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Abstract: Total variation (TV) regularizer has diffusely emerged in image processing. In this paper,
we propose a new nonconvex total variation regularization method based on the generalized Fischer-
Burmeister function for image restoration. Since our model is nonconvex and nonsmooth, the specific
difference of convex algorithms (DCA) are presented, in which the subproblem can be minimized by
the alternating direction method of multipliers (ADMM). The algorithms have a low computational
complexity in each iteration. Experiment results including image denoising and magnetic resonance
imaging demonstrate that the proposed models produce more preferable results compared with state-
of-the-art methods.
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1. Introduction

Total variation [1] regularization method is widely used in image processing, such as image recon-
struction and denoising. Generally, there are two types: isotropic and anisotropic. TV has a strong
edge preserving ability and can process piecewise constant images. However, the image obtained by
the TV often suffers from staircasing artifacts. Therefore, in order to suppress artifacts and improve
image quality, TV variants have been studied by many scholars [2–6].

TV consists of the L1 norm and gradient operator. From the factor of statistics, the L1 norm may
have deviation estimations for larger coefficients, where it will lose the oracle property [7]. Instead of
the L1 norm, the L0 norm is the appropriate choice to ensure sparseness. However, the minimization of
L0 is a combination optimization problem and NP hard. Then, several penalty functions that integrate
the benefits of L1 and L0 norms while circumventing their limitations have been suggested, such as
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smoothly clipped absolute deviation [8], capped-L1 [9], transformed-L1 [10], and L1 − L2 [11]. Nu-
merous algorithms employing convex norms on gradients have also proposed, including the alternating
minimization algorithm [12] and the augmented Lagrange multiplier algorithm [13]. The alternat-
ing direction method of multipliers (ADMM) [14] and primal-dual algorithm [15] are two benchmark
methods. In fact, the primal-dual hybrid gradient method introduced by Chambolle and Pock in [15]
is equivalent to the preconditioned ADMM. Additionally, the widely used split Bregman method [16]
can be considered as an instance of ADMM with two variables. Additionally, there are also many
algorithms for solving nonconvex models. As variational models are inherently nonconvex, obtaining
the solution for global optimization is difficult. Some approaches, such as the proximal alternating
linearized minimization method [17] and the difference-of-convex algorithm (DCA) [18], typically
converge to local minimizers. In [19], DCA was firstly created by Dinh et al. for solving the DC pro-
gramming. Because of its simplicity and efficiency, it has been widely used and extensively studied.

DC programming and DCA are the natural extension from modern convex analysis to nonconvex
analysis, broad enough to include most real world nonconvex optimizations. During the last decades,
these theoretical and algorithmic tools have been greatly enriched. He et al. [20] proposed a unified
Douglas-Rachford algorithm for generalized DC programming. Niu et al. [21] developed a refined
inertial DC algorithm for DC programming. Artacho et al. [22, 23] investigated the line search idea
in a DC program with linear constraint. Wen et al. [24] used the Nesterov acceleration technique for
a special class of DC program. Moreover, DC programming and DCA have always been popular for
nonconvex models in image processing, such as image restoration, image reconstruction, and com-
pressive sensing. In [25, 26], Lou et al. proved that L1 − L2 is closer to L0 than L1 and developed a
weighted difference of anisotropic and isotropic TV as a regularization for image denoising, deblur-
ring, segmentation and magnetic resonance imaging (MRI). Its solution was obtained by DCA and the
split Bregman. In [27], Li et al. introduced a multiplicative noise removal model, whose objective
function can be written as the difference of two convex functions. DCA with a primal-dual hybrid
gradient method was used for solving nonconvex programming. Sun et al. [28] studied the DCA to
address the Log-norm TV image restoration problem and ADMM was used to solve the resulting sub-
problem. In [29], for impulsive noise removal, DCA with adaptive proximal parameters was proposed.
DCA is a simple descent algorithm. Interested readers are encouraged to consult these state of the art
developments in [30].

The contributions of this study are as follows. First, motivated by the idea that L1 − L2 can be
considered as a Fischer-Burmeister (FB) function, we propose a new nonconvex TV regularization
term based on a general FB function. Second, two efficient DCAs are designed for solving nonconvex
optimization problems. The proposed DCA needs to solve the TV type of subproblem, which can be
efficiently handled by ADMM. Last, experiments on image denoising and MRI reconstruction show
that the proposed methods improve on the classical TV model and are compared with state-of-the-art
methods. Especially, for MRI, the new model can successfully reconstruct the Shepp-Logan image
using merely 7 radial lines.

The rest of this paper is organized as follows. We show our new models in Section 2. Section
3 presents the DCA with ADMM for solving the new nonconvex models. Section 4 shows the ef-
fectiveness of the new models and algorithms through the presentation of experimental results. The
conclusion is provided in the last section.
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2. New models

The problem of restoring image with additive noise is the following:

f = Au + e, (2.1)

where f ∈ Rm is noise image, A ∈ Rm×n is a linear operator, u ∈ Rn is original image and e ∈ Rm is
Gaussian noise. To simplify the presentation, we express both the original and observation images or
data as vectors.

Our aim is to restore the initial image u from the noisy data f . Image restoration is a typical inverse
problem, and it’s impossible to obtain the original image u from f by just the direct inversion of (2.1).
A classic method is variational regularization for addressing the ill-posed problem. This approach can
make the solutions stable. Then, for the Gaussian noise removal, the famous TV model is as follows:

min
u
‖u‖TV , s.t. Au = f ,

where ‖·‖ represents the Euclidean norm. As discussed above, TV can be classified into two categories:
isotropic and anisotropic:

‖Du‖2,1 = ‖

√
|Dxu|2 + |Dyu|2‖1, ‖Du‖1 = ‖Dxu‖1 + ‖Dyu|‖1,

where D is the gradient operator, Dx and Dy are the horizontal and vertical derivative operators, respec-
tively, and ‖ · ‖1 means the L1 norm.

Illuminated by L1 − L2 minimization in compression sensing [11], Lou et al. [26] proposed the
well-known L1 − γL2 regularization function, which is the coupling of anisotropic and isotropic TV:

J(u) = ‖Du‖1 − γ‖Du‖2,1 = ‖Dxu‖1 + ‖Dyu|‖1 − γ‖
√
|Dxu|2 + |Dyu|2‖1,

where γ is an element of the interval(0,1]. In [31], the authors find that J(u) can be considered as the
application of the FB function to the gradient of TV (FBTV), where the scalar-valued FB function is
defined as

φ(v1, v2) = v1 + v2 − γ
√

v2
1 + v2

2, γ ∈ (0, 1].

FBTV considers the non-sparse gradient vectors along the boundaries in the image. The effectiveness
of FBTV was demonstrated to surpass that of either anisotropic or isotropic TV.

Motivated by J(u) can be described as a FB function and L1 − L2 is closer to L0 than L1, we propose
a new difference regularization method by using the following generalized FB (GFB) function:

ψ(v1, v2) = v1 + v2 −

√
(1 − θ)(v2

1 + v2
2) + θ(v1 − v2)2, θ ∈ [0, 1).

Now, we present the nonconvex variational regularization models, named GFBTV-C, as

min
u
‖Dxu‖1 + ‖Dyu|‖1 − ‖

√
(1 − θ)(|Dxu|2 + |Dyu|2) + θ(|Dxu| − |Dyu|)2‖1,

s.t. Au = f .
(2.2)
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(f) GFB with θ= 0.01

Figure 1. Level curves of different metrics. GFB function with θ=0.1 and 0.01 is closer to
L0 than L1, L1 − 0.5L2 and L1 − L2.

and GFBTV as

min
u
‖Dxu‖1 + ‖Dyu|‖1 − ‖

√
(1 − θ)(|Dxu|2 + |Dyu|2) + θ(|Dxu| − |Dyu|)2‖1 +

α

2
‖Au − f ‖2, (2.3)

where α > 0 is the regularization parameter. It is observed that ψ(v1, v2) takes into account other gra-
dient directions, not just the horizontal or vertical. This allows it to regulate the impact of anisotropic
TV for detecting sharp edges while reducing the blocky artifacts. To better understand the different
metrics, we plot the level curves corresponding to L0, L1, L1 − 0.5L2, L1 − L2 and GFB with θ=0.1 and
0.01 in Figure 1. From the figure, it can observe that the contour lines of GFB are bending more inward
and closer to L0. This illustrates that GFB can enhance sparsity, and θ acts like a parameter controlling
to what extent.

3. Numerical algorithms

Though ‖
√

(1 − θ)(|Dxu|2 + |Dyu|2) + θ(|Dxu| − |Dyu|)2‖1 is not convex, DCA can also be used to
easily solve the GFBTV-C (2.2) and GFBTV (2.3) models. In the following, we apply the DCA with
ADMM to handle the two nonsmooth and nonconvex models.

3.1. DCA for solving the model GFBTV-C

First, in order to use the DCA, we separate into (2.2) as follows:

min
u

Γ(u) = Φ(u) − Ψ(u), s.t. Au = f , (3.1)

where Φ(u) = ‖Dxu‖1 + ‖Dyu|‖1,

Ψ(u) = ‖
√

(1 − θ)(|Dxu|2 + |Dyu|2) + θ(|Dxu| − |Dyu|)2‖1.
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DCA optimizes (3.1) via linearizing Ψ(u):

uk+1 = arg min
u
{Φ(u) − (Ψ(uk) + 〈qk,D(u − uk)〉), s.t. Au = f }, (3.2)

where
qk = (qk

x, q
k
y) =

(Dxuk − θDyuk,Dyuk − θDxuk)√
(1 − θ)(|Dxuk|

2 + |Dyuk|
2) + θ(|Dxuk| − |Dyuk|)2

.

If the denominator is zero, the corresponding value is set as zero. Therefore, by the form of ADMM,
the convex subproblem (3.2) could be rewritten as the unconstrained problems:

un+1 = arg min
u
{Φ(u) − (Ψ(uk) + 〈qk,D(u − uk)〉) +

µ

2
‖Au − zn‖

2}, (3.3)

zn+1 = zn + f − Aun+1.

where z is a Lagrange multiplier which enforces Au = f and the parameter µ is the penalty parameter.
The subproblem (3.3) equals to solve the TV problem. Therefore, ADMM is also used to find the

solution. In order to utilize ADMM, two auxiliary variables, dx and dy, are introduced to rephrase the
original minimization problem (3.3) as a constrained problem:

min
u,dx,dy

‖dx‖1 + ‖dy|‖1 − (qk
xdx + qk

ydy) +
µ

2‖Au − zn‖
2,

s.t. dx = Dxu, dy = Dyu.
(3.4)

As per the classical optimization theory, the augmented Lagrangian function for Eq (3.4) can be ex-
pressed as follows:

L(u, dx, dy, bx, by) = ‖dx‖1 + ‖dy|‖1 − (qk
xdx + qk

ydy) +
µ

2‖Au − zn‖
2

+λ
2‖dx − Dxu − bx‖

2 + λ
2‖dy − Dyu − by‖

2,
(3.5)

where bx, by are the Lagrange multipliers and λ > 0 is the penalty parameter.
Subsequently, our attention turns to obtain the solution for subproblems in (3.5). The u-subproblem

can be written as follows:
u j+1 = arg min

u
L(u, d j

x, d
j
y, b

j
x, b

j
y). (3.6)

Using the first-order optimality condition of Eq (3.6), we have

(µAT A − λDT D)u j+1 = λDT
x (d j

x − b j
x) + λDT

y (d j
y − b j

y) + µAT zn. (3.7)

In the problem of reconstructing undersampled magnetic resonance imaging (MRI) using compressed
sensing [32], the composite A = RF is formed by combining a sampling operator R and a Fourier
transform operator F. When periodic boundary conditions are applied, both matrices DT D and AT A
become block circulant with circulant blocks. As a result, the coefficient matrix µAT A − λDT D can be
diagonalized using a discrete Fourier transform. This means that Eq (3.7) can be efficiently solved by
a fast Fourier transform (FFT):

u j+1 = F −1(F (λDT
x (d j

x − b j
x)) + F (λDT

y (d j
x − b j

x)) + µF (A)∗ � F (zn)

µF (A)∗ � F (A) − λF (D)∗ � F (D)
)
.
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Here, F (·) and F −1(·) refer to the FFT and inverse FFT operations, respectively. The symbol ” ∗ ”
represents a complex conjugation, while ” � ” denotes an elementwise multiplication.

For dx, dy-subproblem in (3.5), the solution can be updated via soft shrinkage

d j+1
x = shrink(Dxu j+1 + b j

x + qk
x/λ, 1/λ), (3.8)

d j+1
y = shrink(Dyu j+1 + b j

y + qk
y/λ, 1/λ), (3.9)

where
shrink(s, µ) = sign max{|s| − µ, 0},

and sign as the signum function. Additionally, the Lagrange multipliers are updated as follows:

b j+1
x = b j

x + Dxu j+1 − d j+1
x , (3.10)

b j+1
y = b j

y + Dyu j+1 − d j+1
y . (3.11)

At last, we present the DCA with ADMM for solving the proposed model GFBTV-C in Algorithm
1.

Algorithm 1 DCA-ADMM for solving the model GFBTV-C (2.2).

Set u0 = q0
x = q0

y = 0, z0 = f , λ0 = 0, MaxDCA, kmax, jmax

For k = 0, 1, 2, · · · , MaxDCA, b0
x = b0

y = 0,
For n = 0, 1, 2, · · · , nmax

For j = 0, 1, 2, · · · , jmax

Calculate u j+1 by (3.7),
Calculate d j+1

x by (3.8),
Calculate d j+1

y by (3.9),
Calculate b j+1

x by (3.10),
Calculate b j+1

y by (3.11).
End For

un+1 = u jmax ,

zn+1 = zn + f − Aun+1.

End For
uk+1 = unmax ,

(qk+1
x , qk+1

y ) =
(Dxuk+1 − θDyuk+1,Dyuk+1 − θDxuk+1)√

(1 − θ)(|Dxuk+1|
2 + |Dyuk+1|

2) + θ(|Dxuk+1| − |Dyuk+1|)2
.

End For

3.2. DCA for solving the model GFBTV

For the corresponding unconstrained problem (2.3), the DCA subproblem is expressed as

uk+1 = arg min
u
{Φ(u) − (Ψ(uk) + 〈qk,D(u − uk)〉) +

α

2
‖Au − f ‖2}.
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Similar to (3.5), we have

min
u,dx,dy

‖dx‖1 + ‖dy|‖1 − (qk
xdx + qk

ydy) + α
2 ‖Au − f ‖2,

s.t. dx = Dxu, dy = Dyu.
(3.12)

The augmented Lagrangian function for Eq (3.12) can be written as

L(u, dx, dy, bx, by) = ‖dx‖1 + ‖dy|‖1 − (qk
xdx + qk

ydy) + α
2 ‖Au − f ‖2

+λ
2‖dx − Dxu − bx‖

2 + λ
2‖dy − Dyu − by‖

2.
(3.13)

The next step is to express the u-subproblem as

u j+1 = arg min
u
L(u, d j

x, d
j
y, b

j
x, b

j
y). (3.14)

Then, using the first-order optimality condition of Eq (3.14), we get

(αAT A − λDT D)u j+1 = λDT
x (d j

x − b j
x) + λDT

y (d j
y − b j

y) + αAT f . (3.15)

Moreover, if DT D and AT A have special structure, Eq (3.15) can be solved via FFT as follows:

u j+1 = F −1(F (λDT
x (d j

x − b j
x)) + F (λDT

y (d j
x − b j

x)) + αF (A)∗ � F ( f )

αF (A)∗ � F (A) − λF (D)∗ � F (D)
)
. (3.16)

For dx, dy-subproblem in (3.13), the solution can be updated via soft shrinkage

d j+1
x = shrink(Dxu j+1 + b j

x + qk
x/λ, 1/λ), (3.17)

d j+1
y = shrink(Dyu j+1 + b j

y + qk
y/λ, 1/λ), (3.18)

and the Lagrange multipliers are updated as follows:

b j+1
x = b j

x + Dxu j+1 − d j+1
x , (3.19)

b j+1
y = b j

y + Dyu j+1 − d j+1
y . (3.20)

Algorithm 2 is presented to demonstrate the DCA for resolving the proposed model GFBTV. To
tackle the unconstrained problem (2.3), Algorithm 2 is nearly identical to Algorithm 1, but differs by
including an extra update on z.

4. Experiments

We present the experimental results of model GFBTV-C (2.2) utilizing Algorithm 1 for MRI and
model GFBTV (2.3) employing Algorithm 2 for image denoising. From Figure 1, we find that θ=0.01
and 0.1 can approximate the L0 norm perfectly. Hence, we choose the control parameter θ=0.01 for
image denoising and θ=0.1 for MRI naturally. All experiments were executed on a desktop computer
with a 2.9 GHz processor and 16GB RAM. The peak signal-to-noise ratio (PSNR) is used to evaluate
the restored quality, which is defined as

PS NR = 20 ∗ log10
255

MS E
dB.

where MSE represents the mean square error between uk and uori, uk is the recovered image, and uori

represents the original image. Furthermore, it is worth noting that the structure similarity (SSIM)
[33] has also been reported. It knows that as the PSNR and SSIM values increase, the quality of the
reconstructed image improves.
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Algorithm 2 DCA-ADMM for solving the model GFBTV.

Set u0 = q0
x = q0

y = 0, z0 = f , λ0 = 0, MaxDCA, jmax,
For k = 0, 1, 2, · · · , MaxDCA, b0

x = b0
y = 0,

For j = 0, 1, 2, · · · , jmax

Calculate u j+1 by (3.15),
Calculate d j+1

x by (3.17),
Calculate d j+1

y by (3.18),
Calculate b j+1

x by (3.19),
Calculate b j+1

y by (3.20).
End For

uk+1 = u jmax ,

(qk+1
x , qk+1

y ) =
(Dxuk+1 − θDyuk+1,Dyuk+1 − θDxuk+1)√

(1 − θ)(|Dxuk+1|
2 + |Dyuk+1|

2) + θ(|Dxuk+1| − |Dyuk+1|)2
.

End For

Table 1. Average results of six models on PSNR and SSIM values for image denoising.

Image σ
DnCNN TV L1 − 0.5L2 L1 − L2 TTV GFBTV

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
Pascal 0.05 34.39 0.9048 31.98 0.8772 33.18 0.8953 32.88 0.8829 33.01 0.8930 33.48 0.8976

0.1 30.79 0.8319 27.62 0.7995 29.04 0.8231 29.53 0.8283 29.84 0.8254 29.68 0.8290

4.1. Image denoising

In this subsection, we will discuss the issue of image denoising, in which the operator A is set to an
identity matrix for the nonconvex model GFBTV. We compare it with several well-known variational
models and a deep learning-based approach named DnCNN [34]. The first variational model we con-
sider is the TV model, which is also known as the classic ROF model [1]. The second model is L1−γL2

with γ equaling 0.5 or 1, as discussed in [26]. The last model is the transform total variation (TTV)
in [35], and DCA is formulated for the TTV minimization problem. We can efficiently solve the new
model GFBTV using Algorithm 2, where uk+1 can be calculated by (3.16) with A = I.

For this experiment, 100 images were randomly selected from the Pascal dataset as the test images.
Both of these images were subject to degradation caused by additive Gaussian noise with a mean of
zero and a standard deviation of σ. The values of σ chosen for the experiment are 0.05 and 0.1. The
penalty parameter µ was set to 5 for σ=0.1 and 15 for σ=0.05 during testing. For the proposed model,
we set θ = 0.01. The default parameter settings are the same as the references [26, 35] for a fair
comparison. We initialize u0 = f , and the maximum number of DCA is 2.

The average comparison results are reported in Table 1. The PSNR and SSIM values of the different
algorithms for various levels of σ are provided. It is shown from Table 1 that DnCNN is superior to the
gradient models in terms of PSNR and SSIM values. Although our new approach has slightly lower
PSNR and SSIM values compared to DnCNN, it outperforms TV based models for various noise levels
about SSIM. The denoising results of the six models are presented in Figures 2–5. All of the methods
effectively remove noise as shown in the four figures and some fine structures and details are easy to see
from the zoomed regions. DnCNN demonstrates the highest performance regarding PSNR among the

Mathematical Biosciences and Engineering Volume 20, Issue 8, 14777–14792.
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(a) Original image (b) Noise image (c) DnCNN (d) TV

(e) L1-0.5L2 (f) L1-L2 (g) TTV (h) GFBTV

Figure 2. (a) Original image, (b) noisy image with σ=0.05, (c) DnCNN, PSNR=32.70,
SSIM=0.9158, (d) TV, PSNR=29.06, SSIM=0.9080, (e) L1-0.5L2, PSNR=30.75,
SSIM=0.9080, (f) L1-L2, PSNR=31.46, SSIM=0.9034, (g) TTV, PSNR=30.72,
SSIM=0.9070, (h) GFBTV, PSNR=31.57, SSIM=0.9153.

(a) Original image (b) Noise image (c) DnCNN (d) TV

(e) L1-0.5L2 (f) L1-L2 (g) TTV (h) GFBTV

Figure 3. (a) Original image, (b) noisy image with σ=0.05, (c) DnCNN, PSNR=35.80,
SSIM=0.9341, (d) TV, PSNR = 31.38, SSIM=0.9193, (e) L1-0.5L2, PSNR =

33.77, SSIM=0.9394, (f) L1-L2, PSNR=34.62, SSIM=0.9280, (g) TTV, PSNR=33.31,
SSIM=0.9358, (h) GFBTV, PSNR=34.94, SSIM=0.9425.
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(a) Original image (b) Noise image (c) DnCNN (d) TV

(e) L1-0.5L2 (f) L1-L2 (g) TTV (h) GFBTV

Figure 4. (a) Original image, (b) noisy image with σ=0.1, (c) DnCNN, PSNR=31.23,
SSIM=0.8926, (d) TV, PSNR=27.28, SSIM=0.9079, (e) L1-0.5L2, PSNR=29.19,
SSIM=0.9372, (f) L1-L2, PSNR=29.63, SSIM=0.9061, (g) TTV, PSNR=28.94,
SSIM=0.9349, (h) GFBTV, PSNR=30.14, SSIM=0.9439.

(a) Original image (b) Noise image (c) DnCNN (d) TV

(e) L1-0.5L2 (f) L1-L2 (g) TTV (h) GFBTV

Figure 5. (a) Original image, (b) noisy image with σ=0.1, (c) DnCNN, PSNR=31.60,
SSIM=0.8902, (d) TV, PSNR=27.28, SSIM=0.8983, (e) L1-0.5L2, PSNR=28.84,
SSIM=0.9207, (f) L1-L2, PSNR=29.40, SSIM=0.9016, (g) TTV, PSNR=28.61,
SSIM=0.9171, (h) GFBTV, PSNR=29.67, SSIM=0.9266.

Mathematical Biosciences and Engineering Volume 20, Issue 8, 14777–14792.
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Table 2. Performance comparisons of the five models for MRI.

Image Mask
TV L1 − 0.5L2 L1 − L2 TTV GFBTV-C

PSNR SSIM Time PSNR SSIM Time PSNR SSIM Time PSNR SSIM Time PSNR SSIM Time
Shepp-Logan 7 lines 18.44 0.4541 29.21 21.45 0.6624 34.45 20.66 0.5615 34.56 20.25 0.5643 33.81 42.17 0.9937 34.12

8 lines 24.22 0.7148 28.87 48.82 0.9971 33.90 37.01 0.9702 34.46 53.83 0.9965 33.03 63.19 0.9995 34.87
Brain-1 Cartesian 32.61 0.9564 29.89 35.73 0.9454 34.20 35.37 0.9465 33.34 31.59 0.9425 34.51 36.65 0.9741 33.95
Brain-2 Random 30.49 0.8614 29.56 31.57 0.8661 34.96 30.99 0.8122 34.17 30.09 0.8728 33.18 32.42 0.8922 33.87

(a) Shepp-Logan (b) 7 lines (c) 8 lines

(d) TV (e) L1-0.5L2 (f) L1-L2 (g) TTV (h) GFBTV-C

(i) TV (j) L1-0.5L2 (k) L1-L2 (l) TTV (m) GFBTV-C

Figure 6. Reconstructed the Shepp-Logan phantom image using 7 lines and 8 lines.

compared approaches. However, when evaluating the four test images, our proposed method exhibits
higher SSIM values than both DnCNN and other TV based models, and can reserve more details of
the original images. It is also obvious that artifacts appear in the DnCNN, TV and L1 − L2 methods.
Hence, the experimental results show that the new model can effectively reduce the blocky artifacts
and obtain better visual effects.

4.2. Magnetic resonance imaging

In this subsection, we consider the problem of MR reconstruction. Compressive sensing based mag-
netic resonance imaging technology is widely used in images solving inverse problems. The sparse im-
age reconstruction model recovers images from under-sampled k-space data, which effectively solves
the problem of data acquisition efficiency in MRI domain. Consequently, we adopt the constrained
formulation GFBTV-C (2.2), and Algorithm 1 is used for solving it. Additionally, we compare with
TV, L1 − γL2 with γ=0.5 or 1 in [26], and TTV [35]. In this test, θ is set as 0.1. The related parameters
in the proposed method and competing methods are left to their default settings in [26, 35].
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First, we consider the issue of MRI reconstruction utilizing a Shepp-Logan phantom from seven
and eight radial projections. The results of various models in reconstructing the Shepp-Logan phantom
are shown in Figure 6. Among these methods, only GFBTV-C can attain precise recovery using 7
lines, and the result is excellent. When it comes to 8 lines, GFBTV-C, TTV and L1 − 0.5L2 can achieve
perfect reconstruction. TV and L1 − L2 methods have some artifacts in the reconstructed images.

(a) Brain-1 image (b) Cartesian

(c) TV (d) L1-0.5L2 (e) L1-L2 (f) TTV (g) GFBTV-C

(h) TV (i) L1-0.5L2 (j) L1-L2 (k) TTV (l) GFBTV-C

Figure 7. Original Brain-1 image, the reconstruction and residue images by different models.

Second, we use two brain images test as the test images: Brain-1 and Brain-2 with dimensions
of 256 × 256. These are generated from the literatures [36, 37]. Then, we perform undersampling
reconstruction under different sampling patterns. The k-space data for Brain-1 were randomly sampled
using a Cartesian mask with 87 lines. For Brain-2, a variable density mask with a sampling rate of
30% was used to undersample the k-space data. The brain images reconstructed the residue images
between the reconstruction images and original images by the five models, and are shown in Figures
7 and 8. All methods have better recovery effects. Visually, there is no significant difference. The
residue images illustrate that the proposed method can visually gain better reconstructions. It appears
that the TV model has the most residual images. From the residual images, it can be observed that TTV,
L1 − 0.5L2, L1 − L2 methods have similar effects on the image details. Table 2 presents the numerical
performance of the five compared models. From the table, we see that the TV model needs less CPU
time (in second). TTV, L1 − 0.5L2, L1 − L2 and our GFBTV-C have similar time costs. Meanwhile, we
know that GFBTV-C provides an improved reconstruction quality than TV, L1−0.5L2, and L1−L2 as it
has the highest PSNR and SSIM values. The PSNR values of the new method are improved by at least
0.82 dB, and the SSIM values around 0.02. As the sampling rate becomes smaller, the performance of
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the proposed model improves more significantly.

(a) Brain-2 image (b) Random

(c) TV (d) L1-0.5L2 (e) L1-L2 (f) TTV (g) GFBTV-C

(h) TV (i) L1-0.5L2 (j) L1-L2 (k) TTV (l) GFBTV-C

Figure 8. Original Brain-2 image, the reconstruction and residue images by different models.

5. Conclusions

This paper introduces a novel nonconvex TV term that utilizes the GFB function to restore images
corrupted by Gaussian noise. Additionally, we use DCA to solve the optimization problem. The
results of our experiments on MRI and image denoising exhibit that our proposed models are capable
of achieving better solutions in comparison to both convex models and other nonconvex models, and
produce more preferable results.

Besides, we observe that the new regularization function has an improved to encourage sparsity
compared to L1, L1 − γL2 norm, and approximates L0 norm more closely. This property leads to a
better solution. Furthermore, the proposed model succeeds in reconstructing the Shepp-Logan phantom
image from merely 7 radial lines. Hence, the superiority of our approach is more apparent when the
sampling rate is relatively low or the available measurements are limited. The proposed model in this
paper is mainly developed for image denoise and MRI, in the future, we will intend to extend the new
method to computed tomography, Parallel MRI, electrical impedance tomography and so on. It is also
essential to highlight that the convergence of our algorithm remains an open challenge and will be
addressed in the future work.
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