtures) can be
modeled as:

M = m+ Tw , (4.13)
where m is the speaker- and channel-independent supervector (commonly taken from
a large GMM known as the universal background model), T is a rectangular matrix
of low rank (defining the TV subspace), and w is a random vector with a standard
normal distribution whose components are the total factors [52]. This vector w is
called i-vector. Note that the authors trained the UBM (8 Gaussian components)
and TV matrix on the AMI Meeting Corpus [151] using the 12-dimensional MFCCs,
and the extracted i-vectors are 100-dimensional.

Before the speaker change point detection starts, the input signal is preprocessed
by an energy-based SAD, which filters out non-speech segments longer than 0.25
seconds. The authors opted for the window-growing approach to SCP detection [62].
The algorithm starts with a window of an initial size (2 seconds) that is placed at
the start of the input. It assumes that the potential change point is placed exactly
in the middle of this window. Two i-vectors, one representing the left part and one
the right part of the window, are extracted. A cosine distance, defined (between
two vectors w1 and w2) as:

CDw1,w2 = 1− w1 · w2

||w1|| ||w2||
, (4.14)

is computed between the two i-vectors. If the distance is greater than a predefined
threshold, the potential speaker change point is considered final. If not, the window
is enlarged (by 1 second), and the process is repeated until a change point is found
or the size of the window exceeds the allowed maximum (10 seconds). In the latter
case, the window is shifted to the right (by 2 seconds). If a change point is detected,
the window size is reset to the initial value, and it is placed right after the detected
change point. The algorithm stops when the window reaches the end of the input.

The authors evaluated their proposed i-vector-based approach on a subset of the
AMI Meeting Corpus. They compared it with the traditional metric-based SCP
detection approaches based on the BIC, GLR, KL2, and XBIC distances. As shown
in [52], the i-vectors outperformed the other approaches in the meetings domain.

45



4.7 ASR-Based Approach
In [87], the authors focused on the development of an online speaker diarization
system (with ASR). They comprehensively described the steps they took to make
the conversion from their design to a final system operating in real time with low
latency possible. The limitations of online diarization are well-discussed, and novel
ideas were proposed by the authors. The most relevant (to this work) is the use
of ASR block to produce inputs utilized by the speaker segmentation. Other ideas
include, e.g., a new top-down algorithm for speaker clustering. In the paper, the
authors examined two different architectures for an online speaker diarization system
differing mainly in the placement of the ASR block.

In the first architecture, the ASR block is placed as the last component, after the
speaker diarization block (composed of speaker segmentation and speaker cluster-
ing). In this case, the outputs of the diarization are used to improve the quality of
speech transcription. In this architecture, the input stream is first preprocessed using
a DNN-based SAD [32], which is followed by SCP detection based on BIC [152]. The
diarization is concluded by clustering the obtained speaker-homogeneous segments
into speaker clusters. Finally, N tandem ASR systems (where N is the number of
suspected speakers) transcribe the input stream based on the information retrieved
from speaker diarization (i.e., one ASR for each speaker cluster).

However, the authors were unable to improve the performance of the ASR using
this architecture. The errors produced by the SAD and SCP detection (which was
either making lots of false speaker change points or omitting real change points)
influenced the transcriptions negatively. For this reason, the authors decided to
modify their architecture.

In the modified architecture, the ASR block is placed in front of the speaker
diarization block. In this case, the ASR eliminates most of the speech activity de-
tection errors by accurately end-pointing the transcribed words (i.e., there are rarely
words in non-speech segments). It also supplements the speaker segmentation as a
speaker change point can only be placed between two neighboring words (bound-
ary). The decision if a boundary is a speaker change point is made based on BIC
between two adjacent segments (represented by cepstral features) around the bound-
ary. If the segments are shorter than 2 seconds, T 2 criterion [152] is used instead
of BIC. The diarization is concluded by speaker clustering (based on i-vectors and
agglomerative or X-means clustering).

This architecture improved the performance and efficiency of the speaker diariza-
tion block (i.e., speaker segmentation and speaker clustering). The main drawback
is that, in this case, the outputs of diarization are not used for improvements of the
ASR. More information about the architecture, its components, and results can be
found in the respective paper [87].
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4.8 NN-Based Features
Real-time speaker change point detection designed for the conversations domain is
the main focus of the work published in [89]. The authors approached this topic by
proposing a novel metric-based approach whose main component is an NN-based
speaker classifier transforming the input signal into speaker-discriminative features.
The proposed system operates in three main phases – data preparation, feature
extraction (from the NN), and SCP detection.

The first phase is initiated by two preprocessing steps – amplitude scaling and
voice activity detection. The maximum of the absolute amplitude of the input signal
is first scaled to 1. After that, voice activity detection is applied to remove all non-
speech frames. The VAD algorithm computes short-term energy (to detect silence
and environmental noises) and spectral centroid (to detect non-environmental noises,
e.g., coughing) for each frame (given a short-term signal). A frame is considered
speech if both the short-term energy and spectral centroid are greater than their
predefined thresholds. The data preparation phase is concluded by the extraction of
39-dimensional MFCCs (including ∆ and ∆∆ coefficients) normalized per speaker.
Finally, the authors form longer features (100 ms) by concatenating 10 adjacent
frames to provide the NN with more context information. The longer features are
shifted by 3 frames (see Fig. 4.3 for an illustration).

...

... ............

frames

concatenated features

Figure 4.3: An example of the 10-frame concatenation with a step of 3 frames.

The authors trained a fully connected feed-forward neural network for the task
of text-independent speaker classification. The NN was trained using data taken
from the TIMIT corpus [153]. Specifically, recordings of 200 male speakers were
utilized. The hyper-parameters of the NN were set to:

• 1 hidden layer with 200 neurons;

• sigmoid activation function (all layers);

• output layer with 200 neurons (i.e., the number of speakers).

During decoding, for each input feature vector (390-dimensional) fed into the NN,
a 200-dimensional output feature vector (with values between 0 and 1) is obtained.

In the SCP detection phase, two fixed-sized adjacent windows (different sizes [0.5,
1, and 2 seconds] were evaluated by the authors) are shifted (by the window size)
alongside the recording. For all frames in each window, the speaker-discriminative
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features are first extracted from the NN. The distance computed between the two
adjacent windows (i and j) is the p-norm distance defined as:

d′i,j =

(
K∑
k=1

(
|di − dj|p

)) 1
p

, (4.15)

where K is the dimension of one of the (NN) feature vectors (i.e., 200), di and dj
are the extracted (NN) feature matrices (with dimensions: window size × 200), and
di and dj are their mean vectors (i.e., 200-dimensional). If the computed distance
is greater than a given threshold, a speaker change point is produced. The authors
achieved the best results by using Euclidean distance (i.e., by setting the value of p
to 2).

More information about the showcased approach and the results obtained on
artificial data taken from the TIMIT corpus can be found in the respective paper [89].

4.9 Deep Speaker Vectors
In [55], the authors focused on crafting a new metric-based SCP detection approach
suitable for scenarios with fast speaker changes. These scenarios are much harder to
segment because most of the metric-based techniques usually require the two slid-
ing windows to have a significant amount of input context to compute the distance
metric reliably (i.e., the fast changes end up as errors). The authors approached
this issue by employing a deep neural network to extract deep speaker vectors (d-
vectors [154]) to represent the speaker characteristics. These d-vectors are highly
speaker-discriminative features, which are computed for each frame. Their applica-
tion, experimentally confirmed by the authors, allows for using shorter windows for
distance calculations.

A fully connected feed-forward deep neural network needs to be trained to extract
the d-vectors. It was trained on data of 1,000 randomly selected speakers (gender-
balanced, >10 minutes per speaker) from the Fisher corpus [155]. The data was first
preprocessed by energy-based VAD, which removed all the non-speech segments.
The DNN was trained using the following hyper-parameters:

• 4 hidden layers;

• 200 neurons per hidden layer;

• sigmoid activation function;

• output layer with 1,000 neurons (i.e., the number of speakers).

For input features, the authors followed their previous work [156]:

• 40-dimensional Filter Bank Coefficients (FBCs);

• computed using 20 ms frames of the signal with frame shifts of 10 ms;
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• concatenation of n previous frames, the current frame, and n following frames
(n is not given in the paper, 10 in [156]);

• computed, as shown in Sect. 3.5 for MFCCs without the last two steps.

After the training of the DNN, the d-vectors can be extracted from any of the hidden
layers. However, the deeper layers produce more speaker-discriminative features [55].
For this reason, the authors extract the d-vectors from the very last hidden layer.

The proposed metric-based SCP detection algorithm operates in several steps.
First, the 40-dimensional FBCs are computed from the preprocessed (VAD) audio
stream. Next, the d-vectors are extracted by feeding the FBCs into the DNN (i.e., a
frame-sequence of d-vectors representing the audio stream is obtained). After that,
two fixed-sized neighboring windows are shifted along the d-vector sequence, and
the distance between them is computed. Each of the windows is represented by a
deep speaker vector calculated as a mean of the d-vectors belonging to the respective
window. A cosine distance is applied to compute the distance score between the two
deep speaker vectors. Finally, the shifting of the two windows along the whole d-
vector sequence generates a distance score curve. The change points are then placed
in the spots of a local minimum if the minimum is lower than a predefined threshold.

In the experimental evaluation, the authors compared the performance of d-
vectors with traditional distance metrics (e.g., BIC, GLR, KL2) in the fast speaker
change scenarios, and they also explored different lengths of the shifting windows.
The results show that the d-vectors had a great speaker-discriminative ability even
for segments with a duration of 0.1 seconds (10 frames), where all other metrics
failed. The ideal length of the window was found to be between 0.05 to 0.1 seconds for
the task of fast SCP detection. More detailed results are available in the respective
paper [55].

4.10 Segmentation in Online Diarization
The authors of [90] explored different approaches to online SCP detection and their
effects on the performance of an online speaker diarization system. While the initial
placement of the speaker change points is not that crucial in offline diarization (i.e.,
it can be improved in the final resegmentation stage), it is pivotal for online diariza-
tion (where such resegmentation is typically not possible). The authors employed
their i-vector-based diarization system (altered to operate in a left-to-right mode
suitable for online processing [90]) and mainly studied two different SCP detection
approaches proposed in their previous works [73, 157].

The first approach, a standard metric-based one, was proposed in [157]. The SCP
detection is run in two consecutive passes. In the first pass, the GLR (see Sect. 4.1,
Eq. (4.1)) is computed between two 2-second neighboring windows shifting alongside
the recording with a step of 0.1 seconds. If the GLR lies in local maximum and it
is greater than a predefined threshold, a speaker change point is produced. In the
second pass, longer segments are split in spots, where the GLR has the highest
values. Note that this approach requires VAD to filter out non-speech segments.
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A convolutional neural network employed as a regressor is the main component
of the second approach proposed in [73]. The CNN was trained on spectrograms
of the acoustic input data. This data was labeled using a fuzzy labeling technique
(instead of the binary one) developed by the authors. An approximately 0.6-second
window around the actual change point is labeled non-zero. The value of the labels
linearly increases closer to the change point, where it is set to 1. A depiction of
fuzzy labeling can be seen in Fig. 4.4. The CNN is comprised of 3 convolutional
layers (with ReLU activation function), each followed by a max-pooling layer and a
batch normalization layer, and two fully connected layers. The output layer has one
neuron with a sigmoid activation function (i.e., the output is between 0 and 1). It
represents the likelihood of the presence of a speaker change point. During the SCP
detection, a non-maximum suppression with a 0.5-second window is applied to find
maximum peaks in CNN output (i.e., potential change points). The final speaker
change points are then the peaks greater than a predefined threshold (0.5). Note
that in this case, voice activity detection is not needed [90].

change points

0 0 0 1 0 0 0 1 0 0

recording

annotation

frames

0.33 0.66 0.330.66 0.33 0.330.66 0.66

Figure 4.4: An example of the fuzzy labeling technique. In this case, a two-frame
window around the change points is labeled as speaker change. The label values
linearly decrease further from the actual change points.

For comparison purposes, the authors also implemented a fixed-length segmen-
tation, where the data is divided into 2-second segments with a 1-second overlap.

The authors reported their findings on the CALLHOME American English cor-
pus of telephone speech. They employed the above-described SCP detection ap-
proaches and compared their performance in both offline and online i-vector-based
speaker diarization systems. The results confirm that precise SCP detection is more
vital for the online diarization because, in an offline setting, the placement can be
corrected by resegmentation [157] (i.e., the fixed-length segmentation performed on
a similar level in offline diarization but failed online). The GLR- and CNN-based
approaches yielded fairly comparable results. More details are available in the re-
spective paper [90].
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5 Proposed Speech Activity Detection Ap-
proach

The final approach to speech activity detection was proposed in a series of con-
secutive experiments, all described and heavily discussed within this chapter. The
majority of this designing process was covered in [1–3], and portions of the respective
papers were directly utilized in this thesis. This chapter thus describes evaluation
metrics, training and development data, experimental evaluation of all steps taken,
evaluation on standardized QUT-NOISE-TIMIT corpus, evaluation in real speech
transcription system, and at last, it sets the final SAD approach.

5.1 Evaluation Metrics
In total, seven different commonly utilized metrics were employed for the evaluation
of speech activity detection. These metrics can be grouped into three main subsets,
each focusing on different aspects of SAD: overall accuracy metrics, change point
quality metrics, and performance metrics.

5.1.1 Overall Accuracy Metrics
The main focus of this group of metrics is the accuracy of newly defined speech and
non-speech segments on a frame-level (i.e., the recording is treated as a sequence of
speech and non-speech frames). In this case, each frame is considered independent,
and only a direct comparison between the reference frame and the corresponding
decoded frame (frame pair) is evaluated. If the frame pair is matched, it is considered
as a hit; otherwise, it counts as a miss (see an example in Fig. 5.1). For this task,
four closely related metrics were applied.

S

frames (N)

S S S S S S S NS NS NS NS NS NS NS NS S S

S S S S S S NS NS NS NS NS NS NS NS NS S S S

H H H H H H MS H H H H H H H H HMS MMNS

reference

decoded output

evaluation

Figure 5.1: An example of utilized frame-based evaluation. S marks speech frames,
NS non-speech ones while H expresses hits, and M misses.

The first metric, Frame Error Rate (FER), is defined as follows:

FER[%] =
M

N
∗ 100 , (5.1)
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where M is the number of non-matching frames in reference and decoded output,
and N is the total number of frames in reference.

The following two metrics are Miss Rate (MR) and False Alarm Rate (FAR) [8].
They represent relevance metrics, specifically false negatives and false positives (the
rest of the relevance metrics is not reported as they are complementary to the
presented ones).

Miss rate (false negatives) can be expressed as:

MR[%] =
Mspeech

Nspeech
∗ 100 , (5.2)

where Mspeech is the number of speech frames classified as non-speech, and Nspeech
is the total number of speech frames in reference.

False alarm rate (false positives) is defined as:

FAR[%] =
Mnon−speech

Nnon−speech
∗ 100 , (5.3)

where Mnon−speech is the number of non-speech frames classified as speech, and
Nnon−speech is the total number of non-speech frames in reference.

The last metric, Half-Total Error Rate (HTER), is an official metric of QUT-
NOISE-TIMIT [44] evaluation protocol. As such, within this thesis, it is only re-
ported for the comparison of results on the respective QUT-NOISE-TIMIT corpus.
It is defined as an equal-weighted average of MR and FAR:

HTER[%] =
MR + FAR

2
. (5.4)

Finally, the optimal SAD approach should minimize the miss rate while keeping
the false alarm rate relatively low. The reason is that the following speech processing
system (e.g., SCP detector or speech transcriber) should get all speech frames possi-
ble with only a limited amount of non-speech events added (i.e., limiting transitive
errors by not omitting any speech).

5.1.2 Change Point Quality Metrics
Change point quality metrics offer an alternative view on the performance of SAD.
Instead of a frame-based evaluation, they explore the recording as a sequence of con-
secutive speech and non-speech events, and more specifically, as the name suggests,
they focus on the accuracy of detected (computed) change points between these
events. For this task, two distinct metrics, F-measure and δ2/3, were employed.

To define these two metrics, the detected and the reference change points have to
be aligned at first [158]. The bidirectional search for the nearest neighbor (between
the detected and reference change points) can do this. A detected change point i,
and the reference change point j can be considered as a Hit (H) only if:

1. the nearest neighbor of detected change point i is the reference change point
j;
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2. the nearest neighbor of reference change point j is the detected change point
i;

3. the distance between i and j is smaller than a defined threshold (commonly
set to 1 second).

The errors are then marked as Insertions (I) and Deletions (D). If a detected change
point does not match any of the reference change points, it is tagged as insertion.
Similarly, if a reference change point is not matched by any of the detected change
points, it is marked as deletion. For an example, see Fig. 5.2. Note that within this
thesis, the threshold was set to standard 1 second.

HHH I

change points

reference

decoded output

evaluation D

Figure 5.2: An example of aligned detected and reference change points (black lines).
H marks hits, I insertions and D stands for deletions. Orange and blue dashed lines
indicate the reference and decoded threshold boundaries, respectively.

Given the values of hits, insertions and deletions, Precision (P) and Recall (R)
can be expressed. Precision is defined as a ratio between the number of correctly
detected change points and the number of detected change points:

P [%] =
H

H + I
∗ 100 , (5.5)

while recall is expressed as a ratio between the number of correctly detected change
points and the number of change points in reference:

R[%] =
H

H +D
∗ 100 . (5.6)

Precision and recall are in a contradictory relationship with each other (i.e., when
one improves the other one worsens). For this reason and to express the performance
with only one value, F-measure (F) is defined. It has a local maximum and can be
computed from precision and recall as follows:

F [%] =
2 ∗R ∗ P
R + P

. (5.7)

Given the correctly detected change points (hits), it is also possible to calculate
an error value for each hit (in seconds) and sort all the hits according to these
calculated values in ascending order. In this work, δ2/3 was utilized. It expresses (in
seconds) the maximal error of the alignment for the first two-thirds of the sorted
(best) hits. Note that δ2/3 should be as low as possible to provide further speech
processor with precisely defined speech segments.
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5.1.3 Performance Metrics
The last set of metrics monitor the performance of SAD in an online environment.
Two different metrics, Latency (L) and Real-Time Factor (RTF), were utilized.

The former one is defined as an average time between the detected change point,
and the moment the decoder outputs the change point label (see Fig. 5.3 for an
illustration). Forcing this value to be as low as possible is a crucial part of online
necessities for real-time deployment.

change points (in time)

L

detection

label output

evaluation LL L

Figure 5.3: An example of latency calculation. The upper row displays the actual
change point placements decided by the decoder (black lines). The middle row marks
the moments the decoder outputs the labels (black lines), and finally, the bottom
row shows the latencies for each change point, which are then averaged.

The latter metric is the real-time factor, and it expresses the speed of decoding:

RTF =
PT

T
, (5.8)

where PT is the processing time of decoding, and T is the duration of the recording.
If the RTF is smaller than 1, the decoder can operate in real time. Therefore, the
smaller the value is, the faster the decoding is.

5.2 Data Used
For training, in total, 67 hours of recordings have been gathered and utilized. The
speech is represented by 30 hours of clean speech recordings of English and several
Slavic languages (Czech, Slovak, Polish, Russian, and Croatian). These recordings
originally served as training data for speech transcription systems. The non-speech
is modeled by 30 hours of music of different genres with the addition of 7 hours of
non-speech events/noises. Lastly, the annotations were done automatically, speech
label for clean speech utterances and non-speech one for everything else.

The data used for development consists of 6 hours of TV and radio recordings in
several Slavic languages (Czech, Slovak, Polish, and Russian). It contains not only
clean speech segments but also segments with music, background noises, jingles,
and advertisements. Annotations of this data were obtained in a two-step process.
At first, speech and non-speech labels were produced automatically by the baseline
DNN-based SAD approach introduced in Sect. 5.3. These obtained labels were then
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corrected and fine-tuned by hand. In total, 70% of all frames are marked as speech
ones. An example of annotation can be seen in Fig. 5.4. Finally, an overview of the
data used is presented in Table 5.1.

speech

speech

recording

annotation

speech

speechnon-speech

music jingle

Figure 5.4: An example of annotation of a development recording.

Table 5.1: An overview of utilized data for SAD.

dataset recordings hours change points speech
training 15,010 67 0 45%
artificial training 14,483 30 0 63%
modified artificial 8,797 30 8,797 62%
development 24 6 337 70%

5.3 Baseline DNN-Based Approach
The baseline speech activity detection approach employed a feed-forward deep neural
network with a binary output (speech or non-speech) as a classifier (i.e., without
any smoothing). The initial hyper-parameters of the DNN were set to:

• 5 hidden layers;

• 128 neurons per hidden layer;

• ReLU activation function;

• mini-batches size of 1,024;

• 0.08 learning rate;

• 10 epochs.

The features extracted from training data were:

• 39-dimensional log filter bank coefficients;

• computed using 25 ms frames of the signal with frame shifts of 10 ms;

• concatenation of 25 previous frames, the current frame, and 25 following
frames (i.e., a 0.5-second context window);
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hidden layers (5 × 128)

. . .

input layer (1 × 1989) output layer (1 × 2)

Figure 5.5: A feed-forward DNN used in SAD.

• local normalized within a one-second window.

Finally, an illustration of the trained DNN is in Fig. 5.5.
The performance of the baseline approach is summarized in Table 5.2 (see its

first row). It is evident that it missed approximately 4% of speech segments. This
fact affects the accuracy of the possible speech transcription system negatively, as
the segments incorrectly marked as non-speech would not be transcribed. Another
problem of the baseline detector was the time precision of the change-point detection:
the achieved value of δ2/3 was 0.42 seconds. This is also due to the fact that it is
sometimes hard even for human annotators to determine the exact frame where a
state change occurs. The baseline detector also produced a high number of false
non-speech segments with a very short duration of one or two frames.

Note that each of the presented deep neural networks (i.e., for all SAD exper-
iments) was trained on GPU using the torch framework1 unless stated otherwise.
The training scripts are available at the author’s GitHub2 for everyone to download
and see.

1http://torch.ch/
2https://github.com/1shark1/nnet/
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Table 5.2: Summarized results of the proposed SAD approach described in detail in
Chap. 5.

approach FER [%] MR [%] FAR [%] F [%] δ2/3 [s]
baseline DNN-based 4.7 3.7 7.1 0.3 0.42
+ basic smoothing 2.9 2.2 4.7 28.5 0.27
+ artificial training data 3.1 0.3 10.1 41.3 0.34
modified artificial data 2.4 0.5 7.2 52.7 0.26+ context-based smoothing

5.4 Smoothing the Output from DNN
As mentioned in the previous section, the baseline detector classified every input
frame independently. On the other hand, every speech or non-speech segment usu-
ally lasts for at least several frames. Therefore, the following efforts were focused
on smoothing the output from the DNN. For this purpose, weighted finite-state
transducers were utilized using the OpenFst library3.

The resulting scheme consists of two transducers. The first models the input
signal (see Figure 5.6). The other one is the transduction model and represents
the smoothing algorithm (see Figure 5.7). It consists of three states. The first
state, denoted by 0, is the initial state. The transitions between states 1 and 2
emit the speech/non-speech labels and are penalized by penalty factors P1 and
P2, respectively. Their values (500 and 500) were tuned and determined in several
experiments on a different dataset.

1 ...frame 1 T+10 frame 0 frame T

Figure 5.6: A transducer modeling the input signal for SAD.

1

S

2

NS/P1

S/P2

NS

0

S

NS

Figure 5.7: A transducer representing the basic smoothing model for SAD.
3http://www.openfst.org/twiki/bin/view/FST/WebHome
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Given the two described transducers, the decoding process is performed using
the on-the-fly composition of the transduction and the input model of unknown size.
This is possible since the input is considered to be a linear-topology, unweighted,
epsilon-free acceptor. After each composition step, the shortest-path (considering
tropical semi-ring) determined in the resulting model is compared with all other
alternative hypotheses. When a common path is found among these hypotheses
(i.e., with the same output label), the corresponding concatenated output labels are
marked as the final fixed output. Since the rest of the best path is not known with
certainty, it is denoted as a temporary output (i.e., it can be further refined).

The results obtained with the aid of the DNN-based approach with smoothing
are summarized in the second row of Table 5.2. They show an overall significant
boost in performance. For example, F-measure improved from 0.3% to 28.5%, MR
was reduced from 3.7% to 2.2%, and the value of δ2/3 improved noticeably from
0.42 seconds to 0.27 seconds. Also, note that the performance on clean speech and
non-speech (music) data was reported in detail in [1].

5.5 Using Artificial Training Data
The level of MR yielded so far, i.e., around 2%, would still lead to a small increase
in the Word Error Rate (WER) of a transcription system (e.g., from 13% to 14%),
as the speech frames incorrectly classified as non-speech would be omitted from
transcription. Upon closer inspection, the detector specifically misclassified the
speech segments with background noise. The reason for this behavior is that the
speech data used for DNN training so far were recorded only in clean conditions
(i.e., without any background noise).

Hence in the next step, the goal was to employ training data containing non-
speech events, such as music or jingles in the background. Due to the lack of such
annotated data, an artificial dataset created by mixing 30 hours of clean speech
with non-speech recordings was constructed. For this purpose, a larger set of non-
speech recordings of a total length of 100 hours was prepared first. After that, every
speech recording was mixed with a randomly selected non-speech recording from the
prepared set. Note that every non-speech recording used for mixing had to have the
same or longer duration than the given input speech recording (the selected non-
speech recording was trimmed to match the length of the speech recording) and its
volume was increased or decreased to match the desired level of signal-to-noise ratio
(which was also selected randomly from an interval between −30 dB and 50 dB).

The labeling of this artificial data was carried out automatically: when the
SNR of the recording was higher than a defined threshold of 0 dB, the recording
was marked as containing speech. In the opposite case, the recording was labeled
as non-speech. The whole process of artificial data preparation and annotation is
shown in Fig. 5.8. Lastly, more information about the data is presented in Table 5.1
(see the second row).

The results after using only these 30 hours of mixed training data are shown in
the third row of Table 5.2. It is evident that this approach led to an increase in
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Figure 5.8: An illustration of SAD artificial data mixing.

F-measure and a significant reduction in MR from 2.2% to 0.3%. Unfortunately,
these improvements are all accompanied by an increase in FAR and, even more
importantly, an increase in δ2/3 from 0.27 seconds to 0.34 seconds. Due to these
issues, a further refinement of the smoothing algorithm was investigated.

5.6 Improved Context-Based Smoothing
The proposed refinement of the smoothing scheme is depicted in Fig. 5.9. In this
case, both the speech and non-speech events are represented as sequences of three
states, where the first and third states (the outer states) model the context. Similarly
to smoothing without any context, the penalties are defined just for transitions
between the speech and non-speech events, i.e., for transition a) from the end state
of speech (stop_S) to the start state of non-speech (start_NS), and b) from the end
state of non-speech (stop_NS) to the start state of speech (start_S). Their values
were fine-tuned on a different dataset.

1

S

3stop_S
2

NS

5stop_NS

stop_S

4
start_NS/P1 NS

start_NS stop_NS
6

start_S/P2

S
start_S

0

S

NS

Figure 5.9: A transducer representing the context-based smoothing model for SAD.

To prepare training data containing transitions between speech and non-speech
events, the dataset from Sect. 5.5 was modified. At first, two recordings were chosen
randomly from the artificial training set: one speech and one non-speech. After
that, these two recordings were joined in random order. The resulting recording
then contained one of the two possible transitions (i.e., from speech to non-speech
or from non-speech to speech) and was annotated automatically as follows:
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1. The number of transition frames was derived from the input feature context
window (25-1-25).

2. Only the 50 frames at the inner boundary of the two joined recordings were
annotated as transitional, i.e., using 25 labels stop_S followed by 25 labels
start_NS or 25 labels stop_NS followed by 25 labels start_S.

3. All other frames were marked as either speech or non-speech.

An example of two recordings and their annotations is available in Fig 5.10.
Further information about the newly defined dataset is gathered in Table 5.1 (see
the third row).

speech

recordings

non-speech

speechspeech

non-speech

concatenation

non-speech

speech to non-speech non-speech to speech

speechannotation non-speechE S S NS non-speech E NS S S speech

Figure 5.10: An example of the creation and annotation of two newly concatenated
recordings. The first one (left) illustrates the transition from speech to non-speech,
where E S marks the end of speech while S NS means the start of non-speech. The
other one (right) shows an opposite transition, from non-speech to speech, where E
NS expresses the end of non-speech and S S stands for the start of the speech.

Finally, the last change associated with the integration of context-based smooth-
ing lies in the deep neural network model. Instead of the original two output neu-
rons, there are now 6 (speech, non-speech and 4 transitional ones: start_S, stop_S,
start_NS, stop_NS) to match the smoothing scheme and annotation style of data.
The rest of the DNN remained unchanged (see Sect. 5.3 for exact values of hyper-
parameters).

The results of the experiment with the context-based smoothing (see the fourth
row of Table 5.2) show that this approach addresses the issue of an increase in δ2/3,
which has emerged due to the use of the artificial training data (see the third row
of Table 5.2). The value of δ2/3 was reduced from 0.34 seconds to 0.27 seconds. At
the same time, a significant decrease in the FAR, an increase in F-measure, and
only a slight decrease in MR by 0.2% were achieved when compared to the previous
experiment. After achieving these results, the focus for the next work shifted towards
tuning the hyper-parameters of the DNN.

60



5.7 Tuning of Hyper-Parameters
The tuning of hyper-parameters is crucial, although a laborious part of designing a
system based on deep neural networks. It hugely influences the results the target
system (i.e., in this case, the speech activity detector) can achieve. There are many
tunable hyper-parameters (such as the number and width of hidden layers, activation
function, or the number of epochs) that need to be considered during the design.
Note that the proposed approach, as described in Sect 5.6, was utilized for all the
following experiments exploring several hyper-parameters.

5.7.1 Width of Hidden Layers
The first examined hyper-parameter was the width of the hidden layers (see Fig. 5.11
for an illustration). It affects not only the modeling capabilities of the DNN and
consecutively the results but also the computational demands during both training
and real-time use.

hidden layers

. . .

input layer output layer

width

Figure 5.11: An illustration of the width of a hidden layer of DNN.

In total, seven different deep neural networks were trained and experimentally
evaluated. The number of neurons per hidden layer ranged from 64 to 256, with a
step of 32 neurons. The rest of the hyper-parameters remained the same as described
in Sect. 5.3 (and Sect. 5.6, i.e., six output neurons).

The achieved results are summarized in Table 5.3, and two main trends can be
pointed out. First, the MR improved with additional neurons, while FAR and F-
measure worsened. Second, the deterioration in the FAR was more significant than
the improvements in MR, resulting in worse FER with additional neurons.

More specifically, although the smaller DNNs (i.e., 64 and 96 neurons) yielded
better results in FAR and F-measure than the original 128-neuron network, the
increase in MR and δ2/3 was significant enough to result in a worse performance
of following speech transcriber. The improvements in MR of bigger networks (160,
192, 224 and also 256 neurons per layer) were fairly negligible, and their performance
was crippled by worsened results in FER, FAR as well as δ2/3. F-measure was also
worse for the majority of them except for the DNN with 160 neurons per layer. The
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trade-off was not worth it for any of the DNNs. To sum it up, the original network
(128 neurons per layer) was the best compromise to use in the final speech activity
detector deployed as a speech preprocessor, e.g., in speech transcription.

Table 5.3: Results of experimental evaluation focusing on the width of hidden layers.

width of hidden layers FER [%] MR [%] FAR [%] F [%] δ2/3 [s]
64 2.2 0.8 5.8 56.4 0.28
96 2.3 0.7 6.3 56.5 0.28
128 2.4 0.5 7.2 52.7 0.26
160 2.6 0.4 8.1 54.3 0.30
192 2.9 0.3 9.5 49.5 0.32
224 3.0 0.3 10.0 48.6 0.34
256 2.8 0.4 9.1 49.8 0.30

5.7.2 Number of Hidden Layers
The number of hidden layers was the second explored hyper-parameter (an illustra-
tion is available in Fig. 5.12). It has similar effects on the performance of SAD as
the width of the hidden layers. With additional layers, the modeling capabilities
should improve, although the computational and training data demands increase as
well. A deeper neural network may also be too complex for the issued task, and it
may result in overfitting to training data and thus, worse performance. Vanishing
gradient might also become an issue when utilizing very deep networks unless some
prevention is implemented (e.g., batch normalization or identity addition).

hidden layers

. . .

input layer output layer

number of hidden layers

Figure 5.12: An illustration of the number of hidden layers of DNN.

Within this experiment, three distinct deep neural networks with a different
number of hidden layers (4, 5, and 6) were trained. As previously, the rest of the
hyper-parameters remained unchanged.
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The results are presented in Table 5.4. From them, it is evident that the DNN
with 5 hidden layers performed the best. The deeper DNN underperformed in all
metrics except for a slight (negligible) improvement in MR, and it was too complex
for the task with the data used. The more shallow DNN was slightly more interesting
than its deeper counterpart. However, the improved F-measure was overweighted by
deterioration in FAR and δ2/3. Note that even more shallow DNNs were explored,
but they yielded significantly worse results.

Table 5.4: Results of the experiment focused on the number of hidden layers.

number of hidden layers FER [%] MR [%] FAR [%] F [%] δ2/3 [s]
4 2.4 0.5 7.5 55.3 0.27
5 2.4 0.5 7.2 52.7 0.26
6 2.7 0.4 8.3 52.1 0.31

5.7.3 Activation Functions of Neurons
The activation function (or transfer function) of neurons is another tunable param-
eter of DNNs that can influence the performance of SAD. Within this section, three
distinct, commonly utilized activation functions were experimentally tested, specif-
ically, sigmoid, hyperbolic tangent, and ReLU transfer functions (see Fig. 5.13 for
an illustration). A properly selected activation function (and learning rate) can im-
prove not only the performance of SAD but also the speed of convergence during
the training of the DNN.
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tanh(x)
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Figure 5.13: An overview of various activation functions.

The results are gathered in Table 5.5. They clearly show that the sigmoid func-
tion performed underwhelmingly (i.e., it might need more training epochs to con-
verge). On the other hand, the experiments conducted using ReLU and hyperbolic
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tangent activation functions yielded somewhat comparable results. However, the
slightly lower MR and δ2/3 were in favor of the ReLU activation function.

Table 5.5: Results of experimental evaluation focused on the use of different activa-
tion functions.

activation function FER [%] MR [%] FAR [%] F [%] δ2/3 [s]
sigmoid 2.8 0.4 8.9 47.2 0.27

tanh 2.4 0.6 7.2 55.7 0.28
ReLU 2.4 0.5 7.2 52.7 0.26

5.7.4 Context Window Size
Another set of experiments were focused on determining the ideal size of the input
feature window (illustration in Fig. 5.14). Within this evaluation, five different con-
text window sizes ranging from 0.1 seconds (the input feature vector is formed as
a concatenation of 5 preceding frames, the current frame, and 5 following frames
[5-1-5]) to 1.6 seconds (80-1-80) were evaluated. An illustration of the 5-1-5 con-
text window is shown in Fig. 5.15. Additional context should results in a better
performance of SAD until the context becomes irrelevant (or overfitting occurs).
However, improved performance should be accompanied by worse RTF and latency.
Note that the settings of other hyper-parameters remained the same.

hidden layers

. . .

input layer output layer

inpute feature vector

Figure 5.14: An illustration of the context window size of DNN.

Table 5.6 presents all the results. They show that the performance of SAD
improved with additional context until the 0.5-second context, where it plateaued
and started to degrade. The richer contexts resulted in a significantly worse δ2/3 as
well as FAR (for the 0.7-second context) and MR (for the 1.6-second context). These
degradations were most likely caused by overfitting to training data. The shortest
context window missed a lot of speech (higher MR), which is not suitable for further
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Figure 5.15: An example of a 0.1-second context window size (5-1-5).

speech processing. The context of 0.3 seconds performed quite similarly to the 0.5-
second context window, although the accuracy of change points placements (δ2/3)
degraded its performance.

Finally, it should also be noted that the computational time needed for decoding
increased significantly with additional context. This time was 2 and 1.7 times lower
for 0.1-second and 0.5-second contexts, respectively, than for the longest feature
vector (1.6-second context). The context window size also influences online use as
the decoder has to wait half of the context time to start decoding (i.e., it is waiting
for future frames). This wait time is automatically added to latency (e.g., compare
0.05 to 0.8 seconds for the shortest and longest windows, respectively).

Table 5.6: Results showing the influence of the context window size on the perfor-
mance of SAD.

context [s] (frames) FER [%] MR [%] FAR [%] F [%] δ2/3 [s]
0.1 (5-1-5) 2.5 0.6 7.2 52.9 0.22

0.3 (15-1-15) 2.4 0.4 7.5 53.3 0.28
0.5 (25-1-25) 2.4 0.5 7.2 52.7 0.26
0.7 (35-1-35) 2.6 0.4 8.2 52.3 0.34
1.6 (80-1-80) 2.7 0.9 7.3 55.6 0.48

5.7.5 Number of Epochs
The number of training epochs has an impact not only on the achieved results but
also on the amount of time needed to finish the training of the DNN. Too few
epochs and the deep neural network might not converge at all, too many and the
network might be prone to overfitting. The time needed for training of one epoch
is dependent on the architecture of the DNN (and its hyper-parameters) as well as
the amount of training data. This experimental evaluation focused on determining
the ideal number of epochs for the already chosen hyper-parameters and data.

Figure 5.16 presents the results, specifically, the influence of the number of train-
ing epochs on three metrics: FER, MR, and FAR. It is clear that the MR improved
with additional epochs while FAR, and more importantly, FER worsened (i.e., the
improvements in MR were lesser than the deterioration in FAR). For this reason,
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the deep neural network trained within 10 epochs performed as the best compromise
yielding the best values in FER, FAR, and δ2/3 as well. It also saves a reasonable
amount of training time. In this experiment, one epoch was trained on GPU for
approximately 5 minutes (i.e., the final training time was 50 minutes instead of over
4 hours if 50 epochs required).
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Figure 5.16: A graphical illustration of the influence of the number of training epochs
on results of SAD.

5.7.6 Local Normalization
In all the previously concluded experiments, local mean normalization within 1-
second long window was applied. This normalization is useful to smooth out sudden
changes (e.g., speaker change points, hesitation, cough, etc.) in the input data, which
can cause unexpected transitions between speech and non-speech events. However,
local normalization increases computational demands during both training and eval-
uation phases, and it also adds latency as it is computed from 50 previous frames, the
current frame, and 50 following frames (see Fig. 5.17 for an illustration). This exper-
iment explored if the local mean normalization is indeed necessary for the proposed
SAD approach. As usual, the rest of the DNN parameters remained unchanged.

The results are summarized in Table 5.7. They show that local mean normal-
ization is an essential component of the proposed SAD approach. Without it, the
results noticeably worsened in all observed metrics. For this reason, latency and
computational demands could not be improved this way.

Table 5.7: Results of the experiment focusing on the use of local mean normalization.

normalization FER [%] MR [%] FAR [%] F [%] δ2/3 [s]
no 3.4 0.8 10.0 35.6 0.29
yes 2.4 0.5 7.2 52.7 0.26
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Figure 5.17: An example of local mean normalization within a 0.1-second long
window (5-1-5).

5.8 Complex Architectures
Over the years, many different and more complex architectures have been proposed
and utilized for a wide range of tasks. Architectures, such as convolutional neural
networks, recurrent neural networks, or Time Delay Neural Networks (TDNN), all
became a well-known term. Furthermore, new architectures are still being investi-
gated every year. In the following experiments, the focus was on the application of
CNNs and TDNNs to the task of speech activity detection and comparison of their
results with feed-forward DNNs.

5.8.1 Convolutional Neural Networks
Convolutional neural networks known for their modeling capabilities were the first
explored architecture. Within this experiment, three different CNNs (denoted as
small, medium, and large) were trained and compared with a feed-forward DNN.
All three CNNs were formed by two convolutional layers followed by three fully
connected layers with 128 neurons per layer (1,024 for the large CNN). The inputs
were composed of 51 feature maps (i.e., 0.5-second context), each 39×1 in size (i.e.,
the same FBCs as input features). The first convolutional layer consisted of 105
feature maps (16 for the small CNN) 39×1 in size. It was followed by a 3:1 max-
pooling layer. The second layer was comprised of 157 feature maps (32 for the small
CNN) 13×1 in size. The rest of the hyper-parameters were set as previously (see
Sect. 5.3), and the CNNs were also trained using the torch framework.

The results are presented in Table 5.8. They show that all three CNNs achieved
a lower miss rate than the standard feed-forward DNN. However, this improvement
was overweighted by a general deterioration in all other observed metrics. Between
the CNNs, the one denoted as big performed the best yielding F-measure of 55.6%
and δ2/3 of 0.29 seconds. Lastly, in this case, CNNs were unable to extract more
information from the training data to achieve significant improvements in perfor-
mance.
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Table 5.8: Results comparing CNNs and TDNN with a feed-forward DNN.

architecture FER [%] MR [%] FAR [%] F [%] δ2/3 [s]
DNN 2.4 0.5 7.2 52.7 0.26
CNN (small) 2.8 0.3 9.0 48.7 0.32
CNN (medium) 2.6 0.4 8.3 49.7 0.31
CNN (large) 2.6 0.4 8.4 55.6 0.29
TDNN 2.8 0.7 7.9 50.7 0.14

5.8.2 Time Delay Neural Networks
The ability to model long-term dependencies between acoustic events can be cru-
cial for many speech processing applications as it provides the target decoder with
additional context information to base its decision on. Conservatively, recurrent
neural networks are often used for this task. However, training RNNs can be a very
time-consuming process. Another architecture that models long-term dependencies
well and is trained in a similar amount of time as feed-forward DNNs are time delay
neural networks [159].

The utilized TDNN was designed to match the feed-forward DNN. For this rea-
son, it consisted of 5 hidden layers, each with 128 neurons. The input context of
each layer required to compute output at one time step was five previous inputs,
the current input, and five following inputs (from the previous layer). This setting
matched the input context window size of the feed-forward DNN (i.e., 0.5 seconds).
An example (of smaller input context of each layer) is illustrated in Fig. 5.18. As
usual, the rest of the hyper-parameters remained unchanged, and FBCs were utilized
as input features. Note that this network was trained using PyTorch4.

one time step

0

0 1

layer 3

layer 2

layer 1 -1

0

-1 +1

2-2

Figure 5.18: An example of a 1-1-1 input context in a 3-layer TDNN.

The results are shown in Table 5.8 (see the last row). They show an overall
decrease in performance in all metrics except for δ2/3, which improved significantly.
However, this improvement in the accuracy of change point placement was the only
benefit of using the TDNN over the feed-forward DNN. Furthermore, the global
deterioration in other metrics would result in a notable worse performance of, e.g.,
speech transcriber.

4https://pytorch.org/

68



5.9 Online Performance
An online performance of the proposed speech activity detection approach was
closely monitored throughout the whole design and experimental evaluation. This
performance is crucial for the approach to be integrated into the target TVR mon-
itoring system without any issues. The proposed SAD approach averaged RTF of
0.01 and 2-second latency. Note that processor Intel Core i7-3770K @ 3.50GHz was
used for all the computations. The achieved performance is well suited for seamless
use in real-time processing applications, such as the target TVR monitoring system,
without any major delay.

5.10 Evaluation on QUT-NOISE-TIMIT Corpus
So far, all of the experiments were conducted only using the development dataset,
which was designed explicitly within this work. That means that the dataset is
not suitable for a direct comparison of the proposed SAD approach (as described in
Sect. 5.6) with different approaches already presented in the literature because it has
not been used anywhere else or even released to the general public. However, this
comparison is crucial to discover the full potential of the proposed SAD approach.
For this reason, a standardized QUT-NOISE-TIMIT [44] corpus was utilized.

The evaluation on the QUT-NOISE-TIMIT corpus shows the performance of the
proposed approach in comparison with five approaches already presented in [44] and
two techniques reaching the state-of-the-art results [22, 129]. The five approaches
are: standardized VAD system ITU-T G.729 Annex B [119], standardized advanced
front-end ETSI [120, 121], Sohn’s likelihood ratio test [123], Ramirez’s long-term
spectral divergence [124] and GMM-based approach with the use of MFCCs [44].
The latter two techniques are voice activity detection using subband noncircular-
ity [129] and complete-linkage clustering for VAD [22]. Note that all these seven
approaches were described in detail in their respective sections in Chap. 3.

5.10.1 QUT-NOISE-TIMIT Corpus
The main idea behind the creation of the QUT-NOISE-TIMIT [44] corpus was a
lack of standardized datasets suitable for training and testing of SAD approaches in
various target environments and under different SNR conditions. For this purpose,
more than 10 hours of background noises across 10 different unique locations were
gathered by the authors, and a corpus called QUT-NOISE was formed. These
background noises covered five different but common scenarios (specifically cafe,
car, home, reverb, and street). Each scenario was also recorded in two different
source locations:

• cafe – outdoor cafe environment or indoor shopping food-court;

• car – windows down or up;

69



• home – kitchen or living room;

• reverb – indoor pool or partially enclosed carpark;

• street – inner-city or outer-city traffic-light controlled intersections.

The QUT-NOISE background noises were mixed with a clean speech from TIMIT
corpus [153] creating 600 hours of new recordings with varying amount of speech
segments, length (60 or 120 seconds) and SNR level (−10, −5, 0, 5, 10 or 15 dB).
These new recordings then formed the standardized QUT-NOISE-TIMIT corpus.
After that, the final corpus was evenly split into two groups (A and B) to provide
training and testing subsets.

5.10.2 Evaluation Protocol
An evaluation protocol for the QUT-NOISE-TIMIT corpus was also provided in the
given paper [44], and it was successfully followed by other works as well [22, 129].
It states the following points. During the training phase, no information about
the target scenario is given to the system. The only available prior knowledge is
the SNR level of the target environment: low noise (10, 15 dB), medium noise (0,
5 dB), or high noise (−10, −5 dB). For each target environment, group A is used
for training and group B for testing and vice-versa. The distribution of the data
is shown in Table 5.9. Finally, the decoded speech and non-speech segments are
aligned with QUT-NOISE-TIMIT ground truth labels, and miss rate, false alarm
rate, and half-total error rate are computed. See Fig. 5.19 for an example of the
evaluation protocol in the low-noise target environment.

Table 5.9: An overview of the distribution of recordings in QUT-NOISE-TIMIT
corpus.

target environment group recordings hours change points speech
low noise

A & B
8,000 200 189,396 46.1%

medium noise 8,000 200 189,452 45.8%
high noise 8,000 200 190,064 46.1%

all A & B 24,000 600 568,912 46.0%

For the following experiments, the proposed SAD approach followed this evalua-
tion protocol, and it was trained as described in Sect. 5.6 except for not utilizing the
artificial data (i.e., only the data from the QUT-NOISE-TIMIT corpus was used).
The employed DNN and context-based WFST remained unchanged. Additionally,
for each target SNR, the performance of the proposed SAD approach in different
scenarios was explored as well.
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data

target environment: low noise (10, 15 dB)

cafe

cafe home street car reverb cafe home street car reverb

street car reverbhome

group A group B

train test

groups

evaluation 1

testevaluation 2 train

final evaluation

Figure 5.19: An example of the evaluation protocol for the QUT-NOISE-TIMIT
corpus (low-noise target environment).

5.10.3 Low-Noise Conditions
For the experiment under low-noise conditions, recordings with SNR levels of 10 and
15 dB were utilized. The comparison of the proposed approach with other systems
can be seen in the left part of Fig. 5.20. As the results show, the proposed SAD
approach outperformed all other systems by a fair margin. The absolute reduction
in the HTER was more than 2% over the formerly best complete-linkage clustering.
The exact achieved value of the HTER was 2.6%. For the rest of the metrics, see the
first row of Table 5.10. Note that the accuracy of the placement of change points
was also impressive (F-value of 71.3% and δ2/3 of 0.05 seconds). In conclusion, the
proposed SAD approach yielded state-of-the-art results under low-noise conditions.

Table 5.10: Summarized results of the proposed SAD approach on the QUT-NOISE-
TIMIT corpus in all target environments. Overall results and results in each of the
scenarios across all target environments are shown as well.

target e. scenario HTER [%] FER [%] MR [%] FAR [%] F [%] δ2/3 [s]
low

all
2.6 2.7 2.0 3.2 71.3 0.05

medium 5.8 5.8 5.8 5.8 61.4 0.11
high 17.0 16.4 24.0 10.0 41.0 0.22

all

cafe 12.8 12.7 14.2 11.5 63.6 0.20
car 3.0 3.0 2.9 3.1 80.1 0.08

home 8.1 8.4 4.0 12.2 68.4 0.12
reverb 13.5 12.6 24.7 2.3 65.6 0.17
street 4.9 4.7 7.1 2.7 77.8 0.09

all all 8.5 8.3 10.6 6.3 58.0 0.12
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The right side of Fig. 5.20 shows the performance of the proposed approach in
all scenarios. The most straightforward scenarios under low-noise conditions were
car and street with only a small number of errors. On the other hand, the most
problematic scenarios were home (highest HTER) and reverb (a lot of missed speech
forcing additional errors in the potential follow-up transcription).
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Figure 5.20: An evaluation of QUT-NOISE-TIMIT corpus in the low-noise target
environment. In left: a comparison of results of the proposed approach with various
SAD approaches. In right: a detailed performance of the proposed approach in all
scenarios. The contribution of MR and FAR to HTER bars is displayed by darker
and lighter shades, respectively.

5.10.4 Medium-Noise Conditions
Recordings with SNR levels of 0 and 5 dB were employed for the experiment under
medium-noise conditions. The achieved results are shown in the left part of Fig. 5.21.
Similarly to the experiment conducted under low-noise conditions, the proposed
SAD approach yielded the best results, outperformed the other systems and thus
reached the state-of-the-art results. Again, the absolute reduction in the HTER was
over 2% (the exact achieved value was 5.8%, for other metrics see the second row of
Table 5.10) over the second-best complete-linkage clustering approach. Lastly, the
worsened conditions (medium noise) caused an increase of over 3% in HTER over
the results obtained under low-noise conditions for the proposed SAD approach.

The right part of Fig. 5.21 compares the performance of the proposed approach
in various scenarios. The car and street scenarios remained the least problematic
(3% in HTER), while cafe and reverb were the most troubling scenarios. Also, note
that the reverb scenario resulted in the most omitted speech causing many additional
errors in potential speech processing applications.

72



0

5

10

15

20

25

30

35

40

H
TE

R
 [

%
]

Medium Noise Conditions

Figure 5.21: An evaluation of QUT-NOISE-TIMIT corpus in the medium-noise
target environment. In left: a comparison of results of the proposed approach with
various SAD approaches. In right: a detailed performance of the proposed approach
in all scenarios. The contribution of MR and FAR to HTER bars is displayed by
darker and lighter shades, respectively.

5.10.5 High-Noise Conditions
The most challenging target environment was based on recordings with SNR levels
of −10 and −5 dB. The left part of Fig. 5.22 shows the comparison of the results of
the proposed approach with various SAD approaches. Under high-noise conditions,
the complete linkage clustering approach surpassed all other systems, including the
proposed SAD approach (by approximately 2% in the HTER). However, the pro-
posed approach still notably outperformed all other systems (by at least 10% in
HTER). Specifically, the yielded HTER was 17% (other metrics are summarized in
the third row of Table 5.10). Sadly, this was an increase of over 11% over the results
achieved under medium-noise conditions. Furthermore, most of the errors produced
by the decoder resulted in omitted speech (i.e., higher miss rate) culminating in even
more errors in further speech processing. However, the proposed SAD approach was
not designed and fine-tuned for such high-noise conditions, and better results could
be potentially achieved with a modified DNN and WFST configuration.

The performance of the proposed approach in all scenarios is depicted in the
right part of Fig. 5.22. The results show that the car scenario was the easiest one to
correctly detect speech (HTER slightly over 5.5%) while cafe and reverb scenarios
remained the toughest ones (HTER close to 28%). The reverb scenario was even
more problematic as the majority of errors resulted in omitted speech.

Finally, Table 5.10 also presents the results of the proposed SAD approach in
all scenarios of QUT-NOISE-TIMIT corpus across all target environments as well
as overall results. The results confirm that scenarios reverb and cafe were the most
complicated while scenarios car and street were the most straightforward ones.
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Figure 5.22: An evaluation of QUT-NOISE-TIMIT corpus in the high-noise target
environment. In left: a comparison of results of the proposed approach with various
SAD approaches. In right: a detailed performance of the proposed approach in all
scenarios. The contribution of MR and FAR to HTER bars is displayed by darker
and lighter shades, respectively.

5.10.6 Online Performance
In addition to the standard HTER evaluation, the real-time performance of the
proposed SAD approach on QUT-NOISE-TIMIT corpus was also monitored. The
approach averaged a real-time factor of 0.02, with latency being 1.8 seconds. The
detailed results in all target environments, as well as averages in all scenarios, are
presented in Table 5.11. The first three rows prove that the decoder is capable of
making the final decisions much faster if the conditions are mild (i.e., 0.4-second
difference in latency between the low- and high-noise conditions). In other words,
latency is worse if the overall performance of the proposed approach is worse as well
(e.g., both HTER and latency were the weakest under high-noise conditions as in
reverb and cafe scenarios).

5.11 Evaluation in Real Speech Transcription System
Given the findings and results from all previous experiments, the final proposed
speech activity detection approach (i.e., with the context-based smoothing model as
introduced in Sect. 5.6) was integrated into the TVR monitoring system developed
at the author’s lab in cooperation with the NanoTrix company and thus evaluated
in a real speech transcription system.
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Table 5.11: Results summarizing the real-time performance of the proposed ap-
proach on the QUT-NOISE-TIMIT corpus.

target environment scenario RTF latency [s]
low noise

all 0.02
1.6

medium noise 1.8
high noise 2.0

all

cafe

0.02

1.9
car 1.7

home 1.8
reverb 2.0
street 1.7

all all 0.02 1.8

5.11.1 Experimental Setup
Four commonly utilized metrics were applied to evaluate the performance of speech
transcription. The first three, word error rate, Word Accuracy (WAcc) and Percent
Correct (PC), focus on the quality of transcriptions and are defined as follows:

WER[%] =
I + S +D

N
∗ 100 , (5.9)

WAcc[%] = 100−WER , (5.10)

PC[%] = 100− S +D

N
∗ 100 , (5.11)

where I is the number of insertions (words the recognizer added to its output), D
stands for deletions (not transcribed words), S marks substitutions (words that were
mistaken), and N is the total number of words in the reference text (see Fig. 5.23 for
an illustration). Note that, word accuracy and word error rate are complementary
metrics. The only difference between percent correct and the other two metrics is
that inserted words are not considered as errors in PC. The final metric was the real-
time factor (see Sect. 5.1.3) utilized to evaluate the real-time performance of speech
transcription. In summary, the integration of the proposed SAD approach into the
target speech transcription system should ideally lead to significant improvements
in RTF while keeping the quality metrics at least around the same level.

For evaluation, two datasets of Czech broadcasts have been utilized (see Ta-
ble 5.12 for an overview). The first dataset represents 4 hours (22,204 words)
recorded from a Czech live news TV channel. Approximately 60% of its content
consists of speech segments. The length of the other dataset is 8 hours, it con-
tains 7,212 words, and speech frames form only 10% of its content. This dataset
represents a broadcast of a Czech local radio station.
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reference

transcribed

evaluation

she had your dark suit in wash water all yeargreasy

he had your dark suit in water all yeargreasya

S H H H H H D H H HHI

Figure 5.23: An example of alignment between reference and transcription in speech
transcription evaluation.

Table 5.12: An overview of utilized evaluation datasets for speech transcription.

dataset hours speech words
live news TV channel 4 60% 22,204
local radio station 8 10% 7,212

The transcription system developed at the author’s lab in cooperation with the
NanoTrix company employed an acoustic model based on a Hidden Markov Model
– Deep Neural Network (HMM-DNN) hybrid architecture [110], where the baseline
Gaussian mixture model was trained as context-dependent, speaker-independent
and contained 3,886 physical states. The data for training of this model contained
270 hours of clean speech recordings of Czech. The hyper-parameters used for the
DNN training were set as follows:

• 5 hidden layers;

• decreasing number of neurons per layer (1,024-1,024-768-768-512);

• ReLU activation function;

• mini-batches size of 1,024;

• 0.08 learning rate;

• 35 epochs.

The input features were:

• 39-dimensional log filter bank coefficients;

• computed using 25 ms frames of the signal with frame shifts of 10 ms;

• concatenation of 5 previous frames, the current frame, and 5 following frames;

• local normalized within a one-second window.
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Note that fine-tuning of these hyper-parameters was discussed and published in [160]
and later on, further extended.

The linguistic part of the system was composed of a lexicon and a language
model. The lexicon contained 550,000 entries with multiple pronunciation variants,
and the language model was based on N-grams. For practical reasons (mainly with
respect to the immense vocabulary size), the system used bigrams. However, 20%
of all word-pairs actually included sequences containing three or more words, as the
lexicon contains 4,000 multi-word collocations. The unseen bigrams were backed-off
by Kneser-Ney smoothing [161].

5.11.2 Experimental Evaluation
Within the performed experiments, both evaluation datasets were transcribed a)
with and b) without the use of the proposed speech activity detection approach.
The obtained results are presented in Table 5.13. They reveal that the utilization of
the proposed approach was advantageous on both evaluation datasets. The yielded
PC and WER (WAcc) show that SAD limited the insertions coming from the non-
speech parts and omitted hardly any speech parts. The proposed SAD approach
allowed the transcription system to operate with improved accuracy and, at the
same time, RTF was almost two times, and more than ten times lower for the first
and second evaluation datasets, respectively. Of course, the reason for this difference
is that the data in the second dataset contains fewer speech segments. All presented
RTF values were measured using processor Intel Core i7-3770K @ 3.50GHz. Just a
reminder, the RTF of the proposed SAD approach was 0.01 and could be considered
negligible. The latency was around 2 seconds (details in Sect. 5.9). In conclusion,
the transcription system complemented with the proposed speech activity detection
approach can be utilized for online speech transcription without any major delay.

Table 5.13: An evaluation of the proposed SAD approach in a real speech transcrip-
tion system.

dataset SAD WER [%] WAcc [%] PC [%] RTF

live news TV channel yes 12.4 87.6 89.7 0.42
no 12.7 87.3 89.7 0.77

local radio station yes 14.0 86.0 88.5 0.08
no 17.9 82.1 88.4 0.83
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6 Proposed Speaker Change Point Detec-
tion Approach

Inspired by the proposed speech activity detection approach, the final speaker change
point detection approach was proposed in several successive experiments heavily
detailed within this chapter. This development was published in [4], and portions of
the paper were reused in this thesis. Ultimately, this chapter describes the evaluation
metrics, training, development and evaluation data, experimental evaluation of all
steps taken, evaluation on all languages of the COST278 database, and finally, it
sets the final SCP detection approach.

6.1 Evaluation Metrics
The evaluation metrics for speaker change point detection were close to identical
to the ones used for SAD due to the similarity of both tasks. The overall accu-
racy metrics are the only exception because framewise evaluation is not particularly
valuable for change point detection (i.e., the main concern is not the content of the
detected segments but the actual placement of transitions between them). There-
fore, the metrics for SCP detection can be divided into only two subsets: change
point quality metrics and performance metrics. In total, 6 already presented metrics
were observed.

For the former subset, four metrics, specifically precision, recall, F-measure, and
δ2/3, were employed. Precision and recall were additionally reported to provide more
information about the errors the decoder makes (i.e., falsely detected change points
result in worsened precision while undetected change points yield worse recall). More
information and formalism of these metrics can be found in Sect. 5.1.2.

The latter group consists of two previously introduced metrics: latency and real-
time factor. The same processor, Intel Core i7-3770K @ 3.50GHz, was used to do the
computations. The detailed description of these metrics is available in Sect. 5.1.3.

6.2 Data Used
For training, 20,000 recordings, each with an average length of 5 seconds, have been
prepared with the help of automatic Czech TV/radio broadcast data transcriptions.
Each of these recordings contains exactly one speaker change point (i.e., the set
consists of 20,000 speaker transitions). These transitions can be divided into four
distinct groups (female to female, female to male, male to female, and male to male).
Each of them is represented by 5,000 change points. Note that each recording was
extracted from a whole utterance, and there are no artificial cuts or changes in
channels.
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The annotations of this data (for SCP detection) were generated in a fully au-
tomated way. The frame corresponding to the actual change point, as well as the
safety collar frames around it, were labeled as change points. This safety collar was
set to 1 second (100 frames), i.e., 50 frames before and 50 frames after the actual
change point were considered as speaker transition frames. That is due to the fact
that a) determining the precise change point is quite often an ambiguous task (si-
lence, crosstalk, etc.), and b) it is necessary to provide DNN training with enough
information about the speaker transitions. The remaining frames were labeled as
no change point. An example of annotation of one recording is shown in Fig. 6.1.

female speaker

change point

no change

recording

annotation

male speaker

no changechange

safety collar

change

Figure 6.1: An example of an annotation of training data for SCP detection.

For development purposes, the Czech train subset of standardized COST278 [95,
96] pan-European broadcast news database has been utilized. Accurate annotations
are provided by the database. For evaluation, the Czech test subset of COST278 has
been employed. It consists of four recordings of different Czech broadcasts (ČT1,
Nova and Prima) in a total length of 90 minutes. It contains not only clean speech
segments but also segments with background noise and jingles. In total, 379 speaker
change points are labeled within the data. Finally, an overview of the utilized data
is available in Table 6.1.

Table 6.1: An overview of utilized data for SCP detection.

dataset recordings hours change points
training 20,000 30 20,000
artificial cuts 60 10 14,340
speaker-homogeneous 7,000 10 0
enhanced training 27,060 50 34,340
development 9 3 827
evaluation 4 1.5 379

6.3 Reference Results
To obtain reference results with an offline system, publicly available LIUM Speaker
Diarization toolkit [101, 102] was used. The SCP detection portion of the system is
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covered by BIC segmentation and BIC clustering, followed by segmentation based
on Viterbi decoding and boundary adjustments (more information can be found in
Sect. 4.1). The system is also supplemented with a pre-trained model fine-tuned
for TV and radio broadcasts (i.e., the same target task as this thesis). During the
evaluation, the LIUM toolkit was operated with an RTF of 0.016, achieving reference
results in F-measure of 84.6% and δ2/3 of 0.13 seconds (see the first row in Table 6.2
for more detailed results).

Table 6.2: Summarized results of the proposed SCP detection approach described
in Chap. 6.

approach P [%] R [%] F [%] δ2/3[s] RTF L [s]

LIUM toolkit 89.9 80.0 84.6 0.13 0.016 -
DNN + WFST decoder 59.4 63.6 61.4 0.24 0.022 2.4
+ enhanced data 67.0 70.7 68.8 0.21 0.022 2.3
+ ∆ MFCC 72.8 74.7 73.7 0.19 0.024 1.9
+ CNN 79.3 77.8 78.6 0.17 0.054 1.9
+ 2.5-second context window 80.3 81.8 81.1 0.17 0.054 2.3
+ 1-second long transition model 82.7 81.8 82.2 0.17 0.065 2.9
+ tuned for offline use 86.7 84.4 85.6 0.18 0.079 4.8

6.4 Initial Approach Based on DNN and WFST
The initial SCP detection approach was inspired by the proposed SAD approach
designated for online use (as described in detail in Chap. 5). This SCP detection
approach was based on DNN trained as a binary classifier (change point or no change
point) and WFST designed as an online decoder detecting speaker transitions given
the output from the DNN.

The binary DNN was trained using the following hyper-parameters:

• 2 hidden layers;

• 64 neurons per hidden layer;

• ReLU activation function;

• mini-batches size of 1,024;

• 0.08 learning rate;

• 15 epochs.

The utilized input features were:

• 39-dimensional MFCCs;
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• computed using 25 ms frames of the signal with frame shifts of 10 ms;

• concatenation of 100 previous frames, the current frame, and 100 following
frames (i.e., a 2-second context window);

• not local normalized.

An illustration of the employed feed-forward deep neural network is depicted in
Fig. 6.2. Note that all the DNNs (i.e., for all SCP detection experiments) were
trained on GPU using the PyTorch framework.

hidden layers (2 × 64)

input layer (1 × 7839) output layer (1 × 2)

Figure 6.2: A feed-forward DNN used in the SCP detection.

As stated above, WFSTs were utilized (using the OpenFst library) as an online
decoder. The decoding scheme consists of two transducers. The first one models
the input signal (see Fig. 6.3), while the second one is the transduction model and
represents the change point detection (see Fig. 6.4). It consists of two states, 0
and 1. The transitions between states 0/1 emit labels the start/end change points.
The resulting change point is placed in the middle between these two labels. The
transitions are also penalized by factors P1 and P2, whose values were fine-tuned on
the development set. The decoding process was done in the same way as for SAD,
as described in detail in Sect. 5.4.

The results are presented in the second row of Table 6.2. They show that the
decoder was capable of operating in real time with an RTF value of 0.022. This
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Figure 6.3: A transducer modeling the input signal for SCP detection.

0

no_change

1change/P1
no_change/P2

change

Figure 6.4: A transducer representing the transduction model for SCP detection.

value, combined with the latency of 2.4 seconds, allowed it to be seamlessly used
in an online environment. Although the achieved results provided a decent starting
point, the precision was particularly weak and overshadowed by LIUM toolkit (i.e.,
59.4% vs. 89.9%). Therefore, the next goal was to improve the quality of the SCP
detection.

6.5 Enhanced Training Dataset
After thoroughly evaluating the results obtained so far, two types of errors were the
most prominent. The first one was represented by change points omitted due to the
quick artificial transitions between speakers (e.g., director cuts in broadcast news)
while the second type resulted in change points falsely detected because of a silence
longer than 0.5 seconds in speaker-homogeneous segments (caused by deep breaths or
hesitation). As a solution to the first issue, 10 hours of recordings were prepared by
artificially joining utterances of two different speakers. In total, 14,340 change points
with a uniform distribution between all transition types (female-female, female-male,
male-female, and male-male) were thus added to the DNN training dataset. An
example of such recording with annotation is shown in Fig. 6.5. To reduce the
latter type of errors, another 10 hours of additional training data were prepared.
This data focuses on speaker-homogeneous segments with frequent occurrences of
long silences (see Fig. 6.6 for an example of recording and its annotation). More
information about the enhanced training dataset is presented in Table 6.1.

no change

speaker 1

artificial cuts (change points)

no change

recording

annotation

safety collars

speaker 2

change no change

speaker 3

change

Figure 6.5: An example of additional data, rich in artificial cuts (with annotation).
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speaker 1

deep breaths (DB) or hesitations (H)

no change point

recording

annotation

speaker-homogeneous utterance

speaker 1 speaker 1DB H

Figure 6.6: An example of additional data: speaker-homogeneous recording with
deep breaths and hesitations. Annotation is shown in the second row.

The results gathered in the third row of Table 6.2 show that the use of enhanced
training dataset led to significant improvement in all of the evaluation metrics ob-
served. For example, the F-measure value got boosted up from 61.4% to 68.8%,
while δ2/3 was enhanced to 0.21 seconds. Additionally, the average latency was
slightly reduced, namely, from 2.4 seconds to 2.3 seconds.

6.6 Acoustic Features
In the next experiments, several feature extraction techniques were explored. In
addition to the 39-dimensional MFCCs, 13-dimensional MFCCs with ∆ and ∆∆
coefficients (i.e., a 39-dimensional feature vector as well), and 39-dimensional bot-
tleneck features were also utilized. As suggested, e.g., in [162–164], BTN features
were extracted from DNN trained to discriminate physical states (senones) of a
Czech tied-state triphone acoustic model. This deep extractor was trained on 270
hours of clean speech recordings of the Czech language. The hyper-parameters were
set as follows:

• 5 hidden layers (the third one being the bottleneck layer);

• 1024 neurons per hidden layer (39 for the bottleneck layer);

• ReLU activation function (sigmoid for the bottleneck layer);

• mini-batches size of 1,024;

• 0.08 learning rate;

• 50 epochs.

The input features were:

• 39-dimensional log filter bank coefficients;

• computed using 25 ms frames of the signal with frame shifts of 10 ms;

• concatenation of 5 previous frames, the current frame, and 5 following frames;

• local normalized within a one-second window.
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hidden layers (2 × 1024)

input layer (1 × 429) output layer (1 × 3875)

bottleneck layer (1 × 39)

bottleneck features

hidden layers (2 × 1024)

Figure 6.7: An overview of the deep bottleneck feature extractor.

An illustration of the BTN feature extractor can be seen in Fig. 6.7. Furthermore,
more detailed information about the extractor and its performance in spoken lan-
guage identification can be found in [165].

The results obtained are shown in Table 6.3. They show that the BTN features
yielded significantly worse results in all of the observed metrics (e.g., the F-measure
value dropped from 68.8% to 56.7%) and that they are more suitable for the tasks
of language and speaker identification. On the contrary, the MFCCs with the ∆
and ∆∆ coefficients outperformed the originally chosen MFCC configuration. Both
the quality and real-time performance of SCP detection improved (e.g., the latency
was reduced from 2.3 seconds to 1.9 seconds because the decoder was able to make
the final decisions more rapidly). A likely reason is additional information provided
by the ∆ and ∆∆ coefficients.

Table 6.3: Results of the experiment exploring various feature extraction techniques.

features P R F [%] δ2/3[s] RTF L [s]

MFCCs 67.0 70.7 68.8 0.21 0.022 2.3
MFCCs + ∆ + ∆∆ 72.8 74.7 73.7 0.19 0.024 1.9
BTNs 53.7 60.1 56.7 0.26 0.070 2.9

84



6.7 Convolutional Neural Networks
In the next step, more complex neural network architecture – CNN – was investi-
gated. This architecture was employed for its feature representation and modeling
capabilities. The utilized CNN was composed of two convolutional and two fully
connected layers. The inputs consisted of 201 feature maps (i.e., 2-second context
windows as before) in size of 39×1. The first convolutional layer was comprised of
105 feature maps at a size of 39×1, followed by a 3:1 max-pooling layer; the second
one had 157 feature maps at a size of 13×1. The rest of the hyper-parameters was
set as stated in Sect. 6.4.

The results are summarized in the fifth row of Table 6.2. The utilization of the
CNNs yielded an overall improvement in all quality metrics (e.g., the F-measure
value increased from 73.7% to 78.6%). The latency remained constant while the de-
terioration in RTF could be considered negligible (i.e., it is still significantly smaller
than 1). For these reasons, CNNs were thus utilized for all follow-up experiments.

6.8 Context Window Size
The next experiments focused on the size of the input feature window. This addi-
tional context should result in a higher quality of the SCP detection at the cost of
worse latency. Initially, a 2-second window had been chosen (with 100 preceding
frames, a current frame, and 100 following frames). In this experimental evaluation,
the sizes ranging from 1 second up to 4 seconds were explored.

The results are in Table 6.4. As expected, the performance (i.e., F-measure and
δ2/3) was further improved with the additional context (e.g., up to F-measure of
81.7%). On the contrary, the latency of the system was worsened with more context
information by up to 2 seconds. The RTF remained relatively constant (with just a
slight deterioration with more information) throughout the evaluation.

Table 6.4: Results exploring the influence of the context window size on SCP detec-
tion.

context [s] (frames) P R F [%] δ2/3[s] RTF L [s]

1 (50-1-50) 71.3 69.4 70.3 0.21 0.053 1.4
1.5 (75-1-75) 71.0 72.8 71.9 0.14 0.053 1.7
2 (100-1-100) 79.3 77.8 78.6 0.17 0.054 1.9

2.5 (125-1-125) 80.3 81.8 81.1 0.17 0.054 2.3
3 (150-1-150) 80.0 83.1 81.5 0.17 0.054 2.6

3.5 (175-1-175) 80.5 82.6 81.5 0.16 0.055 3.1
4 (200-1-200) 80.4 83.1 81.7 0.16 0.055 3.5
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6.9 WFST with a Forced Length of Transition
In the follow-up series of experiments, the aim was to further improve the results
achieved so far by introducing WFST with a forced transition model. This model was
designed to reflect the annotation style of the training data. As stated in Sect. 6.2, a
1-second (100 frames) window around the actual change point was labeled as speaker
transition frames. However, during the decoding, the real duration of the transition
between two speakers substantially varied.

Therefore, in this experiment, the duration of the transition was forced to be
exactly 1 second at first. For this purpose, the transduction model was modified
(see in Fig. 6.8) to correspond to the duration of the forced transition: it consists
of two main states (0 and 1) and 98 transition states (shown as …).

0

no_change

...change/P1

1

...

change

...change

... change

change

change/P2

Figure 6.8: A transducer representing the transduction model with the forced tran-
sition for SCP detection.

This scheme works as follows: when a speaker change occurs, the decoder moves
frame by frame from state 0 through half of the transition states to state 1. Here,
a new change point label is provided, and the decoder moves backward to state 0,
where it waits until the next change occurs. Note that, during this process, the
penalty factors P1 and P2 (tuned on the development set) are in place as well.

The results are summarized in Table 6.5. First, a CNN with a context size of 2.5
seconds was used. Next, not only the forced length of the transition at 1 second but
also several other values in a range from 0.5 up to 2 seconds were evaluated. The
results show two contradictory trends: the quality of detection increased with the
additional duration, while the RTF and latency values were worsened. Therefore,
the optimal value of the duration strongly depends on the target application.

Table 6.5: Results of the experiment studying varied durations of forced transitions
in the WFST.

forced duration [s] P R F [%] δ2/3[s] RTF L [s]

0.5 77.2 75.2 76.2 0.13 0.057 2.2
1 82.7 81.8 82.2 0.17 0.065 2.9

1.5 83.5 81.5 82.5 0.16 0.072 3.7
2 84.2 81.5 82.8 0.17 0.079 4.5
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6.9.1 Online Application
For online application, the primary limiting factor is latency. In this environment,
with the forced length of 1 second and total latency below 3 seconds, the proposed
approach still allows for performing speaker change point detection with an ac-
curacy level approaching the offline reference system (see the penultimate row of
Table 6.2). As such, the proposed SCP approach is ready to be integrated into the
TVR monitoring system.

6.9.2 Offline Application
For offline application, where the latency and real-time processing are not an issue,
it is possible to tune the proposed SCP detection approach to improve the achieved
results even further. For instance, a system based on CNN, the context window size
of 3 seconds, and WFST with a forced length of 2 seconds yielded an F-measure
value of 85.6% and a δ2/3 value of 0.18 seconds (with the latency at 4.8 seconds).
These results are available for comparison in the last row of Table 6.2.

6.10 Local Normalization
So far, all of the presented experiments were conducted without the use of local mean
normalization. However, this normalization technique was undoubtedly beneficial to
the performance of the proposed speech activity detection approach (see Sect. 5.7.6
for more details) at the cost of slightly worsened latency (0.5 seconds). Naturally,
in the following experiment, the effects of the local mean normalization on SCP
detection were assessed.

The results of this experimental evaluation are summarized in Table 6.6. They
show that local mean normalization is not a viable technique for SCP detection.
Except for δ2/3, all of the other observed metrics notably worsened (e.g., F-measure
dropped from 82.8% to 59.4% and latency increased by 0.6 seconds). The likely
reason for this is that the transitions between two speakers (i.e., similar events) get
blurred, making them considerably harder for the decoder to detect. This works
much better for speech activity detection where the differences between speech and
non-speech events are more significant (i.e., they do not get blurred enough) and at
the same time, the transitions inside the speech (e.g., two speakers) or non-speech
events (e.g., two songs) get blurred enough to not result in false change points.

Table 6.6: Results of the experiment focusing on the use of local mean normalization
for SCP detection.

forced duration [s] P R F [%] δ2/3[s] RTF L [s]

no 82.7 81.8 82.2 0.17 0.065 2.9
yes 58.2 60.7 59.4 0.12 0.066 3.5
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6.11 Evaluation on Whole COST278 Database
Until now, all of the conducted experiments were evaluated only on the Czech test
subset of the COST278 database. Within this experiment, both the proposed ap-
proach and the reference system were employed for SCP detection on the whole
test dataset, and their performance on a varied set of languages available in the
COST278 database was monitored.

Furthermore, all the previous experiments were trained on data specifically se-
lected and prepared in this work for the task of SCP detection. For a final exper-
iment, the whole train subset of the COST278 database (previously used as devel-
opment data) was utilized as intended (i.e., training data) to explore the influence
of diverse training data on the final performance of the proposed approach.

6.11.1 COST278 Database
The COST278 pan-European Broadcast News Database [95, 96] was created as
a joint work of several European institutions to support research focusing on de-
sign and evaluation of speaker segmentation and clustering algorithms for broadcast
news. As such, it provides approximately 40 hours of recordings (of broadcast news)
divided into 11 distinct datasets according to the target language. The available lan-
guages are Basque, Belgian Dutch, Czech, Spanish, Galician, Greek, Croatian, Hun-
garian, Portuguese, Slovenian, and Slovak. Additionally, each dataset was split into
two disjoint subsets, one for training and one for testing. Finally, for each record-
ing, an annotation providing information necessary for tasks such as speech activity
detection, speaker change point detection, gender detection, or speaker verification
and identification was prepared. Speech transcriptions were also made available.

6.11.2 Experimental Setup
As already stated before, for the following evaluation, the proposed SCP detection
approach was trained only on the training dataset of the COST278 database. Two
configurations of the proposed approach were explored – one designed for online use
(as presented in Sect. 6.9.1) and one designated for offline applications (described in
Sect. 6.9.2). In summary, both configurations utilized MFCCs with the ∆ and ∆∆
coefficients, the CNN instead of the feed-forward DNN, an extended context size
(2.5/3 seconds for online/offline use), and the WFST-based decoder with a forced
transition (1/2 seconds for online/offline use). The evaluation was done on all 11
languages of the COST278 test subset, and the results were compared with the
LIUM toolkit. The goal was to see if the proposed single-pass approach (without
clustering) can compete with an offline reference tool. Plus, the final experiment
explored different training data – the COST278 training subset and a mixture of
COST278 data and the data specifically selected and prepared for this work (see
Sect. 6.2 and 6.5). The online configuration was employed for this experiment.
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6.11.3 Online Comparison
The first explored configuration was the one designed for online use. The results
of the comparison with the reference system are presented in the first two rows of
Table 6.7. They show that both approaches performed on a relatively similar level.
LIUM toolkit yielded an F-measure value of 73.5% and a δ2/3 value of 0.21 seconds,
while the proposed approach scored an F-measure value of 73.1% and a δ2/3 value
of 0.15 seconds, with the latency at 2.9 seconds.

Table 6.7: Summarized results comparing the proposed SCP detection approach
with the reference system on the whole COST278 database.

approach P [%] R [%] F [%] δ2/3[s] RTF L [s]

LIUM toolkit 66.1 82.7 73.5 0.21 0.016 -
proposed approach – online 73.2 72.9 73.1 0.15 0.064 2.9
proposed approach – offline 75.8 75.4 75.6 0.19 0.079 4.7

Figure 6.9 depicts the detailed results for all COST278 languages. The easiest
ones were four closely related Slavic languages – Czech, Slovenian, Croatian and
Slovak. Basque and Spanish for the LIUM toolkit and Belgian Dutch and Basque
for the proposed SCP detection approach were the most difficult instances.
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Figure 6.9: A comparison of the proposed SCP detection approach (tuned for online
use) with the reference system on the whole COST278 database. Lighter columns
mark the reference system while the darker ones indicate the proposed approach.
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6.11.4 Offline Comparison
The second explored configuration was the one designated for offline use. The third
row of Table 6.7 presents the achieved results in detail. Specifically, these slightly
improved results show that the proposed offline approach yielded an F-measure value
of 75.6% and a δ2/3 value of 0.19 seconds with the latency at 4.7 seconds.

The detailed comparison of the evaluation on all COST278 languages with LIUM
toolkit is shown in Fig. 6.10. For the proposed offline approach, the easiest languages
were Slovenian, Czech, and Slovak, three closely related Slavic languages. Belgian
Dutch and Basque remained to be the most challenging datasets.
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Figure 6.10: A comparison of the proposed SCP detection approach (tuned for offline
use) with the reference system on the whole COST278 database. Lighter columns
mark the reference system while the darker ones indicate the proposed approach.

6.11.5 Training Data
For the final experiment, the influence of different training data on the performance
of the online configuration of the proposed SCP detection approach was explored.
This experimental evaluation was done on the whole COST278 test subset. Within
the evaluation, the proposed approach was trained using three different training
datasets: a) a dataset consisting of the data specifically selected and prepared for
this work (enhanced training data); b) a COST278 training dataset; and c) a dataset
combining both previous datasets.

The global results are summarized in Table 6.8. They show that the best over-
all performance had the systems utilizing the training dataset of the COST278
database. This was most likely caused by two major things. First, these systems
were trained on more diverse data making them more robust to different languages.
Second, the train and test subsets of the COST278 database share many similarities,
including, e.g., the same languages or speakers.
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Table 6.8: Summarized results studying the influence of different training data on
the performance of the proposed SCP detection approach tuned for online use.

training data P [%] R [%] F [%] δ2/3[s] RTF L [s]

enhanced data 58.9 59.2 59.0 0.18 0.064 2.9
COST278 train set 73.2 72.9 73.1 0.15 0.064 2.9
combined data 70.6 70.5 70.6 0.14 0.064 2.9

Figure 6.11 shows the detailed results for all languages of the COST278 database.
Expectedly, the system trained only on data specifically selected and prepared for
this work outperformed other systems on the Czech test subset. This is by design due
to the selection of Czech broadcast training data to fit the target application of the
TVR monitoring system (i.e., most of the transcriptions are in Czech). Next, both
the systems trained on the training subset of the COST278 database performed on
a somewhat similar level. The one using combined data improved on Czech (under-
standably) and Slovak (closely related language to Czech) languages but worsened
on more distant ones. Finally, and most importantly, the choice of training data
forms an integral part in the process of designing the proposed approach, and it is
strongly dependant on the target application.
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Figure 6.11: A comparison of the proposed SCP detection approach (tuned for
online use) trained on the enhanced data, training dataset of COST278 database,
and combined data. The lightest columns mark the system trained on the enhanced
data; the middle columns indicate the system trained on the training subset of the
COST278 database, and finally, the darkest columns denote the system trained on
both datasets.
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7 Conclusions

Within the scope of this thesis, the tasks of speech activity detection and speaker
change point detection with the focus on modern technologies and their application
in an online monitoring system as speech preprocessors have been explored. A novel
approach has been proposed for speech activity detection as well as for speaker
change point detection. This thesis closely follows and describes the development of
both of these approaches from the initial to the final stages. All the steps taken are
discussed in detail and backed up by a diverse set of experiments. Ultimately, both
of these approaches have been designed to be integrated into the TVR monitoring
system developed at SpeechLab@TUL in cooperation with the NanoTrix company,
and they both support a crucial online mode.

Speech Activity Detection

The final proposed speech activity detection approach is based on two main compo-
nents: a feed-forward deep neural network and a context-based weighted finite-state
transducer. The first component, DNN, functions as a frame classifier (speech/non-
speech and context states), while the latter component, WFST, is an online decoder
which smooths the outputs of the classifier. The network is trained on log filter bank
coefficients of artificially created data by mixing speech and non-speech recordings
at various levels of SNR. The data has also been enriched by various noises. This
design yields state-of-the-art results under low- and medium-noise conditions on the
standardized QUT-NOISE-TIMIT dataset. Moreover, it also operates with a low
real-time factor as well as low latency, which makes it a suitable option for online
processing. An evaluation in a real speech transcription system has yielded a signif-
icant improvement in RTF as well as a slight boost in accuracy of the transcription.

The initial research introducing the main concept and a simple transduction
model was presented in [1] at SIGMAP 2016 held in Lisbon. The improved and final
context-based transduction model was introduced in [2] at ICASSP 2017 organized
in New Orleans. Finally, an extended version detailing more experiments with QUT-
NOISE-TIMIT corpus was published in [3].

Potential improvements could be focused on improving the latency even further.
This could be achieved by, e.g., designing a different transduction model or employ-
ing diverse deep classifiers and fine-tuning their hyper-parameters. Additionally,
more complex features could be crafted. Lastly, enrichment of training data by var-
ious broadcast noises could achieve more robust speech activity detection and yield
even better speech/non-speech segmentation.

Speaker Change Point Detection

The final design of the proposed speaker change point detection approach is inspired
by the proposed speech activity detection design. It consists of two main compo-
nents: a convolutional neural network and a weighted finite-state transducer with a
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forced length of transition. The convolutional neural network plays the role of a bi-
nary frame classifier (change point/no change point) while the weighted finite-state
transducer is utilized as an online decoder smoothing the output of CNN. The de-
coder also enforces the duration of the transition from one speaker to another. The
network is trained on TV/radio broadcast data complemented by artificial exam-
ples to reduce different types of errors. Safety collar frames are labeled around the
actual change points to improve the performance of the system, and MFCCs with
∆ and ∆∆ are used as input features. On data taken from the COST278 database,
the proposed approach achieves results approaching the offline multi-pass reference
system (LIUM Speaker Diarization toolkit) while operating online with low latency.

The whole research explaining in detail the proposed speaker change point de-
tection approach was presented in [4] at Interspeech 2019 conference in Graz.

The performance of the SCP detection approach could be further improved by
implementing online clustering, which should diminish falsely predicted transitions
between speakers. It is a common practice in the literature. An exploration of more
robust features or different deep neural network architectures (e.g., time delay con-
volutional neural networks are gaining in popularity nowadays) could yield progress
as well. Similarly to SAD, other transduction WFST models could be designed.
Finally, additional varied training data could be collected to craft a more robust
approach yielding even better results for diverse languages.

Summary of Research Contributions

Within this thesis, the following has been covered:

• an overview of the current state of the art in both speech activity detection
and speaker change point detection with additional focus on existing toolkits;

• a detailed description of selected approaches to the SAD and SCP detection
relevant to this work or focused on the online application;

• a detailed description of the design and development of the proposed SAD
approach performing robust speech/non-speech detection;

• experimental tuning of the proposed SAD approach;

• an evaluation of the proposed SAD approach and its comparison with various
SAD approaches on the standardized QUT-NOISE-TIMIT corpus;

• an evaluation of the proposed SAD approach in a real speech transcription
system;

• a detailed description of the design and development of the proposed SCP
detection approach performing speaker change point detection;

• experimental tuning of the proposed SCP detection approach;

• an evaluation of the proposed SCP detection approach and its comparison
with a reference system on the standardized COST278 database;
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• an evaluation of the online performance of both SAD and SCP detection ap-
proaches.

Summary of Practical Use Contributions

The main contribution of this thesis to the field of practical applications is the
ability to integrate the proposed speech activity detection and speaker change point
detection approaches into the TVR monitoring system developed at the author’s lab
in cooperation with the NanoTrix company.

The proposed SAD approach is now fully integrated into this TVR monitor-
ing system. Last month, approximately 4,130 days (99,100 hours or 2.3 TB) of
recordings were transcribed in the processing time of 1,333 days (32,000 hours).
Considering the real-time factor of the speech transcriber being around one, the
deployment of SAD (as a preprocessor) resulted in significantly saved processing
time. Approximately two-thirds of the data was non-speech and thus omitted from
the transcription. This was supplemented by a slight increase in accuracy of the
transcriber as the non-speech parts were not transcribed into gibberish.

The proposed SCP detection approach is now ready to be integrated into this
TVR monitoring system. Once done, it will be used to label speaker-homogeneous
segments in multiple online broadcast streams (i.e., it will break the streams into
smaller chunks, each containing only one speaker). By doing this, it will provide
the transcribed data with additional information that could be further utilized and
expanded upon. It will also form a stepping stone for further diarization function-
ality.

In general, both the SAD and SCP detection approaches can be used for any
application that needs speech preprocessing, even the ones requiring online use.

Future Work

The fully implemented speech activity detection and speaker change point detection
approaches are the first steps in the process of designing a speaker diarization system
and successively speaker verification and identification systems and integrating them
into a TVR monitoring system. In conjunction with SAD, the SCP detector pro-
duces an ever-growing amount of labels for speaker-homogeneous speech segments.
These newly defined segments will be utilized for, e.g., language identification (the
online version is already being worked on while the offline version was published
in [165] at Interspeech 2018), gender, or emotion recognition. Their application to
speaker-adaptive speech recognition is also planned in the future.
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A Additional Tables

Table A.1: Influence of the number of epochs on the performance of SAD.

epochs FER [%] MR [%] FAR [%] F [%] δ2/3 [s]
5 2.6 0.5 8.0 54.9 0.29
10 2.4 0.5 7.2 52.7 0.26
15 2.7 0.4 8.7 51.2 0.29
20 2.7 0.4 8.8 49.7 0.31
25 2.7 0.4 8.4 50.3 0.29
30 2.6 0.4 8.3 50.5 0.29
35 3.1 0.2 10.4 41.9 0.34
40 2.9 0.3 9.4 44.5 0.32
45 2.9 0.3 9.4 46.3 0.32
50 2.9 0.3 9.4 47.1 0.33

Table A.2: A detailed overview of recordings of QUT-NOISE-TIMIT corpus.

target environment group recordings hours change points speech

low noise
A 4,000 100 94,054 45.6%
B 4,000 100 95,342 46.6%

A & B 8,000 200 189,396 46.1%

medium noise
A 4,000 100 93,462 45.2%
B 4,000 100 95,990 46.4%

A & B 8,000 200 189,452 45.8%

high noise
A 4,000 100 93,670 45.3%
B 4,000 100 96,394 46.9%

A & B 8,000 200 189,452 46.1%

all
A 12,000 300 281,186 45.4%
B 12,000 300 287,726 46.6%

A & B 24,000 600 568,912 46.0%
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Table A.3: Extended results of the proposed speech activity detection approach in
each scenario of QUT-NOISE-TIMIT corpus across all target environments.

target e. scenario HTER [%] FER [%] MR [%] FAR [%] F [%] δ2/3 [s]

low

cafe 2.2 2.3 1.5 2.9 81.8 0.05
car 1.3 1.4 0.9 1.7 85.2 0.03

home 4.2 4.5 0.9 7.6 76.7 0.05
reverb 4.0 3.9 5.6 2.4 78.3 0.07
street 1.5 1.5 1.3 1.6 84.8 0.03

all 2.6 2.7 2.0 3.2 71.3 0.05

medium

cafe 8.1 8.2 7.1 9.1 67.4 0.16
car 2.1 2.1 1.5 2.6 82.1 0.05

home 7.1 7.5 2.2 12.0 69.1 0.10
reverb 8.8 8.3 15.0 2.7 70.1 0.16
street 2.9 2.8 3.2 2.5 80.2 0.06

all 5.8 5.8 5.8 5.8 61.4 0.11

high

cafe 28.2 27.8 33.7 22.7 42.5 0.39
car 5.7 5.6 6.4 5.0 72.7 0.16

home 12.9 13.2 8.8 16.9 59.4 0.21
reverb 27.8 25.7 53.8 1.8 47.3 0.30
street 10.4 9.8 17.0 3.8 68.1 0.17

all 17.0 16.4 24.0 10.0 41.0 0.22

all

cafe 12.8 12.7 14.2 11.5 63.6 0.20
car 3.0 3.0 2.9 3.1 80.1 0.08

home 8.1 8.4 4.0 12.2 68.4 0.12
reverb 13.5 12.6 24.7 2.3 65.6 0.17
street 4.9 4.7 7.1 2.7 77.8 0.09

all 8.5 8.3 10.6 6.3 58.0 0.12
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Table A.4: Extended results of online performance of the proposed speech activity
detection approach in each scenario of QUT-NOISE-TIMIT corpus across all target
environments.

target environment scenario RTF latency [s]

low noise

cafe

0.02

1.7
car 1.5

home 1.6
reverb 1.7
street 1.6

all 1.6

medium noise

cafe

0.02

1.9
car 1.7

home 1.8
reverb 2.0
street 1.7

all 1.8

high noise

cafe

0.02

2.2
car 1.9

home 2.0
reverb 2.1
street 1.9

all 2.0

all

cafe

0.02

1.9
car 1.7

home 1.8
reverb 2.0
street 1.7

all 1.8
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Table A.5: Summarized results comparing the proposed SCP detection approach
(both online and offline configurations) with the reference system on all of the
COST278 languages.

approach language P [%] R [%] F [%] δ2/3[s] RTF L [s]

LIUM
Basque

37.7 70.4 49.1 0.39 0.016 -
online 57.6 62.2 59.8 0.17 0.064 3.0
offline 61.7 67.4 64.4 0.23 0.079 4.8
LIUM

Belgian Dutch
69.7 76.5 72.9 0.25 0.017 -

online 60.8 45.1 51.8 0.22 0.065 2.9
offline 71.3 56.8 63.2 0.24 0.080 4.8
LIUM

Czech
89.9 80.0 84.6 0.13 0.017 -

online 86.9 74.9 80.5 0.13 0.065 2.9
offline 87.9 78.9 83.2 0.15 0.080 4.8
LIUM

Spanish
51.4 83.3 63.6 0.31 0.017 -

online 66.2 78.8 72.0 0.16 0.065 3.0
offline 65.6 75.0 70.0 0.25 0.080 4.7
LIUM

Galician
58.4 86.1 69.6 0.33 0.016 -

online 65.6 79.8 72.0 0.23 0.064 3.0
offline 68.2 83.0 74.8 0.30 0.079 4.7
LIUM

Greek
67.6 88.7 76.7 0.14 0.017 -

online 64.8 76.4 70.1 0.12 0.065 3.0
offline 70.6 79.3 74.7 0.16 0.080 4.7
LIUM

Croatian
60.8 88.5 72.1 0.23 0.017 -

online 73.0 81.8 77.1 0.20 0.065 2.9
offline 71.6 79.4 75.3 0.20 0.080 4.7
LIUM

Hungarian
68.2 76.5 72.1 0.23 0.017 -

online 66.0 65.3 65.6 0.25 0.065 2.9
offline 70.8 69.4 70.1 0.25 0.080 4.7
LIUM

Portuguese
66.1 79.6 72.2 0.22 0.016 -

online 70.2 63.4 66.7 0.11 0.064 3.0
offline 75.0 67.7 71.2 0.19 0.079 4.7
LIUM

Slovenian
71.8 89.2 79.5 0.25 0.016 -

online 84.2 87.9 86.0 0.09 0.064 3.0
offline 84.7 83.6 84.1 0.14 0.079 4.7
LIUM

Slovak
69.3 91.0 78.7 0.13 0.016 -

online 81.1 64.2 71.7 0.12 0.064 2.9
offline 86.0 73.1 79.0 0.13 0.079 4.7
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Table A.6: Summarized results exploring the influence of different training data on
the performance of the proposed SCP detection approach (tuned for online use) on
all languages of COST278 database.

training data language P [%] R [%] F [%] δ2/3[s] RTF L [s]

enhanced data
Basque

35.2 45.9 39.8 0.27 0.064 2.9
COST278 train 57.6 62.2 59.8 0.17 0.064 3.0
combined data 54.8 58.2 56.4 0.22 0.064 2.9
enhanced data

Belgian Dutch
64.1 30.9 41.7 0.21 0.065 2.9

COST278 train 60.8 45.1 51.8 0.22 0.065 2.9
combined data 77.4 44.4 56.5 0.16 0.065 2.9
enhanced data

Czech
82.7 81.8 82.2 0.17 0.065 2.9

COST278 train 86.9 74.9 80.5 0.13 0.065 2.9
combined data 87.1 76.3 81.3 0.11 0.065 3.0
enhanced data

Spanish
40.2 56.1 46.8 0.34 0.065 3.0

COST278 train 66.2 78.8 72.0 0.16 0.065 3.0
combined data 62.1 72.0 66.7 0.16 0.064 3.0
enhanced data

Galician
44.4 67.4 53.5 0.34 0.063 2.9

COST278 train 65.6 79.8 72.0 0.23 0.064 3.0
combined data 65.6 79.8 72.0 0.22 0.063 2.9
enhanced data

Greek
56.3 67.9 61.5 0.17 0.063 2.9

COST278 train 64.8 76.4 70.1 0.12 0.065 3.0
combined data 52.4 73.6 61.2 0.13 0.064 2.9
enhanced data

Croatian
55.6 63.6 59.3 0.20 0.065 3.0

COST278 train 73.0 81.8 77.1 0.20 0.065 2.9
combined data 74.1 78.2 76.1 0.19 0.064 3.0
enhanced data

Hungarian
41.2 57.1 47.9 0.22 0.065 2.9

COST278 train 66.0 65.3 65.6 0.25 0.065 2.9
combined data 47.5 59.2 52.7 0.21 0.064 3.0
enhanced data

Portuguese
58.8 53.8 56.2 0.21 0.064 2.9

COST278 train 70.2 63.4 66.7 0.11 0.064 3.0
combined data 68.8 59.1 63.6 0.13 0.064 2.9
enhanced data

Slovenian
74.2 61.0 67.0 0.16 0.064 2.9

COST278 train 84.2 87.9 86.0 0.09 0.064 3.0
combined data 80.0 77.9 79.0 0.12 0.064 2.9
enhanced data

Slovak
68.0 79.1 73.1 0.07 0.064 2.9

COST278 train 81.1 64.2 71.7 0.12 0.064 2.9
combined data 79.7 82.1 80.9 0.08 0.064 2.9
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