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ABSTRACT  

This chapter equitably compares five different Artificial Intelligence (AI) techniques for data-driven 
modelling. All these techniques were used to solve two real-world engineering data-driven modelling 
problems with small number of experimental data samples, one with sparse and one with dense data. 
The models of both problems are shown to be highly nonlinear. In the problem with available dense 
data, Multi-Layer Perceptron (MLP) evidently outperforms other AI models and challenges the claims 
in the literature about superiority of Fully Connected Cascade (FCC). However, the results of the 
problem with sparse data shows superiority of FCC, closely followed by MLP and neuro-fuzzy network. 

Keywords— Modelling, Artificial Intelligence, Small Data, Sparse Data, Dense Data, Piezoelectric 
Actuator, Electrical Submersible Pump, ANFIS, FCC  Network, MLP,  RBFN. 
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INTRODUCTION 
Nowadays, engineering world witnesses two partly conflicting realities: 
1. Model-based design/optimisation/control are on rise (Madni & Sievers, 2018; Pal et al., 

2022), and analytical and numerical models of many engineering systems cannot serve their 
purpose satisfactorily, e.g. as detailed in (X. Li et al., 2022; Mohammadzaheri, Grainger, et 
al., 2012a; Mohammadzaheri, Tafreshi, et al., 2020; Rahbar et al., 2022). This leads to an 
ascending demand for data-driven models, developed with experimental data. 

2. Experiments take time and cost. Hence, experimental data sets often consist of limited 
number of samples, or they are small.  
That is, engineers are more likely to deal with small data rather than big data (Morteza 

Mohammadzaheri et al., 2018a). Thus, developing accurate models out of small data is a crucial 
task for engineers (Chang et al., 2015; Zhang et al., 2022). There are a lot of piecemeal research 
in the literature reporting development of data-driven models for engineering systems with 
small data, e.g. (Kokol et al., 2022; Liu et al., 2023; Taajobian et al., 2018). However, no 
comparative research was found on modelling of engineering systems with small data, though 
a few were found in other areas (Collins et al., 2017; Steyerberg et al., 2000), as the value of  
models developed with small data is not limited to engineering (Goel et al., 2023; Kitchin & 
Lauriault, 2015). 

AI provides powerful tools to model intricate engineering systems with their input-output 
data (Castro, 2018; Garg et al., 2015; W. Li et al., 2022). The research question is which AI 
method suits best to data-driven modelling of engineering systems, when only a small set of 
data is available. The answer to this question, which necessitate an unprecedented even-
handedly comparison of the AI techniques for data-driven modelling of engineering system 
with small data, is the main contribution of this chapter.  In order to answer the aforementioned 
research question, several AI-based data-driven models were developed with small data to 
solve two real-world engineering problems: (i) head estimation of an electrical submersible 
pump (ESP) lifting two-phase petroleum fluids, detailed in (Mohammadzaheri & Ghodsi, 
2018) and (ii) selection of the sensing resistor in a charge estimator of a piezoelectric actuator, 
detailed in (Mohammadzaheri, Emadi, et al., 2019). Neuro-fuzzy and FCC networks, MLPs, 
and exact and efficient Radial Basis Function Network (RBFN) models as well as linear models 
have been developed to tackle problems (i) and (ii). 

 

PROBLEM STATEMENT 
This section briefly explains dual engineering problems, mentioned in the introduction, 

which were solved in this research using AI data-driven modelling techniques. The AI 
techniques will be compared based on their performance in solving these problems: 

Head Estimation of Two-Phase Petroleum Fluids Lifted by ESPs 
A variety of empirical models are used to estimate head of two-phase petroleum fluids, Hm,  

lifted by ESPs. Most of them have three inputs. One input is either intake pressure, pin, or 
density and the other two are among oil flow rate, gas flow rate, mixed fluid flow rate, qm,, or 
gas void ratio, α (volumetric ratio of gas to mixed fluid) (Mohammadzaheri & Ghodsi, 2018). 
Temperature has been overlooked in this data-driven modelling problem so far 
(Mohammadzaheri & Ghodsi, 2018). Pump rotational speed definitely affects the head; 
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however, its role is considered through the affinity law, and the empirical models are usually 
developed for a single rotational speed (Mohammadzaheri et al., 2016). Inspired by prevalent 
empirical models, following general model was employed in this work:  

                Hm=fESP(α, pin, qm,).                                                         (1) 
In this research, the two-phase fluid is a mixture of carbon dioxide and diesel fuel pumped 

by eight stages of an I-42B radial ESP, as detailed in (Lea & Bearden, 1982; Mohammadzaheri 
et al., 2015). In total, the results of 109 experiments are available. 74, 17 and 18 data samples 
were used as modelling, validation and test data sets to identify/approximate and cross-validate 
fESP. The exact use of these triple data sets will be detailed in Modelling section. Input space of 
these data, depicted in Fig.1, is fairly sparse. For instance, few data samples are available from 
operating areas with high pressure and low flow rate and in operating areas with high gas void 
ratio. The units of pin and qm in this research are ksi and gpm (gallons per minute), and α is 
unit-less. 

 
Figure 1.  Distribution of modelling, validation and test data to approximate/identify and cross-validate  
fESP, only input  

Selection of Sensing Resistor in a Charge Estimator of a Piezoelectric Actuator   
Figure 2 depicts a resistor-based, or digital (Bazghaleh et al., 2013; Mohammadzaheri, 

Ziaiefar, Ghodsi, et al., 2022), charge estimator of a piezoelectric actuator. The excitation 
voltage, Ve , is applied on the actuator, leading to a voltage across the sensing resistor, VS.  Since 
the current passing analogue to digital convertor, A/D, is negligible, the current passing the 
actuator almost equals the current passing the resistor =VS / RS . Charge of the actuator is 
integral of its current. High pass filter removes drift phenomenon as detailed in (Bazghaleh et 
al., 2018).  

According to (Mohammadzaheri, Ziaiefar, & Ghodsi, 2022) as a selection criterion, an apt 
RS should lead to a VS  just within the smallest range of A/D input voltage. For instance, if A/D 
has input voltage ranges of [-1 1] V, [-5 5] V and [-10 10] V, RS should be selected so that VS 

takes the widest possible span within the range of [-1 1] V. However, experiments have shown 
that a fixed sensing resistor cannot meet the aforesaid criterion for all operating conditions 
(Mohammadzaheri, Ziaiefar, et al., 2019). In other words, the apt sensing resistor should be 
selected based on operating conditions e.g. waveform, amplitude and frequency of excitation 
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voltage (Ve in Fig.2). It has been also shown that analytical models are inaccurate in finding 
such an apt RS (Mohammadzaheri, Emadi, et al., 2019). Thus, the remaining alternative is to 
develop data-driven models to estimate apt RS based on operating conditions. In this research, 
it is assumed that Ve is a sinusoidal function of time, with the range of  υ (in V) and the 
frequency of f (in Hz). Hence, υ and f are only operating conditions. That is, (2) is the data-
driven model to estimate apt RS: 

                    RS = fPIEZO (υ,f ).                                                       (2) 
The data of 42 experimental tests on a 5×5×36 mm3 piezoelectric stack actuator are available 

to approximate and cross-validate fPIEZO. υ has the values of 5,7.5,10,12.5,15 and 17.5 V, and 
the frequencies (f ) are 20,30,40,50,60,70 and 80 Hz. In each experiment, with a pair of υ and 
f, RS was tuned so that eventually met the aforementioned selection criterion. Ideally, such an 
RS is the output of (2). The input-output data of 30, 6 and 6 randomly selected experiments were 
used as modelling, validation and test data sets, respectively. Fig. 3 shows that the available 
data of the second case study are quite dense. Having dense data does not contradict with small 
size of the data. In data-driven modelling, the inputs of a dense data set are distributed in the 
input space rather uniformly (Foster et al., 2021). Such a data set is small, if its size (number 
of samples) is small compared to the number of parameters of an appropriate model for such a 
problem.   

 
Figure 2.  A schematic of a resistor-based charge estimator for a piezoelectric actuator 

MODELLING  
Development of a reliable data-driven model may include four tasks: 

1- Mathematical Structure Definition  
2- Parameter Identification 
3- Overfitting Avoidance 
4- Cross Validation   

Up to three separate data sets, modelling, validation and test data, were used to perform the 
listed tasks for each problem defined in Problem Statement section. Generally speaking, the 
purpose of these quadruple steps is to minimise error, ‘the discrepancy between the real output, 
from an experiment, and the estimated output by the model’. If the error is calculated using 
modelling, validation or test data, it is called modelling, validation or test error, respectively. 
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Figure 3.  Distribution of modelling, validation and test data to approximate/identify and cross-validate 
fPIEZO, only input space 

Equation 3 mathematically defines the error in this research (Mohammadzaheri, Akbarifar, 
et al., 2020): 
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where y is an output, nd is the number of samples in the data set used to calculate the error and 
^ refers to estimated values. Aforementioned quadruple tasks performed in data-driven 
modelling are briefly introduced in the following: 

Mathematical Structure Definition: In some models, the mathematical structure is not 
certain from the beginning. For instance, in a neuro-fuzzy network (or in short, fuzzy model), 
the number of rules can be defined using the modelling data through subtractive clustering 
(Alibak et al., 2022), or in exact RBFNs, the size of the model depends on the modelling data 
(Mohammadzaheri, Emadi, et al., 2020).  

Parameter Identification: Parameters of a data-driven model, with a known mathematical 
structure, are identified using the modelling data. Methods of parameter identification, 
generally, minimise the modelling error and have two categories: single-step and iterative 
methods. Some models, e.g. linear and RBFN models, use single-step identification methods 
such as non-recursive least square of error (LSE) (Mohammadzaheri et al., 2009; Saini et al., 
2022). In iterative methods, e.g. the ones based on error propagation (Haykin, 1999), the 
parameters are tuned step by step to minimise the modelling error (also known as the training 
error, as detailed in Appendix A of (Mohammadzaheri, Tafreshi, et al., 2020)).  

Overfitting Avoidance: Overfitting refers to excessive focus on decrease of the modelling 
error, which diminishes the generality of data-driven models (Cawley & Talbot, 2010; 
Mohammadzaheri et al., 2007). In iterative parameter identification, e.g. for MLPs, FCCs and 
neuro-fuzzy networks, at each iteration, the error is both calculated for the modelling and the 
validation data sets; while, the latter is not used for parameter identification. A discrepancy in 
trend of these dual errors (normally, increase of the validation error and ongoing decrease of 
the modelling error) is considered as a sign of overfitting and triggers to stop parameter 
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identification (Mohammadzaheri, Tafreshi, et al., 2020). In models with single-step parameter 
identifications, e.g. RBFNs, some specific parameters are identified with the validation data 
rather than with the modelling data to avoid overfitting (Morteza Mohammadzaheri et al., 
2018a).  

Cross Validation: Any data-driven model should fulfil the requirements of cross validation. 
In this paper, one round cross-validation or hold-out was employed, which requires that the 
estimation error of the model calculated with the test data (neither used in parameter 
identification nor in overfitting avoidance) is acceptable (Lendasse et al., 2003). In short, the 
test error should be reasonably low to cross validate a model. It should be noted that the 
validation data were not used to perform cross validation. 

Six types of data-driven models were developed in this research to tackle problems detailed 
in Problem Statement section. In following subsections, a brief explanation of each model is 
presented with a focus on four aforementioned tasks for data driven modelling and correct use 
of the modelling and the validation data. All the developed models have a single output of y 
and n inputs of ui, i=1,…,n. 

Linear Models 
In these models, the output is a linear combination of inputs 

          1
1

.
n

i i i
j

y u +
=

= +∑A A                                                    (4) 

Nothing needs to be done to define the mathematical structure of this model (i.e. task 1 in the 
list of quadruple tasks at the beginning of Modelling section), as the mathematical structure is 
evident. Model parameters (elements of A) were identified with single-step method of LSE 
(Mohammadzaheri et al., 2009). Overfitting was disregarded in development of (4) (i.e. task 3 
was not performed); thus, both the modelling and the validation data were used for modelling.  

Multi-layer Perceptrons (MLPs) 
The employed MLPs have one hidden layer with m neurons and activation function of φ. 
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MLPs, presented by (5) and (6), are universal approximators. That is, the model has a proven 
capability to model any system when sufficient data are available (Chen & Chen, 1995; 
Mohammadzaheri, Chen, et al., 2012) . 

In this research, m=2n+1, (7), based on recommendation of (Haykin, 1999). Considering 
(7), the mathematical structure would be known. Nguyen-Widrow algorithm was used to 
suggest initial values for parameters (Nguyen & Widrow, 1990). Then, error back propagation 
with Levenberg-Marquardt algorithm (Mohammadzaheri & Chen, 2010) was utilised to 
minimise the modelling error iteratively and to identify MLP parameters. At each iteration, the 
validation error was calculated. Parameter identification stopped as the trend of the modelling 
and the validation errors became discrepant, i.e. overfitting happened. Even with use of 
parameter initialisation algorithms, some initial values of parameters may push the utilised 
parameter identification method to be trapped in local minima of the modelling error, leading 
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to low accuracy of the model (Mohammadzaheri et al., 2021). Consequently, parameter 
identification was repeated with different initial parameters. The model with the lowest 
validation error was chosen in the end. 

Fully Connected Cascade (FCC) Networks 
The employed FCC networks are very similar to the MLPs, with extra parameters (E 

elements) which connect the inputs directly to the output.  

1
1 1 1
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n m n

j ij i i i i i
j i i

y u uφ +
= = =
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∑ ∑ ∑B C D Ε D                                    (8)                                                              

FCC networks have shown their merit in solving some non-engineering benchmarks (Hunter 
et al., 2012). The number of hidden layer neurons, m, was considered same as the one of MLPs, 
as the same recommendation of (7) is valid for FCC networks (Hunter et al., 2012). Parameter 
identification, overfitting avoidance and evasion from local minima of the modelling error in 
FCC networks are similar to the ones of MLPs. 

Neurofuzzy Networks  
Linear Sugeno-type fuzzy models were used in this research which are convertible to neuro-

fuzzy networks (Ahmadpour et al., 2009). Such fuzzy models have k rules, each with n 
membership functions (one per input). For jth rule and  ith input, the Gaussian membership function 
of (9) was employed to produce a membership grade,µij, based on the input, ui (Mehrabi et al., 
2017): 
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The product of membership grades of a rule was considered as the weight of the rule, a real 
number between zero and one. The output of the whole model is the weighted sum of rule outputs 
(Mehrabi et al., 2017): 

 
 
                                         
                 

       (10) 
 
 

Neuro-fuzzy models, presented by (9) and (10), are universal approximators (Ying, 1998). 
The mathematical structure of the fuzzy model, e.g. the number of rules (k), was defined 
through subtractive clustering with use of the modelling data, the utilised subtractive clustering 
algorithm is similar to the one detailed subsection 2-3 of (Mohammadzaheri, Grainger, et al., 
2012b).  

Parameters were identified using an iterative method. At each iteration, gradient descent 
error back propagation algorithm was used to adjust elements of F and G, and LSE was used 
to adjust elements of H and I (Jang et al., 2006; M Mohammadzaheri et al., 2018). The 
validation error, calculated at every iteration, was used to stop parameter identification 
procedure and to avoid overfitting, in the same way as used for MLPs. 
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Radial Basis Function Netrworks  
RBFNs, which are universal approximators too (Park & Sandberg, 1993), are presented as 

a combination of (11) and (12). They receive an array of inputs rather than inputs of a single 
data sample; a data sample has n inputs. An RBFN can estimate the output of maximum w data 
samples, where w is the number of data samples used to develop the model. If the input of 
fewer number of data samples, i.e. z, are fed into the model, first z columns of O and L are 
used. 

( )

2

2

1

distance between input
and weight arrays

exp .
n

ik ij jk
j

S
=

  
  
  = − −  
  
     

∑Ο J U


                                          (11) 

Ŷ 1×w = K1×w ×Ow×w +L1×w.                                                 (12) 
 
(12) indicates that greater elements of O are more influential on the network’s output. In 
addition, (11) shows that (i)  the range of O elements is [0 1] and (ii) if the ith row of J is 
identical to the kth column of U, then Oik will be maximum, 1.  

In RBFN modelling, arrays of Jw×n, K and L and the scalar of S namely ‘spread’ should be 
identified. At model development stage, where modelling data were used, (13) was used instead 
of (12). ^ is unnecessary in (13), since no estimation happens during model development: 

[ ]1 1 2
2

.w w
w w

× ×
×

 
=  

 

O
Y K L

I
                                               (13)                                                             

In exact RBFNs, J=UMT  (14), where UMT is the transpose of an array of all inputs of the 
modelling data. Hence, w equals the number of modelling data samples, and the mathematical 
structure is identified. For instance, for the second problem of Problem Statement section, UMT 
has the size of 2×30. Considering (11) and (14), O elements on the output, calculated with the 
modelling data, will be 1. Here is a pseudo-algorithm of exact RBFN modelling (to find J, K, 
L and S using the input and output arrays of the modelling data, UM and YM) 

1. Set J= UMT 
2. Set  Ow×w=ones(w×w)  
3. Form and solve (13) with YM and O from step 2 to find K1×w. 
4. Find S , with trial and error, so as to minimise the validation error of the developed 

RBFN (anti-overfitting step) 
An alternative to exact RBFN modelling is efficient RBFN modelling, which may produce 

RBFNs  with fewer parameters. In this research, despite exact RBFNs, that employ the 
transpose of inputs array of the modelling data as J, in efficient RBFN modelling, some 
columns of UM were selected and transposed to form J (Morteza Mohammadzaheri et al., 
2018b). Hence, the number of J rows, w, is smaller or equal to the number of the columns of 
UM, named wmax in this paper. 

Prior to select UM columns to be used as J rows, S, and a target error, Et should be defined. 
For each set of S and Et, every single column of UM was transposed and tried as a single-row 
J. Then, the corresponding RBFN was created using K and L calculated with (13). The column 
of UM leading to the smallest modelling error was selected, transposed and used as the first row 
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of J. Afterwards, the remaining columns of U were examined to find the one in which addition 
of its transpose to J led to the largest drop in the modelling error. Transposed of such a column 
was added to J. This continued till the modelling error reached Et. Thus, the mathematical 
structure of efficient RBFNs is defined with use of the modelling data. In this research, the 
entire process of finding J was repeated for different pairs of S and Et, and the validation error 
was calculated for each pair.  

Here is a pseudo-algorithm of efficient RBFN modelling: 
1. J=null, Urem= UM, Uopt=null, E=VEX=1000 (a large number), TJ=null (temporary 

weight matrix) 
2. Choose a large S and a target modelling error, Et 
3. Set w=1 
4. Set k=1 
5. Add transpose of kth column of Urem to J to form  TJ 
6. Set Ow×w=ones(w×w)  
7. Solve (13) to find K and L (YM and O are available from the modelling data and step 

6) 
8. Find the modelling error, ME. The model (11 and 12) needs to be rum more than once 

as  w< wmax.  
9. If ME<E, then E=ME and Uopt=Uk 
10. k=k+1  
11. If k ≤ (wmax –w+1) then go to 5 
12. Remove Uopt from Urem and add it to J 
13. w=w+1 
14. if E>Et then go to 4 
15. Find the validation error , VE 
16. If VE<VEX then VEX=VE 
17. If VEX is unacceptable go to 2  

Choice of S and Et was performed using full space search with zooming (use of smaller step-
size) at low error areas.  

Line 4 of exact RBFN modelling pseudo-codes and lines 14-17 of efficient RBFN modelling 
pseudo-codes use the validation data to tackle overfitting. Use of the modelling data at these 
lines would diminish generality of the model, and use of the test data would violate the 
conditions of cross validation.  

Section Summary  
Table 1 summarises the tasks performed in development of each model and the data used for 

each task.  MD and VD refer to the modelling and the validation data, respectively. Two last 
columns refer to avoidance of overfitting through different strategies: (1) stopping parameter 
identification in the case of discrepancy in trend of modelling and validation errors, used for 
MLP, FCC and neuro-fuzzy networks, and (2) identifying some parameters with the validation 
data to improve generality of the models, or dual identification, used for RBFNs.  
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Table 1. Development stages for different models and their associated data  
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Linear  MD+VD   
MLP  MD VD  
FCC  MD VD  
Fuzzy MD MD VD  
RBFN MD MD  VD 

 

RESULTS AND ANALYSIS  
The models, reported in the previous section, were developed to approximate fESP and fPIEZO 

introduced in Problem Statement section. For (neuro-) fuzzy modelling, subtractive clustering 
was performed with the influence range of 0.5 and squash factor of 1.25 for both problems. 
Also, accept ratios of 0.1 and 0.5 and reject ratios of 0.05 and 0.15 were used for subtractive 
clustering for the purpose of fESP and fPIEZO approximation, respectively. The aforementioned 
factors have been explained in (Mohammadzaheri, Grainger, et al., 2012b). Exact RBFNs were 
developed with the spreads (S) of 76 and 41 for the first and the second problem, respectively. 
Efficient RBFNs were developed with S and Et  of 58 and 30 for the first problem (to 
approximate fESP) and 83.5 and 1.2 for the second problem. The results showed that targeting a 
too small modelling error (e.g. 0) increases the validation error or rises the chance of 
overfitting. 

Tables 2 and 3 present different statistics for the developed models, all calculated with the 
test data, for the purpose of comparison of different techniques. MAE and MSE stand for mean 
of absolute error and mean of squared error. The range of output for the problems associated 
with Tables 2 and 3 are [28,72] ft and [17.5,225] Ω, respectively. The results evidently show 
that both systems are highly nonlinear, as linear models practically fail to approximate both 
fESP and fPIEZO.  
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Table 2. Different statistics of eestimation error for different models to approximate fESP 

 MLP FCC 
 

Fuzzy RBFN 
Efficient 

RBFN  
Exact 

Linear 

MAE 2.692 2.342 2.824 8.006 8.611 174.50 
Error Bias 1.975 1.360 0.967 0.929 0.473 174.50 
Error Variance  14.124 8.732 16.832 96.49 240.44 8484.3 
MSE 18.025 10.582 17.767 97.35 240.66 38934 
Number of Parameters 36 39 80 26 371 4 

 

Table 3. .Different statistics of eestimation error for different models to approximate fPIEZO 

 MLP FCC 
 

Fuzzy RBFN 
Efficient 

RBFN  
Exact 

Linear 

MAE 0.623 1.386 2.652 1.537 2.000 54.916 
Error Bias 0.127 1.265 0.370 1.070 -1.081 44.177 
Error Variance  0.555 2.020 11.44 1.792 11.146 2682.8 
MSE 0.571 3.620 11.58 2.937 12.315 4634.4 
Number of Parameters 21 23 56 37 121 3 

 
For the first case study (approximation of fESP, presented in Table 2), with fairly sparse data, 

FCC outperforms other models, with a sizably lower estimation error variance. This result is 
in agreement with the conclusions of (Hunter et al., 2012). The performance of MLP and Fuzzy 
models are fairly close to the FCC. MAE, a sensible criterion of accuracy, of the MLP is  only  
around 15% larger than the one of FCC. Fuzzy and RBFN models which convert the parameter 
identification problem to a linear algebra problem, partly or in full, show small estimation 
biases of lower than 1 ft, almost 5 to 11 inches smaller than the bias of FCC head estimation. 

MLP, however, shows evident superiority for the second case study (approximation of fPIEZO, 
presented in Table 3) with dense data. MLP has the smallest estimation bias, estimation 
variance and number of parameters compared to all other nonlinear models. Alternatively, due 
to high density of the data, one can guess interpolation techniques may estimate the sensing 
resistance accurately in this case study. However, a similar research has shown that RBFN 
models outperform cubic interpolation and averaging methods (Mohammadzaheri, Emadi, et 
al., 2020). As a result, superiority of MLP can be also extended to these interpolation 
techniques.  

In summary, for development of models to approximate nonlinear systems/functions with 
small data and for engineering purposes, three following recommendations can be drawn from 
the results of this research: 

1. FCC is recommended to be employed in the case of sparsity of data; although, 
MLP and fuzzy models are also worth to be tried.  

2. MLP is suggested to be employed with dense data.  
3. RBFN models are not recommended, due to relatively high number of parameters 

and low accuracy. RBFNs were not the best models for any type of estimation 
purposes; the reason may be their inherited weakness against overfitting.  
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CONCLUSION  
This chapter investigated the capability of a variety of common artificial intelligence 

techniques in data-driven modelling of engineering systems in the case of access to small data 
(small number of data samples). Five different AI models were even-handedly assessed in data-
driven modelling of two case studies with sparse and dense data. Both systems were shown to 
be highly nonlinear.   

For modelling with sparse data, FCC outperformed other techniques, closely followed by 
MLP and fuzzy models. This outcome is consistent with the literature claiming that FCCs are 
at an advantage over other AI modelling tools. However, for the problem with dense data, MLP 
showed an obvious superiority. RBFN models could not excel in any of the investigated data-
driven modelling problems; therefore, they are recommended to be disregarded in data-driven 
modelling of engineering systems with small data. As a suggestion for future research, the 
presented comparison can be repeated for any other data-driven modelling technique not 
covered in this chapter or the techniques that will be developed in the future.  
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