
A Hypothesis Test for Detecting Distance-Specific Clustering 
and Dispersion in Areal Data

Stella Self1,2, Anna Overby3, Anja Zgodic2, David White4, Alexander McLain2,5, Caitlin 
Dyckman3,5

2Arnold School of Public Health, University of South Carolina, 921 Assembly Street, Columbia, 
SC 29208, USA

3College of Architecture, Arts and Humanities, Clemson University, Fernow Street, Clemson, SC 
29634, USA

4College of Behavioral, Social and Health Sciences, Clemson University, Epsilon Zeta Dr, 
Clemson, SC 29634, USA

5Shared Last Author

Abstract

Spatial clustering detection has a variety of applications in diverse fields, including identifying 

infectious disease outbreaks, pinpointing crime hotspots, and identifying clusters of neurons in 

brain imaging applications. Ripley’s K-function is a popular method for detecting clustering (or 

dispersion) in point process data at specific distances. Ripley’s K-function measures the expected 

number of points within a given distance of any observed point. Clustering can be assessed 

by comparing the observed value of Ripley’s K-function to the expected value under complete 

spatial randomness. While performing spatial clustering analysis on point process data is common, 

applications to areal data commonly arise and need to be accurately assessed. Inspired by Ripley’s 

K-function, we develop the positive area proportion function (PAPF) and use it to develop a 

hypothesis testing procedure for the detection of spatial clustering and dispersion at specific 

distances in areal data. We compare the performance of the proposed PAPF hypothesis test to that 
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of the global Moran’s I statistic, the Getis-Ord general G statistic, and the spatial scan statistic 

with extensive simulation studies. We then evaluate the real-world performance of our method 

by using it to detect spatial clustering in land parcels containing conservation easements and US 

counties with high pediatric overweight/obesity rates.
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cluster detection; clustering; areal data; Ripley’s K-function

1. Introduction

The rapid rise in popularity of geographic information system (GIS) software over the past 

thirty years has led to an explosion of spatial data and associated analytical methods. Two of 

the most common types of spatial data are point process data and areal data. Point process 

data are associated with specific coordinate locations (such as a geocoded addresses), while 

areal data are associated with spatial regions (such as a counties or census tracts). The data 

may contain either location information only (e.g., the boundaries of a census tract that 

the United States Department of Agriculture has designated a food desert due to a paucity 

of stores selling healthy food) or location information combined with numerical attributes 

(e.g., the boundaries of a census tract with the number of healthy grocery stores). In this 

paper, we restrict our attention to areal data that contains only location information, that is, 

data consisting of a predefined set of spatial regions, some of which possess a characteristic 

of interest. We consider the set of spatial regions as fixed and only the possession of the 

characteristic as random. We consider the problem of assessing this type of data for spatial 

clustering and dispersion, loosely defined as an excess of regions with the characteristic of 

interest in part(s) of the study area (clustering) or semi-regular placement of such regions 

(dispersion). Census tracts designated as food deserts, tracts of land with development 

restrictions, or counties which required individuals to wear a mask in public during the 

COVID-19 pandemic are all examples of areal data that could be clustered. In this paper, 

we develop a method for detecting clustering and/or dispersion in areal data at specific 

distances.

Clustering can occur at different distances. For example, food desert census tracts might 

be clustered at close distances in metropolitan areas and at larger distances in more rural 

areas. Additionally, data may exhibit dispersion at one distance and clustering at another. 

For example, parks may exhibit small scale dispersion (e.g., city parks are unlikely to 

be within a quarter mile of another park), but large scale clustering (e.g., city parks are 

likely to be within 5 miles of a another park). In practice, the distance at which clustering 

and/or dispersion occur are generally informative about which processes may be causing 

the phenomena. Statistical methods that can detect clustering and/or dispersion at specific 

distances are desirable.

There are several existing methods to assess areal data for clustering, including the global 

Moran’s I statistic [45], the Getis-Ord general G statistic [28], and the spatial scan statistic 

[35]. (These methods can also be used for point process data, with some modifications). 
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However, obtaining the distance at which clustering/dispersion occurs is not straightforward 

for any of these methods. Ripley’s K-function is able to detect clustering/dispersion at 

specific distances, but it is only suitable for point process data [49, 50, 51]. Ripley’s 

K-function and related variants have been widely used in ecology [30, 39, 37], epidemiology 

[19, 26, 10], and spatial economics [40, 22, 41]. Despite the suitability issue, Ripley’s 

K-function is commonly (mis)applied to areal data by mapping each spatial region to 

its centroid. For example, many researchers have attempted to assess spatial patterns in 

land parcel data using Ripley’s K-function [38, 52, 57, 48]. Other researchers have taken 

public health data associated with a geographical region (e.g., a city or health division) 

and computed Ripley’s K-function using the centroids of the regions [55, 33, 53]. Ripley’s 

K-function has also been used to assess areal data for clustering in a variety of ecological 

and geological applications [34, 16, 43].

Applying Ripley’s K-function to the centroids of spatial regions is particularly problematic 

when the regions are vastly different sizes. For example, in one of our motivating data 

applications we wish to determine if land parcels with conservation easements (CEs) are 

clustered. Under the null hypothesis, all parcels are equally likely to have a CE. Sections of 

the study area with many small parcels (such as a metropolitan area) will have more parcels 

with CEs than portions of the study area with many large parcels, simply because there 

are more parcels per unit area. Put another way, centroids of smaller parcels will appear 

clustered relative to centroids of larger parcels simply because the size of the small parcels 

allows the centroids to be closer together (independent of the spatial pattern).

The (mis)application of Ripley’s K-function to areal data is partially attributable to the lack 

of distance-specific cluster detection methods designed specifically for areal data. Further, it 

is enabled by popular spatial software packages like ArcGIS, which map areal data to their 

centroids in order to apply Ripley’s K-function. Specifically, when performing hypothesis 

testing via Ripley’s K-function with areal data in the Multidistance Spatial Cluster Analysis 

ArcGIS tool [23], the ‘observed points’ (i.e., in continuous space) are defined as centroids 

of the polygons with the characteristic of interest [23]. This is done by default and without a 

warning message. We show in our simulation studies that such (mis)applications of Ripley’s 

K-function to areal data often result in a severely inflated type I error rate.

In this paper, we develop a method for detecting distance-specific clustering/dispersion in 

areal data. Our method is motivated by Ripley’s K-function and has a similar interpretation. 

In Section 2, we introduce our method and explore some of its properties. Section 3 presents 

the results of an extensive simulation study in which we compare the ability of our method 

to detect clustering and dispersion to that of the global Moran’s I statistic, the Getis-Ord 

general G statistic, the spatial scan statistic, and three point-process methods. In Section 4, 

we demonstrate the use of our method on two real datasets. First, we use it to determine if 

there is spatialy clustering in land parcels that contain CEs in Boulder County, Colorado. 

Next, we use our method to determine if US counties with high childhood overweight rates 

are spatially clustered. Section 5 provides concluding remarks and suggestions for future 

work.
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2. Methodology

To motivate our methods, we begin with a brief review of Ripley’s K-function. Suppose 

we have a two-dimensional spatial point process P defined on a Borel set A ⊆ ℝ2. For any 

Borel set S ⊆ A, let N S  count the number of points (events) in S. The intensity of the 

point process at a point ℓ ∈ A is given by

λ(ℓ ) = lim
dS ℓ

E N S
dS

where S is an arbitrary neighborhood surrounding ℓ . A point process is said to be stationary 
if the intensity λ ℓ  is a constant function. Note that for a stationary process, the expected 

number of points in an area depends only on the size of the area and not on its location. See 

[15] or [3] for further information on point processes.

2.1. Ripley’s K-function

For a stationary point process P with intensity λ ℓ = λ and a distance r > 0, Ripley’s 

K-function is defined as

K r = λ−1E N c ℓ , r − 1 .

where ℓ  is any point arising from P and c ℓ , r  is the circle centered at ℓ  with radius r
[49]. Thus K r  is the expected number of additional points within a distance of r of any 

point in P, re-scaled by the intensity of P. For a homogeneous Poisson process (realizations 

of which exhibit complete spatial randomness) on an infinite study area, K r = πr2. For 

a high-level overview of Ripley’s K-function, see [20]; for a more in depth treatment of 

Ripley’s K-function and related topics in point processes, see [8] or [12].

While the original formulation of Ripley’s K-function assumes a stationary point process, 

the definition has been extended to handle certain types of nonstationary processes [4], 

and many related fucntions have been developed to further quantify the behavior of point 

processes. For instance, the L-function is a rescaling of the K-function, and the Kd-function 

is a kernel estimator of the probability density function of distances between points [22]. 

Variants of Ripley’s K-function have also been developed for marked point processes 
(MPP), i.e., point processes for which each point is associated with a random value called a 

mark. The D-function is defined for MPP with binary marks, and consists of the difference 

between the K-function computed on points with one type of mark and the K-function 

computed on the remaining points [19, 2]. The M-function quantifies the pattern in points 

with a particular type of mark relative to other points by weighting the number of points of 

the type in question within a distance r of a given point by the total number of points within 

distance r [42]. The cross K-function gives the expected number of observed marks within a 

distance r of a given mark, where the observed mark types must be different than the given 

mark. The Kmm-function quantifies the correlation between marks of points separated by a 
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distance r [47]. For an effective overview of the practical use and interpretation of these 

functions, see [41].

Suppose that we have a realization of P consisting of n observations, ℓ 1, ℓ 2, …, ℓ n. We can 

estimate K r  with

K̂(r) = λ̂−1
i = 1

n

j = 1, j ≠ i

n wij
n

where λ̂ = n/A(A), A(A) denotes the area of A, and wij is a weight associated with points 

i and j. In the traditional approach, wij = 1 if the distance between points i and j is less 

than r and 0 otherwise [49, 50]. In practice, the traditional estimator generally exhibits 

some bias due to edge effects. This phenomena arises because N c ℓ i, r  is often lower than 

expected for ℓ i near the boundary of A, as some points which would otherwise contributed 

to N c ℓ i, r  fall outside of A. However, many adjusted estimators of Ripley’s K-function 

exist which modify the wij to account for edge effects [49, 18, 27, 1].

2.2. Using Ripley’s K-function to Clustering and Dispersion

Ripley’s K-function is often used to determine if an observed collection of points exhibits 

complete spatial randomness (CSR) (i.e., to determine if the points arise from a two-

dimensional homogeneous Poisson process). The distribution of K̂(r) under CSR for a 

finite study area A can be approximated with Monte Carlo simulations, which are used 

to perform a hypothesis test with the null hypothesis being that the observed data arises 

from a homogeneous Poisson process with rate parameter λ̂. In practice, these Monte Carlo 

simulations are often carried out conditional on a fixed number of observations (n), in which 

case the null hypothesis is that the data arise from a two dimensional continuous uniform 

distribution. Large values of K̂(r) indicate spatial clustering, that is, the number of points 

within a distance of r of any given point is larger than would be expected if the data 

exhibited CSR. Small values of K̂(r) indicate dispersion, that is, the number of points within 

a distance of r of any given point is smaller than would be expected under CSR. While 

Ripley’s K-function is most commonly used to test a null hypothesis of CSR, it can be 

used to test more complicated null hypotheses, such as that the data arise from a Neyman-

Scott process [18] or a Strauss process [14]. Ripley’s K-function-based hypothesis tests are 

an attractive tool for spatial data analysis because of their flexibility and interpretability. 

Ripley’s K-function can simultaneously detect different spatial patterns at different distances 

(e.g., small distance dispersion combined with large distance clustering), which is a highly 

desirable and somewhat rare property among cluster detection methods.

2.3. Areal Processes

In this work, we assume we have a set of spatial regions, referred to as areal units, whose 

boundaries are fixed and known (e.g. the census tracts in a particular state). We observe 

a binary response variable for each of these areal units (e.g. whether the census tract is a 

food desert) which we refer to as ‘binary areal data’ to distinguish it from areal data that 
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are associated with one or more non-binary numeric attributes. For brevity, we will refer to 

areal units for which this binary random variable is equal to 1 as positive units, as they are 

positive for the characteristic of interest. The location and boundaries of the areal units are 

considered fixed, with the binary random variable serving as a random ‘mark’. To parallel 

the point process case, we loosely define clustering for binary areal data as an excess of 

positive units in a particular area and dispersion as positive units occurring a semi-regular 

intervals. The terms ‘clustered data’ or ‘clustering’ are sometimes used for data with positive 

spatial autocorrelation. For example, census tracts with a high rates of food insecurity might 

tend to be closer to other tracts with high rates. In binary areal data, there is no meaningful 

distinction between spatial clustering (an excess of positive units) and spatial autocorrelation 

(a higher concentration of similar values of the random variable).

We will define an areal process A on a Borel subset A ⊆ ℝ2 as a collection of N disjoint 

Borel sets a1, a2, …, aN whose union covers A and a vector Y = Y 1, Y 2, …, Y N ′ where Y i is 

a binary random variable associated with ai. We will refer to the ai as areal units, and 

the set of ai for which Y i = 1 as positive areal units. For any Borel subset S of A, define 

N(S) = ∑i = 1
N A S ∩ ai Y i. Thus N(S) is the amount of area in S which falls into positive areal 

units. Note that N( ⋅ ) maybe thought of as the areal analog of N( ⋅ ) in the point process case: 

N( ⋅ ) counts observed points, N( ⋅ ) counts observed area.

2.3.1. Extending the Concept of Stationarity—In the point process case, the 

intensity was a limit of the ratio of the number of points in a region divided by the area 

of the region. The analogous quantity for an areal process would be the ratio of the amount 

of positive area in a region divided by the area of that region. That is

λ(ℓ ) = lim
dS ℓ

E[N(S)]
dS

where S is an arbitrary neighborhood around ℓ . Thus for ℓ ∈ ai, λ(ℓ ) = P Y i = 1). We define 

an areal process as ‘stationary’ if P Y i = 1  is the same for all i. It can be shown that for 

a stationary areal process with no edges (for example, an areal process on ℝ2), E N(S)

depends only on the size of S. For a stationary areal process with P Y i = 1 = λ for all 

i, E N(A) /A(A) = λ. We also define an independent areal process as one for which the Y i s 

are mutually independent.

2.4 . The Positive Area Proportion Function

Given an areal process A, define the positive area proportion function for an areal unit ai at a 

distance r > 0 as

Mi(r) = E N c ℓ i, r ∩ ai
c + A c ℓ i, r ∩ ai

A c ℓ i, r ∩ A ⋅ N(A)
A(A)

−1
∣ nY > 0 .

where ℓ i is the centroid of ai and nY  is the number of positive units. Note that conditioning on 

nY  is necessary for the expectation to be defined, as N(A) = 0 if nY = 0. The first term in the 
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expectation is the proportion of positive area within a distance of r of ℓ i where the numerator 

captures area that either falls in ai(A ⋅ ) or is positive (N ⋅ ). The second term is the inverse 

of the total proportion of the study area which is positive.

Binary areal data is clustered if positive areas tend to occur near other positive areas. 

Here, Mi(r) is used to quantify the expected amount of additional positive area near ai. 

This quantity only meaningfully assesses clustering near ai if ai is positive. Just estimators 

of Ripley’s K-function are only computed at observed points, estimators of Mi(r) are only 

computed for positive units ai. The inclusion of A c ℓ i, r ∩ ai  in the numerator of the first 

term ensures that sample based estimators, which are only computed if ai is positive, are 

unbiased for Mi(r). Just as Ripley’s K-function quantifies the number of points within a 

certain distance of an observed point, the positive area proportion function quantifies the 

amount of positive area within a certain distance of a positive unit’s centroid. See Figure 1 

for an illustration of the quantities involved in Mi(r).

Heuristically, Mi(r) is loosely analogous to an edge-corrected Ripley’s K-function, with 

positive area playing the role of observed points. However, the inherent areal structure 

makes Mi(r) dependent on the choice of the positive unit ai, while Ripley’s K-function 

does not depend on the choice of the observed point. To remove this dependence on the 

choice of ai, we can average the Mi(r) values over the positive units. Define the positive area 

proportion function at a distance r by

M(r) = E 1
nY i = 1

N
Mi(r)Y i ∣ nY > 0

where the expectation is taken over Y . Thus, M(r) is the expected value of the average of the 

positive area proportion function of the positive units. Allow M0i(r) and M0(r) to denote Mi(r)
and M(r) for a stationary independent process, respectively. It can be shown that

M0(r) = 1
N i = 1

N
M0i(r) .

See Web Appendix A for more details.

For an areal process realization with Y = y and ny > 0, we can estimate Mi(r) with

Mi(r, y) = N c ℓ i, r ∩ ai
c + A c ℓ i, r ∩ ai

A c ℓ i, r ∩ A
N(A)
A(A)

−1
.

Note that by definition E[Mi(r ∣ Y ) ∣ nY > 0] = Mi(r). Further, define

M r, y = 1
ny i:yi = 1

Mi r, y .
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as the sample mean of the Mi(r, y) s for each positive unit. It can be shown that if A is 

a stationary, independent process, then E[M(r, Y ) ∣ nY > 0] = M0(r). This fact forms the crux 

of the hypothesis testing procedure presented in the next section. See Web Appendix A for 

additional details.

2.5. Hypothesis Testing using the Positive Area Proportion Function at Specific 
Distances

Suppose we have a realization y from an areal process A, and we wish to test the null 

hypothesis that A is a stationary, independent areal process against the alternative hypothesis 

that A exhibits clustering and/or dispersion. To reduce the variability of the assumed 

null distribution, we will condition on the number of positive units in the realization. 

Conditional on nY = n, the null hypothesis of a stationary, independent process implies that 

P(Y = y) = N
n

−1
 for y: ∑i = 1

N yi = n and P(Y = y) = 0 otherwise. The null hypothesis is thus 

equivalent to the so-called ‘random labeling hypothesis’, under which all configurations of n
positive units are equally likely.

A clustered areal process might violate the stationarity assumption, or the independence 

assumption, or both. Formally, we consider an areal process to exhibit excess-clustering 
if there exists a subset of contiguous areal units indexed by C such that for all 

i ∈ C, P Y i = 1 > P Y j = 1  for j ∉ C. That is, A exhibits excess clustering if the probability 

of any areal unit in C being positive is higher the probability of a unit out of C being 

positive. An areal process exhibiting excess-clustering is not stationary, though it could be 

independent.

We will consider an areal process to exhibit autocorrelated-clustering if there exists at 

least one areal unit ai with at least one neighbor aj such that Y j = 1 ∣ Y i = 1 > P Y j = 1 , 

that is Y  exhibits positive spatial autocorrelation. Here the definition of neighbor can be 

taken to be any desired measure of proximity (shared border, centroids within a certain 

distance, etc.). Autocorrelated-clustering violates the independence assumption, but not 

necessarily the stationarity assumption. For the purposes of developing a hypothesis testing 

procedure, we will consider an areal process to be clustered if it exhibits excess-clustering 

or autocorrelated-clustering or both. Note that unless more than one realization of the same 

areal process is observed (which is rare), it will not be possible to distinguish between the 

two types of clustering.

Consider the following test statistic

Tn(r, y) = M(r, y) − M0(r, n)

where n = ∑i = 1
N yi, M0(r, n) = E[ 1

nY
∑i = 1

N Mi0(r, n)Y i ∣ nY = n] and 

Mi0(r, n) = E N c ℓ i, r ∩ ai
c + A c ℓ i, r ∩ ai

A c ℓ i, r ∩ A ⋅ N(A)
A(A)

−1
∣ nY = n  for a stationary, independent 

process. Under the null hypothesis, E Tn(r, Y ) ∣ nY = n = 0. Positive values of Tn(r, y) suggest 
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clustering at distance r. Data which exhibits excess-clustering will have a larger-than-

expected number of positive units in C, which will tend to inflate the values of Mi(r, y)
for i ∈ C and thus inflate M(r, y). Data which exhibits autocorrelated-clustering will have a 

larger than expected number of positive units with other positive units nearby, which will 

also inflate M(r, y). When the null hypothesis is rejected in favor of clustering at distance r, 
we conclude that there is more area within a distance of r of each positive unit centroid than 

expected under a stationary, independent process.

The null distribution of Tn(r, ⋅ ) can be estimated using a Monte Carlo procedure in which 

data is generated under the random labeling hypothesis, that is, the Y  values are generated 

by selecting n positive areal units with equal probability. Note that M0(r, n) can be computed 

exactly, but doing so requires evaluating N N
n -dimensional sums. Additionally, obtaining 

the terms in these sum requires computing the area of polygon intersections, which is 

generally computationally intense. As an alternative, we propose approximating M0(r, n) by 

averaging the M(r, y) values from the same Monte Carlo procedure used to estimate the null 

distribution of Tn(r, ⋅ ). An α-level test for clustering at distance r can then be conducted by 

rejecting the null hypothesis if Tn(r, y) exceeds 1 − α quantile estimated from the simulated 

null distribution.

The same test statistic Tn(r, ⋅ ) can be used to detect dispersion. Dispersion is a difficult 

phenomena to precisely quantify. Intuitively, an areal process is dispersed if positive areal 

units tend to be located further away from other positive units than would be expected for 

a stationary, independent process. To produce a working definition of dispersion, suppose 

we have defined a neighbor structure on the areal units. We will consider an areal process 

to exhibit buffered-dispersion if there exists a set of non-neighboring unit(s) indexed by D
such that for all i ∈ D and all neighbors aj of ai, P Y i = 1 > P Y j = 1 . Here, the units in D
are surrounded by ‘buffer units’ with a lower probability of being positive. An areal process 

which exhibits buffer-dispersion is not stationary, but it could be independent. We will 

consider an areal process to exhibit autocorrelated-dispersion if there exists at least one areal 

unit ai with at least one neighbor aj such that P Y j = 1 ∣ Y i = 1 < P Y j = 1 . Autocorrelated 

dispersed areal processes are not independent, though they may be stationary. For the 

purposes of hypothesis testing, we will consider an areal process dispersed if it is either 

buffer-dispersed or autocorrelated-dispersed. While this definition likely does not cover all 

processes which could give rise to dispersed areal data, it does cover two most common 

cases of areal unit(s) with a high probability of being positive surrounded by areal units with 

lower probability of being positive and the case of negative spatial autocorrelation.

If an areal process is dispersed, then at least some of the positive units have fewer positive 

units nearby than we would expect for a stationary, independent process. These units will 

tend have to have lower than expected Mi(r, y) values, decreasing M(r, y). We can perform 

an α-level test of the null hypothesis that A is a stationary, independent process against the 

alternative hypothesis that A exhibits dispersion by rejecting the null hypothesis if Tn(r, y)
falls below the α-quantile of the null distribution of Tn(r, ⋅ ), which can be estimated using 

the Monte Carlo procedure described previously. If we reject the null hypothesis in favor 
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of dispersion, we conclude that the amount of positive areal within a distance r of positive 

unit centroids is less than expected for stationary independent process. Finally, an α-level 

two-tailed test for either clustering or dispersion can be conducted by rejecting the null 

hypothesis if Tn(r, y) is less than the estimated α/2 quantile of the null distribution or if 

Tn(r, y) is greater than the 1 − α/2 quantile.

2.6. A Global Hypothesis Test for Type I Error Rate Control

In many applications, the ideal distance at which to test for spatial patterns may not 

be known. Computing the PAPF test statistic at a variety of radii induces a multiple 

testing problem and the potential for an inflated type I error rate. To control the overall 

type I error rate associated with such a procedure, we propose the following global 

test for clustering over a range of distances r ∈ ℛ = r1, …, rR . Define the global test 

statistic TnC(y) = maxr ∈ ℛ Tn(r, y)/Snr  where Snr = var Tn(r, ⋅ ) 1/2. We can estimate the null 

distribution of TnC( ⋅ ) within the Monte Carlo procedure discussed above. That is, Tn(r, y) is 

computed for each r ∈ ℛ and TnC( ⋅ ) is computed for each dataset. Note that we can estimate 

var Tn(r, ⋅ )  from the same Monte Carlo procedure. An upper tailed test is indicative of 

clustering. To test for dispersion, define the test statistic TnD(Y ) = minr ∈ ℛ Tn(r, y)/Snr . The 

null distribution of TnD( ⋅ ) can be estimated analogously to that of TCn( ⋅ ) and a lower tailed 

test is indicative of dispersion. To simultaneously test for either clustering or dispersion, 

both tests can be performed and a Bonferroni correction for two tests applied. Similar 

methods have been proposed to derive global tests from Ripley’s K-function and Ripley’s 

D-function [19].

3. Simulation Study

3.1. Simulation Specifications

In this section, we perform an extensive simulation study to compare the performance 

our proposed PAPF hypothesis testing method to the performance of the global Moran’s I 

statistic, the Getis-Ord general G statistic, and the spatial scan statistic. We also consider the 

performance of the misapplication of three point process methods to the areal unit centroids: 

a edge-corrected Ripley’s K-function test, a related test based on Ripley’s D-function 

[19], and the average nearest neighbor method [13]. These misapplications are included to 

highlight the importance of analyzing areal data only with methods designed for areal data. 

After describing our data generation procedures, we provide details on the implementation 

of each method.

We consider the performance of our proposed hypothesis testing procedure using two study 

areas which are shown in Figure 2:

A1 A 20 by 20 regular grid of N1 = 400 cells

A2 The N2 = 3, 108 counties (and county-equivalents) in the contiguous US.

We define three distributions that will be used to sample the observed units. For each, areal 

unit ai is positive when Y i = 1. First, Y SWoR(N, k, p) indicates that the random variable 
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Y = Y 1, …, Y N  arises by selecting k elements from 1, 2, …, N  via sampling without 

replacement (SWoR) where p = p1, …, pN ′ gives the probability of selecting each element, 

and Y i = 1 if i was selected and 0 otherwise. Second, Y C(k, m, q) denotes that Y  is generated 

using the following two-step process where Y i = 1 if element i was selected in either step:

i. m elements of 1, 2, …, N  are randomly selected via SWoR N, m, p1  where 

p1i = N−1 for all i.

ii. k − m elements of 1, 2, …, N  are selected via SWoR N, k − m, p2 , where p2i = 0
if i was selected in step (i), p2i = q/D for i such that ai shares a border with at 

least one unit selected in step (i), and p2i = 1/D otherwise where D is such that 

∑i p2i = 1.

Third we define Y M(n, m, q, k) if Y  is generated as follows:

i. Divide the study area A into three regions: a clustered region Rc, a dispersed 

region Rd and a random scatter region Rr.

ii. Select m units from Rc as follows:

a. Select 1 unit via SWoR Nc, 1, pc , where Nc is the number of units in Rc

and pc = Nc
−1, …, Nc

−1 ′.

b. Set pci = q/D if ai is adjacent to a previously selected unit, pci = 0 if ai is 

a previously selected unit and pci = 1/D otherwise; D is chosen so that 

∑i = 1
Nc pci = 1.

c. Select one unit via SWoR Nc, 1, pc

d. Return to (b) until m units have been selected.

iii. Select km units from Rd via an analogous process to (ii) with pi now taken to be 

1/(qD) in step (b) if unit ai is adjacent to a previously selected unit.

iv. Select n − k(m + 1) units from Rr via SWoR Nr, n − k(m + 1), pr , where Nr is the 

number of units in Rr and pr = Nr
−1, …, Nr

−1 ′.

For the first distribution, p can be used to to generate data under the null hypothesis or data 

with clustering in certain locations where the pi’s are larger. For the second distribution, q
controls the degree of clustering or dispersion where larger q > 1 lead to more clustering 

while smaller q < 1 lead to more dispersion. The third distribution produces an area of small-

scale clustering in Rc and an area of small-scale dispersion in Rd. When k is sufficiently large 

relatively to Nc, this process will also produce clustering at larger distances in Rc.

For each study area Aj, j = 1, 2, we generate data under 21 different scenarios. For brevity, 

we remove the subscript j when describing these scenarios (all depend on Nj). First we 

consider the null hypothesis of a stationary independent areal process (e.g. no spatial pattern 

in the positive units) via the following three scenarios:
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I1:Y SWoR(N, N/10 , p)

I2:Y SWoR(N, N/4 , p)

I3:Y SWoR(N, N/2 , p)

where p = p1, …, pN ′ = (1/N, …, 1/N)′.

We also consider 12 scenarios in which the locations of observed units are clustered. The 

following 6 scenarios assess the ability to excess-clustering:

C1:Y SWoR N, N/10 , p1

C2:Y SWoR N, N/10 , p2

C3:Y SWoR N, N/4 , p3

C4:Y SWoR N, N
4 , p4

C5:Y SWoR N, N/2 , p5

C6:Y SWoR N, N/2 , p6 .

The N-dimensional vectors pl = pl1, …, plN ′ for l = 1, …, 6 are defined as follows: an entry of 

pl is equal to q/D if the unit is shown in blue in Figure 3 and equal to 1/D otherwise where 

D is such that ∑i pli = 1. For l ∈ 1, 3, 5  we take q = 5 and for l ∈ 2, 4, 6  we take q = 10. 

Thus the blue units are 5 times more likely to be observed than the white units under C1, C3

and C5, and 10 times more likely to be observed under C2, C4 and C6.

Next, we assess the ability of our hypothesis test to autocorrelated-clustering by considering 

the following 6 scenarios:

C7:Y C( N/10 , N/100 , 5)
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C8:Y C( N/10 , N/100 , 10)

C9:Y C( N/4 , N/40 , 5)

C10:Y C( N/4 , N/40 , 10)

C11:Y C( N/2 , N/20 , 5)

C12:Y C( N/2 , N/20 , 10)

Note that C7, C9 and C11 correspond to ‘weaker’ clustering, in the sense that they tend to 

select fewer adjacent units than mechanisms C8, C10 and C12

Next, we assess the ability of our hypothesis testing procedure to detect spatial dispersion 

under the following 4 scenarios.

D1:Y C ⌈N/10⌉, ⌈N/100⌉, 1
10

D2:Y C( N/10 , N/100 , 0)

D3:Y C ⌈N/6⌉, ⌈N/100⌉, 1
10

D4:Y C( N/6 , N/100 , 0)

Here, in D1 and D3 adjacent units are one tenth as likely to be observed as non-adjacent 

units, creating a mild dispersion effect. Under D2 and D4 adjacent units cannot be selected at 

all, creating a stronger dispersion effect. Finally, we consider only two samples sizes when 

assessing dispersion (N/10 and N/6) because it becomes increasingly difficult or impossible 

to select only non-adjacent units as number of selected units increases.

Finally, we assess the ability of the PAPF method to detect the simultaneous presence of 

spatial clustering and dispersion at different distances using the following two scenarios:

M1:Y M N/10 , mj1, 10, 3
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M2:Y M N/6 , mj2, 10, 3

We take m11 = 9, m21 = 13, m12 = 60 and m22 = 100. The regions Rc, Rd and Rr defined for our 

two study areas are shown in Figure 3. Examples of data generated each scenario for A1 are 

shown in Figure 4. Web Figure 1 provides similar examples for A2.

3.2. Method Specifications

All hypothesis tests were performed with at a level of α = 0.05. For each study area, 

both global and radii-specific PAPF tests, Ripley’s K tests and Ripley’s D tests were 

performed. The radii-specifc PAPF tests were performed for 10 radii, r ∈ ℛj = rj1, …, rj10 . 

The set of radii used for each study area are shown in Figure 2. The smallest radius was 

equal the smallest distance between any areal unit centroids, and the radii were increased 

incrementally, with the largest radii being approximately one fourth of the width of the study 

area.

3.2.1. PAPF Method—To perform the PAPF hypothesis test, Monte Carlo 

simulations were used. For each study area Aj, and observation size 

n ∈ Nj/10 , Nj/6 , Nj/4 , Nj/2 , G = 200 datasets were simulated under the null 

hypothesis of an stationary and independent areal process, conditional on n positive units 

being observed. Specifically, for a given Aj, n, and pj = (Nj
−1, …, Nj

−1)′, yg SWoR Nj, n, pj  was 

sampled for g = 1, …, G, and

M0(r, n) = 1
G g = 1

G
M r, yg

was calculated for each r ∈ ℛj. Then to approximate the distribution of the test statistic 

Tn(r, ⋅ ),

Tn r, yg = M r, yg − M0(r, n)

was calculated for g = 1, …, G and the quantiles of Tn r, y1, , …, Tn r, yG  were used as 

approximate critical values for the hypothesis test. These Monte Carlo simulatons were also 

used to estimate the null distributions of TnC( ⋅ ) and TnD( ⋅ ).

After approximating each null distribution, 500 instances of y were generated under each of 

the 21 DGMs. For each generated y, TnC(y), TnD(y) and Tn(r, y) for r ∈ ℛj were computed and 

compared to critical values from the corresponding null distribution.

3.2.2. Comparison Methods—Table 1 provides the assumed null, right-tailed and 

left-tailed alternative hypotheses for the PAPF, the global Moran’s I statistic, the Getis-Ord 

general G statistic, the spatial scan statistic, and the misapplications of Ripley’s K-function, 

Ripley’s D-function, and the average nearest neighbor method. If the method requires a 
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Monte Carlo procedure for estimating the null distribution of the test statistic, details of the 

data generation mechanism are also provided.

The global Moran’s I statistic was computed for each dataset using the Moran.I function 

in the R package ape [46] using an adjacency-based spatial weights matrix. The Getis-Ord 

general G statistic was computed for each dataset using the globalGtest function in the R 

package spdep [9] using the same adjacency-based spatial weights matrix. The spatial scan 

statistic was computed using the scan.test function in the spatstat R package [5]. A 

binomial likelihood was assumed, with each areal unit having 1 trial. A set of circular zones 

with radii r ∈ ℛj were considered. The Monte Carlo procedure for the spatial scan statistic 

is consistent with the null hypothesis of the statistic after conditioning on the number of 

observations n.

Ripley’s K-function was computed with the Kest function in the R spatstat package 

[5], using the centroids of positive units as the set of observation locations. The envelope 

function (also in the spatstat package) with nsims = 200 was used to perform hypothesis 

testing for the radii-specific tests. This corresponds to generating 200 simulated datasets 

consisting of n observations generated from a two dimensional continuous uniform 

distribution on A. Note that neither the assumed null hypothesis nor the Monte Carlo 

procedure for Ripley’s K-function is consistent with the random labelling hypothesis. In 

fact, the Monte Carlo procedure does not even produce ‘centroids’ which are consistent with 

the assumed areal structure, that is, the points generated by the Monte Carlo procedure are 

not a subset of the areal unit centroids. Nevertheless, this is the approach used by ArcGIS 

to apply Ripley’s K-function to areal data [23] and appears to be widely used in practice 

(see Section 1 for examples). As the centroids of the areal units are fully dependent on 

the assumed areal structure, it is highly unlikely that the centroids of positive units will be 

consistent with the assumed null hypothesis/Monte Carlo procedure of homogeneous point 

process (or for that matter, any stationary point process) even in the absence of clustering. 

We also applied a global Ripley’s K test inspired by [19]. We used the following test statistic 

to detect clustering K̂nC(y) = max{K̂(r)/ var[K̂(r)]: r ∈ ℛj} and defined K̂nD(y) analogously to 

detect dispersion. The null distributions of both test statistics were estimated with Monte 

Carlo simulations for which data was generated using the evelope function as described 

above.

Diggle and Chetwynd propose a method for adapting Ripley’s K-function for the detection 

of spatial clustering relative to a non-homogeneous null distribution, referred to as Ripley’s 

D-function [19]. Observations are assumed to belong to one of two types (cases or controls). 

Ripley’s D-function D(r) is defined as the difference between Ripley’s K-function computed 

using only the cases and Ripley’s K-function computed using only the controls. To apply 

this method to our datasets, the centroids of positive areal units were treated as cases and the 

centroids of the other areal units were treated as the controls. The null hypothesis of random 

labeling is thus the same as an independent stationary areal process after conditioning on the 

number of positive areal units. The Kest function was used to compute Ripley’s K-function 

for the cases and controls separately, and the test statistic was taken to be difference 

in Ripley’s K-function between the two groups. An upper-tailed test was used to detect 
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clustering, and a lower tailed test was used to detect dispersion. Monte Carlo simulations 

were used to estimate the null distribution of the test statistic. Again following [19], we also 

applied a global Ripley’s D test. The test statistics DnC and DnD were defined analogously to 

the global PAPF and global Ripley’s K-function test statistics, with the estimated Ripley’s 

D-function playing the role of M(r, y) or K̂(r, y). The null distributions of both test statistics 

were estimated with Monte Carlo simulations as described above.

Clark and Evans develop the average nearest neighbor method for detecting clustering in 

point process data [13]. The test statistic compares the average distance between each point 

and its nearest neighbor to the expected distance under a null hypothesis of complete spatial 

randomness. To apply this method to our data, the centroids of the positive areal units were 

treated as the observation locations. We note that the assumed null hypothesis of this method 

is not consistent with the random labeling hypothesis. The average nearest neighbor test 

statistic was computed using the nni function in the spatialEco R package [24].

For each method, a two-tailed test was performed in scenarios I1 − I3. For the spatial scan 

statistic and the Getis-Ord general G, these two-tailed test detect only clustering; for all 

other methods, the two-tailed test detects both clustering and dispersion. The two-tailed test 

for the global PAPF, global Ripley’s K and global Ripley’s D methods were conducting by 

performing separate tests for clustering and dispersion using the corresponding test statistics 

and applying a Bonferroni correction for 2 tests. As the empirical type I error rate for 

Ripley’s K-function and the ANN method were severely inflated, they were not applied to 

the other scenarios. For scenarios C1 − C12, an α-level test for clustering was used for all the 

remaining methods. We note that a test for clustering is a single tailed test for all methods 

except the spatial scan statistic, for which it is a two-tailed test (see Table 1). For scenarios 

D1 − D3, an α-level test for dispersion was performed for the PAPF, Moran’s I and Ripley’s 

D methods. As neither the Getis-Ord general G statistic nor the spatial scan statistic can 

detect dispersion, these methods were not applied to these scenarios. Finally, for scenarios 

M1 − M2, separate α-level tests for clustering and dispersion were performed using the PAPF, 

Moran’s I, and Ripley’s D-function to assess the presence of both clustering and dispersion. 

An α-level test for clustering was also performed using the Getis-Ord general G and the 

spatial scan statistic.

3.3. Simulation Results

Tables 2 and 3 summarize selected results from study area A1 (the regular grid) and study 

area A2 (the US counties), respectively. The remaining results can be found in Web Tables 

1 and 2. Each table reports the empirical rate of rejection for the null hypothesis. For 

scenarios I1, I2 and I3, this quantity is the empirical type I error rate; for the other scenarios, 

this quantity is the empirical power. As the PAPF, Ripley’s K and Ripley’s D tests were 

performed at 10 different radii, the rejection rate for each radius is reported separately.

Under the null scenarios (I1, I2 and I3), the empirical type I error rates of the global and 

radii-specific PAPF methods, the global Moran’s I statistic, the Getis-Ord general G statistic, 

the spatial scan statistic and the global and radii-specific Ripley’s D methods are within the 

Monte Carlo margin of error of their nominal levels. However the empirical type I error rate 
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of global and radii-specific Ripley’s K methods and the average nearest neighbor method 

were highly inflated for most scenarios. This is presumably due to the incongruities between 

the assumed null hypothesis of these tests and the null hypothesis under which data was 

generated.

Under the excess clustering scenarios C1 − C6 , the global PAPF test had 100% empirical 

power to detect clustering, with the exception of scenario C1 under the regular grid. 

Additionally, the power of the radii-specific PAPF tests is fairly consistent across radii. 

For these scenarios, the performance of the global PAPF test is comparable to or better than 

the performance of the Moran’s I statistic, the Getis-Ord general G statistic and the spatial 

scan statistic. Interestingly, while the performance of the global and radii-specific Ripley’s D 

tests is comparable to or better than that of the global and radii-specific PAPF test for DGMs 

C1 − C4, the Ripley’s D test performs quite poorly for the larger sample sizes (DGMs C5 − C6) 

on the regular grid, while the PAPF test continues to perform well.

Under the autocorrelated-clustering DGMs C7 − C12  the empirical power of the global 

PAPF test is generally high and the performance of the PAPF is comparable to that of 

Moran’s I, Getis-Ord general G, and the scan statistic, with the exception scenarios C7 on 

the regular grid and C11 on the US counties, for which Moran’s I and Getis-Ord are the 

top performers. The performance of the PAPF test and the Ripley’s D test are generally 

comparable for scenarios C7 − C10 on the regular grid, but the performance of the Ripley’s D 

test deteriorates drastically for scenarios C11 − C12, while the PAPF test continues to exhibit 

good performance. Both the global and local PAPF tests tends to outperform their Ripley’s 

D counterparts for the US county scenarios.

Under the dispersion DGMs D1 − D4  the performance of all methods was roughly 

comparable, except for the smaller sample sizes for the regular grid, for which the 

performance of the global PAPF statistic was noticeably worse than the others.

Under the mixture of clustering and dispersion scenarios M1 − M2 , the ability of the global 

PAPF test and global Ripley’s D tests to detect clustering is quite good for the regular grid, 

but performance deteriorates noticeably for the US counties. The opposite is true for the 

spatial scan statistic, which exhibits poor performance (0% power) for the regular grid but 

excellent performance (100% power) for the US counties. The performance of the global 

Moran’s I and Getis-Ord general G statistics to detect clustering is poor for all scenarios. 

The ability of the PAPF test, the Ripley’s D test, and the global Moran’s I statistic to 

detect dispersion is poor for the regular grid. However the ability of the PAPF test to detect 

dispersion on the US counties improves dramatically, while the performance of the other 

methods remain poor.

In summary, of the nine methods considered, only seven (the global and radii-specific PAPF 

tests, the global Moran’s I statistic, the Getis-Ord general G statistic, the spatial scan statistic 

and the global and radii-specific Ripley’s D tests) maintained their nominal type I error 

rates. The empirical power of the PAPF test was generally comparable to or better than all 

other methods, though there were a few exceptions to this rule.
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Only Ripley’s K-function, Ripley’s D-function and the PAPF method allow one to detect 

distance-specific clustering or dispersion. Thus, if one wishes to test for spatial patterns at 

a single, specific distance, the radii-specific Ripley’s K, Ripley’s D and PAPF methods are 

the only potential options. However, the Ripley’s K methods exhibited a severely inflated 

type I error rate and are thus unreliable. Notably, the performance of the global PAPF test 

is comparable to or better than that of the global Ripley’s D test for all scenarios. In the 

some scenarios, the performance of the global PAPF test was 4–6 times better than that 

of the global Ripley’s D test. The Ripley’s D test is designed for point process data and 

is here being misapplied to areal data, which may explain some of the strange behavior 

in it’s results (e.g. worsening performance as the number of positive units increases). The 

Ripley’s D test compares Ripley’s K-function on the positive units to Ripley’s K-function 

on the negative units. In scenarios C5 and C6 on the regular grid, the global Ripley’s D 

test performed very poorly. In these scenarios, almost all of the 200 negative units occur 

outside the region of excess clustering (shown in blue in Figure 3). As there are 300 total 

units outside this region, this implies that probability that a unit in this region is negative 

is roughly 0.66, as opposed to 0.5 under the random labeling hypothesis. This implies that 

the negative units are also clustering- that is, they are more likely to be in the non-blue 

region than expected under the null hypothesis. Since Ripley’s D-function compares the 

degree of clustering in the positive units to the degree of clustering in the negative units, the 

presence of clustering in both types of units may explain the lack of statistical significance 

in the global Ripley’s D test. While this clustering of negative units also occurs in scenarios 

C1 − C4, it is less extreme. For example, in scenario C2, the probability of a unit outside 

the blue region being negative is approximately 0.97, versus 0.9 under the null hypothesis. 

The generally superior performance of the global PAPF method combined with the fact that 

Ripley’s D-function is a point process method being misapplied to areal data compel use to 

recommend the use of the PAPF rather than Ripley’s D-function to detect distance-specific 

patterns.

3.4. Supplementary Simulation Results

To assess the performance of the PAPF method under extremely small sample sizes, a 

simulation study was conducted using a 4×5 regular grid. In general, the global Ripley’s D 

test had the highest power to detect clustering and the ability of all global methods to detect 

dispersion was roughly the same. However power of the radii-specific PAPF tests to detect 

both clustering and dispersion was generally higher than that of the radii-specific Ripley’s D 

tests. The full simulation results can be found in Web Table 3.

Another simulation study was conducted to assess the sensitivity of the PAPF method to 

the dependence on areal unit centroids. In brief, the role of each areal unit’s centroid in 

the definition of the PAPF was replaced with a randomly choosen point from each areal 

unit. For full details, see Web Appendix B of the Supplementary Material. The results of 

this simulation study are found in Web Tables 4 and 5 in the Supplementary Material. 

The performance of this alternative PAPF method was comparable to that of the standard 

method.

Self et al. Page 18

Spat Stat. Author manuscript; available in PMC 2024 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



4. Data Application

In this section, we consider the performance of our method on real world applications from 

two different fields. First, we use the method to determine if land parcels with CEs are 

clustered in Boulder County, Colorado, using the 112,819 distinct land parcels in Boulder 

County as the areal structure. Next, we apply our method to determine if US counties 

with high childhood overweight rates are spatially clustered, using the 3,108 county and 

county-equivalents in the contiguous US as the areal structure.

4.1. Application to Conservation Easements

CEs are a private and generally perpetual form of land conservation that legally severs 

aspects of private landownership (e.g., development rights, resource extraction, etc.) from 

a parcel of land [44]. Although a landowner makes an individual decision to place a CE, 

prior research has indicated spatial clustering of CEs over time, throughout the US [36]. 

Cumulative and clustered CE use may impact regional ecosystem character by altering the 

degree of CE parcels’ isolation or connectivity with other ecologically valuable parcels and 

may change ecologic quality on the CE parcel itself [29]. The greater the mass of clustering 

and ecological systems integrity, the more impact there may be on the land conversion rates 

at the county level, and on the decision to leave a parcel in open space (or not), potentially 

affecting placement of other socially valuable land uses. Recognizing if and where CEs are 

clustered and linking the social, political, biological, and geographical characteristics to the 

clustered areas may help elucidate the factors driving CE placement [7].

The Boulder County data consists of 112,819 land parcels in place in 2008. Of these land 

parcels, 817 were held as CEs. A parcel was considered to be part of a CE if any part of 

the parcel was part of an easement. Figure 5 depicts the land parcels; CE parcels are shown 

in blue. Global PAPF tests for clustering and dispersion were applied to the dataset using 

a Bonferroni correction to maintain an overall significance level of α, along with two-tailed 

radii-specific tests at 10 different radii, depicted in Figure 5.

In order to apply our method, the distribution of the global and radii-specific PAPF test 

statistic under the null hypothesis was estimated using 200 Monte Carlo simulations. In each 

Monte Carlo simulation, 817 parcels were selected via simple random sampling without 

replacement. The observed global PAPF test statistic for clustering T817C(y)  was larger than 

the 97.5th quantile of it’s estimated null distribution. The radii-specific test for radius r2

(approximately 1.1 miles) was also larger than the 97.5th quantile of it’s null distribution. 

No other radii-specific tests were significant. These results indicate that parcels which 

contain CEs are significantly clustered at small distances. The exact test statistics and 

estimated quantiles can be found in Web Table 6 in the Supplementary Material.

In the context of CEs with a purpose of biological conservation, clustering easements 

close to one another is one reserve design principle to improve landscape connectivity and 

combat the adverse effects of habitat fragmentation from human land conversion [17, 31]. 

Larger and higher quality habitats (particularly on CEs) increase the size and stability of 

source populations and subsequently increase species dispersal capabilities [32]. Clustering 

and structural connectivity between conservation areas are not always positive, however, 
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as clustering may also leave these areas vulnerable to spatially autocorrelated extinction 

pressures, such as diseases, invasive species, stochastic environmental events, or negative 

effects from localized urban growth [21]. Given that the PAPF method indicated the spatial 

clustering of CEs at short distances in Boulder County, more detailed landscape connectivity 

studies focused on functional connectivity may be warranted [6, 54].

4.2. Application to Counties with High Childhood Overweight/Obesity Rates

Next, we use the PAPF method to determine if US counties with high childhood overweight/

obesity rates are spatially clustered. County-level childhood overweight rates were estimated 

from data collected in the 2016 National Survey of Children’s Health using a multilevel 

small area estimation approach as described in [56]. A county was considered to have a high 

overweight rate if its estimated rate exceeded the 75th percentile of all county overweight 

rates. There are 3,108 counties and county-equivalents in the contiguous US, and 786 of 

these counties were found to have a high rate of childhood overweight. These counties are 

shown in blue in Figure 5, along with the radii at which PAPF was applied. As for the CEs 

data application, an α = 0.05 global test for clustering or dispersion was conducted using 

T786C(y) and T786D(y) and applying a Bonferroni correction. A two-tailed α = . 05 level test was 

also conducted for each radii.

The distribution of the global and radii-specific PAPF test statistics under the null hypothesis 

was estimated using 200 Monte Carlo simulations. In each Monte Carlo simulation, 786 

counties were selected via simple random sampling without replacement. The observed 

global PAPF test statistic for clustering T786C(y)  was larger than the 97.5th quantile 

of it’s estimated null distribution. All 10 radii-specific test statistics were also greater 

than the 97.5th quantiles of their null distributions, indicating that counties with high 

rates of childhood overweight are significantly clustered at small and large distances. As 

Southeastern and Midwest states tend to have higher overweight and obesity rates than the 

rest of the country [25, 11], these results are not surprising. The exact test statistics and 

estimated quantiles can be found in Web Table 7 in the Supplementary Material.

5. Conclusion

The problem of assessing binary areal data for distance-specific spatial clustering or 

dispersion has been the subject of relatively little attention. Existing methods such as the 

global Moran’s I statistic, the Getis-Ord general G statistic, and the spatial scan statistic are 

global tests for clustering which are not directly amenable to determining the distance at 

which clustering is occurring. The global Moran’s I and Getis-Ord general G statistics can 

be sometimes be tuned to pick up patterns at a specific distance by choosing an appropriate 

spatial weight matrix. However, the interpretation of the spatial scale induced by the weight 

matrix is often very complex, particularly for inverse-distance based weights (for which all 

observations are related to some degree) or for adjacency based weights (which ignore the 

size of the underlying units). One can attempt to deduce the distance at which clustering 

occurs from the spatial scan statistic by examining the size of the most likely cluster, but 

as the spatial scan statistic cannot detect dispersion, one cannot detect the simultaneous 

presence of clustering and dispersion operating at different distances. Further, the spatial 
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scan statistic has some challenges with areal data since large neighboring units that can have 

centroids which are relatively far from each other. The PAPF method improves on the 0/1 

indicator used by the spatial scan statistic by allowing observed units to be partially inside a 

zone of interest.

While the average nearest neighbor method and the traditional Ripley’s K method are often 

used to assess areal data for clustering by mapping each areal unit to its centroid, these 

methods were not designed for areal data. Our simulation study shows that applying these 

methods in this manner results in a highly inflated type I error rate. In fact, in many settings 

these methods had a 100% type I error rate. Since such an approach is the default method 

used by ArcGIS software, these results are concerning.

To provide a means of testing binary areal data for clustering and dispersion at specific 

distances, we developed the positive area proportion function (PAPF). The PAPF is 

motivated by Ripley’s K-function, and has a similar interpretation. The PAPF method 

quantifies the average proportion of positive area within a specified distance of each positive 

unit centroid. The PAPF can be used to perform a hypothesis test for the presence of spatial 

clustering or dispersion by comparing the observed PAPF test statistic to the distribution 

of the PAPF test statistic under the null hypothesis of a stationary and independent 

areal process, which is equivalent to the well-studied random labelling hypothesis after 

conditioning on the number of positive units. Simulation studies demonstrated that PAPF 

hypothesis testing procedure maintains its nominal type I error rate and has high power 

to detect a variety of spatial patterns, including clustering and dispersion at a variety of 

distances. The PAPF generally displayed comparable or higher power to other methods.

To our knowledge, the PAPF method is the only method for detecting distance-specific 

patterns in binary areal data. The ability to detect patterns at specific distances is of 

critical importance in many fields that use and evaluate spatial relationships including urban 

planning, regional science, conservation biology, public health, epidemiology and many 

others. For example, the ecological implications of small-distance clusters of conserved 

land are quite different than the implications of clustering across large distances; addressing 

many small clusters of food desert census tracts requires a different policy approach than 

addressing a single expansive swath of food desert tracts. Our method allows researchers 

to identify the spatial scale at which any clustering or dispersion is operating, facilitating 

a deeper understanding of the processes at work. Our method also provides a reliable 

alternative to the misapplication of Ripley’s K-function to areal data.

To facilitate the use of our method, R code which implements the PAPF method and 

performs the necessary Monte Carlo simulations has been made available online at https://

github.com/scwatson812/PAPF. The computational expense of the method increases with 

the number of positive units. When the number of observed areal units is large, the Monte 

Carlo simulations may be run in parallel to reduce computation time. The development of 

faster methods for approximating the null distribution is an excellent area for future work. 

Future work could also consider the extension of the PAPF to continuous data or categorical 

data with more than two categories. While this work considered the areal units as fixed 

and only the designation of being ‘positive’ as random, it is possible to treat both the 
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locations/boundaries of the areal units and the designation of being positive as random. Such 

an application might arise when partitioning US states into congressional districts, with the 

‘positive’ districts being those dominated by a particular political party. In such a case, one 

could treat the centiods of the areal units as a marked point process, with the Mi(r, y) s as 

the associated marks. One could then analyze the resulting marked point process via the 

associated second order marked random measure and the marked Kmm-function.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
An illustration of N c ℓ i, r ∩ ai

c + A c ℓ i, r ∩ ai  for a realization of an areal process on a 

20×20 regular grid. Positive areal units (i.e. units for which yi = 1 are shown in color. The 

area of the shaded red region is equal to N c ℓ i, r ∩ ai
c + A c ℓ i, r ∩ ai , where ai is the grid 

cell in the 12th row and 5 th column.
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Figure 2: 
The 2 study areas considered in the simulation study. The 10 radii at which the positive area 

proportion function, Ripley’s K-function and Ripley’s D-function are evaluated are shown 

for a single location in blue.
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Figure 3: 
The top row illustrates the clustered regions for DGMs C1 − C6 for study areas A1 (top left), 

and A2 (top right). Blue units are q times more likely to be selected than white units under 

spatial dependence configurations C1 − C6. The bottom row illustrates the clustered Rjc , 

dispersed Rjd  and random scatter regions Rjr  for DGMs M1 and M2 for A1 (bottom left) 

and A2, (bottom right). Red denotes Rjc, blue denotes Rjd and white denotes Rjr.
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Figure 4: 
Examples of observed units generated under each scenario for study area A1. The first 

row displays examples of data generated under the null hypothesis of equal probability 

sampling without replacement (left to right: I1, I2, I3). The second row displays examples 

of data generated with excess clustering (left to right C1, C2, C3, C4, C5, C6). The third 

row displays examples of data generated with autocorrelated clustering (left to right 

C7, C8, C9, C10, C11, C12 . The fourth row displays examples of data generated with dispersion 

or a mixture of clustering and dispersion (left to right D1, D2, D3, D4, M1, M2).
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Figure 5: 
The top pane displays the 112,819 land parcels in Boulder County, Colorado in 2008. 

Parcels held as a CE are shown in blue. The radii at which the PAPF method was evaluated 

are shown in red. Note that areas with many small parcels appear black. The bottom pane 

displays the 3,108 counties in the contiguous US. Counties with a high rate of childhood 

overweight/obesity are shown in blue. The radii at which the PAPF method was evaluated 

are shown in red.
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Table 1:

The table provides an overview of the spatial clustering assessment methods considered in the simulation 

study: the positive area proportion function (PAPF), the global Moran’s I statistic (MI), the Getis-Ord general 

G statistic (GG), the spatial scan statistic (SSS), Ripley’s K-function (RK), Ripley’s D-function (RD) and the 

average nearest neighbor method (ANN). The null and alternative hypotheses (both left- and right-tailed) are 

specified for each method, along with the Monte Carlo procedure used to estimate the null distribution, if 

applicable.

Method H0 H1 (Left-tailed) H1 (Right-tailed) Monte Carlo Procedure

PAPF Random labeling 
(conditional on n)

Dispersion Clustering Y SWoR(N, n, p),
P = N−1, …, N−1

MI Random labeling Negative spatial autocorrelation Positive spatial autocorrelation NA

GG Random labeling Low-low clustering High-high clustering NA

SSS yi’s are iid 
Bernoulli(p)

There exists a set ℐ indexing a (contiguous) cluster of ais such 
that yi’s are iid Bernoulli(pin) for i ∈ ℐ and iid Bernoulli(pout) for 

i ∉ ℐ*

Y SWoR N, n, p ,
p = N−1, …, N−1

RK centroids arise from 

HPP†
centroids dispersed centroids clustered Generate n points from a 

continuous uniform distribution on 
A

RD Random labeling Controls more clustered than 
cases

Cases more clustered than 
controls

Select cases via 
SWoR(N, n, p),
p = N−1, …, N−1

ANN centroids arise from 

HPP†
centroids clustered centroids dispersed NA

*
For left-tailed test pout > pin for right-tailed test, pin > pout

†
HPP: homogeneous Poisson process
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