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ANOTACE

Predkladana disertacni prace se zabyva modelem proudéni a transportu
latek v poréznim prostiedi s dvoji porozitou. Jsou popsany fyzikalni mecha-
nismy prusakového proudéni, advekéné-disperzniho transportu a difuzni vy-
mény rozpusténé latky mezi priitoénymi (mobile) a slepymi (immobile) pory
v nerovnovazném rezimu a odvozeny Fidici diferencialni rovnice. Hlavni ¢asti
prace jsou metody numerického feSeni a jejich implementace. Uloha proudént
je fesena smiSenou-hybridni metodou koneénych prvki. Uloha transportu
je diskretizovana v ¢ase metodou rozkladu operatoru (operator splitting) a
v prostoru metodou koneénych objemt. Rozklad umoznuje nezavisle resit
ilohy advekce, disperze a vymény mezi pérovymi zéonami riznymi metodami.
Uloha vymény je vyhodné feSena pomoci vztaht pro analytické feseni. Pro
reseni ulohy advekce je pouzito explicitni upwind schéma. Aplikace uvedené
kombinace metod na tlohu transportu s nerovnovaznou vymeénou je puvodni
praci autora.

Implementace modelu pro tlohy praxe zahrnuje procesy advekce a vy-
mény mezi pory jako zakladni aproximaci obecného prosesu transportu do-
statecné vyhovujici pro aplikace v praxi. Model byl testovian na nékolika
standardnich 1D a 2D 1lohach. Dilezitym vysledkem je shoda s analytickym
resenim 1D ulohy, po odecteni vlivu numerické disperze u upwind schématu
advekce.

Motivaci pro vytvoreni modelu byla jeho aplikace pfi planovani sanace
podzemnich vod v oblasti Straze pod Ralskem. Soucasti prace je feSeni realné
tlohy stredniho rozsahu — ¢erpani z vyluhovaciho pole o plose 1.2km?. Po-
rovnavanim modelu a namérenych koncentraci byly potvrzeny predpokladané
vlastnosti dvoji porozity u geologickych vrstev zahrnutych v tloze. Progra-
matorska prace a priprava vstupnich dat je spole¢nou praci autora a tymu
v s.p. DIAMO, vypocet a vyhodnoceni vysledkii jsou dilem autora.

Tato anotace je zkracenym prekladem ¢ésti ivodni kapitoly prace (str. 6).

This abstract is a brief Czech version of the Introduction (page 6).
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Abbreviations

Abbreviation Meaning
110213 30 one-, two-, three-dimensional

ADE Advection-dispersion equation
ADX(E) Advection-dispersion—exchange (equation)
BC(s) Boundary condition(s)

CFL Courant—Friedrichs-Lévy condition
FDM Finite difference method

FEM Finite element method

FVM Finite volume method

MH(-FEM)  Mixed-hybrid (finite element method)
MIE Mobile-immobile exchange

ODE, PDE  Ordinary/partial differential equation
0S Operator splitting

REV Representative elementary volume

Mathematical symbols

Symbol Meaning

R set of real numbers

N set of natural (non-negative integer) numbers
®—(z.17.2),& pointinR*

v unit normal

Q

problem domain 2 C R?

MN=T boundary of 2
i Kronecker delta
o(x) Dirac -function
Ly(X) Lebesgue space of square intergable functions on X
L,(X) space of vector functions
fuw X R [ ulfdX < ool
(u,v)ox scalar product in L, (X)
(u,v) x Ly-scalar product on boundary
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Physical quantities

Quantity Dimension Meaning

A [Li* ] coefficient of resistance (A = K ')

c [M-L3] concentration (¢, mobile, ¢; immobile)
P 1] sorbed concentration

Cr [1] Courant number

e &) [L2-T] diffusion /dispersion

g [ T2] gravity constant

h [L] discretisation parameter

ok [L?] permealibility of the porous medium
i [ hydraulic conductivity

Kp [L3-M~1 distribution coefficient of linear sorption
l (L] characteristic length of pores

L [L] characteristic length in dimensionless problems
m [M] solute mass

Mg [1] coefficient in Van Genuchten formula

n 1] porosity (n,, mobile, n; immobile)

» [M-L~%T~?] pressure

Pe 1] Péclet number

qs = density of fluid sources (¢;")/ sinks (g;)
e [M-L=2-T~!'] mass flux

R [1] retardation factor

S5, 1] saturation (effective)

t [T] time

Ty /o [T] characteristic time of the M-I exchange
u LT Darcy velocity (flux)

v [L-T7Y seepage velocity

w LT Darcy velocity (MH-FEM base functions)
T, 1, 2 [L] space coordinates

o [T coefficient of non-equilibrium exchange
ap, o [L] longitudinal and transversal dispersivity
Eoye [1] coefficient in Van Genuchten formula

1 M-L~'T-!']  dynamical viscosity

o (L] piezometric (pressure) head

) [L] piezometric head (MH-FEM base functions)
0, 0s [M-L~3] fluid and solid density

7 1] water content

w 1] Damkohler number (Da)



Introduction

The thesis deals with the modelling of fluid flow and solute transport in
porous media with immobile pore zone (“dual-porosity” media). It covers
physical and mathematical aspects of the model and experiments with testing
and real-world problems.

In the following paragraphs, we mention the importance of the presented
work in the context of application of the model as wanted for problems of
underground remediation in Straz pod Ralskem and in the context of re-
search in numerical methods for complex groundwater problems. Finally,
the structure of the thesis and new results presented are described.

In spite of the direct motivation and realisation is related to the activities
of DIAMO Straz pod Ralskem, the most of the presented work is general
and can be applied for other porous media problems with the considered
properties.

Motivation — uranium mining in northern Bohemia

Mathematical modelling accompanies the chemical uranium leaching and re-
lated operations by the state enterprise DIAMO in the Straz pod Ralskem
region since its beginning in 60s in the last century. In the last decade, after
closing of mining activities in 1996, a problem of remediation of contaminated
underground water in place of former leaching has been solved.

An extent of contamination is very large: more than 4 million tons of
H,SO4, 300 thousand tons of HNOj, 120 thousand tons of NH; and other
chemicals were injected in Cenomanian sandstones [Nov0l1, NSSQS]. The
problem is very complicated as the total contaminated volume is about 190
million m® in the area of 28km? and the contamination is quite unevenly
distributed, also out of the leaching area of Cenomanian aquifer due to ged-
logical structures and failures of technologies [MMSS00].
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The model developed in this thesis deals with the contamination in the
Turonian aquifer which lies above the Cenomanian and contains some 1S0-
lated contamination in the places of communication with Cenomanian aquifer
through the failures. The remediation of the Turonian aquifer is necessary for
protection of drinking water sources in the neighbourhood. During extraction
process in the last years, there were identified dual-porosity properties in the
aquifer, and since it plays important role in the remediation, a construction
of a special computational model seems to be necessary.

There were many specific requirements on the model, mainly for full com-
patibility with other software tools used, for reasonable computational cost,
to be applied for middle and large problems in both spatial and temporal mea-
sure (forecasts for up to few decades). A use of tailored numerical method,
laying stress on the most significant processes in the problems concerned,
was expected.

Mathematical models of flow and transport
(state of the art)

Numerical methods for solution of problems in porous media are intensively
studied in the last 40 years, together with the development of computer tech-
nology allowing the use of the methods for more and more complex problems.
An overview of the approaches and methods for flow and transport problems
relating to the matter of this thesis is given in the section 3.1.

Even if many advanced methods exist for the standard problems, there
are still many limitations of the methods and many open problems. A typical
conflict arises from large size of the underground problems and uncertainty
of parameters — the sophisticated methods are often difficult to use with
complex 3D discretisation mesh and moreover the “exact calculation with
inexact data” can appear inappropriate (except of special cases, e.g. inverse
problems).

Thus there is space for tailored models for specific situations, which well
represent the major processes, overriding the drawbacks in the less important
aspects.

Structure of the thesis

In the first chapter, the solved physical problem is introduced: steady flow
governed by the Darcy’s law and solute transport governed by the advection-
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dispersion equation coupled with a system of ODEs for non-equilibrinm mass
exchange between mobile and immobile pore water. Aspects of representation
of the reality and the relation to other interaction processes are discussed.

Next, the mathematical formulation, in terms of initial-boundary prob-
lems for the governing PDEs, is defined in the second chapter.

The third chapter deals with the numerical methods for the presented flow
and transport problems. The mixed-hybrid FEM approximation by lowest-
order base functions for the fluid flow is derived. The transport problem is
discretised in time using the operator-splitting method, separating the trans-
port processes: advection, dispersion, and non-equilibrium mobile-immobile
exchange. In the presented model realisation, the transport is discretised by
cell-centred FVM and the advection is solved by explicit upwind scheme and
the mobile-immobile exchange is determined analytically.

The practical model realisation concerned in the fourth chapter was quite
extensive programming work, in the cooperation of the author and the team
in DIAMO. Important in this context is the topology of the discretisation
and relating data structures.

The sixth chapter presents results of several experiments for examination
of the model function and properties. A good match in the comparison of
numerical results and analytical solution (under specified conditions) was
achieved for the 1D non-equilibrium transport problem.

In the last seventh chapter, we describe application of the model for
solution of local underground remediation problem in the Straz pod Ralskem
region. Comparing with the measurements from the period of 19 months
of extraction operations, the values of material parameters were estimated,
with good correspondence of the results.

New results

Important new results are in the derivation of numerical method and in the
area of experimental calculations. Beside that, the physical description of the
processes contains some consideration beyond the results in the cited litera-
ture (identification of the parameters of microscopic structure in the mobile—
immobile exchange, section 1.3.3). Next, the model was used in the context
of groundwater practice as the first “sample” solution of dual-porosity prob-
lems in the framework of the important ecological problem faced in Straz
pod Ralskem.

The numerical solution is based on standard approaches, combined in
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original way for the specific coupling of processes in the solved problem: In-
spired with a common operator splitting approach for the advection-dispersion
problem, we formulate the operator splitting method for the non-equilibrium
transport, where the problem described by a system of two coupled equations
with two unknowns is split into single processes: advection, dispersion and
non-equilibrium exchange between the mobile and immobile zone.

This approach allowed to use the simple analytical solution of the split
exchange process (derived by the author) and as a whole to obtain a method
different from the others used in the literature (mentioned in section 3.1). On
the other hand, it is related to methods for the problem of non-equilibrium
adsorption developed in parallel in the recent years [KF02, Rem03] — for
more general non-linear problems, but under other restrictions (e.g. one-
dimensional domain and computational cost).

We also mention the programming work of the author in the framework
of the team in DIAMO. The model was implemented with full user inter-
face, compatible with other existing software tools. A solution of real-world
problem was done, with results in good correspondence with field measure-
ments. The calculation confirmed the expected dual-porosity properties of
the underground media in the region, which is also an important author’s
contribution.



Chapter 1

Physical model

In this chapter, we present physical principles of the phenomena in porous
media, we explain how to understand the term dual porosity and we pro-
pose possible approaches of modelling. First, we describe basic assumptions
commonly posed on porous media properties and then we describe equa-
tions governing flow and transport and we derive some variations suitable
for numerical solution in the following chapters.

The description is based on the classical literature [BV90] (and also [ZB95,
Kaz97, Ben95]) and the parts concerning the effect of immobile (blind) pores
result from e.g. [CS64, vGWT76]|. The main result of this chapter is the final
formulation of the physical problem to solve, sections 1.3.3, 1.3.4.

A note on terminology

There are many different notations in the literature for the character of
porous (or fractured) media represented by dual-porosity (or double-porosity)
model. What we call here immobile pores is also referred as blind, dead-end,
inactive pores, stagnant zone. The mobile pores are also denoted as active
pores. In the context of fractured rock, the mobile zone are the fractures
and the immobile zone is the solid matrix. The adjectives “mobile” and
“immobile” primarily belong to “water” and with clear meaning are used
with “pores”. The mass exchange between pore zones is denoted as non-
equilibrium, rate-limited, or kinetic.

10
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1.1 Description of porous media

In our models, we consider a porous medium representing sedimentary rock,
but in most aspects it does not mean any loss of generality. According to
[BV90], we assume that it is possible to define a representative elementary
volume (REV), which is large enough to contain many pores and thus it
can be regarded as a continuous medium (i.e. “representative”). On the
other hand, it is small enough in comparison with the domain size and is
approximately homogeneous and can be associated with a state in a single
point in the space (i.e. “elementary”).

In the following, we always use the continuum approach for differential
equations of the model, even if we sometimes must take into account the real
microscopic structure for deriving some relations, especially in the case of
effects caused by dual porosity, which is the main topic studied in this work
(the “dual-continuum approach” or two-region model, see below) .

In all the text, we assume both the water and the solid matrix of porous
medium to be incompressible and that the fluid density does not depend on
the concentration (not the density-driven flow).

1.1.1 Physical quantities of the fluid flow

We remind the definitions of basic continuum quantities describing the porous
media and hydraulic processes. In general, we define porosity as
volume of pores in REV

" = Tiotal volume of REV (151}

This definition in the context of this thesis should be considered rather as
a general framework for further definition of mobile and immobile porosity
(section 1.3.3). In the next few sections, we use this basic definition for
simpler and clearer derivation of the relations, below transformed for the
quantities concerning the dual-porosity media.
On the level of REV, the fluid motion can be determined by flow rate per
cross-sectional area, we denote
flow rate
s e 4 (1.2)
area
where the flow rate is expressed as fluid volume per time (L*-T~') and the
area in square meters. The quantity u has a dimension of velocity (we will
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call it Darcy velocity — see below), but in fact, it is not the velocity of the
real movement of the fluid. Beside it, we define

— (1.3)
n
the seepage velocity, which is the velocity of fluid averaged over the pore
volume in REV and expresses the macroscopically detectable velocity of con-
taminant particles (without regard to their microscopic movement).

In the hydrogeological practice, the values of pressure are expressed in
meters of water column, in fact, it is a quantity called pressure head, defined
by p/(0g), where p is pressure, p is density of the fluid and ¢ is the gravity
constant. We do not state any special notation and sometimes use the term
pressure in both meanings, but it will always be clear from the context.
Beside it, we define the piezometric head, which plays a role of potential for
the fluid flow (see below (1.14)-(1.16)), as

L e (1.4)
09

where z is the vertical coordinate.

1.1.2 Capillarity

Capillarity effects play important role in the case of flow in unsaturated
porous media, i.e. if an interface between liquid phase and gas phase exist.
Situation in unsaturated porous media is described by the ratio of liquid and
air (free space) in certain place, using the quantities the water (moisture)
content, # or the saturation S which are defined by

volume of water in REV

= =
g total volume of REV 00 = n; (1.5)

volume of water in REV 0
= i ] = _
s volume of pores in REV ’ = s e o (1.6)

For more precise description of the processes, we must take into account
the structure of pores. Commonly, there is a part of pores fully isolated
from others with no interaction (neither water flow nor solute diffusion). To
exclude them, we denote 6, the residual water content (in the disconnected
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pores and we introduce the effective water content and effective saturation
by

_8-6
i Tli== 9[] .

(1.7)

96':6_90! S{{

The relation between the effective saturation and capillary pressure in the
unsaturated zone is given by the Van Genuchten formula [vG80]. Written
jointly for the saturated and the unsaturated zone, it holds

1
m -1 p<()
Moy “F”EE_
Se(p) = 4 (1 + avg|p|™vs) ™ (1.8)
1 p =0,

where a,, and m,, are material constants of the porous medium (statistical
distribution of pore/grain dimensions).

The hydraulic conductivity of the unsaturated medium depends on the
effective saturation by [Irm54]

K5 K5 (1.9)

where K is the conductivity of saturated medium.

1.1.3 Structured porous media

In this section we discuss the influence of microscopic pore structure to the
fluid flow and solute transport in the porous media. Concerning the model
presented in the thesis, we define the conditions/principals it is based on,
i.e. what we understand by the term dual porosity and how such a type of
porous media is represented.

For the flow calculation, the microscopic structure is in fact not impor-
tant. The flow is expressed by the Darcy velocity, which expresses the flow
in a “global” sense (as a water flux per unit area of cross section, eq.(1.2))
and all the information necessary is contained in the permeability tensor.

The situation begins to be more complicated, when we try to express the
seepage velocity (1.3), using some value of porosity. The values of seepage
velocity obtained by the use of the porosity with basic definition does not
often correspond to the field experiments with the seepage velocity observed
from the results of advection-dispersion process (1.17) where the seepage
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Figure 1.1: Two-region model. Communication structure of mobile and im-
mobile pores at the level of the representative elementary volume (REV).

velocity is the major input parameter. The reason is improperly defined
porosity with respect to the microscopic structure [BV90, ZB95].

In most cases, the problem can be solved by introducing the effective
porosity, where we extract the part of pores which is fully isolated from others
and cannot influence any process. This approach was mentioned in descrip-
tion of unsaturated media, section 1.1.2. This adjustment is in fact standard
and we usually use the term porosity in the sense of effective porosity when
dealing with Darcy velocity, seepage velocity and advection-dispersion pro-
cess.

We obtain more general situation when considering the real microscopic
velocities of the fluid. In the classical models, the pore structure is considered
as “random” and the distribution of velocities in REV as well. As a conse-
quence of the variations in velocity, the process of hydrodynamic dispersion
is identified [BV90]; more precisely, by the homogenization in the REV we
transform the microscopic advection and molecular diffusion to the macro-
scopic processes — advection by the (average) seepage velocity, molecular
diffusion (with the coefficient modified by so called tortuosity) and hydro-
dynamic dispersion in addition, see (1.18). We will be now interested in a
situation when the pore structure and velocity distribution is special — such
a case we denote as structured porous media in contrast to the unstructured
considered above in this paragraph.

There are several approaches how to describe the media with distinctly
different pore structure, either distributed to the volume zone or in the sense
of different properties in a different measure of observation. We refer mainly
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to the two following:

e By a term dual permeability we denote sitnation, when a part of the
fluid flows through pores with different permeability (and porosity) and
has both different Darcy and seepage velocity. The advective transport
is then calculated independently in both parts with certain interaction
between them. See e.g. [GvG93, BER93] for details.

e If we can distinguish two pore volumes, when one can be described
as unstructured medium with one particular seepage velocity and the
second contains pores which are blind or almost blind with negligible
water motion but not isolated from those with mobile water [CS64].
This model is called dual porosity, we identify the mobile pore zone
and immobile pore zone at the level of REV, see Fig. 1.1. This is the
approach we apply and study in this thesis.

The concept of dual-porosity media, namely the transport influenced by
the interaction with zone of immobile water was introduced by [CS64] and
further developed by e.g. [vGW76, CK77]|. Quantification of the interaction
process is described in section 1.3.3. We also remark (will be specified below)
that this kind of dual-porosity model is mathematically equivalent to other
interaction processes, as e.g. the sorption (section 1.3.2).

Dual-porosity models elsewhere

Beside the dual-porosity model for structured porous media, we can derive
the dual-porosity model in the same sense for a different type of media and
transport process: fractured rock, composed of highly permeable fractures
and a matrix of porous blocks almost impermeable in comparison but with
possible diffusion and accumulation. In this case, we have two levels of ho-
mogenization, first the porous medium of matrix regarded as continuum and
then fracture structure regarded as continuum [Dou99, GvG93, BER93]. In
the fracture rock modelling, this is an alternative to the structured approach
when we consider statistical information about fracture orientation, sizes and
crossing and the 2D flow in each fracture is calculated [Sev(2].

Generalisations

We also mention further generalisation behind /over the dual-porosity (mobile-
immobile) model presented here. Below we describe the mechanism of solute
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exchange between the mobile and immobile pores as a non-equilibrium first
order transfer process. More general models involving non-equilibrium pro-
cesses of different physical character are discussed in e.g. [Bru91l, NIS00]. In
some cases, the variations in pore structure and microscopic velocity can be
more complicated and the two zone approximation does not suffice to repre-
sent the process — a model with three zones instead of two (“triple” porosity)
is introduced in [BR97].

In the text below, we will first describe the standard relations for flow
and transport in unstructured (single-porosity) media and then their form in
the dual-porosity media will be derived.

1.2 Equations of the fluid flow

1.2.1 General case (unsteady unsaturated)

We start with the general formulation of the fluid flow problem, where un-
saturated zone is involved to the model and the problem is time dependent
(see e.g.[BV90, ZB95, Kaz97]).

In fact, the problem is composed of two different processes with differ-
ent quantities and governing equations: in saturated zone the situation is
determined by the pressure (or piezometric head) and velocity, while in the
unsaturated zone we have a description through variable saturation. The
problem can be written in a compact form, if we extend a sense of the vari-
able p (normally with positive values meaning the pressure) and express both
the saturation in the unsaturated zone and the pressure in the saturated zone
by p as a single variable with both positive and negative values. The negative
values are connected with the saturation by the retention curve (1.8).

Using this notation we can define the motion equation (Darcy’s law)
jointly for the saturated and unsaturated zone, defining the hydraulic con-
ductivity by (using (1.8) and (1.9))

1

Myg—1

K - = e 0
K(p) = (1 + arg|p|mvs)™ e (1.10)
K p=>0,

where K is the tensor of hydraulic conductivity of saturated medium. The
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generalised Darcy’s law has a form (Darcy-Buckingham law)
uz—K-V¢=K(p)-(V—£%+Vz), (1.11)

with w and p as unknown variables. The second governing equation expresses
the mass balance

00
+V- -u= 1.12
at QS! ( )

where ¢, are fluid sources/sinks (external) and the first term (accumulating
in the free pores) can be arranged using the retention curve (1.8) for 6 to
Ip

Cw(P)E'FV'U:Q‘S, (113)

where Cy(p) = 8—%;()3“) (the derivative of the retention curve) is called the
water capacity. Substituting (1.11) into (1.13), we obtain so called Richards’
equation.

In the equations above, we assumed both the water and the solid to be
incompressible. In this case, the time-dependent term vanishes for p > 0,
which means the second-order PDE obtained by a substitution of (1.11) into
(1.13) would be elliptic for p > 0 while parabolic for p < 0 which causes
many complication in the numerical treatment. A possible but only partly
complication-avoiding way is to add a small constant to C,, which can be
regarded e.g. as a compressibility of water or solid.

The numerical implementation of the unsteady flow problem described
above has been realised, using the appropriately generalised form of the
mixed-hybrid FEM described below. The formulation, application and tests
of the model are presented [Fry02, MMO00, HS00]. Even if the results were
satisfactory in general, many problems arose concerning the relation of dis-
cretisation and values of parameters which strongly influenced the stability
of iterations solving the non-linearity (in both generalised Darcy’s law and
mass balance equation).

Thus in this thesis we consider the fluid flow problem in the saturated
domain (or, say, in the saturated part of the domain), which can be used as
a good approximation in the practical problems.

We must also remark that the combination of capillary effect at the
boundary of saturated and unsaturated zone and the distinction of mobile
and immobile pores would be a very complicated problem.
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1.2.2 Steady flow in saturated media

We reduce our interest to the problems in a fully saturated domain. In this
case, we must automatically consider steady problems: the time-dependent
term in (1.13) vanishes and also we easily imagine that the eventual changes
in boundary conditions would take effect immediately in the whole domain.
The equations (1.11) and (1.13) then transform to the classical Darcy’s
law and mass balance equation, commonly presented ([BV90, Kaz97]).
The Darcy’s Law in saturated porous media is

u:-K-V@:—K-(v%+Vz), (1.14)

where K is hydraulic conductivity — it comprises the properties of both fluid

and porous media, through
ko
s oy (1.15)
H
where g is the dynamical viscosity of the fluid and k is the porous media
permeability which is in general tensor for anisotropic media and a function
of space coordinates for inhomogeneous media.
The mass balance equation for steady flow is

VA — (1.16)

where ¢, are sources/sinks of the fluid (volumetric flow rate), defined as
injected/drawn fluid volume per unit time and unit volume of medium.

Substituting the first equation into the second, we would obtain a linear
second order elliptic differential equation with one unknown function ¢(x).
For numerical transport calculation, this expression is not convenient, be-
cause the dual variable (velocity u) is our interest and is to be calculated
as accurate as possible, while by the numerical differentiation (from ¢ to )
we lose accuracy. We use the numerical method based on a coupled system
of two first order equations (1.14) and (1.16), which calculates the veloc-
ity directly (mixed and mixed-hybrid methods, see [KH90], [RT77] and the
chapter 3 in this thesis).
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1.3 Equations of the solute transport

1.3.1 Advection and dispersion

The basic solute transport mechanisms in porous media are advection and
dispersion; see [BV90, Ben95, Kaz97, ZB95| for details. The unknown solute
concentration ¢(z,t), function of space and time, is given by the advection-
dispersion equation (ADE)
de 1 ™ )
V() = V- (DVO) = ~(¢q; +cqy). (1.17)
ot n
where V - (cv) expresses the advection and V - (DV¢) expresses the hydro-
dynamic dispersion, which is in general anisotropic (transversal and longitu-
dinal with respect to the direction of the fluid flow). The source term differs
for drawing (gs > 0), when the value of drawn concentration is the quantity
calculated and injecting (gs < 0), when the injected concentration ¢* must
be given.

The seepage velocity v(x) is a result of the fluid flow problem (1.14)-
(1.16), for the given source/sink distribution ¢, adjusted as v = =, where n
is appropriate value of porosity (standardly defined by (1.1) for unstructured
media or the mobile porosity for dual-porosity media, see section 1.3.3).

The hydrodynamic dispersion coefficient D comprises both the molecular
diffusion and the (mechanical) dispersion caused by microscopical inhomo-
geneity of the velocity field [BV90, ZB95]. It is expressed by

Ui ‘Uj
]’

where D,, is the coefficient of molecular diffusion (scalar), T is the tortu-
osity (tensor), oy, and ag are the longitudinal and transversal dispersivities
(properties of the porous medium), d;; is the Kronecker delta and v;, v; are
the respective components of the velocity vector v.

The tortuosity T' = T;; is a property of porous medium and expresses
the effect of its structure to the molecular diffusion. For isotropic media,
the tensor T is diagonal and we express T;; = 70;; (while the mechanical
dispersion is always anisotropic).

The complete description of the solute transport is much more compli-
cated than stated above. Usually more chemical species is present in the

[D]ij = Dmsz 0 CYT|'U| 5:‘;‘ + (ar — ar) (1-18)
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solution; than the concentration of each one is governed by the advection-
dispersion equation and there are chemical reactions of various character
among the single species. Furthermore, physical and chemical interactions
with the solid phase of the porous medium must be taken into account. The
processed connected with immobile pores are among them.

In the dual-porosity media, the transport in the mobile zone is governed
by the equation (1.17). The velocity is determined by means of mobile poros-
ity, see section 1.3.4.

1.3.2 Sorption

In the two-region model of the dual-porosity media, the mechanism and the
mathematical description of the interaction process is similar to the sorp-
tion of the solute on the solid surface. In the context of numerical solution,
we will refer to equivalent structure of the equations of transport with non-
equilibrium sorption and transport with non-equilibrium mobile-immobile
exchange. The significant difference is in the physical meaning of the con-
stants in the equation, their identification, and also in the fact, that the
sorption is often considered as non-linear, which bring more complications.

The sorption is determined by the sorbed concentration (e.g. solute mass
par unit mass of the solid) and by the relation between the solute and sorbed
concentration. The relation is given either by the function ¢, = f(c¢) for
equilibrium (instant) sorption or by the dependence of sorbing rate (mass per
unit time) on the concentration difference for the non-equilibrium sorption
(rate-limited).

Typically, the sorption is quick process and can be approximated by the
equilibrium model, while the mobile-immobile exchange is slow and the use of
two unknown functions of concentration ¢,, and ¢; and of the non-equilibrium
interaction in the model is necessary.

The equilibrium sorption can be expressed by various functions, so called
isotherms; the simplest example is the linear isotherm

¢s = Kpc, (1.19)

where Kp is called distribution coefficient. The non-linear isotherms are e.g.
Freundlich and Langmuir, see [BV90, ZB95].
Considering the mass balance jointly in the solution and in the solid
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phase, the advection-dispersion equation transforms to [ZB95, BV90, Ben95]

dc
R -dit +V :(cv) — V. (DVc) = %(q:c* +4q,¢), (1.20)

where we introduced the retardation factor
1—n

vl

n

R=1+ g,Kp @l
where o, is the density of the solid. From global point of view, the transport
behaves like in the velocity field reduced by the factor R (slower), assuming
D linearly dependent on v, as in (1.18).

A relation of the same type holds for in our model of dual porosity between
concentration in mobile and immobile pores for a limit case of immediate
diffusion exchange. We will refer to this situation as the limit case of the non-
equilibrium model (1.34) and when testing the model on example problems
for full range of the rate coefficient (chapter 5, section 5.3.1).

1.3.3 Mobile-immobile diffusion transfer

Above, in the section 1.1.3, we defined the term dual porosity as the situation
when a part of the pores contain immobile water. We will deal now with the
solute transport in the dual-porosity media, more precisely in two-region
representation of structured porous media.

The basic description of porous media solute transport (single porosity)
is by one value of concentration per REV. Considering the blind pores, the
concentration can be complex inhomogeneous on the microscopic level, see
section 1.1.3. A possible representation is the two-region model (see also
[CS64, CKT77]): we define two zones, one including the mobile pores and one
including the immobile ones and we work with one representative concentra-
tion in each (Fig. 1.1).

We denote the porosities

N, ... mobile (or active) porosity
volume of mobile pores in REV
volume of REV
n; ... immobile (or blind, inactive) porosity
volume of immobile pores in REV
volume of REV

: (1.22)

??'Tfl =

n; = (1523
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and by analogy the concentrations

Cm - - . concentration in the mobile pore zone , (1.24)
¢; ...concentration in the immobile pore zone . '

The mechanism of mass transport at the microscopic level is the molecu-
lar diffusion. The model of two disjoint zones with strictly “discrete” values
of concentration can appear slightly inconsistent with this mechanism, be-
cause the diffusion correspond to a gradient of concentration (continuously
varying in the immobile zone). But considering the two-region model as a
simplification, we represent the diffusion as a mass exchange between both
the zones. Further, we will refer the process as the mobile-immobile ex-
change, rather then using the term diffusion.

It is quite complicated to exactly quantify the process, because of compli-
cated distribution of concentration at the microscopic level and the geometry
of pores which is difficult to identify. From global point of view (the two-
region model) it is natural to assume the exchange intensity (or rate) to be
proportional to the difference of the concentrations in both the pore zones.
This way is consistent with the nature of the diffusion and commonly used in
the literature [vGW76, CK77, VMVF97]. We express the transferred mass
in unit volume of porous medium per unit time as

exch — ale; — e, (125}
where o [T7!] is a coefficient dependent on both the solid structure and the
solute properties. The sign of g, is considered to be positive for transfer from
the immobile to the mobile pores (i.e. positive source term in the advection-
dispersion equation (1.17) describing the transport in the mobile pores, see
(1.30)).

The value of the coefficient can be expressed by solution of diffusion
problems at the microscopic scale with chosen porous media geometry, e.g.
spheric solid grains or 1D blind channels. If it is not possible (in case of
insufficient microscopic information), the value of the coefficient must be a
subject of model calibration, together with the values n,, and n,.

A simple formula for o can be constructed by the following consideration:
We represent the structure of mobile and immobile pores as two volumes
connected by a linear channel of length | and cross-section S. The diffusion

flux in the channel is qgiﬁ = D,,Ve and the total transfer relative to the
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volume of media Vypy can is

Sqdlfr SDT!I tm G wIE Dm

exch __ ¢ S l

i S Sl¥e 3D

(Ci =% Cm) ) (126)

where we identify

D”l

2
the “dimensional structure” of the coefficient: coefficient of molecular diffu-
sion divided by a square of certain characteristic length. Several relations
of this structure are presented in the literature, for various geometries, with
additional dimensionless shape-factors [Bru91l, VMVF97|.

(1.27)

Y ~

1.3.4 Equations of two-region non-equilibrium trans-
port (complete model)

Now we derive the equations governing the mass transport in the two-region
representation of dual-porosity media, coupling the advection-dispersion equa-
tion governing the transport in the mobile zone and the relation (1.25) for
the mobile-immobile exchange.

The equations of water motion (Darcy’s law (1.14) and mass balance
equation (1.16)) have the same form for standard porous medium and for
mobile zone of dual-porosity medium, as they are expressed by means of
Darcy velocity and thus they do not explicitly contain the porosity. In case
of ADE (1.17) we must consider that the only the mobile zone is concerned
and use the mobile porosity n,, in place of n, i.e.

de 1
5% +V.:(cv) =V :(DVc) = F(c*qs* legn ) (1.28)
where the velocity is
u(x)
v(z) = T (1.29)

The mass exchange with the immobile zone in fact corresponds to an
additional source/sink term in the ADE for the mobile zone. It is necessary
to note, that the exchange flux is expressed relative to the total volume of
porous media while the form (1.17) of ADE is expressed as a mass balance
in the volume of mobile water. Therefore the exchange term (1.25) must
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be divided by the mobile porosity, to fit as a source term in the transport
equation. We obtain

a T 1 ]- -
—(,;T &Y )= NV (DN e = I—(c*q: +cmg; ) + ;;—(]5((.‘1' —cm) - (1.30)

In the immobile zone, we simply express the mass balance, considering
the mobile-immobile exchange as the only transfer process. Similarly as for
the mobile zone, we use the form relative to the immobile water volume

= =06~ O (1.31)

The two coupled equations (1.30) and (1.31) form a system of two differential
equations for two functions ¢,,(x,t) and ¢;(z,t). The governing equations
are often written in a different structure, when the first one expresses the
mass balance jointly for both the mobile and immobile zone and the second
one expresses the mass balance in the immobile zone (the same as above)

0 g1y 0 i —
nm_(;}_ + nia—i = -V (cmu) +n,V - (DVen) +c*qf +emg;,  (1.32)
e,
nz-a—(t = —alc—cm), (1 33]

see e.g. [vGWT76].
There are special situations for limit values of the exchange coefficient «
(see also section 1.3.5, eqn. (1.38)):

e For almost immediate mobile-immobile exchange' (o — +00), the sys-
tem of equations can be transformed to a form mathematically equiv-
alent with the common equation of transport with linear equilibrium
sorption (1.20). Using the form (1.32)-(1.33) the first equation trans-
forms to

(1 __)__ + V- (emv) — V- (DVep) = (‘k*q:r + ege (1.34)

and the second one with the undefined term becomes redundant. We
introduce the retardation factor Ry =1 + —L relating to MIE having
the same meaning as for the sorption, see (1 21)

Tf we put @ = +00 and ¢; = ¢, the term of inter-pore flux is therefore undefined, but
has of course a real physical sense and a certain value (given by a—ct)
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e For very slow exchange (o — 0) the equations are “loosely” coupled
and the first one is close to the plain advection-dispersion equation in
the mobile zone. But in general we cannot simplify the model in this
way, because the immobile zone will always take its effect, even if weak,
but permanent in long time horizon.

Remark: transport of more chemical components. In practical prob-
lems, transport of more independent solutes is usually solved. If there are
also chemical reactions among the solutes, the problem is very complicated.
The model described in this thesis is implemented for more chemicals with-
out interaction (but is open to add a module of chemical reactions in the
future). We consider a transport of N, solutes indexed by ¢ (superscript)
governed by N, independent systems of equations

act 1
Tm L G (o) =V (DVE) = g +cha; +—al(ci— cm) (1.35)
ot ) Non

dct 1

- — —;(}.'E(Ct' = G- (1.36)

In the following chapters, we will omit the superscript and everything will be
formulated for one solute because of readability (without loss of generality).

1.3.5 Identification of equilibrium/non-equilibrium by
dimensionless number

When more physical processes act together, the ratio of significance of the sin-
gle processes is usually expressed by dimensionless numbers. For advection-
dispersion process, the Péclet number (Pe) is introduced [Hir91, ZB95|

Pe = %! . (1:3¥)
where v is characteristic velocity, [ characteristic length and D the diffu-
sion/dispersion coefficient. If Pe is close to zero, the process is dispersion-
dominated, when Pe > 1, the process is advection-dominated. For porous
media, there two levels for comparison (see [BV90, ZB95] for details): On
the microscopic level the molecular diffusion D, and the characteristic di-
mension of pores is considered (as a consequence, this comparison gives an
information about relative significance of molecular diffusion and mechanical
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dispersion). On the macroscopic level, the average velocity, characteristic
dimension of domain and hydrodynamic dispersion coefficient is considered:;
this comparison is useful for numerical calculation, because the approaches
are different for advection-dominated and dispersion-dominated processes.
For completeness’ sake, we also refer to the grid Péclet number strictly relat-
ing to a numerical discretisation, see [ZB95, Hir91].

In the non-equilibrium model, the ratio of “strength” of advection and
exchange is compared and we express how far from an equilibrium the system
is. The appropriate dimensionless number is Damkohler number, denoted w
or Da, see e.g. [VMVF97, Bru9l, TLvG93]. A common form is

ol

1

Da = (1.38)
where a is the rate of mobile-immobile exchange, L a characteristic dimen-
sion in the domain and u the Darcy velocity u = n,v. For large Da, the
difference between ¢,, and ¢; is small, the system is close to equilibrium and
can be approximated by single equation with retardation factor. For small
Da, the non-equilibrium is significant for the transport process from global
point of view.

The approximation of the non-equilibrium by equilibrium in the case of
fast exchange process is often referred as local equilibrium assumption (LEA),
see e.g. [PV86], also introducing other criteria besides the Damkohler number.

1.4 Initial and boundary conditions

We discuss here the boundary conditions (BC) with respect to their physical
meaning. The correct mathematical formulation of the initial and boundary-
value problems for PDEs are given in the next chapter 2. For expressing
the conditions, we use the notation €2 for the problem domain; the exact
definition will be given also there.

Stating the boundary conditions so that they correctly represented the
physical process at the boundary is very complicated in general. In fact, the
domain of solution is rarely bounded in a real physical sense, the natural
processes continue also behind the boundary we chose for determining our
problem and its solution.

We often deal with two cases while choosing the boundary: The simplest
case is a “singularity” in the space, e.g. existence of impermeable layer or
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technical equipment having an exactly known effect. If we cannot identify
such an object in some directions, we choose the boundary in a “safe” distance
from the area of interest (e.g. a cloud of contamination), where the effect of
the boundary to the process is negligible. We will refer this case as a “distant
boundary”.

1.4.1 Steady fluid flow problem

We construct the boundary conditions for the steady problem of the fluid
flow in a saturated domain (1.14)-(1.16). In general, all three types typical
for the 2"%-order PDEs are necessary to cover the possible cases of interaction
of the domain with the surroundings.

We consider the problem domain denoted by €2 with a boundary I' = 092
composed of three parts Ty, I's, and I's (such that T; UT, UT3 = I'), with
respective types of BCs prescribed.

Dirichlet boundary condition

We obtain the Dirichlet BC when the pressure or piezometric head is pre-
scribed at the boundary, i.e.

¢(x) = ¢p(x) Vx el (1.39)

for a given function ¢p(x) [L]. This condition is used when the studied do-
main adjoins to a water volume with free surface (i.e. that given piezometric
head), like ponds or rivers. A second typical case is the “distant boundary”,
where we put the year-averaged value of water level and we assume that the
artificial water operations are far enough from the boundary (or rather, we
define the model boundary far from the place of interest).

Neumann boundary condition
In this case, we prescribe the flux though the boundary

u-v=uyn(x) Vrel,, (1.40)
where uy is given flux [LT™'] (Darcy velocity). We distinguish two physi-
cally different cases: homogeneous Neumann BC (uy = 0) representing an
impermeable boundary (usually a clay or rock bottom) and inhomogeneous

Neumann BC representing e.g. the average precipitation dotations (from the
top) or the operation of some special technical equipments.
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Cauchy boundary condition

The Cauchy boundary condition is the general one, it fact comprising those
two previous as a special case. We can understand it as representing a semi-
permeable layer at the boundary. If the flux through the layer can be assumed
proportional to the piezometric difference on the both sides, we derive

u-v=0(d— dou) in '3, (1.41)

where o is the proportionality factor (in fact a conductivity of the layer,
— K L e SUSEE - g . y - .3
0 = grgmem) and ¢gy is a reference piezometric head, the state outside of
the “boundary layer”.
This boundary condition is used either for representation of real semi-
permeable boundary layers or for more precise representation of the “distant

boundary” (mentioned above).

1.4.2 Two-region solute transport

Since the transport problem is time-dependent, we need both initial and
boundary conditions. In addition, the structure of the conditions is also
given by a non-standard character of the physical problem considered and of
its mathematical representation — there will be a special care concerning the
mobile and immobile zone separately necessary.

In particular: we prescribe the initial condition for both unknowns ¢,, and
¢;, while the boundary conditions are prescribed for the mobile concentration
only. Physically, there is no macroscopical space interaction of the immobile
zone (e.g. between the area inside and outside the boundary). Mathemat-
ically, we deal with a system of one partial and one ordinary differential
equation.

The boundary conditions are constructed the same as for the standard
advection—dispersion problem (e.g. [BV90, Ben95, Kaz97]). Formulation
of physically realistic BC is quite complicated; we consider here simplified
forms, which in fact correspond to the advection-dominated problems.

Initial condition

We must prescribe the initial distribution of the concentration in the whole
domain Q. Theoretically, we can use two independent initial distributions
for mobile and immobile zone, but technically it is impossible to obtain this
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information by measurements. Moreover, the problems solved typically de-
scribe the process starting in naturally steady (equilibrium) conditions and
some artificial operations (drawing wells etc.) change the equilibrium and
start an developing-in-time process.

Since it does not bring any problems to the model formulation and im-
plementation, we consider the more general conditions with two independent
initial functions

Cm(:B,O) = C-;Ou(:B) T € Q: (142)
ci(z,0)=c(z) xeQ, (1.43)

Y (x) and ¢! (x) are given functions, for the mobile and immobile zone
respectively.

where ¢!

Dirichlet condition

Dirichlet BC corresponds to the concentration prescribed at the boundary.
We define for a certain part of the boundary (we do not specify yet the
coverage of the whole boundary I')

em(®,t) = cp(z,t) Vz €'p,t € RT, (1.44)

where cp(@,t) is a given function. The concentration is typically known
(and must be known) in the water flowing from the outside to the domain
of interest. In fact, there is a hidden assumption of advection-dominated
transport — that the eventual dispersion flux in the upstream direction is zero.
In other words, the concentration inside does not influence the concentration
outside (which is required to be given and prescribed by ¢p).

Neumann condition

In contrast to the flow problem, we do not have a correspondence of Neumann
BC and prescribed-flux boundary for the advection-dispersion transport: the
flux depends on both the concentration (advection part) and the derivatives
of concentration (dispersion), which implies the Cauchy BC for the prescribed
flux (see below).

We obtain the Neumann BC in a special case of separated information
about the dispersion flux. This happens in two cases: First, the imperme-
able boundary when the total flux is zero and also both the advection flux
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and dispersion flux are of course zero. Second, when the dispersion negligi-
bly contributes to the total flux — we can apply this assumption in all the
boundary where the fluid flows out from the domain. It means that the
situation outside does not influence the process inside the domain for the
advection-dominated transport. We can also approximately apply the as-
sumption of zero dispersion flux at the “distant boundary” (see above) if the
natural equilibrium state exist there.
The above description implies the homogeneous Neumann BC

(DVc) - v=0 atly, teR". (1.45)

Cauchy boundary condition (remark)

In the basic form, the Cauchy BC represent the prescribed flux
(cv + DVc) v =¢™, (1.46)

a sum of advection and dispersion flux. Typically, this type of BC is applied
for the boundary expressed as a finite thickness layer and the flux ¢ is
expressed by a particular relation, e.g. (see [Kaz97]) by

bnd Dm

qc = thickness (C g, Cexternal) — Cexternal Up , (147)

where u,, is the normal projection of velocity through the boundary and we
assume a well-mixed zone in the outside (constant concentration Cexiernal)-

Definition of the boundary division

As was said in the introduction above, we will use the boundary conditions
in the simplified structure, corresponding to advection-dominated problems.
We prescribe the inhomogeneous Dirichlet BC and homogeneous Neumann
BC and the respective parts of the boundary will be defined by the orientation
of flux (velocity) with respect to the boundary. To distinguish from the
boundary division of the fluid flow problem, we introduce the notation I' =
['in U Ty with clear meaning, rather than the subscripts used above in this
section (see also Fig. 2.1). We pose

v-r<0 = e (1.48)
v-v>0 =E (1.49)
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where the impermeable boundary (homogeneous Neumann condition for both
the fluid flow and solute transport problems) was included to the second
inequality, as described above. In this context, we will use the notation
¢ for the input concentration, instead of cp corresponding to the Dirichlet
condition.

This division is recalled in the section 2.2 concerning the proper mathe-
matical formulation of the problem.



Chapter 2

Mathematical formulation

[n this chapter we derive the mathematically complete formulation of the
physical problems comprised in the model. The equations supplemented by
boundary and initial conditions and the properties of the coefficients are
specified. The model is derived separately for the fluid flow and for the
multiprocess solute transport, both coupled by the function of velocity field
v(x).

The steady potential fluid flow problem is a boundary value problem of
elliptic type. The solute transport with non-equilibrium exchange is a initial-
boundary value problem with terms of various nature: hyperbolic, parabolic
and ordinary-derivatives. Both the problems are solved in an identical space
domain Q C R3 with a Lipschitz continuous boundary 02 = I'. Both the
flow and transport problem contains mixed Dirichlet and Neumann boundary
conditions, but the division of the boundary is different for the respective
problems (Fig. 2.1).

2.1 Fluid flow problem

We consider the steady saturated porous media fluid flow problem, physically
described by the Darcy’s Law (1.14) and mass balance equation (1.16).

2.1.1 Classical formulation

We formulate the problem in a coupled form for both the (primal and dual)
unknowns: piezometric head ¢(x) and Darcy velocity w(ax). The problem is

32
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Figure 2.1: Demonstration of general non-matching division of the boundary
into the Dirichlet and Neumann part for the low problem (I'p and I'y) and
for the transport problem (I';, and 'y ).

given by a system of Darcy law and mass balance equation for € 2

u=—A"Vg, (2.1)
Vo uw—agq, (22

where ¢ represents the density of fluid sources in the medium and A™' =
is symmetric and uniformly positive definite second rank tensor of hydraulic
permeability of the porous medium, i.e. there exists a positive constant ag
such that

aoll€llz < (A7 (z)€, &) (2.3)
holds for all £ € R* and almost all & € Q. Further we assume [A™'(z)];; €
Lo(Q) for all 4,5 € {1,2,3}. The tensor A (the inverse of permeability K)
means resistance and we prefer its use (instead of permeability) because of
further mixed-hybrid formulation.

The boundary condition are given in a mixed form, we divide the bound-
ary into two parts [ = I'p U Ty such that Tp N Ty = 0. The respective
Dirichlet and Neumann boundary conditions are given by

¢=¢p on IDp, (2.4)

ey =—A" ]Vp SHi=x on: Iy (2.5)

where v is the outward normal vector defined (almost everywhere) on the
boundary o) = I
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2.1.2 Mixed-hybrid weak formulation

In order to define the finite element methods for solution of the problem
in the next chapter, we transform the problem (2.1)-(2.2)-(2.4)-(2.5) to the
mixed-hybrid form [BF91, KH90, MRT95].

The mixed-hybrid formulation is based on a division of the domain €2 and
“latent” discretisation parameter h occurs, which already resembles a use of
a numerical method. On the other hand, the formulation does not contain
any approximation and from this point of view we put these paragraphs into
this chapter. This continuous mixed-hybrid formulation is a preparation for
defining the mixed-hybrid finite elements, with element domains identical
with subdomains of the division below.

We denote by &, the set of subdomains of the domain €2, such that for
all e holds

(1] Q- = UGEShE}
(27) Bl v — S =
(1i1) e € &, is open subset of ) with a piecewise smooth boundary de

and by I'j, the set of faces of subdomains e € £, which are not adjacent to
the boundary 9f2p,

I'h = Ugeg,0e — 0 . (2.6)
The discretisation parameter h is defined by (see e.g. [Cia78])
h = max{diam e}. (2.7)
eEsy

Next, we denote the restriction of any function on subdomain e € £, by the
superscript e, i.e. ¢¢ = @|e.

The weak formulation is based on Lebesgue and Sobolev spaces [Rek99].
We introduce the special spaces used for the mixed-hybrid formulation, de-
fined on the subdivisions &, and I'},.

Let H(div,&,) be the space of square integrable vector functions v €
L,(£2), whose divergences are square integrable on every subdomain e € &,
ie.

H (div, &) = {w € Ly(Q); V- w® € Ly(e), Ve € &} (2.8)

with the norm given as

(X

| w llame= (1w 30+ 301V w [, )

ecly



CHAPTER 2. MATHEMATICAL FORMULATION 35

We consider also the space of traces
H3(Tw) = {u: Th = R; 3p € H5(Q), p= e}, (2.10)

where the space H} (1) is defined as H}(2) = {¢ € H'(Q); 79 = 0 on dQp }
and v = @|aq is the trace of the function ¢ € H'(2) on the boundary 092
e = @|r, is the trace of the function ¢ € H'(2) on the structure of faces
1
I'y. The space Hj(I') is equipped with the norm
Il w ||%,I‘,,* }L}lf {lel0; e = pon I'n}, (2.11)
D

1

where |¢]; o denotes the seminorm |¢|;0 = (Vo, V)i .

We finally note that there is no need to define a special “&,-type” of the
Lebesgue space Ly(S2), by the construction above we would obtain the same
space Lo(S2).

To obtain the mixed-hybrid formulation, we integrate the equations (2.1)
and (2.2) over each subdomain e, apply the Green’s formula in a standard
manner and express the flux continuity on coinciding faces of subdomain with
Lagrange multipliers into a third equation. The spaces introduced above are
the appropriate domains for the unknown velocities, piezometric heads and
face piezometric heads (a physical meaning of the Lagrange multipliers A\, p1)
such that all the integrals exist (see also [OL77], [KH90]).

Thus, the mixed-hybrid formulation of the problem (2.1), (2.2) with
boundary conditions (2.4), (2.5) and the discretisation &, of the domain
(2 can be stated as follows:

Find (u, ¢, A) € H(div,Ex) x La(S) x H3(Tx) such that:
Z{ (Au’, w)ge — (6%, V - w)ge + (A%, ° - W) gerr, } (2.12)

fegh

= (¢5, v w)aenon,, Yw € H(div, &),

eGEh
(VU PNoe =~ @ e, WEL(Q),  (213)
ecEy eel
Z(UE . ue, }U‘E>6‘e = Zﬁﬁ\’a ,ue>8eﬂf391v1 V:u = Hg(rh) 1 (214)
665!1 EES,&

In the next chapter, we define the finite-element approximation of the
equations above.
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2.2 Non-equilibrium solute transport prob-
lem
We consider a classical formulation of the problem. In the space domain

Q2 C R® with appropriate regularity and time domain Rj = [0, +00), we
solve the system of equations

a-m 1 5
(_;f Vo (Cm’U) =N (Dvcm) = C*q:_ + cmgs + ;—O‘(Ci A Cm) (213)
de; 1
— = ——Q\C — Cnp), 2.16
ot Tlf”(( 5 ) ( )
for the unknowns
cm(®,t), ci(x,t) €, teR]. (2:17)

Depending on the direction of velocity with respect to the boundary,
we define two parts of boundary 92 = I', one corresponding to the inflow
boundary and one corresponding to the outflow boundary, where the Dirichlet
and Neumann conditions respectively will be prescribed — see the section 1.4.2
for physical argumentation. We define I' = T UL, such that Tyl =10
and

v-v<0 x €, (2.18)
v-v>0 el (2.19)

where v is the outward normal to the boundary and in the second case also
the impermeable boundary (isolated) was involved. We assume that the
function v(z) has enough regularity so that the partitioning is possible to be
done.

The boundary conditions are

o R R — (:ig(a:,t) zel (2.20)
DV (xgl =0 o%c Tar, (2.21)

while no boundary condition is prescribed for ¢;(@,t) because it is bound to
an in fact ordinary differential equation (2.16). The conditions used represent
the simplified model for the advection-dominated process: both express the
state when no dispersion mass flux through the boundary occurs.
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The initial conditions are prescribed for both the unknown in the whole
domain

cnl®, 0 =ck(z) x€q, (2.22)
ci(z,0)=c(z) =xeQ, (2.23)
where ¢ () and c?(z) are given functions (initial distribution of the con-
taminant). In most problems, both the functions are identical as we consider
an equilibrium state at the beginning.
The problem requires the following parameters to be given:

alE), nglE); nile)y, Dz, 2 (22
c*(x) in places, where ¢g; > 0, (2.25)

all considered as inhomogeneous but uniformly bounded by positive bounds,
whereas we are not interested if the requirement is necessary or not (it is
automatically fulfilled for discrete values of real problems).

Remark on existence and uniqueness of solu-
tion

Analysis of existence and uniqueness of solution (well-posedness) for the prob-
lems above (fluid flow and mass transport) is not a subject of this thesis.
Concerning the fluid flow, the question is in fact solved: the existence and
uniqueness of the classical formulation (section 2.1.1) is a classical result in
PDEs, see e.g. [Rek95]; for the mixed-hybrid formulation (section 2.1.2),
the well-posedness is proven in [Mar94a]. The analysis of the problem of
transport with mobile-immobile exchange (section 2.2) is a subject of recent
work, e.g. the uniqueness is presented in [KOO00] (for more general problem
with also non-linear equilibrium sorption involved).



Chapter 3

Numerical solution

We derive now numerical methods for solution of the physical problems of
flow and transport (or their precise mathematical forms in the chapter 2).
Since we deal with composed problem (water flow and various mechanisms
of solute transport including the non-equilibrium interaction), there are two
requirements on the numerical methods used: to efficiently solve each of the
process and to be compatible in the sense that the methods can be used
together without additional interface. Also, we consider the requirement on
the implementation and computational cost in order to be applicable for large
problems with complex geometry.

We applied the mixed-hybrid FEM approximation of the fluid low prob-
lem, the method presented in [MRT95], which came right for the solution
of underground hydraulic problems. For the solute transport, we used an
original approach to combination of the processes of mobile-immobile ex-
change and advection (below), turning to account the analytical solution of
the split MIE problem. At the moment, we narrowed our interest to this
reduced problem (advection and MIE), although the possibility of inclusion
of the dispersion is clear. The reason is to better show the functionality
of the numerical approach and moreover, this approximation confirmed to
be sufficient for real-world problems with strong uncertainty in parameters
(chapter 6).

38
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3.1 Model structure — Choice of methods

We will discuss the present approaches for solution of potential fluid flow
problem, advection-dispersion problem and the ADE coupled with kinetic
(non-equilibrium) interaction. There is extensive literature dealing with the
numerical methods for fluid dynamics and solute transport, from both the
mathematical and applicational point of view (e.g. [ZB95, Hir91] and ref-
erences below). Variants of two basic methods for PDEs are discussed: the
finite element method (FEM) [Cia78] and the finite volume method (FVM)
[EGHO00], both able to be implemented on general unstructured mesh geom-
etry.

Fluid Flow

Taking into account the steady case and saturated domain, i.e. linear el-
liptic problem, the solution methods are in fact differently sophisticated
and accurate variants of FEM and FVM (with in fact similar background
[CRO1, Hir91]), always finally leading to a solution of a system of linear
algebraic equations.

In general, the FVM is algorithmically simpler but needs the special
care for inhomogeneous anisotropic coefficients, e.g. [ABBM98|. In contrast,
FEM can better handle the inhomogeneity for the cost of higher complexity
[Mar94b]. We must also reduce our interest to methods complying the mass
balance in calculation of velocities, which is necessary for connection with
the numerical solution of advection problem.

Mixed and hybrid methods in FEM were introduced to comply that re-
quirements [BF91, KH90, RT77, OL77, MRT95]. Moreover, a large experi-
ence in implementing the method for other problems by the cooperating team
(in the past) was a great advantage [Mar94b, MMSS00, Fry02] and mainly
the possibility to use tailored matrix solvers developed at the Institute of
Computer Science (ICS) of the Academy of Sciences of the Czech Republic
[MRT00, BKTO1].

In the “continuous” form, the used method stands on three functions,
representing the pressure, velocity and side pressures, with a regularity Lo,
H' and L, respectively. In the discrete (approximating) form, the unknowns
are approximated by element-wise constant, element-wise linear and side-wise
constant base functions (in the order above). The solved variables relating
to velocities have a meaning of fluxes through the element sides; these values
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are the desired output as they can be directly used by the FVM upwind
advection scheme (below), if the geometrically identical mesh is used.

1

Advection-dispersion transport

Searching for a suitable method for solving the ADE has been one of the
main interests of numerical mathematics in the last decades, with the results
brought together e.g. in the monographs [Mor96, Kaz97, Hir91, PLO1]. The
principal difficulty in the solution comes from the coupling of the hyperbolic
character of the advection and parabolic character of the dispersion, each
requiring a different numerical approach. Next, since we deal with the time-
dependent (initial value) problem, it automatically means further necessary
care for stability.

In the terms of FDM (FVM and FEM often adopt the approaches and
behaviour known at FDM [Hir91, ZB95]), the classical approach is the use
of either upwind or central flux approximation scheme, each having the well-
known troubles: numerical dispersion or artificial oscillations respectively.
The existence of one of the undesired behaviour mentioned is typical for
most of the more sophisticated schemes of higher order or with some ways
of compensation [CGMZ76, Mor96]. The next thing of discussion is time
discretisation and related stability conditions and choice of implicit /explicit
method. Implicit methods provide better stability, but in practical problems
only for separate dispersion are applicable [Hir91, MMS96]: the presence
of advection leads to a non-symmetric matrix, which solution can be very
difficult for large systems.

A natural way how to handle the “antagonism” of advection and dis-
persion is the method of operator splitting [CM80, KL98, KLN*01, DRS2,
Fro02]. The ADE is split into two equations, leading to a possible use of
independent numerical methods of advection and dispersion with better op-
timization for each process, namely lagrangian methods for the advection.

Extensive study was performed on the lagrangian methods (particle-
tracking; in contrast to the eulerian considered above) for the advection,
in connection with the operator splitting [DR82, KvK01]. The methods in
general can work well if the mesh and velocity field are in good correspon-
dence [CFH99], in particular if we always move exactly to the mesh points
with the time steps. Otherwise, due to the necessary interpolation, the same
problems of numerical dispersion or oscillation appear (depending on the or-
der of interpolation) [Fro02], but with substantial advantage of absence of
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the time-step-restricting stability condition.

In the submitted thesis, we do not intend to improve the methods for
calculation of advection and dispersion. For the implementation we use a
basic approximation of advection, we regard it as a background for showing
the use of operator splitting and the analytical method for MIE (below),
whose combination is the original result of the author.

The advection is solved by explicit upwind scheme in FVM, which pro-
vides mass balance even in the simplest cell-centred approximation. This
kind of discretisation is appropriate for transport in complex groundwater
velocity field resulted from numerical computations and thanks to the low
computational cost, it is applicable for large systems (even if limited by the
stability condition and time step constraint).

Mobile-immobile exchange

Various new methods and improvements have been done for the transport
with additional interactions in the ADE. The effort is aimed to both the
non-linear equilibrium ([KvKO01]) or non-equilibrium (mostly linear yet) mod-
els. The problems based on kinetic/non-equilibrium two-region or two-site
model have been numerically solved quite recently. The common way of
using Laplace transform FEM [XB95] is compared with other approaches
in [GPG96]. The methods proposed are quite complicated as they consider
the equations with all the terms of ADE, (with expected consequence in
troubles for uncommon combinations of coefficients). An idea of separation
of the advection-dispersion and kinetic exchange was presented by [vIKK96]:
to the result on non-interacting transport calculation (by any method for
ADE) is applied and analytically expressed integral transform reflecting the
non-equilibrium interaction during the time-interval calculated.

In contrast with the method of [vK96], we apply the standard method of
operator-splitting for ADE, considering the non-equilibrium exchange as one
of the split processes, turning to account a possibility of simple analytical
solution of the problem of exchange. The transport problem is solved in time
steps and in each time step the processes of advection, dispersion and MIE
are successively calculated. In this sense, the presented approach admits a
use of any numerical method for advection and dispersion working with a
fixed mesh.

The operator splitting is applied for separation of adsorption processes in
the recent work of other authors, in [KF02| the problem of non-linear equi-



CHAPTER 3. NUMERICAL SOLUTION 42

Fluid flow
model

Advection — Dispersion —— M-| exchange—|

Solute transport model

Figure 3.1: The scheme of the overall model structure: communication of
the flow and transport model and operator splitting in the transport model.

librium adsorption is solved and in [Rem03] the non-equilibrium non-linear
case. Due to the necessary special care for the non-linearity, the methods are
limited to specific small-scale problems.

Proposed model structure

The structure of the model (communication of the numerical methods for
each process) is schematically expressed by Fig. 3.1. The results of the fluid
flow model (velocities or fluxes) are the input values for calculation of the ad-
vection. The solute transport model is composed of three parts, sequentially
running in a time-loop according to the principle of the operator splitting.

As specified below, there is a joint discretisation mesh for all the parts,
in the flow model representing the finite elements, in the transport model
representing the finite volumes. The discrete values of fluxes resulting from
the MH-FEM are directly used as the input value in the scheme (3.81), which
is convenient when operating with large unstructured meshes.

The operator splitting (section 3.3) is formulated for the general prob-
lem of advection, dispersion and mobile-immobile exchange. For practical
realisation, we considered simpler model, containing only the advection and
the exchange and particular methods of solution are discussed for these two
processes (sections 3.5 and 3.6). In this way, we demonstrate a function of
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this kind of process splitting, whereas a use of full model with dispersion is
also possible in the proposed overall model structure.

The models of “pure” advection are often a sufficient approximation of the
advection-dispersion processes, taking into account the substantial difference
in computational cost.

3.2 Mixed-hybrid FEM for the fluid flow

We solve the problem of steady saturated porous media fluid flow defined in
the previous chapter 2. We recall the classical form (2.1)—(2.5)

U= _A——lv@? (31)
V-u=ygq, :

for the unknowns u(x) and ¢(x), = € 2, with boundary conditions
¢=¢p on [Ip, (3.3)

u-v=—A'Vp-v=uy on Ty, (3.4)

where 9 = I'p UTy and v is the outward normal of the boundary and
the mixed-hybrid formulation for the unknowns (u, ¢, A\) € H (div, &) x

L2(9) x H3(Ty):

> {(Auf,w)oe — (6%, V - w)oe + (A, V" - w)gerr, } (3.5)

ecly
— Z D! v we 8&0695: Yw € H(div, &),
ec&y
-V e = = Y (@5 e WELR),  (36)
ecEy ecly
1

S U udse = 3 (s ianonys VB € HATY),  (37)
ecty e€Eh

al
where the spaces H(div,&,) and H}(I',) were defined by (2.8) and (2.10)
respectively.

Now we define the finite-element approximation of the mixed-hybrid for-
mulation with the lowest-order base function. To express the approximation
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of the H (div,&),) we need to consider a particular shape of the element. We
briefly mention the necessary facts concerning the element shape and mesh
structure, a detailed description will be given together with the description
of the model implementation (section 4.1).

3.2.1 Discretisation of the domain

We assume in general the domain 2 to be a polyhedron. In this section, we
consider that the domain is subdivided into a system of trilateral prismatic
subdomains e (coincident with the subdivision, which the continuous mixed-
hybrid formulation is based on), each having vertical lateral faces and non-
horizontal bases.

For real-world problems, it is necessary to consider more general shapes
to appropriately discretise edges of the model boundary and an irregular
structure geological layers. In section 4.1 we define degenerate elements for
the mentioned prisms, where either one or two couples of points connected
by a vertical edge merge (Fig. 4.1).

We will assume that the mesh is strongly regular, i.e. there exists a
positive constant ¢ independent of the mesh &, such that

he
max— < (¢, (3.8)
e€€n Pe

where h, = diame and p, denote the maximum radius of a ball inside the
element e.

We assume the discretisation is compatible with the boundary conditions
prescribed, 1.e. both I'p and I'y are unions of some faces of elements e € &,
(we recall h the discretisation parameter (2.7)).

3.2.2 Approximation spaces

The velocity function w(x) € H(div,&,) will be approximated with the
vector functions linear on each element e € &},.

We first define the approximation functions on a single element. For
each element face, we can define a vector function whose flux through that
face is equal to one and through the other faces is zero. Thus we have a
five-dimensional Raviart-Thomas space for each element

5
RT(e) = {w’ | w'(z) = ) _ Bws(x), x € e}, (3.9)

=1
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where 3; € R are the coefficients of linear combination and w$ are the base
function determined by the condition of flux

/u;-wfd,S: bijy HJ=1,...,9. (3.10)
Jge

Here f; denotes the j-th face of the element e and u; its outward normal
vector (with respect to the element €). The system of functional equations
(3.10) generates the unique set of base vector functions w¢ as proven In
[Mar94a.

Considering the prismatic element shape used for the implementation
(chapter 4, Fig. 4.1 and Fig. 4.3), we can parametrically express the base
functions in the following way:

0 0
3 e (1 S €
ws = k3 0 , W5 = ks 0 5
Tt (_15?3 g Ctsg

P € e s €

T1 — O Eiae i s ey

EE - fiE P e e A T Loe wiue

wi=ks | T2—af |,wi=ki| Ty—afp |,ws=k3) 22-0a5 s

~E, e el e € 57 vl
Y3Z3 — Q33 V4T3 — Qg3 V5Z3 — Ois3

where the coefficients of;, 77, and ki have to be determined by the above
property of unique flux through the corresponding face (3.10).

Now we can define the approximation space of functions on the whole
domain ) (the system &, more precisely) as a combination of the functions
on each element. The Raviart-Thomas space (see also [RT77])

RT? (&) = {wy € L*(Q) | wi € RT (e), Ve € &y} (3.11)

is a space of vector functions linear on each element, an approximation of
H (div,&,). We note that in the case of nonparallel bases, these functions
are not continuous across the inter-element boundaries I'), and thus not nec-
essarily contained in H (div, ().

The definition of approximation spaces for the piezometric head ¢(x) €
L,(§2) and for the trace of piezometric head on faces (Lagrange multiplier)
1

A € H}(T',) will be relatively simpler. Both will be approximated by element-
wise or face-wise constant function respectively. We denote M%(e or f) a
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space of constant functions either on an element or on a face, i.e. with the
base functions of the form

wlel=1"acearf (3.12)

Then the space of element-wise constant functions for piezometric head is
defined by

M, (&) = {¥n € La(Q) | v € M°(e), Ve € &} (3.13)

The space of face-wise constant functions for the piezometric head on a face
is defined by

ML = D> Rl e MU P YfeT, ! (3.14)

Finally we express the discrete representation of boundary conditions. For
both Dirichlet and Neumann BC we define the approximation by piece-wise
constant functions ¢py and uyy from the space M, (992). The functions
must satisfy

]f Gns—dp)dS = el (3.15)
ff (s ba)ds = 0 PheTy (3.16)

where ¢p and uy are the boundary conditions of the original problem (3.1)-
(3.4).

3.2.3 Discrete formulation

We obtain the discrete MH-FEM formulation of the problem expressing the
system of equation (3.5)-(3.7) in the finite-dimensional approximation spaces
RT" (&), M°, (&) and M° (L) instead of the original H (div, &), La(S)
and Hé(l—‘h).

The problem is given by the following system of equations for the triplet
of unknowns

(uhatha’\h) & RT[_).l((c:h] X ﬂfﬂ](gh) X ﬂ’f?.l(r‘h) : (31?)
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Z{(Auha wh.)(l,e =7 (fﬁm V- wh)O,e = ()‘h.: Ve - wh)&?eﬂrh}

eEEy
=S " (¢pn, V- whYoer, VYwy € RTZ (), (3.18)
ecéy
= Z(V - up, Yn)oe = —(qn, Yr)oa  Vn € M2 (En), (3.19)
ecEy
Z(Ve - un, fn)oe = (unp, pn)ry  Ypn € M21(Th), (3.20)
ecEy

where the boundary conditions are incorporated by functions ¢p j and uyp
and by the choice of I'y,.

Expressing the integrals (scalar products) in the system (3.18)-(3.20) for
the base functions, we obtain an equivalent system of linear algebraic equa-
tion with a specific structure. First, we introduce some necessary additional
notations:

We define a numbering of the elements ¢; € &, , j = 1,...,J covering the
domain €2, i.e. U';Zl e; = . Since we have five base functions w¢ for each
element e, the space RT? (&) is (5.J)-dimensional and we denote I = 5.J
and a numbering of the base functions u;, ¢ = 1,..., 1. Finally we numerize
the inter-element and boundary faces: we consider I';, a system of faces f,
E—=1 . K.

We express the approximation functions wy, ¢, and A, as a span of the
base functions in the form

uh(m) = Z Uf.wt'(m)s (fﬁh(w) e Z(I)jwj(m)a T € QJ (321)

i€l jeJ

Anl) =Y N (e)lfc c Ty (3.22)

where we introduced the coefficients U;, ®;, and Ay, which will be the un-
known of the algebraic system and their physical meaning is clear: U; is the
flux over the correspondent face (i-th), ®; is the piezometric head in the
center of j-th element and Ay is the piezometric head in the center of k-th
face in I'j.

We denote the algebraic structures

U = (UasislUn)e 40 =100yl M=V SN (3.23)



CHAPTER 3. NUMERICAL SOLUTION 48

and
Aj; = (Aw;, w;)on =1l g= L (3.24)
Bij:ﬂ(v'wial)ﬁ.t‘.j ?::1!'-'1!1.?.:1!"':'}1 (325)
= (wpan;, 1) e IR s (3.26)

Concerning (3.26), we must specify the orientation of the outward normal
vi. We naturally define it to be outward with respect to the element cor-
responding to the support of the base function w,;. We easily see that B;;
and C;; express the topology of the system, they contain either zeros or ones
depending on the correspondence of elements, faces and base functions. The
matrix A;; contain the physical information — the resistance of the medium
and is block-diagonal with 5 x 5 blocks corresponding to the elements.
The right-hand side vector is composed of three parts

[a1)i = —(@Dn, Vi - Vi)oas =l (3.27)
[QQ]J == _(Q'.I]‘)O,EJ JI = 11"':J1 (328)
[q3]k = (UN‘h,ka k= 1,...}K. (329)

where the outward normal v; is understood as in (3.26).
Substituting the base functions into the system (3.18)—(3.20) and using
the notation just above, we derive the linear algebraic system

A B C U )
B! d|l=1q]. (3.30)
CT A {3

As a consequence of the symmetry and positive definiteness of the per-
meability and resistance tensors (2.3), the matrix block A is also symmetric
positive definite (SPD). For 9Qp # 0 the matrix (B|C) € R//*K defined by
(3.25) and (3.26) has full column rank, i.e. rank(B|C) = J + K, for proof we
refer to [MRT95]. Thus the algebraic system (3.30) has a unique solution.

Overall, the matrix in (3.30) is symmetric and indefinite (and of course
sparse, as typical for the discretisations of PDEs). Methods for solving this
type of system are discussed e.g. in [MRT00]. The solver used in our com-
putations is based on Schur-complement reduction and conjugate gradient
method, tailored for the specific matrix structure (3.30) (author M. Tuma,
Institute of Computer Science, Academy of Sciences of the Czech Republic).

Some further information concerning the implementation of the mixed-
hybrid flow model and the user interface are given in chapter 4.
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3.3 Operator splitting for the system of trans-
port equations

We first define the operator-splitting (OS) time discretisation for the general
problem of advection-dispersion-exchange (ADX) transport (2.15)-(2.16). In
the next subsection, we formulate a simplified problem, whose numerical
solution is described and realised — as stated in the introduction, we solve
the problem of advection and exchange as a first approximation and test of
suitability of the OS method for non-equilibrium exchange.

3.3.1 Definition of OS for the general ADX problem

The system of equations governing the transport (2.15)—(2.16) can be written
in a transparent operator form. When we define the couple of unknown

concentrations
@
= ( = ) ) (3.31)
Ci

we can write

0
5‘; = A(e) + D(c) + X(c), (3.32)
where the operators of advection A, dispersion D and exchange X’ are defined
as follows
e * ot g
Ale) = ( \% (Cm"-’) 'BC q" +Cmq ) 1 (3.33)
e (D m c
D(c) = ( - (0 Vem) ) , (3.34)
_—l—-az (ci —cm)
X(c) = ”ﬂl* : (3.35)
——a(c; — cm)
n;

and the initial and boundary conditions stay in the unchanged form.

To split the processes mentioned to separate equations (see [KL98, CMSO0,
KLN*'01]), we consider a time discretisation with constant steps At (without
loss of generality):

th=n:4¢t neN. (3.36)

The solution of the equation (3.32) in an interval [t,;t,,,] can be replaced
by a successive solution of the following initial value problems:



CHAPTER 3. NUMERICAL SOLUTION 50

J

i s EECA — -ACA cfl(tn: :I:) — C(tm :I:), (337)
Cf‘i(tn—He :B} E_[ -Aé-t cfi(tm 33] y
0

2, B‘;CD = Dep cp(tn, ®) = esltni, ) (3.38)
Cpltn i1, ) e Denlin.®)
0

3 (,—)ECX — Ex(tn )= cplini1, 2], (3.39)

df
C,\'(tn-l-l ) :B) = Xeﬁt Cx (tna m) )
i C(trH—ls .’.C) = CX(t'ﬂH-la 33) .
The solution in an arbitrary time step can be expressed by a symbolic nota-
tion of “solution operators” in this way:

el .zl —tuo DuoAglt ezl (3.40)

0
where ¢y = (‘;"3) is the initial condition of the overall transport problem (see

(2.22) and (2§3)) We remark not to confuse the notation of the “differential”
operators A, D, X and the “solution” (evolution) operators Aa¢, Dat, Xar;
using the notation of [KL98|, their relation is

Aat = exp(AtA) and by analogy for D and X (3.41)

and the use of the OS method is in fact a representation the following ar-
rangement (approximation) of the exponential function

exp(At(A+ D + X)) =~ exp(AtA) exp(AtD) exp(AtX), (3.42)

where the solution of (3.32) without use of OS is on the left-hand side.

This OS time discretisation is general in the sense that an arbitrary meth-
ods of solution of the split problems (3.37-3.39) can be used, e.g. both nu-
merical and analytical.

Boundary conditions

An important and non-trivial matter are the boundary conditions for the
split problems (3.37-3.39). In general, we cannot simply use the boundary
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conditions of the original unsplit problem, because we could lose the well-
posedness.

If we consider our advection—dispersion-exchange problem with simplified
boundary conditions (as stated in 1.4.2 by (1.44)-(1.44) and recalled (2.20)-
(2.21)), we can derive the boundary conditions for the split problems by
physical consideration. We deal with a boundary composed of inflow I'y, and
outflow (involving the isolated) Iy, with a Dirichlet and Neumann boundary
conditions respectively:

em(®,t) = c?(x,t) @ €Tly, (3.43)

“m

DNe(wtl v =20 2 e o, (3.44)

where 'y, and [,y are distinguished by the sign of v - v (see above (2.18)-
(2.19)). Both the conditions express the fact, that the mass is transferred
through the boundary by advection only (which is a natural expectation for
advection-dominated problems). In fact, the Dirichlet boundary condition
on ['j, implies the validity of the homogeneous Neumann BC (3.44) also on
the part [, (no dispersion flux against the incoming advection). Thus we
can define the following BCs for the split problems:

' enl®, 1) = i (x,1) in Ty

-QCA :ACA with ( ; ) l(_ ) . ‘ (345)
ot nothing prescribed in 'y ,

ch =Den awith  DNe {2 ) =000 8 il e (3.46)

Of course, there are no boundary conditions for the unknown immobile
concentration ¢;(x,t) and for the split problem of exchange (3.39), %cx -
Xey, because the ODEs and initial values problems only are concerned. It
physically expresses the fact, that there is no macroscopic space communi-
cation in the immobile pore zone (see also section 1.4.2).

3.3.2 Split equations of the numerical model

We rewrite the split equations (3.37-3.39) in the detailed form and define the
problems as will be numerically solved in the following two sections 3.5 and
3.6. In contrast to the previous subsection, where the full problem of ADX
was considered, we solve the problem of advection and MIE only (without
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dispersion) as stated in the preamble of this chapter, i.e.

a “TTL ]'
';t + V- (cmv) = c*qf +cmg; + —L—a(ci — Cm) (3.47)
o,
de; 1
s e (3.48)

with boundary condition
en(@ ) =c(z,t) zEln={zrel|v-v<0}  (349)

and initial conditions (2.22)-(2.23).
According to the notation of the split problem above, we denote

A x
el (E’:) and ex = (Z’;) 3 (3.50)

In the time step (¢,,%,+1), the two problems below are solved in sequence:

The advection problem is given by the system of equations

ac;?l A * _+ A _—
o i —Viw-c ) tiehg tie . q (3.51)
dc

ot

with boundary condition

= (3.52)

CA ($,t) = Ci?;,(m?t) TE Fin} t e (tﬂd tn+1) (353)

T

and initial conditions (V& € 2)

0
a e () forn=0 i
Cm(:c-, t’l’i,) &= { o) m,tﬂ) f()I‘ 1 Z 11 (304)

0
. % ez forim =10 o
Gz { cilr. ) forn>1, (3.55)

where we distinguished between the initial condition of the problem solved
(n = 0) and result of the previous step of the OS time discretisation (n > 1).
We denote the results of the advection problem solution

C;:l(matn-i-l) and C?(ﬂ:,tn_;.]) ) (356)

where trivially holds e(x,t,,1) = c¢(x,t,) in the immobile zone.
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The exchange problem is given by the system of equations

(ch' 1 A' A’ ¥ -~
e 142 ale: =c); (._)).f_]l)

. = ey =Cn)

de* INEral $oe v

— = ——oafc —c), 3.58

dt n-!' lf'( 1 m) ( )

where we use ordinary derivatives instead of partial of the original equation
system. The initial conditions are

(@ t) = A tarr), (3.59)
Gilait,) o (i s (3.60)

where x € ().
The final solution of the time step concerned is given by

Cm(matﬂ-l-l) = C;};(m:\tﬂ-}-l) (361)
G T )= cf(:x:,tnﬂ] (3.62)

for & € () and the time point named.

3.4 Finite-volume space discretisation

We define the finite volume discretisation for the transport problem (3.47)-
(3.48) (advection and MIE). Both the split problems above will be solved
using joint space discretisation and joint discrete values (no interpolation).
We will use the standard cell-centred finite volume method (FVM), where
the unknown quantity is represented by values in centres of cells (see [Hir91,
EGHO0] for details). The volumes (cells) are geometrically identical with the
finite elements used in the flow model, thus we can directly use the values of
fluid fAlux through cell sides (discrete results provided by the MH-FEM flow
model, section 3.2) in the upwind scheme of advective transport (section 3.5).
The space discretisation is thus primarily tailored for the solution of the
split advection problem (in fact, also the time discretisation to comply the
stability condition, see section 3.5.2), while for the split problem of mobile-
immobile exchange has a secondary importance. Since the scheme for MIE
(below) is constructed from analytical solution of the problem, there are no
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special requirements on the space discretisation. It handles values associated
with a space point without regard if these are discrete values or values of a
continuous problem in the point.

In this chapter, we describe the method without regard to the topology of
space discretisation, for arbitrary polyhedral cell shape. The formulation for
a particular mesh shapes and topology is not essentially different and some
implementation-specific points are discussed in the chapter 4.

3.4.1 Definition of finite volumes

First we define the system of discrete volumes (cells) covering the problem
domain Q [EGH00]. We denote K the set of subdomains Vj such that

Vi =Q and (3.63)
VieK

V;nVi=0 VYV, Viek,j#k, (3.64)

where V} is understood both as a cell itself (a set) and as a volume of the
cell (in cubic meters), depending on the context.

For practical reasons, we pose some common additional requirements on
the system K concerning the boundary conditions (BC) and source/sink func-
tion. We assume, that the boundary between different type of BC matches
the boundaries between cells V. In the case of sources and sinks, each par-
ticular cell V. contains either source or sink only.

We consider the cell-centered representation, which means that the un-
known concentration is approximated by one value C* assigned with each
discretisation cell Vi, i.e. we either regard C,’; as a mean value of ¢, in the

volume V. 1
k i
C, = ——k cmdV (3.65)

Vi

or we consider the C,fft as an approximation of ¢,, by a cell-wise constant
function (in the style of “finite elements’ ” base functions). In the two region
transport model, we deal with two discrete values associated with each cell
Vj: mobile concentration C% and immobile concentration C¥,

To define the numerical scheme clearly and for precise incorporating of
the fluxes (results of the MH fluid flow model), we consider the domain Q
to be a polyhedron and the cells Vi € K with the following properties (in all

the text below):
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e each volume V} is a polyhedron,

e the faces match so that each face is either part of the boundary or is
joint for just two cells,

e the compatibility of the discretisation with boundary conditions is au-
tomatically fulfilled as the division between I'j, and T’y is defined by
the discrete results of the fluid flow problem.

We consider the mesh as unstructured: we index the cells by the single
counter k& and we define the index set of neighbour cells Ny for each V; (the
set of cells having joint face with Vj, but Ny contains numbers).

Further we define the notations for discrete values of other quantities in
the equations and resume:

C*  mobile concentration in the cell Vj

C* immobile concentration in the cell Vj
Ujr  flux from V; to Vi through the joint face (volume per area and time)

e = / vdS (outward normal with respect to V;)
VNV,
@, total sink flux in Vi, ie. Qp = ‘[‘k g; or @ = 0 if sources exist in V;
Q{ total source flux in V4, i.e. Qf = ka g+ or QF = 0 if sinks exist in Vj

3.4.2 Operator splitting in the space-discrete form

Now we also incorporate the notation for the time discretisation to the dis-
crete values of unknowns. In contrast with the notation of split problems
(superscripts A and X), we introduce the common clear notation of “sub-
steps’: in a particular time step (t,;t,+1), the point n means the initial
value, the point n +  means the result of the first split problem (advection)
after the time At, and the point n + 1 means the result of the second split
problem (MIE) after the time At:

Lt Cﬁz,i(-a tn) (3.66)
C:::;E = Cﬁt,i(‘! tn+1) = C;?;‘i(': tn.) ) (36?)

C”'H ~ c;};’i(_1t71+1)_ (368)

m,i
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Compiling the notations of space and time discretisation, we can schemat-
ically express the calculation in the following way:

k. advection
(9 g S I =

where we recall k£ the cell index, m and i denote the mobile and immobile
n+3
i

k,n+1 k,n+1| exchange k.n+1 k,n+1
Cm 2; C : __}g Ci,”+ ? CI‘TH_ ) (369)

1

zone. We remark that C
pores).

This full determination of the value is rarely necessary. For readability,
we will use only the notation significant in the context, e.g.

= C", due to no advection in the immobile

Cr =g (3.70)
in the advection calculation (in the mobile zone only) and
Gy =T (3.71)

in the exchange calculation (when a single particular cell is considered).

3.5 Calculation of advective transport

3.5.1 Numerical scheme

We derive the explicit scheme with upwind flux approximation, which is the

basic approach for problems of advection type (1%-order hyperbolic) and

complies with the physical nature of the problem [Hir91, ZB95, Kaz97].
First we express the finite volume formulation of the advection equation

oc,

ot

Integrating over arbitrary discrete volume V; and using standard treat-
ment by the Gauss’ theorem, we obtain'

=-V(v-en)+cqf +cmg; . (3.72)

g—t[(:mdlf = — f e - dS + [(C*q:’ + cq, )dV (3:73)
Vi

AV Vi

'n fact, the physical derivation of the equation start for the integral form (3.73) (on
elementary volume) and we obtain the equation (3.72) by a reverse procedure.
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where all the terms now have to be approximated by discrete values in mesh
points.

The space integrals are immediately represented by the cell-centred val-
ues of concentrations and source/sink intensities (according to the simplified
notation (3.70))

] cnd¥ =300 / cmq;, dV = ViCrQy ] et gtdV = Vi CrQ7
Vi Vi Vi

(3.74)
where Cy represents the injected concentration (given as an input value to-
gether with BCs) into the cell Vj

Cr = _1_ /c::ndv. (3.75)

There are two substantial points which create the features of the numer-
ical scheme: the representation of the time derivative and the representation
of the surface integral (flux approximation).

Using the forward difference for the derivative

1
g 2 ]

[
~

ot At

(3.76)

the scheme will be explicit.

By the approximation of the surface integral in (3.73) we express the mass
flux through the cell boundary, i.e. the actual transport of the solute. We
use the upwind (donor-cell) flux approximation: the solute flux between two
adjacent cells is calculated using the concentration C¥ in the cell which the
fluid flows from:

flux[j — k] = CyUy; if Uy; > 0 (from Vi to V}), (3.77)

flux[j — k] = C;Ux;  if Uy < 0 (from V; to V4). (3.78)

For convenience, we denote the distinction of the flux direction by the
signs + and —:

Ujk for Ujk =30

b 0 forl, <mp 0 eswellforUg (3.79)
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(in accordance with the common notation for positive and negative part of
function).

Thus the surface integral (total flux) can be expressed as a sum of fluxes
through faces with neighbouring cells as follows

f emv-dS = 3 (UECE + U5CD) . (3.80)

avi, JEN}

ey : : +1
Substituting into the equation (3.73) and expressing the unknown C: 5
we obtain the scheme

nrl jays =
i+ vikly Y WHCE +ULCH + CrQ; +CRQY].  (3.81)

] =3
JEN;

Since the values Uj; are calculated by the mixed-hybrid FEM approxima-
tion, the relation Uy; = —U;; automatically holds, implying the overall mass
balance in the domain 2.

3.5.2 Stability

The explicit upwind scheme for advection equation is not in general stable
and requires to fulfill a certain additional condition. The condition expresses
a natural physical consideration, that during one step, the total fluid flux into
a cell must not exceed the volume of cell, because it would correspond to a
situation, when the fluid cross more than one cell in one time step. In case
of solute transport, it would mean that the concentration in the cell would
have to influence farther cells than the only neighbouring as the scheme do.
By contrast, the scheme would cause an unnatural change of concentration
in the neighbour cell in the direction of flow (“overflow” of the cell).

In 1D, the above described principle is expressed by a well-known con-
dition, often called CFL condition(Courant-Friedrichs-Levy), between mesh
size, time step, and fluid velocity

vAt
r=— <1, (3.82)

N
where the expression on the left-hand side is called Courant number (Cr).
For a numerical method, this is usually a restrictive condition on the time
step, while the velocity and mesh are given.
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For our 3D model, we must state a more general form of the CFL condi-
tion, using the idea in the opening paragraph. Without regard on a possible
dependence of the conditions, we express the “non-overflow” condition for
both outflow and inflow at each cell

At) UL <V and AtY (-Up)<Vie VkeK.  (3.83)

FEN; JEN;

As was said in the previous paragraph, the condition (3.83) is a restriction
on the time step At which must not exceed certain value.

For 1D case and uniform mesh, we can easily find such a limit from
the inequality (3.82). The practical compliance of the more complicated
relations (3.83) is performed successive halving of a user-given time step and
repeated checking all the cells until the condition holds is the whole mesh.
We can obtain a immediate rough information about the necessary time step
using the relation (3.82) for 1D and substituting an estimation of maximum
velocity in the mesh and the minimum volume of a cell in the mesh. Such
an estimation is adequate and reasonably exact, if the places with maximum
velocity and smallest cell dimension coincide.

In practical problems, the meshes are often constructed appropriately to
the expected distribution of flow — they are finer in the neighbourhood of
drawing and injecting wells, where maximum flow variations are expected.
This implies that the large velocities are in place of small cells and the CFL
condition is more restrictive because of quite few smallest cells while in the
most of the domain Cr < 1.

The question of relation of mesh geometry, velocity field and distribution
of Cr is further discussed in connection with the numerical dispersion, which
is mainly influenced by them. See also the example of real-world problem
(section 6.2.1, Tab. 6.1).

3.5.3 Estimates of numerical dispersion

As said above, the use of the explicit upwind scheme (no matter whether
FDM or FVM is concerned) for the advection equation brings so called nu-
merical dispersion into the method and results (see also e.g. [Hir91, Kaz97]).
The term numerical dispersion denotes the fact that the numerical discreti-
sation causes that the results of advection resemble a solutions of advection-
dispersion problem.
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The “amount” of dispersion caused by the numerical method depends on
both the numerical method and physical parameters of the solved advection
equation: mesh cells dimensions, time step and fluid velocity field. The exis-
tence of the numerical dispersion is clearly seen if the difference replacements
of the space derivatives are expressed with a term of one more order in the
Taylor expansion: the term with second order derivative standing for the
error of the 1-st order approximation of derivatives represents the dispersion.

[n special cases, we can express the numerical dispersion by the equivalent
coefficient D in the ADE. The most simple case is 1D problem with constant
fluid velocity (without sources and sinks, in homogeneous material), solved
on a uniform mesh. The dispersion coefficient can be derived using the Taylor
polynomial representation and we obtain the formula (see [Odm97, ZB95| for
details)

It
) §UA:1:(1 - Cr), (3.84)

where Cr is the Courant number mentioned above by (3.82).

Without exact proof or derivation, we express a natural generalisation
of (3.84) for general velocity field and nonuniform mesh: We replace the
definition of Cr for 1D by a fraction of left-hand and right-hand sides of the
inequalities (3.83) f
At;ezka Uy,

Vi
For use of the relation (3.84) we also need to define the mesh step Az in a
suitable way. We can use any characteristic dimension of a cell instead of Az,
e.g. the diameter or the distance of cell-centres (if the mesh is approximately
uniform and we can associate the distance with both the neighbouring cells).

Thus the coefficient D, is inhomogeneous, i.e. dependent on a chosen
cell. Since we started from a one-dimensional relation, we do not have any
information about the anisotropy of the numerical dispersion, which is in
general very complicated. Based on the experiments in the section 5.2 we
can briefly characterize the influence as the relation Dy, mostly controls
the longitudinal numerical dispersion, while the transversal is given by the
geometry of mesh and velocity field.

Justness of this idea as an estimation of the dispersion in general case will
be confirmed by the numerical experiments in the chapter 5, where the results
of a few problems with nonuniform mesh and velocity field are compared with
analytical solution of ADE.

Cii— (3.85)
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We can give clearer approximate relations for numerical dispersion taking
into account possible special properties of mesh and velocity field.

e For mesh and velocity exactly uniform and suitably oriented, the Courant
number is the same in all the cells and for given mesh and velocity, we
can control the value of dispersion by a choice of time step (i.e. setting
Cr) within the limits Dy, = 0 for maximum possible time step and
Dpym — %’UA.T = DM for At very small.

num

e For mesh adjusted to the velocity field (see previous section), the
Courant number is higher than 3 in very few cells while in the most of
the mesh Cr < 1. This implies that Dy, ~ DR2* without regard on
the choice of At.

Relation of physical and numerical dispersion

Thanks to numerical dispersion, the results of the advection model appear
more “realistic” in the context of coarse approximation of the advection-
dispersion process by pure advection, but the practical use of this fact is
complicated. The numerical dispersion depends on the space and time dis-
cretisation and we cannot expect that it will exactly match the physical
dispersion, including its anisotropy.

Problems are also met in the context of advection-dispersion models,
when the physical dispersion coefficients are proportionally reduced according
to the numerical dispersion [ZB95]. Another complication relates to solution
of inverse problems: if the direct problem is solved by a method with nu-
merical dispersion, it is impossible to identify the real coefficients of physical
dispersion.

On the other hand, in many applications, the exact representation of the
dispersion is not required. The estimates of numerical dispersion can be used
as an a-posteriori check of accuracy of the model: for given mesh and time
step, we can compare the numerical dispersion with expected physical and
decide whether the results are satisfactory or not.

As a special case in 1D (and also other problems with suitable symme-
try), it is possible to match the physical and numerical dispersion, using the
formula (3.84). Since the dispersion coefficient (only longitudinal in 1D) is
calculated by the product apv, where o is dispersivity, we observe, that the
rest of the terms in (3.84) stand for the dispersivity. Considering the special
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case Cr < 1, when the numerical dispersion is Dyym = %'UA;L; we can identify

Az

c
We apply this consideration conveniently in comparisons of numerical results
with analytical solutions (section 5.2. It is also interesting to remark, con-
cerning the underground problems, that the values of dispersivity and mesh
sizes have appropriate order of magnitude: 10° — 10? meters [ZB95].

nurmn
'y ~
g

(3.86)

3.6 Mobile-immobile exchange

For expression of the mobile-immobile exchange, we derived a semi-analytical
method. The operator splitting in the system (2.15)-(2.16) leads to a solution
of two coupled ODE in a given space point (or discretisation volume) in each
time step of splitting. We recall the system (3.57)-(3.58)

gen 1
Tt ;;@(Ci —Cn) (3.87)
dCz' 1

=S _‘aa(ci B ol (3.88)

which can be easily analytically solved and thus it can give a numerical
scheme for time step of arbitrary size.

3.6.1 Solution of the split problem

Summing the equations (3.87) and (3.88), we obtain the property of mass
balance
NmCm + NiC; = const = ¢ (N, + n;), (3.89)

where we denoted the weighted average value of concentration ((n,,+n;)Vrgve
is the total solute mass in REV). Substituting for ¢; from (3.89) into (3.87),
we obtain a single ODE for the unknown ¢, (t)

de c(np + n;) — npe
n"m . _d_;.ﬂ = - ( m :Li m-im = : (390)
rearranged to
de Ny =+ T c(ng, +mn;
m = — () - L_! » Cﬂl + [ '_(_LR___Q i (3’91)

dt N N N
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By separation of variables, we figure out the general solution of the equation

I E(nm+n;)
st oyt et et
e (4] = t MmNy = 41
AU e BT (5.-92)
Nmn; m 1y
A O, SN L e
SR N e ) (3.93)
O - T

where £ is an integration constant, to be determined from the initial condi-
tions
en(0) = ¥ and 2.} = CEG} g (3.94)
where we denoted c£2) a cEO) the given initial concentration values (either
initial values of the problem or results of previous OS time steps).
The average concentration is constant and equal to its initial value. Thus
for t = 0, 1t must hold

k n;
SORminn PO (3.95)
& My + 1
whereby the integration constant k is determined.
Thus, the exact solution of (3.87)-(3.88) with initial conditions 'Y and
cﬁ‘” for arbitrary time ¢ > 0 is
m +ny
em(t) = (9 — &@)e ™ mn ¥ 4 &0 (3.96)
and by analogy for ¢;(t)
nm+n;

ei(t) = (¥ = &0)e mmm b 4 &0 (3.97)

T

In terms of the initial value problem, the average concentration is expressed
as

(e
&0 — NmCm’ + NiC; : (3.98)
Tt
Finally we define some convenient notations for coefficients. We denote
= N + 70
= a;_m__t, (399)
N M
the modified exchange coefficient and
In 2
Tij = e (3.100)

the characteristic time of exchange, which gives clear information about the
rate of exchange: the time when the half of total possible mass is transferred.
This is the value used as input value in the model user interface (section 4.1).
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3.6.2 FVM numerical scheme of MI exchange

The solution (3.96)-(3.97) can be directly written in terms of discrete values
of concentrations in the finite volumes (see the definition (3.65) and the
notations (3.69) and (3.71)).

As the problem of mobile-immobile exchange was the second one in the

operator splitting, we solve the problem with initial values CTT% and C:T%
and we express the final values CE,:l after the time step At, for each discreti-
sation volume k& (not explicitly written in the formula, for readability).

The discretisation scheme for both mobile (m) and immobile (z) concen-

trations is

onn Gi Gl (3.101)
where 1 1
n+s : fH‘g
grth - MmCm P+ mCy * (3.102)
n?!l + n!
and :
Chit =C5 (at), - OF,(0)=Clyt = CA(AY) (3.103)

are used in the sense of the split problem (3.57)-(3.58).

The expression (3.101) can be used for a time step At of any size, thus,
comparing with the advection term alone, there is no more requirement on
the time step of the model (operator splitting).

The type of function corresponds with our natural expectation, that the
concentration varies from its initial value towards the average concentration
(given by mass conservation (3.89)), which expresses the limit state of in the
discrete volume between in the infinite time (equilibrium).

The rate of the exchange depends on the diffusion coefficient, on the
characteristic microscopic dimensions of porous media (both included in the
coefficient «, see (1.27) and section 1.3.3 for details), and on the relation
between the size of the mobile and immobile volumes (n,, and n,).

In terms of characteristic time Tj/5, which is the preferred input value
in the model user interface (as expressed in days, having a good physical
interpretation of intensity of exchange in relation to other processes), the
numerical scheme is

il e b Af — il
R R i M e exp(ln27—)+C""2. (3.104)

m,i m,i
1/2



Chapter 4

Model Implementation

The aim of this chapter is a brief description of the implementation of the
numerical method derived in the last chapter on a particular mesh topology
and the overview of user interface and model parameters used in the practical
problems.

The structure of the model corresponds to the models used in DTAMO
Straz pod Ralskem, see e.g. [MF92, Fry02]. Some of the program code mod-
ules were used for construction of the model presented here. The matching
with the former programs is important for use of the preprocessing and post-
processing software for applicational problems in DIAMO, where the model
for dual-porosity media had been currently desired (year 2001).

By reason of limited space in this thesis, we reduce the description of
the model interface and implementation-specific algorithms and we mostly
refer to the technical reports of the author [HokOla, HokO1b] and cooperating
team [ST01].

4.1 Mesh topology and data structures

The mesh topology is chosen to link the demands on reasonable handling
of complicated geological structure of the underground and the moderate
computational complexity. A good compromise for implementation of 3D
mesh is so called Q%D topology, meaning that the mesh composed of 2D layers
with joint discretisation topology [MF92]. The mesh is thus unstructured in
horizontal direction (arbitrary triangulation, see below) and structured in the
vertical direction (linear set of elements associated with certain 2D triangle,

65
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(L)
x
Tgi3
Lji3
Ljt+3
z
g T,
L; = Tiy3

Figure 4.1: Element (FEM) and cell (FVM) shapes used in the model. The
bottom two are degenerate variants of the above trilateral prisms.
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Figure 4.2: Example of “incomplete” layers. The upper picture is a vertical
cross-section in uniform horizontal and vertical scale and the lower is 5 times
vertically exaggerated for clear view. The colors correspond to the layers in
both the model discretisation and in the geological structure.

called multi-element — see helow).

In contrast with fully 3D unstructured discretisation, it is important sim-
plification for both the computational kernel of the model and for users of
the whole software system, concerning e.g. the preparation of input data and
interpretation of results.

According to the described structure, we define the shapes of the finite
elements (for MH-FEM flow model) and the finite volumes (for cell-centred
FVM transport model) as follows: The basic shape is a trilateral prism, with
vertical lateral sides and generally non-horizontal bases (see Fig. 4.1 at the
top). For correct representation of the model boundaries and borders of
geological layers, we define the degenerated pyramidal shapes, see Fig. 4.1 at
the bottom. An example of situation for use of the degenerate prisms is in
Fig. 4.2, with many cases when certain geologic layers exist only in a part of
the area.

We denote the vertices of the prisms and pyramids (degenerated from the
basic prismatic shape) as &, &z, T3, T4, T5, Te (see also Fig. 4.1 and Fig. 4.3)
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Figure 4.3: Normals to the element/cell sides. We note that the vertex
labeling matches Fig. 4.1 and the numbering of the sides is the following: 1
bottom, 2 top, 3-5 lateral, starting from @x,xsx4xs counterclockwise from
the top view.

in this way:

Ly == (l'[,yl,zl), Ty = (-'172134'2;32) g = (1173,?5'3,33) y
Ty = (T1,1,24) , T5 = (5172,?;‘2,25) y Lg — (173,1;‘3,26] )

where we note z; = z;43 and y; = y,;+3 (vertical sides). Considering the
degenerate elements, using the notation for general position i, j, k, the re-
spective elements are determined by x; = ;3 either for a single ¢ € {1, 2, 3}
priord g &1 200) 1= .

4.1.1 Definition of the mesh

As stated above, the elements and nodes are “grouped” (by the vertical
projection) to operate with 2D topology. The set of nodes associated with
certain projection in a plane is called multi-node and the set of elements
associated with certain projection in a plane is called multi-element.

The mesh is defined as 2D topology of multi-nodes and multi-elements
(triangularization) and the definition of each multi-node (simply determined
by the z and y coordinates) is supplemented with information about the
vertical structure: number of nodes and the respective set of z coordinates.

The elements are determined by the triangular topology and by the global
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numbering of layers, arising from the vertical numbering of nodes in a multi-
node. The internal data structures are in Fig. 4.4.

The structure of input files is similar to the internal structure of data
storage. There is one file for definition of multi-nodes and nodes (STU) and
one for definition multi-elements and elements (STE).

4.1.2 Material parameters

In general sense, the following parameters have to be entered, considering
the general inhomogeneity of the material:

e permeability (only the diagonal components k,, k,, k., are implemented)
of the medium in each element

e mobile n,, and immobile n; porosity in each element

e characteristic time of exchange in each element and for each chemical
component of the transported solution

e parameters of the Van Genuchten curve oz, my, of the material in
each element!

As the amount of data is very excessive, it is convenient to group some of
the coefficient, mainly those which cannot be accurately measured and there
is no need for “full inhomogeneity” in the user interface. For example, in
the problem domain are zones with approximately same properties, thus the
values of coefficients are defined together and then only a reference “material
Nr.xx” is given in the list for all elements. The rate of mobile-immobile
exchange is input in this way (see the example of problem-definition file
below, the code is prepared for other variants besides the linear relation of
the transfer term of MIE) and as well the Van Genuchten parameters in the
model of saturated-unsaturated zone.

The possible different mobile-immobile transfer coefficient for different
chemical species is input by additional multiplicative factor for each chemical
component (see the report [HokOla] for details).

This is a part of the global file for options and settings:

1Tn fact not the case of the model described in this thesis, but the interface of the input
values is joint for other models in DIAMO, also for the flow in saturated-unsaturated zone

[Fry02].
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struct S_muzl

{
int ozZnac;
int ipuzl;
int npuzl;
double x, y;

=

struct S_uzl

{
int imuzl;
double z0;

3

header.h

70

// multi-node

/* label of the multi-node */
/* label of the first node */
/* number of nodes */
/* coordinates */

/* label of the multi-node */
/* z coordinate of the node  */

struct S_melm

H
int oznac;
int ipelm;
int npelm;
int muzl[ 3 ];
int odv;
int dov;

1

struct S_elm

{
int imelm;
int ivrst;
int imatr;
float

1

header.h

// multi-element

/*
/*
/*
[ *
/*
/*

//

VE:
VE:
/*

koef [ MAXELKOEF ]; /=

/*

label of multi-element */
label of the first elementu */
number of elements in the Melm */
labels of associated multi-nodes*/
number of the first layer */
number of the last layer */
element

label of multi-element */
number of layer x/
index of material */

coefficients of the element */

koef [0,1,2]
/* koef[3,4] mobile,immobile porosityx/

...conductivities =/

Figure 4.4: Data structures for internal storage of the mesh.
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solved-problem.mmf

[DUAL_POROSITY]

Apply_DP=yes

; type function T 1/2
TTerm_Grp_0= 10 1 100
TTerm_Grp_1= 20 1 80
TTerm_Grp_2= 30 1 130
TTerm_Grp_3= 40 1 400
Koef_S04=1

Koef _NH4=1.2

Koef _N03=1.2

The assignment of values to each element is realised in the file type STM,
belonging to a group of mesh-definition files (STU and STE for nodes and
elements).

used-mesh.stm
melm# lay# mat#_dp Kizaiy Kiz nm n_i mat#_fb

1 0 0 sLis sb =l D3 0.2 1
1 1 1 < ERE S 0.1 a2 1
1 2 2 Be 1300 3 0.3 0.5 1

Each line of the file corresponds to a single element. The first two columns
index the element by the number of respective multi-element and number
of layer in the multi-element. In the further columns the indices of mate-
rial groups (for definition of mobile-immobile exchange characteristics and
capillarity characteristics, see above) and the values of conductivities and
porosities are entered.

4.1.3 Storage for calculated values

The calculated unknowns are associated in each element in the structure joint
for the definition of the mesh. The respective values are commented in the
example, see also [ST01, Fry02].

header.h
struct S_elm // element

{

int imelm; /* label of multi-element */
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e e e e R */
double vyska; /* piezometric head in center */
double tlak; /* pressure in center of Elm */
double stntlk[ 5 ]; /* pressure in center of side  */
double stntok([ 5 ]; /* flux through the side */

T */
double objem; /* volume of Elm */
double porobjm; /* mobile pore volume in Elm x/
double porobjm_im; /* immobile pore volume in Elm  */

e e e */
double *rslo; /* concentrations of components */
double *rslo_por; /* concentrations of components in immox*/

ettt */

};

4.2 Numerical structures and algorithms

4.2.1 Model of fluid How

The overall algorithm of the model is displayed in Fig. 4.5. There are four
main phases: reading the input data (3 blocks), pre-processing of data (2
blocks), the numerical kernel (4 blocks), and the output.

We note that the number of unknowns (and consequently the size of the
algebraic matrix) depends on the topology of the mesh — number of internal
and external elements sides (as the Lagrange multipliers, i.e. pressures at
sides, are joint for two sides of two neighbouring elements). Thus there is
necessary first to analyse the topology, and afterwards to allocate the memory
for the matrix and calculate the values.

The block A is composed of so called “local matrices” of the dimension
5x5 associated with each element (scalar product of linear base functions
from the space RT(e), see section 3.2.2). These can be evaluated apart
from the whole algebraic system and the values are stored in the data struc-
ture of elements, which is convenient for repeating of the calculation for
different boundary conditions (the block A stays unchanged), see e.g.[Fry(2]
for details.
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Reading of control file
v
Reading of mesh

v

Reading of boundary conditions list

v

Detemination of mesh topology
(neighbouring cells and faces,
number of unknowns)

Allocation of the matrix
and right-hand side

v

Calculation of scalar products
for block A of the matrix

v
Assembling of the matrix and RHS

v

Solver

)

Placing of the results to data structures

A\

l Storing the results to file

Figure 4.5: Scheme of algorithm of the mixed-hybrid flow model.
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Reading of control file @
v

Reading of mesh | o< All cslls
v
| Reading boundary conditions | Semal
J' sink/source
?
Reading of initial conditions 1
v Adjust
Detemination of mesh topology colceniation
(neighbouring cells and faces)

& All sides
) Reading results of the flow model
. Internal 1
‘ Detemination of the time step side?

All time steps Adjust - .
- concentration b“gg:eeetgi;ﬂzss
according to BCs
Calculation of ¥ |
mass transport I
a7
Calculate
¥ mobile-immobile exchange
Storing the results to file

Figure 4.6: Scheme of algorithm of the transport model. The total algorithm
in the left and the detailed block “Calculation of mass transport” in the right.
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cn

4.2.2 Model of solute transport

The algorithm of the transport model is displayed in Fig. 4.6. The phases
of data input and pre-processing are similar to the model of fluid flow. The
mesh is described and stored in the exactly same way, but different boundary
conditions are input and the initial conditions are in addition. The processing
of the topology is necessary for correct reading of the results of the flow model.

Important point is the choice of the time step. As clear from the detailed
algorithm in the right (Fig. 4.6), the time step is the same for the outer loop
of the operator splitting and inner loop of the advection. The user-demanded
time step is given in the control file and it is checked in the pre-processing
phase for fulfillment of stability (Courant number in each cell is evaluated). If
needed, the time step of calculation is chosen as suitable fraction (by integer)
to fit the desired frequency of the results, see [HokOla, S*01] for details.

The calculation schemes for advection (3.81) and mobile-immobile ex-
change (3.104) are implemented used as illustrated in Fig. 4.6. The expres-
sion of advective fluxes is decomposed into several serial steps, according to
type of transfer with respect to the mesh topology and internal data struc-
tures.

4.3 Software tools for preprocessing and post-
processing

The presented model of flow and transport in dual-porosity media is compat-
ible with the software systems used in DIAMO. Thanks to open construction
of the programs, the preprocessing and post-processing tools can be also used
for preparation and visualisation of the data in this model.

There is a set of programs “GWS” (groundwater system) for visual ma-
nipulation with the data, with the following components:

GWSOKP  editing of the boundary conditions
and operations of wells (sources/sinks)
GWSPOC  preparation of the initial conditions
GWSSIT preparation of the model mesh and material parameters
GWSVIEW visualisation of the flow and transport results

For screenshots with the data of the remediation problem solved in the
chapter 6 see figures 4.7 and 4.8.
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Figure 4.7: Use of the program GWSSIT for preparation of input data (edit-
ing of node positions and material parameters).

]
&
=

[

sinis|alelplals wmiElT e o 2|o|.ke 3

Figure 4.8: Use of the program GWSVIEW for visualisation of result (dis-
tribution of pressure and velocity in the left, concentration of selected com-
ponent in the right and in vertical cross-sections.



Chapter 5

Experimental problems

In this chapter we present the results of the model on experimental problems.
The solution of example problems compared with analytical solution confirms
a correct function of the model and gives an information about the accuracy
of the numerical method. Further, we solve several problems, representing
certain typical situation in practice (e.g. the radial flow around a well) to
demonstrate the behaviour of the model. The solved problems give also basic
information about sensitivity to model parameters.

Concepts of comparisons

For comparisons of the model and analytical solutions, we must use typically
1D or 2D problems: both because the analytical solutions can be derived
only for these simpler situations and for clearer visualisation and evaluation
of the results.

Remark on dimension of the problems

As we deal with 3D model, we construct the test problems so that they are
three-dimensional in the sense of use the 3D discretisation mesh, but they are
one- or two-dimensional in the sense of problem’s symmetry — the remaining
dimensions are insignificant for the solution of the problem. In our opinion,
this is a standard technique and there is no inconsistency in denoting the
solved problems as 1D or 2D.

When calculating with real physical values, there is a special care for
correct dimensions necessary. E.g. in 1D problems, the values are suitably

|
-]
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normalised for a given cross-section area in the numerical 3D problem.

Handling the numerical dispersion in comparisons

As explained in the section 3.5.3, the upwind scheme for advection brings the
numerical dispersion, which significantly changes the results compared with
the exact solution of the advection.

For our comparisons, we included the numerical dispersion into a con-
sidered analytical solution to separate that numerical error (expected) from
the possible error of the discretisation of the mobile-immobile exchange and
the operator splitting. From the mesh and from the calculated velocity, we
first express the coefficient of numerical dispersion and than we consider the
analytical solution of the advection-dispersion problem with this value of the
dispersion coefficient substituted.

5.1 Reference analytical solutions

We present gathered the analytical solutions used for all the comparisons in
this chapter. There are also several aspects of the approximation common
for all the problems, concerning e.g. the relation of boundary conditions in
the physical representation and in the numerical or analytical solutions:

In general, we consider solutions of problems in infinite and semi-infinite
domains, which can be expressed in clear compact forms and are commonly
used (often the problems in a bounded domain can be suitably represented in
this way). Moreover, in our case the semi-infinite problem exactly matches
the function of the numerical method: there is no boundary condition in the
advection model at the outflow boundary, the numerical scheme does not
reflect anything occurring downstream (which is the feature of advection-
dominated problems).

The difference between infinite and semi-infinite problems (with inflow
boundary) in our examples is only in exact fulfilling the boundary condition
at the inflow. In case of advection-dominated flow, the simpler solution in
the infinite domain can be used instead of more complex solution in the semi-
infinite domain (which is of our interest for comparison with model results),
if we accept only approximate fulfillment of the boundary condition.

We also remark the representation of the Dirac function, which is often
used in the simple model problems of dispersion, in the discretised model. In
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contrast with the step (Heaviside) function, which is not “damaged” by the
discretisation, the Dirac function can be used only with substantial change
in its shape and properties. As each discrete value is associated in certain
volume in space, the single value in the model represent a “rectangular im-
pulse” instead of a peak in a single point (of course, the value substituted in
the model is “1” divided by the associated volume).

Thus the Dirac function is not suitable for comparison and exact eval-
uation of the dispersion in early stages of calculation (where the influence
of initial condition if essential). On the other hand, the Dirac function is
useful in 2D uniform problem for its symmetry and clear comparison of the
dispersion in different directions.

5.1.1 Analytical solutions of ADE

The solutions of advection-dispersion problem in uniform velocity field (in 1D
or 2D) are the simplest possible and are presented in most of the literature
dealing with porous media transport, e.g. [ZB95, Ben95|. The case of non-
uniform flow (e.g. radial) is much more complicated, see below for details.

1D uniform flow with Dirac initial condition
The problem is given by the equation

oc de d%c

— +v—=D— Dol

ot ox ox? o
for the unknown c(z,t) in the space domain 2 = R = (—o0, +00) and time
interval (0, +00), the constant velocity v, with the initial condition

M
el ) = ?(5(’5] Vz €1, (5.2)

where M [M] represent the total mass in the domain, S [L?] the cross-sectional
area of mobile pore space (for correct normalisation), and §(x) is the Dirac
d-function.

The analytical solution is

(z — 1!?5)2]

M
eplz b= mexp[—-—w zeR, t>0, (5.3)

which has the shape of the density of the Gaussian probability distribution.
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1D uniform flow with Heaviside step initial condition

We consider the problem both in the infinite and semi-infinite domain. The
first case is defined as above (5.1), with the initial condition

c(z,0) =¢cy; for z<0, (5
e(z, ) =0 for z >0 (5

(co is the concentration in the “left” part of the domain), and the solution is

Co Tt
ci(x,t :—erfc[————] reR t>0, 5.6
Hl( 1 ) 2 2m (‘) )

where the complementary error function is defined by

erfc(z) = % /e”‘zdu =1- %/e'“zdu =1 — erf(z) (4.7
T
T 0

(the cumulative Gaussian distribution function).
The problem in semi-infinite domain is defined by the equation (5.1) in
the space domain R = (0, +00) with the initial and boundary conditions

gLty — 0 SR (5.8)

gllod) =gy 8 =10 (5.9)
(¢o is the concentration in the water inflowing from the left). The exact
solution is

Co

L= Co vx z+ut :
el il = -Q—erfc(zm) + Eexp(b—) -erfc(zm) (5.10)

For advection-dominated problems, i.e. the large Péclet number % =k
(where L represents a characteristic length of the problem, e.g. dimension
of the domain for bounded problem), the solutions of both the problems are
close to each other, cyo(z,t) &~ cmi(x,t). This allows to use the simpler
function ¢y, for more common semi-infinite problem.
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2D uniform flow with Dirac initial

We consider the advection-dispersion problem in the plane 2 = R2, ¢(z, y, 1),
with uniform velocity field in the z-direction, v = (v,,0) = const. Thus

de de dc d%c

— +V—=Dp— + Dp—, 5.11

Bie "o o Tap 2
where Dy and Dp are longitudinal and transversal dispersion coefficients.
The Dirac-type initial condition is

ele. . 0) = (x)d(y) Vr,y € R, (5.12)

M
—0
d
where d is the part of thickness of the plane falling on pores ( n—dr: is the “real”
thickness).
The exact solution is
M (z — vgt)? y?
CpalT, .t:———————eX)[— = ]
p2(%,4, 1) TN 4D;t 4Dyt

(5.13)

The isolines of concentration form ellipses, whose principal radiuses are in
the ratio %—i—i We will apply this relation for identification of anisotropy of
numerical dispersion from the graphical results.

Transport in 2D radial flow

This case represent a flow and transport around a drawing/injecting well.
The simplest possible problem to solve is injecting of constant concentration
to the infinite 2D domain with zero initial condition. Even if the problem
seem to be simple and many effort has been done because if its importance,
there is no definite result. Some complication is in non-homogeneity of disper-
sion coefficient caused by non-homogeneity of velocity. Solutions for general
power dependence of D on v are considered in [Phi94], there is no result for
the case D = v and some other cited solutions are found as erroneous.
For our comparisons (thus not fully significant), we will use a simplified
solution presented in [Ben95] (with some probably typing errors, repaired
here). Thanks to the symmetry, the solution is expressed in single space
variable 7 meaning the distance from the centre (place of the well). For
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simplicity, we omit the second one of the polar coordinates, which are in fact
used here. The solution is

Cy ﬁ — At
crlr,t) = ?erfc——2 : (5.14)
%QLTI‘
where oy is the longitudinal dispersivity' and A = %% is the “areal flux”

expressing a normalisation of the total injected volume rate @ (in m?/s).
From A we can easily express the velocity as v = é. The relation (5.14
exactly fits the front of the concentration, which lies in the distance r(t) =
V2At (expressed as the mass balance for plain advection).
To define the problem correctly, we should exclude the singular point
r = 0 (where the velocity is not defined). Typically, the problems is expressed
with finite radius of the well, r,,, i.e. Q = {(z,y) | 22 + y* > r2}.

5.1.2 Analytical solution of non-equilibrium transport

After auxiliary advection-dispersion problem in the last section, we consider
now the coupling of advection, dispersion, and non-equilibrium two-region
mass exchange. We will express a solution for one particular problem: uni-
form flow in 1D semi-infinite domain, with initial condition of Heaviside type
(zero initial condition in the domain and constant inflow concentration as the
boundary condition).

The analytical solutions of multi-process transport problems are pre-
sented in [TLvG93], with our problem as a special case.

For convenience, we transform the model equations to a dimensionless
for, following the notation in the above cited article, with minor technical
modifications. From (2.15)-(2.15), we obtain

aC,,, 80, 10C, 28
ﬁ 8T = —-—8—5{— -+ FTXQ i w(01 i Cm) 3 (0'1‘))
(= J%Cf = —w(Ci —Cn), (5.16)

I Thanks to the symmetry, the concentration spread uniformly to all directions and there
is no gradient in the direction transversal to the velocity. Thus the transversal dispersion
does not oceur in this case, which is convenient for comparisons with the numerical model,
where also the numerical dispersion in the transversal direction is zero.
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defining
> T . A -

X = 7 dimensionless distance , (5.17)

vt
T= i dimensionless time (5.18)

vl .

P = = Péclet number | (5.19)

al
== Damkohler number , (5.20)
B = o ighting fact 5.21
= =iy welghting factor, (5.21)

where v is the velocity and D the scalar dispersion coefficient (longitudinal).

We will not introduce a special notation for dimensionless concentration
(typically would be Cy,,; = ¢ ;/co with certain value of characteristic concen-
tration ¢g) because the concerned C' already represents the discrete numerical
values. Moreover, the only difference in the formulae is in presence of the
characteristic concentration, which has the clear physical sense of the con-
centration in the inflowing water.

The characteristic length L represent e.g. the dimension of problem do-
main, considering the semi-infinite solution as an approximation, neglecting
the effect of the outflow boundary (advection-dominated process). Also the
use of the Dirichlet condition (prescribed concentration) at the inflow cor-
responds in fact to the advection-dominated case (the third-type would be
physically more correct).

The solution ¢,,(X,T") for above specified conditions is

Cm(‘Y} T) =G0 G(‘Yﬂ T) ’ EXP( - Eﬁz“_)

T
+ w-/G’(X,T] -exp(—a — b) - [%10(2\/%)
0

5 \ﬂ?(l e -11(2\@)] dr, (5.22)

where I, and I, are the modified Bessel functions of the order zero and one

LT T—-71
respectively (see e.g.[Rek95]), a = “F, b = a6 oL
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Figure 5.1: The mesh for example calculation of 1D transport.

The function

- 1 6JY e T 1 - 6X + T
G(A, T) = Eerfc(—\/ﬁ—) =4 §eXp(P)L) . erfC(——\/—ll?—) (5.23)
P P

represents in fact the solution of a plain advection-diffusion problem in the
concerned domain and conditions. For advection-dominated problems (i.e.
P > 1), the first term in (5.23) is dominant and the second one can be
neglected (the second term provides to fulfil the boundary condition while
the first term is a solution of a problem on a “both-side infinite” domain).

The calculation of the analytical solution requires numerical integration.
The algebraical operations are relatively sensitive to computational errors
(reductions of large values of the exponential functions), which causes some
unnatural fluctuation of the displayed curves. It is interesting to remark,
that the computational cost of the evaluation of the analytical solution is
comparable with the numerical solution by the model analysed.

5.2 Test calculations of advection

In this section, we deal with the model of advection (the MIE is turned-
off). Most of the problems serve for identification of numerical dispersion by
comparisons with exact solutions of advection-dispersion equation (presented
above 5.1.1). The results are important in two ways: give the basic estimation
of the numerical dispersion in practical problems and allow to make a better
review of the results of the full model.

As stated in the preamble, we consider the 1D and 2D problems solved
as three-dimensional, with the remaining dimension “degenerated” to a size
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of one discretisation cell /element. A simple discretisation of 1D channel is
demonstrated in Fig. 5.1, we consider the prisms with right-triangle bases, by
pairs composing cubes or blocks. This mesh is used for all the 1D problems
solved. The 2D problems are discretised either by similar way (blocks of
two prisms), or by prisms of constant height but with special plane topology
(described below at the respective problems).

Problem 1: 1D uniform flow, step input

This is a basic, but most important case as we can exactly fit the numerical
dispersion forecasted by the relation (3.84) and the comparison for the non-
equilibrium transport will be done for this situation (section 5.3.1).

We consider the domain as a block (see Fig. 5.1, we will refer as the
channel) with length L = 1000m and cross sectional dimensions 50 x 50m (in
the vertical direction). The following discretisations will be used:

code || length | Auxz: distance | number | number
of blocks | of cell centres | of blocks | of cells

01 100m 50m 10 20
02 20m 10m 50 100
03 Hm 2.5m 200 400

The hydraulic parameters were chosen so that the flow velocity is v =
Im/day (for simplicity) and the values were not far from those in practical
problems. We consider the pressure head difference 20m (ps; —pgo in Fig. 5.1),
hydraulic conductivity 5m/d and porosity n,, = 0.1 (but any of them does
not, explicitly appear in the calculation of advection).

We present. the results of two experiments, one demonstrating the influ-
ence of Courant number Cr to the numerical dispersion (in the coarsest mesh
nr.01) and the second demonstrating the influence of discretisation size. In
both we compare the distribution of concentration (a curve for 1D domain)
in the fixed final time t5, = 500days with the analytically calculated one.

For the chosen values of Cr (in fact set by a choice of time step At) in
the channel 01, we derive the following values of the numerical dispersion,
according to the relation (3.84) (we note the maximum attainable value of
dispersion is 25m?/d for Cr— 0):

At [days] || 50 | 37.5 | 25 5
Cr 0.75( 0.5 | 0.1
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Figure 5.2: Relative concentration vs. position [m|. Comparison of the
results of the advection calculation with the analytical solution of advection-
dispersion problem, where the expected value of numerical dispersion (3.84)
is substituted. The dashed line represent the maximum numerical dispersion
for Cr— 0.
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Figure 5.3: Relative concentration vs. position (m|]. Comparison of the
results of the advection calculation with the analytical solution of advection-
dispersion problem, where the expected value of numerical dispersion (3.84)
is substituted. The codes 01, 02, and 03 denote the meshes used, see the
table in the text.
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The comparison of model result with the solution of advection-dispersion
problem with the appropriate value D, in place of dispersion is in Fig. 5.2.
The agreement of both the results is good. We also observe that there is very
small difference in the results for Cr < 1.

Further we make a comparison for fixed value Cr = % and all the dis-
cretisations 01, 02, and 03. The respective values of dispersion are Dy =
12.5m?/d, Dg; = 2.5m?/d, and Dy3 = 0.625m2/d. We can also see well
matching results for all the three cases, Fig. 5.3.

There are the following conclusions from the experiments:

e The relation (3.84) is suitably accurate for the 1D uniform? mesh.

e The small influence of the Courant number (particularly for the smaller
values) makes adequate an estimate of almost constant numerical dis-
persion also in non-uniform mesh (see the consideration in section
3.5.3). In fact, it is known also without the experiment that for the
dispersion coefficient, a change of about half an order of magnitude has
small effect.

Problem 2: 1D uniform flow., Dirac input

In contrast with the comparable problem with step input. we do not obtain
good match of numerical and analytical results, because of impossible dis-
crete representation of Dirac impulse, as described above. We demonstrate
in Fig. 5.4 the results for the mesh and velocity from the problem above, ob-
taining an image about the precision possible to achieve in the 2D problems
below.

Problem 3: 2D mesh with perturbation

The two 2D experiments presented here serve as examples of analysis of
“anisotropy” of the numerical dispersion as influenced by the mesh geometry.
Since it is quite extensive topic, we understand the experiments presented
here as a suggestion for separate study (we do not make any conclusion here).

The first experiment is transport by constant velocity in perturbed 2D
mesh: the original mesh is composed of right triangles paired to uniform

2In fact the mesh is not really uniform, the distances cell centres have two alternating
vales %Az and %Ar but as observed, these local variation do not influence the result

substantially
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Figure 5.4: Transport calculation with initial Dirac impulse on the mesh
“channel 017 (see above). The discrete representation of initial concentration
causes the results matching worse than for step function as initial condition.

squares (in plane projection) in x and y direction and both the coordinates are
perturbed by random value from Gaussian distribution with chosen variance.
The direction of velocity is parallel to the x axis (i.e. parallel with the sides
of unperturbed mesh) and the initial condition is chosen as certain non-zero
concentration in a single pair of trilateral cells (composing one block) to
represent a Dirac impulse.

An example of the perturbed mesh is in Fig. 5.5 with calculated results
in Fig. 5.6 (the physical parameters and mesh size correspond to the 1D
problem above). In contrast with the unperturbed mesh with the velocity
parallel to the direction of square edges (equivalent 1D problem as we can
simply “extract” the row of cells), we observe the numerical dispersion in the
transversal direction, the higher the higher was the variance of the pertur-
bation.

Problem 4: 2D mesh and general orientation of velocity

We consider the same situation as for the above problem with perturbed
mesh — the mesh structure and initial condition. Now the subject of study
is relation of the velocity direction to the “characteristic direction” of the
mesh (i.e. z axis, y axis and the direction of diagonals of the squares). The
influence is quite unclear — the principal directions of the resulting ellipses
non-trivially differ from both the mesh directions and velocity directions, e.g.
Fig. 5.7. The full analysis would require detailed study. also theoretical.
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Figure 5.5: Perturbed mesh with variance in node positions 0.5m (with re-
spect to the size of mesh step 10m).

& AR [ |

Figure 5.6: Numerical dispersion on the perturbed mesh (Fig. 5.5) as com-
pared with the case of uniform mesh (equivalent to 1D problem). The re-
lation of longitudinal and transversal dispersion depends on the strength of

perturbation.

Figure 5.7: Numerical dispersion on the uniform mesh with the flow velocity
in the displayed direction and with the initial condition as illustrated.
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Problem 5: 2D radial flow, step input

This model problem was chosen to represent a typical situation in the hydro-
geological actions — drawing or injecting well. Also it an example of the use
of the model on the problem with non-uniform mesh and with non-uniform
velocity field.

In this section, we test the advection model, mainly for identification of
the numerical dispersion. In the section 5.3.2 a problem with non-equilibrium
mobile-immobile exchange is considered.

We consider a circle domain of radius R with the well in the center. For
correct physical dimensions and for the use of the 3D model, we consider
the thickness h. To avoid problems with singular point in the circle center,
we represent the well as a small circle with radius r,, applying the side flux
boundary condition instead of a sink in the equation. We used the values

R =100m, r,, = 5m,h = 10m, () = 48m®/d,

where @ is the injected/drawn rate. The corresponding value of the flux A
(see (5.14)) is 3.76m?/d.

We solve the problem of the injection of constant concentration to the
domain with zero initial condition and we observe the distribution of con-
tamination in sequential time instants.

Discretisation

The mesh was constructed as non-uniform, finer close to the well and coarser
at the outside boundary. The topology with correct dimensional proportions
is drawn in Fig. 5.8.
The dimensions in the radial direction are approximately proportional to
the position
AT =T in the range 1.75m — 25m.

Thanks to the radial symmetry, we preferred to solve the problem in a sector
of the circle, to reduce the amount of the data processed (not a problem
of computational power but the partly manual preprocessing and postpro-

cessing). The sector used is the 7 angle and the total number of cells is

140.

The numerical dispersion in radial, i.e. longitudinal direction, estimated
by (3.84) is expressed by almost constant dispersion coefficient D, .,
0.5m?*/day, using the assumption Cr ~ 0, which is valid in most of the cells,
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Figure 5.8: Topology of the mesh for the model problem of transport in the
radial flow regime.
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Figure 5.9: Solution of transport problems in 2D radial flow. Concentration
vs. position in the radial direction (meters) for the problem of injecting.
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except close to the well, and the fact that v is inverse proportional to r (the
dependence on v and r cancels).

In terms of hydrodynamical dispersion expressed as the proportional to
the velocity, the numerical dispersion corresponds to the non-constant dis-
persivity in the appropriate advection-dispersion problem. Defining Dy ym =
o7'™v, we derive o™ ~ %A.L (for Cr &~ 0, except of the cells close to the
well) and the upper limit value 12.5m (the lower limit is zero (Cr ~ 0) rather
than the value %A:r = 0.875m).

Results

For the comparison of the model with analytical ADE, we use the values o =
2m and a; = 5m as representative for the non-uniform distribution analysed
in the previous paragraph. In Fig. 5.9, the results for two chosen time instants
are displayed. We can observe that the numerical results roughly fit to the
analytical: in the time 20days, the dispersivity a; = 2m is closer to match
(which is reasonable) and in the time 500days, the numerical results partly
match both the analytical curves.

We conclude that our estimation is quite rough but it is appropriate to
many simplification in calculation of both the results and to geometrical
irregularities.

5.3 Test problems for mobile-immobile ex-
change

The comparison of results in this section is the most important experiment
as it confirms correct incorporation of the mobile-immobile exchange into

the transport model.

5.3.1 1D uniform flow, step input

We solve the problem defined above for the plain advection: a channel with
uniform flow (Fig. 5.1), with zero initial value of both the concentrations c,,
and ¢; (clean medium) and constant value of concentration at the inflowing
water (at the point z = 0).

Besides the above mentioned parameters, we introduce the values of mo-
bile and immobile porosities as two choices of values with opposite weighting.
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Table 5.1: Values of 7', chosen for the example calculations and comparison
of numerical and analytical solutions. The values of w are appropriately
derived for the use in the analytical solution, see (5.20) and (5.24).

M = 0.1, n; =02 | 7y = 0.2, = 0.1
Ty /> [days] w (dimensionless)
o0 (turned-off exchange) | 0 0
1000 0.462 0.231
100 4.62 2.31
10 46.2 231
0 (equilibrium) 0o (not calculated) | oo

We resume:

length of the domain L = 1000m

velocity v = 1m/day

porosities n. =01 n =02 and n.. =038 =01
input concentration ¢o = ll(g/m3

time of observation  t5, = 500days .

We remark, that for the choice n,, = 0.2, the hydraulic conductivity is ap-
propriately changed with respect to the case n,, = 0.1, so that the velocity
is equal in both the cases.

The calculations are performed for the rates of the mobile-immobile ex-
change covering the full possible scale, from 0 to oo, which is important to
catch the different transport regimes close or far from the equilibrium. The
values are in Tab. 5.1 in terms of the characteristic time of exchange and the
dimensionless form of the rate coefficient (Damkohler number) used in the
analytical solution

al L n; In2

Tl ) v Ny +1y Tl;‘?

W (5.24)

The channel is discretised as described above and displayed in Fig. 5.1.
For this problem, we use 20 blocks, corresponding to 40 trilateral prismatic
cells, with the average distance of centres Az = 25m (i.e. between the
medium-coarse (02) and coarsest (01) mesh used in the respective problem
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for advection). The time step is chosen At = 12.5d to achieve the Courant
: hlE) . : : : : : :
number Cr = 7 (and thus a medium numerical dispersion, without excessive

time discretisation).

The numerical dispersion, expressed by the formula (3.84) is Dyym =
6.25m”/d and this is used as the dispersion coefficient in the ADX problem
whose analytical solution we use for comparison. In terms of the dimension-
less values for the analytical solution (5.22), we determine

1
P =160, ﬁ:§mﬁ:§,

and the values of w in Tab. 5.1. The value of Péclet number corresponds to
the advection-dominated process and the use of the analytical solution for
infinite domain is thus appropriate.

The results and comparisons for both the combinations of porosities are
displayed in figures 5.10 and 5.11, by means of the mobile concentration in
the channel in the final time of calculation. There is good agreement for all
the regimes of non-equilibrium, confirming that the numerical dispersion is
the only significant numerical error.

Precisely, for w = 0 the model calculates with turned-off MIE (i.e. the
advection only) and the analytical solution (5.22) reduces to (5.10). Thus
we do in fact the same comparison as in Fig. 5.3. Since the values T;,, = 0
and w are impossible to be directly used neither in the numerical model
nor in the analytical expression (5.22), the numerical results were obtained
with a smallest possible non-zero value not causing a computational error
and the analytical solution was expressed as the analytical solution of type
(5.6) for the advection-dispersion problem with equilibrium interaction, with
retardation factor R = 1 + r?—n‘; which is 3 or % respectively. This do not
depreciate the comparison, it rather means a “cross-matching”.

Further, we demonstrate the time-development of the concentration dis-
tribution, but in contrast with Dirac input, it is difficult to display clearly in a
static figure. The curves (approximately identical for both analytical and nu-
merical results) for two different time instants are presented in Fig. 5.12. The
values of parameters were chosen to demonstrate the meaning of the dimen-
sionless parameter w together with. Considering the characteristic length L
as the final position of the front, the two curves from different physical values
correspond to the identical regime (see the caption of the figure for details).

It is also interesting to remark concerning the influence of use of the ADE
solutions (5.6) and (5.10) (infinite/semi-infinite): In the case Ty, = 100
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Figure 5.10: Comparison of numerical and analytical solution for the 1D
non-equilibrium transport problem, for the porosities n,, = 0.1, n;, = 0.2.
Distribution of the relative concentration in the mobile zone (¢,,/co) vs. po-
sition in meters in the final time of calculation. The labels denote the values
of the characteristic time of exchange T;/, used.
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Figure 5.11: Comparison of numerical and analytical solution for the 1D
non-equilibrium transport problem, for the porosities n,, = 0.2, n; = 0.1.
Distribution of the relative concentration in the mobile zone (c,,/cy) vs. po-
sition in meters in the final time of calculation. The labels denote the values

of the characteristic time of exchange T}/, used.
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Figure 5.12: Solution of 1D non-equilibrium transport problem, with step
input from the “left”. Demonstration of time-development (states in 200d
dashed and 800d solid lines) and comparison of different situations with same
dimensionless Damkohler number w: T/, = 200d and L = 800m versus
115 = 50d and L = 200m (the final position of the “equilibrium front” is
used as the characteristic length). The black lines represent the equilibrium
exchange and no interaction.

(Fig. 5.10), it can seem the exact fulfillment of boundary condition in z = 0
to be serious. But the difference in use of (5.6) or (5.10) is negligible as well
as in the cases with a steep front.

Conclusion

The experiments in this section confirm the correct numerical approximation
of the coupled advection and mobile-immobile exchange processes. Except
of special exact determination of the numerical dispersion, there was no spe-
cial choice in the concerned 1D experiment, compared with a general use
of the model. It is appropriate to apply the model for 3D real-world prob-
lems with dominant advection (with respect to the dispersion), as a coarse

approximation.

5.3.2 Radial problem with a drawing well

As said above, this model problem represents the transport around a drawing

or injecting well. We consider the same problem and mesh geometry as in
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Figure 5.13: Solution of transport problem in 2D radial flow, with non-
equilibrium mobile-immobile exchange of various rates. Concentration (per-
cents) vs. time (days), when drawing from the “circle” of constant contami-
nation (with zero concentration outside).

the section 5.2, where we observed the behavior of the advection model on
the problem of injection to the domain with zero initial state.

Now we consider the extraction from the domain with non-zero constant
concentration at the beginning and assume zero-concentration inflow from
the outside. Various regimes of non-equilibrium are considered and com-
pared.

The domain of the problem is a circle with radius R = 100m and thickness
10m and the for the numerical calculation we use a %-sector (see Fig. 5.8 for
the shape and the non-uniform discretisation). The rate of pumping in the
well is @ = 48m?/d (falling on the whole circle).

The numerical dispersion, as estimated and tested above in the problem
5.2 has values of the magnitude comparable with the values of physical dis-
persion in the longitudinal direction (we recall that thanks to the symmetry,
there is no physical and no numerical dispersion in the transversal direction),
the dispersivity «; between 10° and 10" meters.

In Fig. 5.13, we demonstrate the time-dependences of the drawn concen-
tration for various values of mobile-immobile exchange coefficient 7} ». The
quicker mobile-immobile exchange takes effect in the earlier part of the time
interval, while the slower exchange takes effect in the later time, as expected.
A similar behaviour is also observed at the real-world problem solved in the

next chapter 6.



Chapter 6

Real-world problem calculation

In this chapter, we present the results of the application of the model de-
scribed in this thesis for a real-world problem of underground remediation
in Straz pod Ralskem region. The construction of the program code and
the preparation of input data is a joint work of the author and the team in
DIAMO, s.e. The calculations and processing of results are a work of the
author himself.

In the calculations, we touch the solution of inverse problem and the pro-
cess of calibration, validation and verification. We do not go deeply into the
rather complex theory of inverse problems; the presented problem solution is
in fact a calibration “ad hoc”, manually using the method “trial-and-error”
[ZB95] and basic statistical measures. The solution of inverse problems is
a recent topic of numerical analysis (e.g. [CKMO02]), but the methods can
be mostly applied only for special problems. For large problems with strong
uncertainty in the coefficients, the basic methods are typically used.

6.1 Description of the problem

6.1.1 Situation

We solved a problem from the Straz pod Ralskem region in the northern Bo-
hemia (see [Nov01, NSS98, MT\*‘ISSOU] for further information). The overall
situation is demonstrated in Fig. 6.1: there are two important layers, lower
is the Cenomanian where the leaching was performed and contains the major
contamination, the upper is the Turonian with isolated smaller “clouds” of

98
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Figure 6.1: Underground situation in the Straz region in a vertical cross-
section. The left part demonstrates the intrusion of contaminants from the
Cenomanian to the Turonian aquifer, whose remediation is modelled in this
chapter. The right part shows the depressed water level in the deep mine
Hamr (not related to the problem solved here).

contamination caused mostly by technical defects of well casings. The prob-
lem we deal with here is related to such a single contamination cloud in the
Turonian aquifer.

The model was applied to a problem of extraction of the contamination
from the underground by pumping wells. It is a typical situation, when dual
porosity shows its influence — the cleaning to a level of certain ”"safe” value of
concentration remaining takes markedly more time, because of the pollutants
persisting in blind pores with negligible water motion.

In practice, there are two objectives for the operation of extraction wells:
to clean the domain in a short time with low expenses and to process the
extracted chemicals by further technologies efficiently. Thus the model is
expected to forecast the drawn concentrations and the total pollutant mass
extracted and remaining, which are subsequently entered to optimization
models for choice of extraction scenarios (positions of wells and pumping
rates), see e.g.[Cer02].

The problem described here is the remediation of the site “VP-9C” per-
formed on the interval March 2000 - September 2001 (before the dual-
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Figure 6.2: Position and structure of the discretisation mesh for the problem
of remediation of the site “VP-9C”. The mesh also covers the neighbouring

area of leaching field “VP-9A”, not extracted from (see also Fig. 6.3).
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porosity transport model was developed). The records of measured concen-
trations in the wells were afterwards conveniently used for test and calibration
of the developed model.

The model domain has dimensions about 1200 x 500 meters in horizontal
direction and the thickness 60-90m. The contaminated area is in the centre
of the model domain, about 20% of the total horizontal area. There were
20 drawing wells in the contaminated part. The regime of pumping was
controlled in one-month intervals. In each month, the generally different
pumping rates were set or possibly some or all wells were turned-off (gaps
in the graphs below). The flow regime was considered as approximately
steady in each month, except the first days after the change, whose effect
was neglected (confirmed by long-time experience of concerned people in
DIAMO).

For further technical details see the report [HokO1b].

6.1.2 Discretisation and input data

The discretisation mesh in a plan view is shown in Fig. 6.2 and the positions
of pumping wells are marked on the detail, Fig. 6.3. The mesh contains 1003
multielements (i.e. elements grouped by a plane projection, see section 4.1),
in 12 layers, approximately 12000 elements in total. The average horizontal
size of element in the central (contaminated) part is 30m, and in the periph-
eral part about 100m. The thickness of layers in the middle part (containing
the contamination and important for calculation) is about 5m.

As stated above, the problem was solved as a sequence of problems in a
steady velocity field. There were no significant differences in the velocity and
thus the appropriate time step (resulting from the CFL condition (3.83)) was
used the same in the whole calculated period: 3 days. Thus the period of 19
months correspond to 570 time steps.

The boundary conditions were given constant, according to typical hy-
drogeological conditions in the area (without artificial operation), consider-
ing that the boundary is far enough from the wells and not influenced by the
pumping operations. The natural gradient of piezometric level was prescribed
and the natural concentration (almost zero compared with the contamination
in the middle of the domain) were entered in the inflowing-water boundary.
In each one-month interval, different values of drawing rates were prescribed
(and the new velocity field were re-calculated).
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The initial conditions were extrapolated from the set of measurements in
the domain (at more places than the drawing wells).

The material parameters were obtained partly by laboratory measure-
ment, partly by calibration during former comparisons with other models.
The hydraulic conductivities are known quite well, while the identification
of the immobile porosity (or ratio of mobile and immobile porosity) is very
difficult. In general, laboratory measurement are impossible for many ma-
terial properties, because the extraction of a sample from the underground
can significantly change the porous structure. Many methods are developed
for parameter identification “in situ” [VMVF97, CKM02].

The measured concentration data were sparse in comparison with cal-
culated and also quite irregular. About 1 or 2 measurements fall on each
month. Beside these, the more significant values of monthly totals of drawn
solute mass were recorded (based of further chemical processing).

6.2 Solution

6.2.1 Numerical process

The problem with 12000 elements is not too large in the current measures.
A standard PC (Pentium III, 1IGHz) was used for the calculations. For the
flow model, the solution of the algebraic system (about 100000 unknowns for
the MH-FEM) was the only time-consuming phase, it took approximately 10
seconds for each of the 19 steady flow problems, 3.5 minutes in total. The
transport calculation for the whole period took about 1.5 minute.

Check of the numerical dispersion in the mesh

To document the considerations in sections 3.5.3 concerning the numerical
dispersion, we present an analyse of the distribution of Courant number in
the mesh. According to (3.84), the numerical dispersion is determined by
Courant number (no dispersion for Cr = 1 and maximum dispersion for
Cr — 0), besides cell size and velocity.

Table 6.1 shows that Cr < 0.1 for most of the cells and thus the dispersion
is not influenced by the Courant number. The reason of this “extreme”
distribution is in the velocity field close to the wells: the well is not opened in
the full vertical range and causes significant vertical coordinates of velocities,
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Table 6.1: Distribution of Courant number for the solved remediation prob-
lem (site VP-9C), with a partly non-uniform mesh of approximately 12000
cells. Comparison of a state with all 20 wells and with one operating well
(example).

interval of C, | cell count cell count
in 20-wells problem | in 1-well problem
(51 2 (0.02%) 2 (0.02%)
(0.25, 0.5) 32 (0.28%) 1 (0.01%)
(0.1, 0.25) 87 (0.72%) 12 (0.1%)
(0, 0.1) 98.98% 99.87%

which means large cell-side fluxes (together with a fact, that horizontal cell
dimensions much larger than vertical).

6.2.2 Comparison measures and criteria

To obtain useful information from the comparison of calculated and measured
data, it is not trivial manipulation with quite large amount of data.

One possible problem was already mentioned: the measurements are
markedly more distant then the calculated results — the concentrations are
known in places of wells and just once a month or as a cumulative one-month
drawn mass, while the calculated drawn concentration are resulted in each
3-days time step.

The second substantial problem is large uncertainty of quantities in the
space-sense. The initial distribution of the concentration is not reliably accu-
rately determined and together with random inhomogeneities in the porous
medium, it can significantly influence a local state around a particular well.
In other word, there are no means to fit the results in each well, e.g. by
manipulation with in-homogeneous material data.

Thus only a global comparison is possible and a calibration only for homo-
geneous material parameters is considered. We express the amount of solute
mass drawn, summed over one month and all the wells' (MTM - monthly

n fact, a comparison with certain wells excluded was performed, as the values in these
wells differed much more than the other wells, indicating an error in the measurement or
in the initial data rather than actually unmatched model and reality, see [HokO1b].
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total mass), which value can be simply expressed from both measured and
calculated results. The graphs are constructed for this measure as depending
on time (19 values in the whole period).

As a single global measure of model-measurement fitting we consider
the sum deviations (observed value minus calculated value) of MTM in all
months and the sum of square deviations (observed value minus calculated
value) of MTM in all months. These are two target functions in the process
of calibration. In fact the sum of squares is a “stronger” measure (fitting it
automatically implies fitting of sum of deviations), but the sum of deviations
is convenient first to find an overall magnitude of the results.

6.2.3 Calibration of parameters

Concerning the solution of the problem by the numerical model and com-
parisons with measurements it is important to also deal with calibration of
the material parameters in the model, which were not accurately determined
a-priori: mobile and immobile porosity and the rate of mobile-immobile ex-
change.

Instead of mobile and immobile porosity, we operate with mobile n,, and
total nyo = n,, + n; porosity. The basic set of values of material parameters
for experiments is

Mobile porosity n,, 0,05 | 0,07 | 0,1

Total porosity (1, + n;) 0,2 | 0,2510.3
Char. time of exchange Ty, (days) | 50 | 100 | 200

where the limits were suggested based on the experiences from other mod-
ellings in the region (porosity) or on estimation of skilled geologists (the rate
of exchange). Moreover, one should notice that the presented interval of
values 7' cover a range for reasonable use of the model for the considered
problem: lower T about 10 days already correspond to a state close to equi-
librium, while higher 7' cannot be reliably confirmed by the comparison if we
take into account that the time interval of the solved problem is 570 days.

The calibration of these parameters was performed in 3 steps. In each
step always the one of the parameters is constant and the other two are
varied to achieve a optimum (possible to view in a 2D table or a graph).
Two measures were examined in comparison: simple deviations and squares
of deviations, the first one tells about the overall magnitude of the results
and the second one about the exact fitting of the data.
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Figure 6.4: Deviations (differences) between measured and calculated values

of drawn solute mass in each month (in kilograms). Overview for various sets
of material parameters used in the model (in the order: mobile porosity 7,,,

total porosity ni: =

exchange 7' /;).
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Figure 6.5: Drawn solute mass in each month (in kilograms) — absolute values
in contrast with Fig. 6.4. Comparison of measured values and calculated with
model for various choices of characteristic time of mobile-immobile exchange

T, » for calibration.
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Step 1: We choose the middle value of characteristic time T2 = 100d and
observe the results for the basic set of Ny, and n; values: Tab. 6.2. In Fig. 6.4,

deviations between model result and measurements are shown, for wider set
of parameter for better comparison.

Step 2: We choose the middle value of total porosity n = 0.25 and observe
the results for the basic set of n,, and 7} /2 values: Tab. 6.3 (with additional
value Ty, = 150d in place of expected optimum. In Fig. 6.5, a comparison
of global trend of extracted mass is drawn.

Step 3: Final comparison for constant n,, = 0.07 is performed and only
the expected “critical” values or intervals are examined (not a full table like
steps 1 and 2), with additional interpolation. The important results are

deviations square deviations
nm = 0.07, nyoy = 0.2, Ty jp = 120d -11025 172.21-10°
nm = 0.07, ne, = 0.27, Ty =150d  6036.0 181.62-10°

There are two possible choices of parameters, their deviations during the
whole solved interval are compared in Fig. 6.6. The values can be identified
already from the tables 6.2 and 6.3:

Total porosity (n., + n;) < 027 < 0.2
Mobile porosity 0.07 0.07
Char. time of exchange T}/, (days) = 150 > 100

6.3 Results

From the coarse manual calibration above, we obtained two possible choices
of material parameters. There would be possible to identify the values more
precisely by further interval splitting. But within the limits of practical use
of the model, the obtained values are accurate enough.

Moreover, the process of generating further comparisons is quite compli-
cated: a preparation of additional calculation for new material parameter
requires manipulation with several input data files and on the other hand,
performing the process automatically would require to construct additional

software tool.
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sums of deviations

T]lfg = 100
| n=02]|n=025| n=03
n, = 0.05 || -46801.82182 | -11316.5 | 14182.79
n, = 0.07 | 13124.92516 | 62898.18
n, = 0.1 || 68134.14891 | 135718.3 | 186443.8

sums of square deviations (divided 10° )
T]/g — Ui

L [ n=02[n=025] n=103
Na = 0.05 | 515.1201495 | 361.6122 | 389.7547
1. = 0.07 | 144.8591036 | 401.2554

na = 0.1 || 677.9773423 | 1653.804 | 2877.647

Table 6.2: Results of comparison during the calibration (step 1) — differences
of field measurements and model with various material parameters summed
to a single objective function.

sums of deviations
n=(025

| Tiy2 = 50 | Ty = 100 | Tyyp = 150 | Ty = 200

ne = 0.05 || 114692.7 -11316.5 -84329.1 -131226
n, — 007 62898.18 -5179.88 -51015.9
ne = 0.1 || 213388.8 | 135718.3 | 80037.27 | 40402.78
sums of square deviations (divided 10%)

n = 0.25

[ T2 =50 | Tijo = 100 [ Ty = 150 | Tyyp = 200

n, —0:05 | 1121471 361.6122 1091.956 2002.77
. — 000 401.2554 186.1499 468.192
ne = 0.1 || 4157.623 | 1653.804 | 670.3575 | 315.4905

Table 6.3: Results of comparison during the calibration (step 2) - differences
of field measurements and model with various material parameters summed
to a single objective function..
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Figure 6.6: Deviations (differences) between measured and calculated values
Comparison of two
possible choices of mobile porosity n,,, total porosity ny, = n,, + n,;, and

of drawn solute mass in each month (in kilograms).

characteristic time of exchange 7}, as resulted from the calibration.
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Figure 6.7: Concentration (kg/m?) in the single well “VP9C-565". Compar-
ison of measured values, results of the model for two possible calibrated sets,
and results of the advective model (without immobile pores).
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For both the results above, the fit of global trend of the time-dependence
curve is good. We present a final comparison in Fig. 6.7 of drawn concentra-
tion in a chosen well: the field measurement, the model results for calibrated
values and the result of the model without inclusion of the immobile zone.

While the situation in the early months is strongly affected by possible
errors in the initial conditions, we obtained the important matching in the
second part of the solved period (Fig. 6.7), where the immobile pores play
substantial role.



Conclusion

The results presented in the thesis contribute to modelling of underground
contamination problems, which is important for efficient management of the
underground natural resources. The effect of dual porosity (blind pore zone
with immobile water) appears in many porous media; according to the de-
scribed transport mechanism, it belongs to intensively studied topics of in-
teraction between flowing chemical substances and the solid matrix of porous
media.

We derived numerical methods for the composed problem of fluid flow
and particular mechanisms of the mass transport. Based on the presented
test problems and computed solution of real-world application problem, the
chosen approach seems to be efficient, in spite of many limitations given by
typical contradiction between quality of reality representation and numerical
accuracy on one side and complexity and requirements on input data and
computational power on the other side.

Careful application tests of the model on real problems and compari-
son with measurements represent important “feedback” for the construction
and application of numerical methods. Moreover, the obtained agreement
between model results and field observations confirmed the expected dual-
porosity properties; it provides extended possibilities of modelling and fore-
casting for the remediation operation in the region of Straz pod Ralskem.

There are many directions for further work related to the presented model.
The method of operator splitting for the transport equations gives the overall
framework of solution of various transport mechanisms by various methods
and allows further improvements in advection and dispersion as well as a
connection with models of other physical and chemical processes. Also, the
detailed study of numerical properties of the applied particular implemen-
tation can be useful in order to find its limitations for practical use of the
model, as mentioned in the text.
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