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Abstract: The multi-objective particle swarm optimization algorithm has several drawbacks, such as 
premature convergence, inadequate convergence, and inadequate diversity. This is particularly true 
for complex, high-dimensional, multi-objective problems, where it is easy to fall into a local 
optimum. To address these issues, this paper proposes a novel algorithm called IMOPSOCE. The 
innovations for the proposed algorithm mainly contain three crucial factors: 1) an external archive 
maintenance strategy based on the inflection point distance and distribution coefficient is designed, 
and the comprehensive indicator (CM) is used to remove the non-dominated solutions with poor 
comprehensive performance to improve the convergence of the algorithm and diversity of the 
swarm; 2) using the random inertia weight strategy to efficiently control the movement of particles, 
balance the exploration and exploitation capabilities of the swarm, and avoid excessive local and 
global searches; and 3) offering different flight modes for particles at different levels after each 
update to further enhance the optimization capacity. Finally, the algorithm is tested on 22 typical test 
functions and compared with 10 other algorithms, demonstrating its competitiveness and 
outperformance on the majority of test functions. 
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1. Introduction 

Most real-life problems typically involve multiple, conflicting objectives that should be 
simultaneously considered. Solving these multi-objective optimization problems (MOPs) [1] requires 
optimizing multiple objectives [2,3]. If one of the objectives is optimal, it is impossible to 
simultaneously obtain the optimal solutions for all the other objectives, and it may even make the 
results of the other objectives worse. As a kind of complicated optimization problem, the research on 
MOPs is reflected in production scheduling [4,5], urban transportation [6], network communication [7,8], 
and other areas. In addition, it exists in problems like engineering design [9], data mining [10], and 
fund planning [11], which is significant from both a theoretical and practical standpoint. With the 
rapid development of the real world, MOPs confront numerous challenges, such as diversification 
and dynamic programming. 

Optimization problems are generally divided into single-objective optimization problems and 
multi-objective optimization problems. Unlike the single-objective optimization problem, there is no 
unique global optimal solution for multi-objective optimization problems. Therefore, solving real-life 
MOPs faces many difficulties and challenges. Intelligent algorithms are an effective way to solve 
MOPs. Since the development of intelligent algorithms, many kinds of intelligent algorithms have 
been produced. Swarm intelligence algorithms such as the particle swarm optimization algorithm 
(PSO) [12], the whale optimization algorithm (WOA) [13] and the dragonfly optimization algorithm 
(DA) [14] are widely used to solve MOPs. 

In the above intelligent algorithms, the researchers have extended PSO to multi-objective 
particle swarm optimization (MOPSO) [15] due to its simple structure and high efficiency. However, 
similar to other optimization algorithm, MOPSO has several problems, including the following:  
how to achieve a good balance between exploration and exploitation ability; search accuracy is 
insufficient; premature convergence; the algorithm is easy to fall into local optimal; and so on. In 
order to solve these problems, many academics have committed their time to relevant research and 
proposed numerous improvement strategies [16–21] to enhance the performance of MOPSO. These 
strategies can be divided into the following three groups: 1) parameter settings. Chen et al. [16] 
proposed a heuristic algorithm. The probability density function is adjusted adaptively, and the 
random inertia weight is generated during the search; 2) the neighborhood topology. Roshanzamir et 
al. [17] proposed a new hierarchical multi-swarm particle swarm optimization algorithm with 
different task assignments. This structure greatly improves the performance of particle swarm; and 3) 
hybrid strategies. Deb et al. [18,19] proposed an adaptive multi-objective optimization algorithm 
based on Pareto dominance. This algorithm proposed a diversity measurement strategy of 
“distribution entropy” which can measure the distribution of solutions more accurately. However, its 
main purpose is to increase diversity without considering convergence, which cannot improve its 
overall performance. Raquel and Naval [20] proposed an extended particle swarm optimization 
algorithm. The diversity of Pareto optimal solutions in external archive is maintained by increasing 
the crowding distance on MOPSO. Compared with the traditional algorithm, this algorithm has some 
improvement in diversity. However, only the crowding distance is taken as the core, and other 
influencing factors are not fully considered. In order to balance convergence and diversity, Liu et al. [21] 
used the R2 indicator and a particle swarm optimizer based on decomposition. A new speed updating 
method is proposed to improve the capability of exploration and exploitation. 

Although the aforementioned algorithms have a certain effect on improving the comprehensive 
performance of the algorithm and getting rid of the local optimum, there are still some drawbacks 
such as the following: diversity and convergence are not taken into account at the same time; too 
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many parameter settings; and other influencing factors are not fully considered. Based on these 
problems, this paper proposes a novel algorithm with a comprehensive indicator and layered particle 
swarm optimizer (IMOPSOCE) to further improve the performance of MOPSO. While introducing 
some new strategies, IMOPSOCE retains some settings of MOPSO. Twenty-two test functions 
validate the effectiveness of the algorithm. The following are the primary contributions of the 
proposed IMOPSOCE: 

1) A new strategy for external archive maintenance is proposed. In order to update and maintain 
the external archive, which effectively improves the convergence of the algorithm and the diversity 
of the swarm, a comprehensive indicator is employed to measure the comprehensive performance of 
the non-dominated solutions in the external archive.  

2) The random inertia weight is utilized to further balance the capacity for exploration and 
exploitation of swarm by taking into account the global search in the early stage and the local 
exploration in the later stage.  

3) The swarm is divided into two layers based on the levels of particles after each update, and 
the speed update mode of the first level of particles is altered to improve the search efficiency of 
the algorithm. 

The rest of this paper is organized as follows. The definitions of MOPs and PSO are briefly 
introduced in Section 2. In Section 3, IMOPSOCE is proposed, and its improvement strategy is 
described in detail. Section 4 shows results for an experimental study and discussions that 
demonstrate the effectiveness of IMOPSOCE. Finally, Section 5 draws some conclusions based on 
the work done in this paper and describes future work. 

2. Preliminaries 

2.1. Multi-objective optimization problems 

The majority of problems encountered in both practical life and scientific research belong to 
MOPs [1]. Different from solving single-objective optimization problems, rather than just one optimal 
solution, MOPs have a solution set [22] that is the Pareto optimum solution set. Multiple conflicting 
objective functions that minimize or maximize are present in MOPs. The formulas to minimize the 
MOPs can be described as follows: 

                            
        
  


D

M

xxxx
xfxfxfxF
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                       (1) 

where M is the number of objective variables, )1()( Mifi   is the i-th objective function, X is the 

decision vector, and   is the D-dimensional decision space.  
In MOPs, the quality of the solutions can be evaluated by Pareto dominance. The decision vector 

ax  strictly dominates the decision vector bx , denoted ba xx  , which can be expressed as follows:  

           biaibiai xfxfNjxfxfNi  :,,2,1   :,,2,1           (2) 

When a solution is not dominated by any other solution, it is considered to be a non-dominated 
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Pareto optimal solution, and many such solutions become a Pareto optimal solution set, that is, a 
non-dominated solution set. 

2.2. Particle swarm optimization 

Kennedy and Eberhart proposed PSO [12] in the 1990s, which is a swarm theory heuristic 
intelligent optimization algorithm, produced as a result of long-term observation of how birds forage. 
PSO simulates the foraging behavior of birds, simulates the search space to solve the problem as the 
flight space of birds, and abstracts each bird into a particle without mass and volume. The process of 
searching for the optimal solutions is regarded as the process of bird foraging, which then solves 
complex optimization problems. 

               txtgrctxtprctvttv jibestjibestjiji jji ,22,11,, ,
1          (3) 

                                       11 ,,,  tvtxtx jijiji                              (4) 

Each particle has a position and a velocity. The position of the particle is denoted by

        txtxtxtx Diiii ,2,1, ,,,  , and the velocity of the particle corresponding to it is 

        tvtvtvtv Diiii ,2,1, ,,,  , where Ni ,,2,1  , N  is the number of particles and D  is the 

size of the decision space. The i-th particle in the population updates its velocity and position 
according to the two formulas above. As the fundamental formula of the algorithm, Eq (3) has three 
parts: the first part represents the state of the previous generation of particles; the second part 
represents the influence of the optimal position of the individual history on particles; and the third 
part represents the influence of the optimal position of population on particles. In Eq (4), the current 
position is composed of the position of the previous generation and the current velocity where   is 

the inertia weight, 1c  and 2c  are the learning factors, 1r  and 2r  are uniformly distributed 

random numbers in the range  1  0， ,  tv ji ,  and  tx ji ,  denote the velocity and position of the i-th 

particle in the j-th dimension at the t-th iteration, respectively,  tp
jibest ,

 denotes the individual 

historical optimal position of the i-th particle in the j-th dimension, and  tg
jbest  denotes the optimal 

position of the population in the j-th dimension. 

2.3. Existing MOPSOs 

In addition to the MOPSOs mentioned above, some MOPSOs are designed to improve the 
algorithm performance, balance exploration and exploitation. Next, we briefly review some 
representative MOPSOs. 

Hu and Yen [23] proposed a new algorithm named pccsAMOPSO. A density estimation method 
(PCCS) is designed, and based on this method, the distribution entropy of non-dominated solutions is 
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used to evaluate the approximate Pareto front uniformity obtained by the MOP optimizer. At the 
same time, this method can also be used for the selection of leaders and to update the external 
archive in MOPSO. 

Han et al. [24] proposed an AMOPSO algorithm based on a hybrid framework of solution 
distribution entropy and population spacing (SP) information. The leader selection mechanism based 
on the solution distribution entropy can analyze the evolutionary trend and select suitable leaders to 
balance the convergence and diversity of non-dominant solutions. In addition, a flight parameter 
adjustment mechanism based on population spacing information is proposed to balance the global 
and local search abilities of particles. The above strategies can obtain a set of optimal solutions 
with a high diversity and achieve a balance between exploration and exploitation capabilities in the 
search process. 

In terms of parameter setting, Tripathi et al. [25] described a time-varying multi-objective 
particle swarm optimization algorithm (TV-MOPSO). In a typical MOPSO algorithm, the inertia 

weight   and learning factors 1c  and 2c  have a very important impact on the algorithm 

performance. Proper parameter settings enable the algorithm to achieve a good balance between 
exploration and exploitation. TVMOPSO is inherently adaptive in terms of inertia weight and 
acceleration coefficient. This adaptability helps the algorithm explore the search space more efficiently. 

Shibata et al. [26] proposed a multi-objective discrete particle swarm optimizer (DPSO). This 
method introduces a hierarchical structure composed of DPSOs and a multi-objective genetic 
algorithm (MOGA). The hierarchical structure can reduce the computational cost of learning; 
therefor, the method is effective in high-dimensional problems. In addition, the diversity and accuracy 
of the solutions obtained are either equal to or higher than those obtained using traditional methods. 

In the above MOPSOs, they propose different strategies from different aspects to get better 
solutions. Additionally, under their incentive, in order to improve the convergence of the algorithm 
and the diversity of the population, IMOPSOCE is proposed. A comprehensive indicator is used to 
measure the performance of the solution in the external archive to help better maintain it. In order to 
take the global and local search into account, a random inertia weight strategy is designed, and a 
hierarchical structure is proposed to divide the swarm according to the levels of particles after each 
update. This is described in detail in Section 3. 

3. The proposed IMOPSOCE method  

3.1. The comprehensive indicator application 

The convergence and diversity of the algorithm have a direct impact on its overall performance. 
This research uses a comprehensive indicator that combines the inflection point distance (CPI) [27] 
and the distribution coefficient (MPI) to measure the performance of the non-dominated solutions in 
the external archive after each iteration. The external archive is maintained by the comprehensive 
indicator, while the non-dominated solutions with a bad convergence and diversity are deleted and 
those with a good convergence and diversity are saved in the external archive. This strategy can 
boost the convergence and diversity of non-dominated solutions in the external archive. The 
comprehensive indicator is described as follows: 
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           MPICPICM                                     (5) 

where CPI is the convergence indicator and MPI is the diversity indicator. When the external archive 
reaches the threshold, the proposed IMOPSOCE calculates the CM value of each non-dominated 
solution in the external archive and eliminates the non-dominated solutions with a poor 
comprehensive performance by comparing the CM values. In Eq (5), CPI can reflect the convergence 
of the non-dominated solutions in the external archive. The distribution of non-dominated solutions 
in the external archive can be measured using MPI. CPI and MPI are defined as follows:  

According to the number of objective functions, the calculation of CPI is separated into the two 
following cases: 

1) The distance between each non-dominated solution and the extreme line determined by the 
two extreme non-dominated solutions in the external archive is the CPI when the objective function 
is a bi-objective function. The formula used to calculate the CPI value in this situation is as follows: 

       
22

00
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CByAx
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                                  (6) 

where 0x  and 0y  are the coordinate values of each non-dominated solution in the external archive 

and A, B and C are real numbers that are determined by the extreme line composed of two extreme 
non-dominated solutions. The extreme line is denoted by the following: 

                                 0 CByAx                                    (7) 

where x  and y  are the coordinate values of the extreme non-dominated solutions. 
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Figure 1. Schematic representation of the CPI in the bi-objective space. 

2) CPI needs to calculate the distance between each non-dominated solution in the external 
archive and the extremal “hyperplane” if there are three or more objective functions. In this situation, 
the CPI is determined as follows: 
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                                (8) 
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The extremal “hyperplane” determines the A, B, C and D in this calculation formula. 0x , 0y  

and 0z  are the coordinate values of each non-dominated solution in the external archive. The 

following formula is used to determine the extremal “hyperplane”: 

                                     0 DCzByAx                               (9) 

where x , y  and z  are the coordinate values of the extreme non-dominated solutions. 

CPI is an indicator to measure the convergence of non-dominated solutions. The smaller the CPI 
values are, the better the convergence of the non-dominated solutions. In other words, the closer the 
non-dominated solutions are to the extreme line or extremal “hyperplane”, the better the convergence 
of the non-dominated solutions. Using Figure 1 as an illustration, the extreme points of the 

non-dominated solutions are shown in blue; 1N  is the point with good convergence and 3N  has 

poor convergence. 
Numerous brilliant scholars have suggested different superior approaches for improving 

population diversity. This led to the concept of crowding distance being put forth by forerunners. 
Based on crowding distance, Deb et al. obtained an improved population diversity [18,19]. In order 
to improve the population diversity, the distribution of non-dominated solutions in the objective 
space is measured in this paper using the distribution coefficient. The distribution coefficient is 
defined as follows:  

when the number of objective functions is m 
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               ijijij bft                                    (13) 

where ijf  is the distance from the i-th solution to its previous adjacent solution on the j-th objective 

function, and ijb  is the distance from the i-th solution to its next adjacent solution on the j-th 

objective function. The smaller the MPI value of a particle, the better its distribution. 

Equations (10)–(13) indicate that the distribution coefficients of solutions A and B are AMPI  

and BMPI , respectively, as shown in Figure 2. 1699.4AMPI , 2288.4BMPI . Solution A 

clearly has a better distribution than solution B. It follows that the distribution coefficient can reflect 
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the distribution of non-dominated solutions in the objective space; thus, the non-dominated solutions 
with a better distribution in the external archive are chosen. When computing the MPI value of the 
non-dominated solutions, the boundary non-dominated solutions are given a minimum distribution 
coefficient value, so that these solutions are always selected. Equations (10)–(13) will be used to 
obtain the distribution coefficients of the non-dominated solutions in the middle.  

1f

2f
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2f

l
l

l 2l

2l3l

2l
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A

B

 

Figure 2. Schematic representation of the MPI in the bi-objective space. 

The entire procedure for the external archive maintenance is listed in Algorithm 1. This strategy 
is mainly maintained for the external archive by using the CM indicator. First, using Eqs (6) and (8), 
the CPI value of the non-dominated solution is determined (line 2). Then, the MPI value of the 
non-dominated solution is determined using Eq (10) (line 3). Finally, Eq (5) is utilized to obtain the 
CM value of the non-dominated solution (line 4). The non-dominated solutions with a poor 
comprehensive performance are eliminated by comparing the CM values of each non-dominated 
solution (line 5). 

Algorithm 1: Update Archive 
Input: maxR (External archive threshold), bestg (Global optimal position) 
Output: bestg (Global optimal position) 
1   While   maxRgsize best  do 
2         Calculate the value of CPI via using Eqs (6) and (8) 
3         Calculate the value of MPI via using Eq (10) 
4         Calculate the value of CM via using Eq (5) 
5         Delete the poor performance non-dominated solutions according to the value of CM    
6   End While 

3.2. The proposed random inertia weight method 

The motion of the particles in the standard MOPSO follows Eqs (3) and (4). In Eq (3), the 
learning factors 1c  and 2c  determine the impact of the experience information of the particle and 
the experience information of other particles on the particle motion and reflect information exchange 
among the particle swarm.   stands for the effect of the previous velocity on the current velocity, 
which can be used to adjust the flying speed of the particle, limit the movement range of the particle, 
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and balance its capacity for exploration and exploitation. Therefore, in order for the particles to 
search more effectively, the proper   must be set. In conventional MOPSO,   is typically taken 
as a fixed value, making it difficult to balance the global search in the early stage and the local 
exploration in the later stage of the particle. Therefore, we design a random inertia weight strategy to 
adjust  , taking the global search and local exploration of particles into account, in order to 
efficiently regulate the movement of particles. Its specific formula is as follows:  

           2
maxminminminmaxmax 2/piexprand/1 ttttt         (14) 

where t  is the current iteration number, maxt  is the maximum iteration number, and max  and 

min  are the maximum and minimum values of inertia weight, respectively. The proposed 
IMOPSOCE improves the search efficiency of the algorithm and reasonably balances the exploration 
and exploitation capabilities of particles when compared to the traditional MOPSO. 

3.3. Bilayer velocity update with different task allocations 

Layer 1

Layer 2

Fly according to equation(15)

Fly according to equation(3)

The particles at the first level after updating The particles at the other levels after updating  

Figure 3. Schematic representation of the motion of particles. 

Particles move in the classical MOPSO in accordance with Eqs (3) and (4). The IMOPSOCE 
proposed in this paper has two layers. After each update, the particles of the population are split into 
two layers based on their levels, and then the velocity update mode of the particles situated at the 
first level is modified. Since the particles at the first level after updating have a decent movement 
trend, learning from the social part may cause them to deviate from the correct movement direction. 
As a result, in this paper, after each update, the particles in the first level maintain their own 
movement trend without being influenced by the particles in the social part. Particles in the second 
layer continue to fly using Eq (3). In this way, some particles can explore more, diversity will be 
maintained, and a premature convergence will be prevented. Some particles can more effectively 
exploit and use appropriate information in the search process, thus improving the solutions obtained. 
The right balance between exploration and exploitation capabilities is created by giving particles 
from different layers different ways to update their speeds. The aforementioned is well illustrated in 
Figure 3. The particles in the first level adopt the speed update mode of Eq (15) after each update, 
while the particles in the other levels fly in accordance with Eq (3). 

                        txtprctvttv jibestjiji ji ,11,, ,
1                      (15) 

Combining the above, the pseudo-code of the particle update procedure is described in Algorithm 2. 
Equation (14) is used to compute the inertia weight (line 1). Next, the individual optimal position, 
velocity, position, etc. for the particle of the first level is found (lines 2–4). Finally, using Eqs (3), (4), 
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and (15), the velocity and position of each particle after updating are determined (lines 5–8). 

Algorithm 2: Update Particles  
Input: max (Inertial weight maximum value), min (Inertial weight minimum value), p (Particle position), 
vel (Particle velocity ), bestp (Individual optimal position), bestg (Global optimal position) 
Output: v (New speed of particle), 'v (New speed of the first-level particle), newp (New position of 
particle), 'newp (New position of the first-level particle) 
1   Calculate the inertial weight via using Eq (14) 
2   Find '

bestp   % individual optimal position of the first-level particle 
3   Find 'vel    % velocity of the first-level particle 
4   Find 'p     % The position of the first-level particle 
5   Calculate 'v  via using Eq (15) 
6   Calculate 'newp  via using Eq (4) 
7   Calculate v  via using Eq (3) 
8   Calculate newp  via using Eq (4) 

3.4. The proposed IMOPSOCE algorithm  

Algorithm 3: Framework of IMOPSOCE 
Input: N (The number of particles), t (Number of current iterations), maxt (Maximum iteration time) 
Output: NA ( Pareto optimal solutions in the external archive) 
1   Initialize the swarm 
2   Calculate the fitness value and perform Pareto sort 
3   Update bestP  and bestg  
4   While maxtt   do 
5         Calculate the inertial weight via using Eq (14) 
6         Update Particles Algorithm 2 
7         Calculate the fitness values  
8         Update Archive Algorithm 1 
9         Update bestP  and bestg  
10   End While 
11   Return NA  

The proposed IMOPSOCE algorithm is presented in this section. IMOPSOCE is mainly 
composed of three parts. First, in IMOPSOCE, the population is split into two layers based on the 
levels of particles after each iteration, and different speed update modes are offered for particles in 
different layers. Second, in terms of the parameter setting, a random inertia weight strategy is 
proposed to balance the capacity for exploitation and exploration of the population. Finally, the CM 
indicator is used to maintain the external archive once it has reached its maximum capacity. The 
non-dominated solutions with a good convergence and diversity are retained in the external archive, 
which ensures that the non-dominated solutions in the external archive have an improved 
comprehensive performance. The pseudo-code of IMOPSOCE is displayed in Algorithm 3. 
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4. Experimental studies 

In order to fully verify the performance of the proposed algorithm, three sets of benchmark 
functions are used in this section: ZDT, DTLZ, and UF. This section contrasts the proposed algorithm 
with five existing MOPSOs, including MOPSO [15], dMOPSO [28], NMPSO [29], SMPSO [30], 
and MPSOD [31]. In addition, we compare the proposed IMOPSOCE with five classical MOEAs, 
including NSGAIII [32], MOEAD [33], MOEAIGDNS [34], SPEAR [35], and VaEA [36], in order 
to further assess the proposed IMOPSOCE. The detailed discussions of the experimental procedure 
and results are as follows. 

4.1. Benchmark test functions 

Table 1. Parameter settings of the test functions. 

Problems N M D FEs 
ZDT1–ZDT3 200 2 30 10,000 
ZDT4 and ZDT6 200 2 10 10,000 
DTLZ1 200 3 7 10,000 
DTLZ2–DTLZ6 200 3 12 10,000 
DTLZ7 200 3 22 10,000 
UF1–UF7 200 2 30 10,000 
UF8–UF10 200 3 30 10,000 

The comprehensive performance of IMOPSOCE is verified using three different sets of 
benchmark functions. Specifically, to compare IMOPSOCE with the compared algorithms, five 
bi-objective test functions of ZDT [37], seven three-objective test functions of DTLZ [38], and seven 
bi-objective and three three-objective test functions of UF [39] are employed. They are not used in 
this paper since ZDT5 is a discrete optimization problem while DTLZ8 and DTLZ9 are two 
constrained optimization problems. Table 1 displays the relevant settings for these test problems 
where N is the number of particles, M is the number of objective functions, D is the dimension of 
decision variables, and FEs is the number of evaluations. 

4.2. Performance indicators 

In this paper, we employ two comprehensive indicators, namely inverted generational distance 
(IGD) [40] and hypervolume (HV) [41], to test the algorithms and verify the comprehensive 
performance of IMOPSOCE. Both indicators are used here to fully validate the algorithm, even 
though they can both detect the convergence and diversity of the algorithm. 

The IGD is used to measure the distance between the true Pareto front and the set of Pareto 
optimal solutions obtained by the algorithm. A smaller IGD means that the set of non-dominated 
solutions is closer to the true Pareto front. It is calculated as follows:  

    


 
S

i
i PFPFdist

S
PFPFIGD

1
,min1,                        (16) 

where PF  is the Pareto front obtained by the algorithm, PF  is a set of sampling points from the 
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true Pareto front, and S  is the number of non-dominated solutions. 
HV is achieved by measuring the hypervolume of the region consisting of the optimal set and 

the reference points in the objective space. HV can simultaneously evaluate the convergence and 
diversity of the algorithm. The larger the HV, the better the overall performance obtained by the 
algorithm. The reference point of HV is set to  1.1,,1.1,1.1   

       




 


MM

Sx
RxfRxfLebSHV ,, 11                      (17) 

where if  denotes the i-th objective function value of S  and iR  denotes the i-th objective 
function value of the reference point. 

4.3. Experimental settings 

Table 2. Parameter settings of all algorithms. 

Algorithms Parameter settings 
MOPSO 4.0  
dMOPSO 2aT , 5  
NMPSO  5.0,1.0 ,  5.2,5.1,, 321 ccc , npm /1 , 20m  
SMPSO  5.0,1.0 ,  5.2,5.1, 21 cc , npm /1 , 20m  

MPSOD  9.0,1.0 ,  5.2,5.1, 21 cc , 9.0cp , 5.0F , 5.0CR , npm /1 , 
20m  

NSGAIII 0.1cp , npm /1 , 30c , 20m  
MOEAD 0.1cp , npm /1 , 20 mc   
MOEAIGDNS 0.1cp , npm /1 , 20 mc   
SPEAR 0.1cp , npm /1 , 20 mc   
VaEA 0.1cp , npm /1 , 30c , 20m  
IMOPSOCE 9.0max  , 4.0in m , 221  cc  

In this paper, five representative MOPSOs and five classical MOEAs are compared to 
IMOPSOCE. In solving many MOPs, these algorithms have demonstrated an excellent performance. 
The parameter settings of the compared algorithms are compatible with the original reference 
literature in order to make the various different algorithms comparable to one another and to conduct 
a fair comparison, as indicated in Table 2. 

For the compared MOPSOs, the inertia weight   and flight parameters 1c  and 2c  are used 
to update velocity. cp  is crossover probability, and mp  is mutation probability. In MOEAD, 
MOEAIGDNS, and SPEAR, the distribution index c  of the SBX operator is 20, and the 
distribution index m  of the mutation operator is 20. In NSGAIII and VaEA, the distribution index 

c  is 30 for the SBX operator, and the distribution index m  is 20 for the mutation operator.  

In IMOPSOCE, the maximum and minimum values of   are set to 0.9 and 0.4, respectively. 
The learning factors 1c  and 2c  are both set to 2. In addition, in all compared algorithms, the same 
population and size of the archive are set for a fair comparison. Specifically, the population size is set 
to 200, and the number of evaluations is 10,000 for the compared algorithms. All experiments are 
implemented on MATLAB R2020b with an Intel(R) Core(TM) i7-7700HQ CPU @ 2.80GHz 2.81 
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GHz. The original code for the compared algorithm is provided by PlatEMO [42], and each 
algorithm is independently run 30 times on each test function. 

4.4. Experimental results and data analysis 

This part compares the characteristics of the improved algorithm, selects 22 test functions of the 
ZDT, DTLZ, and UF series to evaluate the performance of the proposed IMOPSOCE, and analyzes 
the experimental results in order to verify the comprehensive performance of IMOPSOCE. 

4.4.1. Comparisons with five existing MOPSOs 

Tables 3 and 4 present the means and standard deviations of the IGD indicator and HV indicator 
for 30 independent runs on the ZDT, DTLZ, and UF functions for the six multi-objective algorithms 
MOPSO, dMOPSO, NMPSO, SMPSO, MPSOD, and IMOPSOCE. The Wilcoxon rank sum test is 
performed at a significance level of 0.05 to show the significant differences between the test results. 
The symbol ‘+’ in Tables 3 and 4 indicates that the results achieved by other MOPSOs are 
significantly better than the results obtained by IMOPSOCE, while ‘-’ indicates that the results 
achieved by other MOPSOs are significantly worse than the results obtained by IMOPSOCE. 
Additionally, ‘≈’ represents the results of comparing algorithms, and IMOPSOCE is similar. The 
performance of the proposed IMOPSOCE and the other five algorithms on 22 test functions can be 
shown by combining the data in Tables 3 and 4. Comparing the experimental results reveals that the 
proposed IMOPSOCE performs better overall than the other five classical algorithms. To visually 
show the optimization result, the optimal values in the table are bolded. 

Table 3 shows the means and standard deviations of the IGD indicator of the five classical 
algorithms and IMOPSOCE on the 22 test functions. On the test functions ZDT1, ZDT2, ZDT3, 
DTLZ6, UF4, UF5, UF8, UF9, and UF10, it is immediately obvious that IMOPSOCE performs 
noticeably better than the five existing MOPSOs that are compared. IMOPSOCE performs well since 
it obtains the best IGD on 13 out of the 22 test functions. The IGD of IMOPSOCE is better than the 
other five algorithms, and its performance is much better than the competitive MOPSOs, which 
verifies its good performance. Second, NMPSO and SMPSO perform better in the remaining 
compared algorithms. Table 3 shows that MOPSO and dMOPSO perform poorly on 22 test functions 
and that their optimal IGD number is 0. According to the Wilcoxon rank sum test results presented in 
the second-last row, IMOPSOCE performs significantly better than MOPSO, dMOPSO, NMPSO, 
SMPSO, and MPSOD on 18, 17, 12, 16, and 19 out of 22 comparisons, respectively, while it 
performs worse than MOPSO, dMOPSO, NMPSO, SMPSO, and MPSOD on 3, 4, 7, 5, and 3 
comparisons, respectively. Besides, IMOPSOCE obtains similar results to MOPSO, dMOPSO, 
NMPSO, SMPSO, and MPSOD on 1, 1, 3, 1, and 0 test functions, respectively. All the statistical 
results demonstrate the great efficacy of IMOPSOCE in solving the MOPs. On ZDT1 and UF10, 
IMOPSOCE performs better than NMPSO by a factor of 5 and 4, respectively. Only the proposed 
IMOPSOCE performs well on nearly all test functions, despite other compared algorithms 
performing well on some test functions. For example, NMPSO and SMPSO perform admirably on 
the DTLZ test functions, but poorly on the ZDT. Additionally, NMPSO and SMPSO perform well on  
the ZDT6 test function, but much worse on UF10 test function. IMOPSOCE performs significantly 
better than the other compared algorithms on UF1-UF10. IMOPSOCE shows its superior 
performance compared with the other five algorithms. This is mostly attributable to the adoption of 
the random inertia weight strategy, which effectively balances the exploitation and exploration 
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capacities of particles to enable the swarm to discover better non-dominated solutions. The 
aforementioned evidence demonstrates that, when compared to the existing MOPSOs, the proposed 
IMOPSOCE performs the best overall. 

In addition to the IGD indicator, a crucial HV indicator is employed to further confirm the 
effectiveness of IMOPSOCE. The comparison results using the HV indicator are similar to those 
using the IGD indicator, as shown in Table 4. Performance is poorer for MOPSO, dMOPSO, and 
MPSOD. It is noteworthy that the proposed IMOPSOCE only has a very small gap of less than one 
time from the optimal result on the test functions ZDT6, DTLZ2, DTLZ5, UF1, and UF4. On the test 
function UF6, IMOPSOCE has a slightly worse HV value but the best overall performance. As a 
result, when combined with the information in Table 4, we can draw the conclusion that the 
IMOPSOCE performs the best among the 22 test functions in terms of the HV indicator and is very 
competitive when compared to the existing MOPSOs algorithms. The proposed IMOPSOCE can 
perform better in terms of the convergence and diversity when solving the MOPs. 

Figure 4 displays box plots of the IGD indicator for the six algorithms. It is worth noting that 
the lower the mean value of IGD, the shorter the box plot in the figure, indicating that the algorithm 
obtains better IGD values and more consistent results. When different algorithms are run 
independently 30 times on each test function, the box plots of the IMOPSOCE algorithm and the 
compared algorithms with respect to the IGD indicator are shown in Figure 4 (1, 2, 3, 4, 5, and 6 on 
the horizontal coordinate represent MOPSO, dMOPSO, NMPSO, SMPSO, MPSOD, and 
IMOPSOCE, respectively, and the vertical coordinate represents the IGD value of each algorithm). 
Figure 4 records the data fluctuations of the six algorithms on ZDT1-ZDT4, ZDT6, DTLZ1-DTLZ7, 
and UF1-UF10. It is evident that IMOPSOCE can obtain better solutions than other MOPSOs. This 
is in agreement with the findings of Table 3. Meanwhile, the proposed IMOPSOCE shows significant 
improvement on the test functions ZDT1, ZDT2, ZDT3, ZDT4, DTLZ6, UF2, UF5, UF6, UF7, and 
UF9. Except for the test functions DTLZ1, DTLZ2, and UF8, IMOPSOCE, NMPSO, and SMPSO 
perform well, while dMOPSO and MPSOD perform relatively poorly. These figures further 
demonstrate the superior results of IMOPSOCE and demonstrate that it outperforms the other five 
algorithms in terms of overall performance on the 22 test functions. It is clear from the 
aforementioned narration that IMOPSOCE has certain advantages and effectiveness in improving the 
performance of the algorithm compared with the existing MOPSOs. 
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Table 3. IGD values of IMOPSOCE and five MOPSOs on the test functions 
ZDT1-ZDT4 and ZDT6, DTLZ1-DTLZ7 and UF1-UF10. 

Problem MOPSO dMOPSO NMPSO SMPSO MPSOD IMOPSOCE 

ZDT1 
7.0211e-1- 
(1.81e-1)  

5.0137e-2- 
(1.89e-2) 

3.4869e-2- 
(2.18e-2) 

6.7559e-2- 
(6.62e-2)  

1.0674e-1- 
(4.49e-2)  

7.4580e-3 
(1.13e-3) 

ZDT2 1.4189e+0- 
(3.31e-1)  

3.7406e-2- 
(1.70e-2) 

2.4724e-2- 
(3.09e-2) 

7.2003e-2≈ 
(1.55e-1)  

1.4470e-1- 
(1.05e-1)  

8.5043e-3 
(1.40e-3) 

ZDT3 
8.4763e-1- 
(2.13e-1)  

3.4836e-2- 
(6.64e-3) 

9.2071e-2- 
(1.79e-2) 

1.6969e-1- 
(9.53e-2)  

2.1877e-1- 
(3.61e-2)  

7.7408e-3 
(1.15e-3) 

ZDT4 1.4592e+1- 
(5.39e+0)  

5.4598e+0- 
(6.43e+0) 

1.6690e+1- 
(7.66e+0) 

9.0668e+0- 
(4.25e+0)  

3.5681e+1- 
(7.17e+0)  

2.7971e-1 
(2.29e-1) 

ZDT6 
1.7468e-1≈ 
(4.32e-1)  

5.6438e-3+ 
(6.07e-3) 

2.2404e-3+ 
(1.90e-4) 

1.9430e-3+ 
(9.80e-5)  

1.8824e-2- 
(1.03e-2)  

1.0595e-2 
(3.76e-3) 

DTLZ1 1.1190e+1+ 
(3.10e+0)  

9.6588e+0+ 
(6.15e+0) 

5.9159e+0+ 
(3.51e+0) 

3.2280e+0+ 
(3.57e+0)  

1.0907e+1+ 
(2.92e+0)  

1.5513e+1 
(5.12e+0) 

DTLZ2 
5.2526e-2+ 
(2.95e-3)  

1.0314e-1+ 
(5.70e-3) 

5.5851e-2+ 
(1.85e-3) 

6.3330e-2+ 
(4.98e-3)  

4.5371e-2+ 
(1.56e-3)  

1.4368e-1 
(1.17e-2) 

DTLZ3 1.9302e+2- 
(5.55e+1)  

9.9189e+1≈ 
(7.79e+1) 

1.2628e+2- 
(2.63e+1) 

5.0028e+1+ 
(3.46e+1)  

1.3952e+2- 
(2.02e+1)  

9.4523e+1 
(3.49e+1) 

DTLZ4 
3.4110e-1- 
(1.36e-1)  

3.3172e-1- 
(2.48e-2) 

5.7062e-2+ 
(1.60e-3) 

3.9519e-1- 
(1.40e-1)  

1.3259e-1+ 
(3.83e-2)  

2.7893e-1 
(4.56e-2) 

DTLZ5 7.4875e-3+ 
(1.63e-3)  

2.6307e-2- 
(4.44e-3) 

6.9371e-3+ 
(9.66e-4) 

3.4514e-3+ 
(3.56e-4)  

5.3972e-2- 
(5.53e-3)  

1.1122e-2 
(1.53e-3) 

DTLZ6 
2.7753e+0- 
(7.33e-1)  

2.0642e-2- 
(3.26e-4) 

1.2579e-2- 
(1.91e-3) 

1.3720e+0- 
(1.05e+0)  

1.0854e+0- 
(3.51e-1)  

1.0169e-2 
(1.79e-3) 

DTLZ7 3.2173e+0- 
(9.29e-1)  

1.1497e-1+ 
(1.09e-2) 

4.6442e-2+ 
(1.82e-3) 

6.7488e-1- 
(3.48e-1)  

5.4007e-1- 
(1.07e-1)  

2.3897e-1 
(1.21e-1) 

UF1 
5.0187e-1- 
(1.04e-1)  

6.2479e-1- 
(9.81e-2) 

1.3046e-1+ 
(2.56e-2) 

4.0364e-1- 
(8.99e-2)  

2.7516e-1- 
(5.50e-2)  

1.4230e-1 
(1.39e-2) 

UF2 1.1058e-1- 
(1.64e-2)  

9.4457e-2- 
(6.86e-3) 

8.4078e-2- 
(6.33e-3) 

9.9407e-2- 
(8.59e-3)  

1.1393e-1- 
(1.07e-2)  

7.4755e-2 
(4.15e-3) 

UF3 
5.1669e-1- 
(2.85e-2)  

3.3089e-1- 
(7.06e-3) 

3.4965e-1- 
(5.17e-2) 

4.6952e-1- 
(3.51e-2)  

5.0281e-1- 
(1.39e-2)  

3.2163e-1 
(2.43e-2) 

UF4 1.1075e-1- 
(1.43e-2)  

1.3658e-1- 
(6.61e-3) 

6.2902e-2≈ 
(8.05e-3) 

1.0863e-1- 
(9.35e-3)  

9.7480e-2- 
(2.85e-3)  

6.2371e-2 
(7.02e-3) 

UF5 
3.2536e+0- 
(3.12e-1)  

3.2928e+0- 
(3.12e-1) 

1.7124e+0≈ 
(3.30e-1) 

2.8025e+0- 
(6.67e-1)  

2.7346e+0- 
(2.66e-1)  

1.5851e+0 
(1.68e-1) 

UF6 2.5561e+0- 
(4.90e-1)  

2.2119e+0- 
(5.62e-1) 

6.4992e-1≈ 
(1.33e-1) 

1.3667e+0- 
(4.85e-1)  

1.4099e+0- 
(2.57e-1)  

6.7761e-1 
(8.19e-2) 

UF7 
6.1441e-1- 
(1.07e-1)  

3.8236e-1- 
(7.33e-2) 

2.2779e-1- 
(1.93e-1) 

3.5257e-1- 
(1.20e-1)  

2.2707e-1- 
(5.46e-2)  

1.0721e-1 
(1.10e-2) 

UF8 4.0833e-1- 
(3.23e-2)  

3.5044e-1- 
(3.68e-2) 

4.6655e-1- 
(9.42e-2) 

3.8784e-1- 
(3.85e-2)  

5.4451e-1- 
(3.97e-2)  

3.1105e-1 
(8.65e-2) 

UF9 
5.3785e-1- 
(4.18e-2)  

5.9435e-1- 
(3.94e-2) 

4.5878e-1- 
(4.77e-2) 

5.6715e-1- 
(4.60e-2)  

6.5006e-1- 
(4.57e-2)  

1.3122e-1 
(1.25e-2) 

UF10 2.3147e+0- 
(3.19e-1)  

9.4530e-1- 
(1.24e-3) 

1.4957e+0- 
(3.32e-1) 

2.8189e+0- 
(4.83e-1)  

4.1294e+0- 
(3.67e-1)  

4.2001e-1 
(9.46e-2) 

+ / - / ≈ 3/18/1 4/17/1 7/12/3 5/16/1 3/19/0 - 

Best/all 0/22 0/22 4/22 4/22 1/22 13/22 
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Table 4. HV values of IMOPSOCE and five MOPSOs on the test functions ZDT1-ZDT4 
and ZDT6, DTLZ1-DTLZ7 and UF1-UF10. 

Problem MOPSO dMOPSO NMPSO SMPSO MPSOD IMOPSOCE 

ZDT1 
9.2160e-2- 
(9.00e-2)  

6.6118e-1- 
(2.16e-2) 

6.8424e-1- 
(2.41e-2) 

6.3545e-1- 
(8.30e-2)  

5.6884e-1- 
(5.86e-2)  

7.1622e-1 
(1.31e-3) 

ZDT2 0.0000e+0- 
(0.00e+0)  

3.8867e-1- 
(2.62e-2) 

4.2996e-1- 
(3.14e-2) 

3.8413e-1≈ 
(1.16e-1)  

2.7548e-1- 
(9.50e-2)  

4.4006e-1 
(1.76e-3) 

ZDT3 
7.7767e-2- 
(8.58e-2)  

5.9695e-1≈ 
(1.25e-2) 

5.7099e-1- 
(7.07e-3) 

5.2579e-1- 
(7.42e-2)  

4.4626e-1- 
(3.73e-2)  

5.9870e-1 
(3.73e-4) 

ZDT4 0.0000e+0- 
(0.00e+0)  

3.9766e-2- 
(5.70e-2) 

0.0000e+0- 
(0.00e+0) 

0.0000e+0- 
(0.00e+0)  

0.0000e+0- 
(0.00e+0)  

5.0728e-1 
(1.61e-1) 

ZDT6 
3.1423e-1≈ 
(1.30e-1)  

3.8610e-1+ 
(6.80e-3) 

3.8982e-1+ 
(1.60e-4) 

3.9000e-1+ 
(1.08e-4)  

3.7374e-1- 
(9.84e-3)  

3.8190e-1 
(3.20e-3) 

DTLZ1 0.0000e+0≈ 
(0.00e+0)  

9.8649e-3≈ 
(5.40e-2) 

0.0000e+0≈ 
(0.00e+0) 

1.2189e-1+ 
(1.61e-1)  

0.0000e+0≈ 
(0.00e+0)  

0.0000e+0 
(0.00e+0) 

DTLZ2 
5.3450e-1+ 
(6.34e-3)  

4.4006e-1+ 
(1.13e-2) 

5.6947e-1+ 
(9.91e-4) 

5.0876e-1+ 
(1.02e-2)  

5.4982e-1+ 
(3.26e-3)  

3.9933e-1 
(1.82e-2) 

DTLZ3 0.0000e+0≈ 
(0.00e+0)  

3.4244e-3≈ 
(1.88e-2) 

0.0000e+0≈ 
(0.00e+0) 

3.5422e-3≈ 
(1.94e-2)  

0.0000e+0≈ 
(0.00e+0)  

0.0000e+0 
(0.00e+0) 

DTLZ4 
3.2980e-1- 
(7.19e-2)  

2.8026e-1- 
(4.41e-2) 

5.6894e-1+ 
(1.03e-3) 

3.1611e-1- 
(9.53e-2)  

4.2814e-1+ 
(4.88e-2)  

3.8637e-1 
(3.76e-2) 

DTLZ5 1.9433e-1≈ 
(3.04e-3)  

1.7053e-1- 
(7.99e-3) 

1.9805e-1+ 
(5.53e-4) 

2.0000e-1+ 
(2.56e-4)  

1.4229e-1- 
(8.87e-3)  

1.9343e-1 
(2.04e-3) 

DTLZ6 
0.0000e+0- 
(0.00e+0)  

1.8982e-1- 
(2.57e-4) 

1.9805e-1≈ 
(4.60e-4) 

4.3321e-2- 
(8.04e-2)  

8.5754e-3- 
(3.32e-2)  

1.9827e-1 
(7.60e-4) 

DTLZ7 3.7338e-5- 
(9.96e-5)  

2.4411e-1+ 
(4.47e-3) 

2.8144e-1+ 
(7.47e-4) 

1.1621e-1≈ 
(7.15e-2)  

6.6672e-2- 
(3.21e-2)  

1.0280e-1 
(2.29e-2) 

UF1 
1.7708e-1- 
(7.82e-2)  

7.9527e-2- 
(5.74e-2) 

5.2511e-1+ 
(4.00e-2) 

2.4429e-1- 
(7.44e-2)  

3.5195e-1- 
(6.05e-2)  

5.0140e-1 
(2.34e-2) 

UF2 5.9919e-1- 
(1.21e-2)  

6.1685e-1- 
(5.85e-3) 

6.1854e-1- 
(6.17e-3) 

6.0938e-1- 
(9.05e-3)  

5.7836e-1- 
(1.09e-2)  

6.3620e-1 
(4.11e-3) 

UF3 
1.5673e-1- 
(1.65e-2)  

3.0588e-1- 
(8.25e-3) 

2.9064e-1- 
(4.41e-2) 

1.9546e-1- 
(3.11e-2)  

1.7059e-1- 
(1.24e-2)  

3.2391e-1 
(1.96e-2) 

UF4 2.9248e-1- 
(1.65e-2)  

2.5374e-1- 
(8.01e-3) 

3.6044e-1≈ 
(1.15e-2) 

2.9542e-1- 
(1.10e-2)  

3.0969e-1- 
(3.63e-3)  

3.5712e-1 
(8.97e-3) 

UF5 
0.0000e+0≈ 
(0.00e+0)  

0.0000e+0≈ 
(0.00e+0) 

0.0000e+0≈ 
(0.00e+0) 

0.0000e+0≈ 
(0.00e+0)  

0.0000e+0≈ 
(0.00e+0)  

0.0000e+0 
(0.00e+0) 

UF6 0.0000e+0- 
(0.00e+0)  

0.0000e+0- 
(0.00e+0) 

2.3919e-2+ 
(3.04e-2) 

0.0000e+0- 
(0.00e+0)  

0.0000e+0- 
(0.00e+0)  

6.1517e-3 
(9.61e-3) 

UF7 
4.9807e-2- 
(3.74e-2)  

1.7201e-1- 
(5.79e-2) 

3.6077e-1- 
(1.24e-1) 

2.0239e-1- 
(8.51e-2)  

2.8265e-1- 
(5.97e-2)  

4.2467e-1 
(1.43e-2) 

UF8 1.7705e-1- 
(3.09e-2)  

2.6619e-1- 
(1.93e-2) 

2.9081e-1- 
(4.41e-2) 

1.6892e-1- 
(4.14e-2)  

5.2525e-2- 
(1.66e-2)  

3.3260e-1 
(2.37e-2) 

UF9 
2.2338e-1- 
(3.78e-2)  

2.2908e-1- 
(1.90e-2) 

3.1397e-1- 
(4.32e-2) 

2.0128e-1- 
(3.77e-2)  

1.1838e-1- 
(3.41e-2)  

6.2740e-1 
(1.61e-2) 

UF10 0.0000e+0- 
(0.00e+0)  

9.0892e-2- 
(3.65e-5) 

3.0066e-6- 
(1.65e-5) 

0.0000e+0- 
(0.00e+0)  

0.0000e+0- 
(0.00e+0)  

2.2771e-1 
(6.40e-2) 

+ / - / ≈ 1/16/5 3/15/4 7/10/5 4/14/4 2/17/3 - 

Best/all 0/22 0/22 6/22 4/22 0/22 11/22 
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Figure 4. Box statistical plots of IGD on the 22 test functions. 
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Figure 5. IGD convergence trajectories of IMOPSOCE and five MOPSOs on ZDT3, 
ZDT4 and UF2. 

0.05

0.1

0.15
UF4

1 2 3 4 5 6

1

1.5

2

2.5

3

3.5

4

UF5

1 2 3 4 5 6
0.5

1

1.5

2

2.5

3

3.5
UF6

1 2 3 4 5 6

0.2

0.4

0.6

0.8

UF7

1 2 3 4 5 6
0.2

0.3

0.4

0.5

0.6

0.7

0.8

UF8

1 2 3 4 5 6
0.1

0.2

0.3

0.4

0.5

0.6

0.7

UF9

1 2 3 4 5 6

1

2

3

4

5
UF10

1 2 3 4 5 6

2000 4000 6000 8000 10000
Number of evaluations

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
ZDT3

MOPSO
dMOPSO
NMPSO
SMPSO
MPSOD
IMOPSOCE

2000 4000 6000 8000 10000
Number of evaluations

10

20

30

40

50

60

70

80

ZDT4

MOPSO
dMOPSO
NMPSO
SMPSO
MPSOD
IMOPSOCE



14884 

Mathematical Biosciences and Engineering  Volume 20, Issue 8, 14866-14898.   
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Figure 6. Approximate Pareto front of IMOPSOCE and MOPSOs on the bi-objective test 
function ZDT1. (a) MOPSO, (b) dMOPSO, (c) NMPSO, (d) SMPSO, (e) MPSOD and (f) 
IMOPSOCE. 
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Figure 7. Approximate Pareto front of IMOPSOCE and MOPSOs on the bi-objective 
test function ZDT3. (a) MOPSO, (b) dMOPSO, (c) NMPSO, (d) SMPSO, (e) MPSOD 
and (f) IMOPSOCE. 
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IMOPSOCE better balances the exploitation and exploration capabilities, leading to a better 
convergence of the algorithm. The proposed IMOPSOCE has a good convergence because its 
proposed strategy can successfully prevent the population from falling into the local optimum in 
order to find solutions with better convergence. 

Figures 6 and 7 plot the approximate Pareto front obtained on the bi-objective test functions 
ZDT1 and ZDT3 to visualize the optimization result. Figure 6 shows that NMPSO and IMOPSOCE 
can cover the true Pareto front very well, mainly because of their good convergence, while the other 
four compared algorithms have a poor coverage of the true Pareto front. Meanwhile, the approximate 
Pareto fronts of the other five compared algorithms cannot be uniformly distributed, as obtained by 
IMOPSOCE. Figure 7 shows that on ZDT3, except for IMOPSOCE, which can cover the true Pareto 
front, the other five compared algorithms have difficulty approaching the true Pareto front. 
Additionally, MOPSO, SMPSO, and MPSOD cannot converge to the true Pareto front for ZDT3 with 
an unconnected PF, which is consistent with the conclusion in Table 3. NMPSO can only find a small 
number of Pareto optimal solutions for the ZDT3 function on the Pareto front. This can intuitively 
show that, when compared to the other five algorithms, IMOPSOCE has the best convergence effect. 
This is mainly because IMOPSOCE uses an external archive maintenance strategy based on the 
inflection point distance and the distribution coefficient to guarantee that the non-dominated  
solutions in the external archive have better comprehensive performance. IMOPSOCE takes 
advantage of the hierarchical idea to provide different flight modes for particles at different layers, 
which improves the search capabilities of the algorithm and makes it have better convergence. 

4.4.2. Comparisons with five existing MOEAs 

Tables 5 and 6 show the means and standard deviations of the IGD indicator and HV indicator 
for 30 independent runs on the ZDT, DTLZ, and UF functions for NSGAIII, MOEAD, 
MOEAIGDNS, SPEAR, VaEA, and the proposed IMOPSOCE, respectively. Additionally, the 
experiments adopt the Wilcoxon rank sum test to obtain statistically sound conclusions at the 0.05 
significance level. Combining the data in Tables 5 and 6, the proposed IMOPSOCE still performs 
better than the other five classical algorithms and still outperforms MOEAs on these test functions. 
To visually show the optimization result, the optimal values in the table are bolded. 

Table 5 shows the means and standard deviations of the IGD indicator of the five classical 
algorithms and IMOPSOCE on the 22 test functions. IMOPSOCE performs the best compared to 
the five compared algorithms on ZDT1-ZDT4, ZDT6, DTLZ6, UF3-4, and UF7-10. According 
to the Wilcoxon rank sum test results shown in the second-last row of Table 5, the IMOPSOCE 
has significantly better IGD values than NSGAIII, MOEAD, MOEAIGDNS, SPEAR, and VaEA 
on 12, 16, 12, 12, and 11 test functions, respectively. The performance of IMOPSOCE is the 
most competitive, even though its advantage compared to these five MOEAs is not particularly 
outstanding. For instance, IMOPSOCE outperforms VaEA on ZDT1 by a factor of 10 and SPEAR 
on DTLZ6 by a factor of 17. IMOPSOCE outperforms the compared MOEAs and exhibits the best 
performance on the ZDT and UF test functions. Due to the somewhat higher IGD values of 
IMOPSOCE, its performance for the three-objective DTLZ test functions is less than optimal. This 
indicates that the classical algorithms are better suited to solving the three-objective series of 
problems. When it comes to solving the three-objective DTLZ test functions, MOEAD demonstrates 
its superiority. The findings of the comparisons also demonstrate that the proposed IMOPSOCE has a 
good overall performance. IMOPSOCE achieves the 12 statistically best results on the 22 test 
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functions, according to the results in the last row of Table 5. To sum up the foregoing content, the 
proposed IMOPSOCE ranks first among the aforementioned compared algorithms due to the use of 
the external archive maintenance strategy, the comprehensive indicator combined with inflection 
point distance and distribution coefficient, and focusing on the convergence and diversity of 
non-dominated solutions at the same time; thus, the non-dominated solutions in the external archive 
have a better performance. 

A similar conclusion that IMOPSOCE has superior performance can also be obtained from 
Table 6. The proposed IMOPSOCE achieves more than half of the best HV values on the 22 test 
functions, as shown in Table 6. IMOPSOCE achieves the best results on ZDT1-ZDT4, ZDT6, 
DTLZ6, UF2-UF4, and UF7-UF10. There are 0 optimal HV values for SPEAR, 1 optimal HV value 
each for NSGAIII and MOEAIGDNS, 3 optimal HV values each for MOEAD and VaEA, and 13 
optimal HV values for the proposed IMOPSOCE. SPEAR performs relatively poorly compared to 
the other algorithms on the 22 test functions. IMOPSOCE outperforms NSGAIII, MOEAD, 
MOEAIGDNS, SPEAR, and VaEA on 13, 14, 13, 14, and 13 test functions, respectively. From the 
findings, it is evident that IMOPSOCE performs well on both the bi-objective and three-objective 
test functions. In general, compared with the existing MOEAs, the proposed IMOPSOCE achieves 
the best overall performance on the test functions, especially on the bi-objective test functions. The 
flight mode of the particles at the first layer is changed after each update due to the hierarchical 
update strategy of particle velocity, and the particles at the first layer continue their original 
movement trend. The convergence of the algorithm is effectively improved.  

Figure 8 presents box plots of the IGD indicator for the six algorithms to illustrate the 
distribution of the data. When different algorithms are independently run 30 times on each test 
function, the box plots of the IMOPSOCE algorithm and compared algorithms with respect to the 
IGD indicator are shown in Figure 8 (1, 2, 3, 4, 5, and 6 on the horizontal coordinate represent 
NSGAIII, MOEAD, MOEAIGDNS, SPEAR, VaEA, and IMOPSOCE, respectively, and the vertical 
coordinate represents the IGD value of each algorithm). The data fluctuations of the six algorithms 
on ZDT1-ZDT4, ZDT6, DTLZ1-DTLZ7, and UF1-UF10 are shown in Figure 8. The above contents 
demonstrates unequivocally that, when compared to other MOEAs, IMOPSOCE can achieve the best 
Pareto optimal solutions. The results match those in Table 5. On the test functions ZDT1, ZDT2, 
ZDT3, ZDT6, UF7, and UF9, IMOPSOCE outperforms the other five algorithms by a wide margin. 
There is no discernible difference between NSGAIII, MOEAD, MOEAIGDNS, SPEAR, and VaEA 
on the test functions of DTLZ, with the exception of DTLZ4 and DTLZ6. IMOPSOCE performs 
better than the other five algorithms overall. As may be observed from the aforementioned 
experimental results, IMOPSOCE is very competitive in solving MOPs compared with the 
existing MOEAs. 

The IGD convergence trajectories of the six algorithms for the test functions ZDT3, ZDT4, and 
UF2 are plotted in Figure 9. IGD values are recorded 10 times in a certain time interval for each 
algorithm. The figure shows that IMOPSOCE converges more quickly than the other five algorithms 
because we utilize an external archive maintenance strategy that combines the inflection point 
distance and distribution coefficient, resulting in the non-dominated solutions in the external archive 
having the best performance. 

Figures 10 and 11 plot the Pareto fronts of NSGAIII, MOEAD, MOEAIGDNS, SPEAR, VaEA, 
and IMOPSOCE on the bi-objective test functions ZDT1 and ZDT2. Only IMOPSOCE can fit the 
true Pareto front in Figure 10, whereas the other five compared algorithms barely do. The primary 
reason is that IMOPSOCE makes particle searches more effective by using a random inertia weight 
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strategy. Figure 11 demonstrates that none of the other five MOEAs cover the true Pareto front, 
except for IMOPSOCE, which almost completely covers the true Pareto front of ZDT2. The two 
figures above show that only IMOPSOCE can be evenly distributed on the true Pareto front when 
compared to the other five algorithms. The primary reason for this is that IMOPSOCE employs an 
external archive maintenance strategy that combines inflection point distance and distribution 
coefficient, allowing it to measure the performance of non-dominated solutions from two 
perspectives of convergence and diversity and retain solutions with good comprehensive 
performance. The good diversity and convergence of IMOPSOCE allows it to better approximate the 
true Pareto front in the majority of test functions. 
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Table 5. IGD values of IMOPSOCE and five MOEAs on the test functions ZDT1-ZDT4 
and ZDT6, DTLZ1-DTLZ7 and UF1-UF10. 

Problem NSGAIII MOEAD MOEAIGDNS SPEAR VaEA IMOPSOCE 

ZDT1 1.0361e-1- 
(1.84e-2)  

1.9868e-1- 
(6.78e-2)  

8.2561e-2- 
(1.44e-2)  

1.7980e-1- 
(2.99e-2) 

7.5846e-2- 
(1.07e-2) 

7.4580e-3 
(1.13e-3) 

ZDT2 1.9225e-1- 
(4.02e-2)  

5.5920e-1- 
(8.25e-2)  

1.4279e-1- 
(2.38e-2)  

3.6717e-1- 
(8.42e-2) 

1.5661e-1- 
(3.52e-2) 

8.5043e-3 
(1.40e-3) 

ZDT3 9.1523e-2- 
(1.77e-2)  

1.8201e-1- 
(4.41e-2)  

6.7850e-2- 
(9.96e-3)  

1.5037e-1- 
(1.60e-2) 

6.9368e-2- 
(1.15e-2) 

7.7408e-3 
(1.15e-3) 

ZDT4 2.8099e+0- 
(7.61e-1)  

4.8205e-1- 
(1.88e-1)  

2.1566e+0- 
(7.86e-1)  

2.0743e+0- 
(7.66e-1) 

2.0778e+0- 
(6.82e-1) 

2.7971e-1 
(2.29e-1) 

ZDT6 1.4438e+0- 
(2.45e-1)  

8.8457e-2- 
(3.19e-2)  

1.3222e+0- 
(1.91e-1)  

1.0811e+0- 
(2.39e-1) 

1.2357e+0- 
(2.14e-1) 

1.0595e-2 
(3.76e-3) 

DTLZ1 9.7952e-1+ 
(3.79e-1)  

2.6621e-1+ 
(2.97e-1)  

8.4112e-1+ 
(3.89e-1)  

8.3578e-1+ 
(3.05e-1) 

7.7967e-1+ 
(2.94e-1) 

1.5513e+1 
(5.12e+0) 

DTLZ2 3.9978e-2+ 
(6.22e-4)  

3.9402e-2+ 
(7.93e-4)  

4.3083e-2+ 
(1.16e-3)  

4.3246e-2+ 
(1.49e-3) 

4.1957e-2+ 
(5.72e-4) 

1.4368e-1 
(1.17e-2) 

DTLZ3 3.4821e+1+ 
(9.38e+0)  

1.8789e+1+ 
(1.13e+1)  

2.9226e+1+ 
(5.78e+0)  

3.1891e+1+ 
(8.74e+0) 

2.4318e+1+ 
(5.57e+0) 

9.4523e+1 
(3.49e+1) 

DTLZ4 7.4209e-2+ 
(1.27e-1)  

3.8392e-1- 
(2.85e-1)  

4.3842e-2+ 
(1.19e-3)  

4.5053e-2+ 
(3.00e-3) 

7.5419e-2+ 
(1.27e-1) 

2.7893e-1 
(4.56e-2) 

DTLZ5 7.2490e-3+ 
(8.41e-4)  

2.0509e-2- 
(5.16e-4)  

5.8694e-3+ 
(8.95e-4)  

2.2481e-2- 
(1.48e-3) 

5.8008e-3+ 
(5.95e-4) 

1.1122e-2 
(1.53e-3) 

DTLZ6 2.7042e-2- 
(1.29e-2)  

9.5240e-2- 
(2.10e-1)  

3.4208e-2- 
(2.73e-2)  

1.7202e-1- 
(1.57e-1) 

2.3555e-2- 
(1.34e-2) 

1.0169e-2 
(1.79e-3) 

DTLZ7 1.5684e-1+ 
(3.27e-2)  

1.1484e-1+ 
(1.99e-2)  

1.5805e-1+ 
(3.32e-2)  

2.1368e-1≈ 
(3.85e-2) 

1.3228e-1+ 
(2.92e-2) 

2.3897e-1 
(1.21e-1) 

UF1 1.3915e-1≈ 
(2.90e-2)  

3.1483e-1- 
(7.21e-2)  

1.1863e-1+ 
(2.74e-2)  

1.4317e-1≈ 
(2.66e-2) 

1.1503e-1+ 
(1.78e-2) 

1.4230e-1 
(1.39e-2) 

UF2 8.1327e-2- 
(4.31e-3)  

2.0440e-1- 
(5.90e-2)  

7.5905e-2≈ 
(5.84e-3)  

7.3285e-2≈ 
(1.48e-2) 

7.7204e-2≈ 
(7.36e-3) 

7.4755e-2 
(4.15e-3) 

UF3 4.7968e-1- 
(7.98e-3)  

3.4122e-1- 
(2.74e-2)  

4.6613e-1- 
(1.06e-2)  

4.3357e-1- 
(1.58e-2) 

4.6417e-1- 
(1.18e-2) 

3.2163e-1 
(2.43e-2) 

UF4 9.4798e-2- 
(2.58e-3)  

1.1593e-1- 
(4.67e-3)  

8.8198e-2- 
(3.79e-3)  

8.5335e-2- 
(2.06e-3) 

9.0046e-2- 
(3.10e-3) 

6.2371e-2 
(7.02e-3) 

UF5 1.4574e+0+ 
(3.05e-1)  

1.3741e+0+ 
(2.69e-1)  

1.1081e+0+ 
(2.61e-1)  

1.1259e+0+ 
(2.17e-1) 

1.1652e+0+ 
(3.55e-1) 

1.5851e+0 
(1.68e-1) 

UF6 7.0048e-1≈ 
(1.37e-1)  

6.0102e-1+ 
(2.25e-1)  

5.8255e-1+ 
(9.23e-2)  

6.7400e-1≈ 
(9.11e-2) 

5.8149e-1+ 
(8.09e-2) 

6.7761e-1 
(8.19e-2) 

UF7 2.0268e-1- 
(8.77e-2)  

4.1262e-1- 
(1.39e-1)  

1.7940e-1- 
(8.98e-2)  

1.8238e-1- 
(6.99e-2) 

1.6080e-1- 
(8.48e-2) 

1.0721e-1 
(1.10e-2) 

UF8 3.3309e-1≈ 
(2.84e-2)  

5.4074e-1- 
(2.52e-1)  

3.9258e-1- 
(3.15e-2)  

3.1871e-1≈ 
(1.58e-2) 

3.4251e-1≈ 
(4.05e-2) 

3.1105e-1 
(8.65e-2) 

UF9 5.0027e-1- 
(4.79e-2)  

5.5908e-1- 
(7.95e-2)  

5.0022e-1- 
(4.85e-2)  

4.7566e-1- 
(6.23e-2) 

4.7798e-1- 
(6.02e-2) 

1.3122e-1 
(1.25e-2) 

UF10 2.5472e+0- 
(3.75e-1)  

7.5099e-1- 
(9.55e-2)  

1.5340e+0- 
(3.15e-1)  

1.9784e+0- 
(3.88e-1) 

1.4437e+0- 
(3.24e-1) 

4.2001e-1 
(9.46e-2) 

+ / - / ≈ 7/12/3 6/16/0 9/12/1 5/12/5 9/11/2 - 
Best/all 0/22 4/22 2/22 1/22 3/22 12/22 
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Table 6. HV values of IMOPSOCE and five MOEAs on the test functions ZDT1-ZDT4 
and ZDT6, DTLZ1-DTLZ7 and UF1-UF10. 

Problem NSGAIII MOEAD MOEAIGDNS SPEAR VaEA IMOPSOCE 

ZDT1 5.8567e-1- 
(2.27e-2)  

5.3373e-1- 
(4.98e-2)  

6.1280e-1- 
(1.87e-2)  

4.8930e-1- 
(3.15e-2) 

6.2123e-1- 
(1.38e-2) 

7.1622e-1 
(1.31e-3) 

ZDT2 2.1776e-1- 
(3.43e-2)  

9.3077e-2- 
(2.80e-2)  

2.6429e-1- 
(2.31e-2)  

8.5507e-2- 
(4.68e-2) 

2.5202e-1- 
(2.98e-2) 

4.4006e-1 
(1.76e-3) 

ZDT3 5.3936e-1- 
(1.31e-2)  

5.9420e-1≈ 
(7.06e-2)  

5.5647e-1- 
(7.52e-3)  

5.0460e-1- 
(1.55e-2) 

5.5441e-1- 
(7.13e-3) 

5.9870e-1 
(3.73e-4) 

ZDT4 0.0000e+0- 
(0.00e+0)  

2.1224e-1- 
(1.40e-1)  

0.0000e+0- 
(0.00e+0)  

1.8871e-3- 
(1.03e-2) 

0.0000e+0- 
(0.00e+0) 

5.0728e-1 
(1.61e-1) 

ZDT6 0.0000e+0- 
(0.00e+0)  

2.7290e-1- 
(3.68e-2)  

0.0000e+0- 
(0.00e+0)  

9.3888e-4- 
(5.14e-3) 

0.0000e+0- 
(0.00e+0) 

3.8190e-1 
(3.20e-3) 

DTLZ1 3.3512e-3≈ 
(1.28e-2)  

4.2524e-1+ 
(3.50e-1)  

1.5097e-2≈ 
(5.44e-2)  

8.5317e-3+ 
(3.06e-2) 

6.3437e-3+ 
(1.96e-2) 

0.0000e+0 
(0.00e+0) 

DTLZ2 5.6197e-1+ 
(1.45e-3)  

5.6176e-1+ 
(2.22e-3)  

5.5642e-1+ 
(2.33e-3)  

5.5625e-1+ 
(2.29e-3) 

5.5991e-1+ 
(1.34e-3) 

3.9933e-1 
(1.82e-2) 

DTLZ3 0.0000e+0≈ 
(0.00e+0)  

0.0000e+0≈ 
(0.00e+0)  

0.0000e+0≈ 
(0.00e+0)  

0.0000e+0≈ 
(0.00e+0) 

0.0000e+0≈ 
(0.00e+0) 

0.0000e+0 
(0.00e+0) 

DTLZ4 5.4659e-1+ 
(5.49e-2)  

4.0946e-1≈ 
(1.37e-1)  

5.5842e-1+ 
(2.32e-3)  

5.5316e-1+ 
(3.27e-3) 

5.4574e-1+ 
(5.41e-2) 

3.8637e-1 
(3.76e-2) 

DTLZ5 1.9646e-1+ 
(7.70e-4)  

1.8770e-1- 
(1.93e-3)  

1.9751e-1+ 
(5.88e-4)  

1.8595e-1- 
(1.47e-3) 

1.9803e-1+ 
(4.79e-4) 

1.9343e-1 
(2.04e-3) 

DTLZ6 1.8312e-1- 
(9.26e-3)  

1.6005e-1- 
(5.77e-2)  

1.7772e-1- 
(1.55e-2)  

9.8452e-2- 
(5.37e-2) 

1.8418e-1- 
(9.04e-3) 

1.9827e-1 
(7.60e-4) 

DTLZ7 2.1469e-1+ 
(1.16e-2)  

2.2775e-1+ 
(1.13e-2)  

2.1571e-1+ 
(1.12e-2)  

1.9571e-1+ 
(1.22e-2) 

2.2557e-1+ 
(1.12e-2) 

1.0280e-1 
(2.29e-2) 

UF1 5.0877e-1≈ 
(3.80e-2)  

4.1510e-1- 
(4.49e-2)  

5.4354e-1+ 
(3.41e-2)  

5.0749e-1≈ 
(3.22e-2) 

5.4417e-1+ 
(2.34e-2) 

5.0140e-1 
(2.34e-2) 

UF2 6.1511e-1- 
(5.12e-3)  

5.6447e-1- 
(2.51e-2)  

6.2684e-1- 
(5.97e-3)  

6.2648e-1- 
(1.09e-2) 

6.2559e-1- 
(6.00e-3) 

6.3620e-1 
(4.11e-3) 

UF3 1.8484e-1- 
(8.11e-3)  

2.9905e-1- 
(3.59e-2)  

1.9296e-1- 
(1.01e-2)  

2.2237e-1- 
(1.54e-2) 

1.9665e-1- 
(1.02e-2) 

3.2391e-1 
(1.96e-2) 

UF4 3.1399e-1- 
(3.36e-3)  

2.8478e-1- 
(5.58e-3)  

3.2394e-1- 
(4.70e-3)  

3.2451e-1- 
(2.65e-3) 

3.2108e-1- 
(3.76e-3) 

3.5712e-1 
(8.97e-3) 

UF5 0.0000e+0≈ 
(0.00e+0)  

0.0000e+0≈ 
(0.00e+0)  

7.6429e-4≈ 
(3.46e-3)  

1.5758e-3≈ 
(6.02e-3) 

7.1833e-3+ 
(2.14e-2) 

0.0000e+0 
(0.00e+0) 

UF6 1.2068e-2≈ 
(1.48e-2)  

7.8446e-2+ 
(7.11e-2)  

3.0343e-2+ 
(2.15e-2)  

1.0186e-2≈ 
(1.61e-2) 

2.9364e-2+ 
(2.28e-2) 

6.1517e-3 
(9.61e-3) 

UF7 3.2904e-1- 
(7.88e-2)  

2.4808e-1- 
(7.27e-2)  

3.6112e-1- 
(7.10e-2)  

3.5550e-1- 
(5.37e-2) 

3.7978e-1- 
(7.92e-2) 

4.2467e-1 
(1.43e-2) 

UF8 2.1302e-1- 
(4.47e-2)  

1.5648e-1- 
(5.02e-2)  

2.5428e-1- 
(4.27e-2)  

1.8835e-1- 
(2.88e-2) 

2.6155e-1- 
(3.42e-2) 

3.3260e-1 
(2.37e-2) 

UF9 2.5073e-1- 
(4.13e-2)  

2.6915e-1- 
(4.41e-2)  

2.6735e-1- 
(4.05e-2)  

2.6781e-1- 
(5.23e-2) 

2.8537e-1- 
(4.42e-2) 

6.2740e-1 
(1.61e-2) 

UF10 0.0000e+0- 
(0.00e+0)  

3.0154e-2- 
(2.78e-2)  

0.0000e+0- 
(0.00e+0)  

0.0000e+0- 
(0.00e+0) 

0.0000e+0- 
(0.00e+0) 

2.2771e-1 
(6.40e-2) 

+ / - / ≈ 4/13/5 4/14/4 6/13/3 4/14/4 8/13/1 - 
Best/all 1/22 3/22 1/22 0/22 3/22 13/22 
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(p)                     (q)                     (r) 

 
(s)                     (t)                     (u) 

 
(v) 

Figure 8. Box statistical plots of IGD on the 22 test functions. 

 
    (a)                    (b)                     (c) 

Figure 9. IGD convergence trajectories of IMOPSOCE and five MOEAs on ZDT3, ZDT4 and UF2. 
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(a)                    (b)                    (c) 

 

(d)                    (e)                    (f) 

Figure 10. Approximate Pareto front of IMOPSOCE and MOEAs on the bi-objective test 
function ZDT1. (a) NSGAIII, (b) MOEAD, (c) MOEAIGDNS, (d) SPEAR, (e) VaEA 
and (f) IMOPSOCE. 

 
(a)                    (b)                    (c) 

 
(d)                    (e)                    (f) 

Figure 11. Approximate Pareto front of IMOPSOCE and MOEAs on the bi-objective test 
function ZDT2. (a) NSGAIII, (b) MOEAD, (c) MOEAIGDNS, (d) SPEAR, (e) VaEA 
and (f) IMOPSOCE. 
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4.4.3. Comparisons using non-parametric test 

In order to obtain more comprehensive comparative statistics and determine whether the 
obtained results are correct, we conducted a Friedman rank test [43,44] on the experimental results to 
compare the performance of various algorithms.  

Table 7. Friedman rank test results of IGD values for all comparison algorithms and IMOPSOCE. 

Algorithm ZDT:ZDT1-4,6 DTLZ:DTLZ1-7 UF:UF1-10 Total 

 
Friedman 
test 

Rank 
Friedman 
test 

Rank 
Friedman 
test 

Rank 
Friedman 
test 

Rank 

MOPSO 9.80 11 9.29 11 9.40  11 9.45 11 
dMOPSO 3.60 2 7.07 7 7.90 8 6.66 8 
NMPSO 4.40 3 4.86 5 4.90  5 4.77 4 
SMPSO 5.00 4 7.57 9 8.30  9 7.32 9 
MPSOD 8.00 10 8.57 10 9.00  10 8.64 10 
NSGAIII 7.40 8 4.43 4 5.85  6 5.75 6 
MOEAD 7.40 8 4.36 3 6.90  7 6.20 7 
MOEAIGDNS 5.80 5 3.86  2 4.05  4 4.39 3 
SPEAR 7.20 7 5.43 6 3.80  3 5.09 5 
VaEA 5.80  5 3.14 1 3.40 2 3.86 1 
IMOPSOCE 1.60 1 7.43 8 2.50 1 3.86 1 

Table 8. Friedman rank test results of HV values for all comparison algorithms and IMOPSOCE. 

Algorithm ZDT:ZDT1-4,6 DTLZ:DTLZ1-7 UF:UF1-10 Total 

 
Friedman 
test 

Rank 
Friedman 
test 

Rank 
Friedman 
test 

Rank 
Friedman 
test 

Rank 

MOPSO 9.40 11 8.79 11 9.20  11 9.11 11 
dMOPSO 2.80 2 6.00 7 7.00 8 5.73 5 
NMPSO 3.60 3 3.36 1 3.65  2 3.55 1 
SMPSO 5.00 4 5.71 6 8.50  9 6.82 9 
MPSOD 7.20 7 8.64 10 8.90  10 8.43 10 
NSGAIII 8.00 9 5.14 4 6.55  7 6.43 8 
MOEAD 6.00 5 5.14 4 6.45  6 5.93 6 
MOEAIGDNS 7.00 6 4.57  2 4.30  4 5.00 4 
SPEAR 8.20 10 6.43 8 4.90  5 6.14 7 
VaEA 7.20 7 4.71 3 3.70 3 4.82 3 
IMOPSOCE 1.60 1 7.50 9 2.85 1 4.05 2 

Table 7 presents the Friedman rank test rankings of the IGD values for all algorithms on the 
ZDT, DTLZ, and UF benchmark suites, with the highest ranking shown in bold. As shown in Table 7, 
IMOPSOCE ranks first on both the ZDT and UF benchmark suites. The total highest ranking is 
obtained by IMOPSOCE and VaEA, which are, in turn, MOEAIGDNS, NMPSO, SPEAR, NSGAIII, 
MOEAD, dMOPSO, SMPSO, MPSOD, and MOPSO. Table 8 presents the Friedman rank test 



14894 

Mathematical Biosciences and Engineering  Volume 20, Issue 8, 14866-14898.   

rankings of the HV values for all algorithms on the ZDT, DTLZ, and UF benchmark suites. Similar 
to Table 7, IMOPSOCE achieves the first ranking on the ZDT and UF benchmark suites. 
IMOPSOCE is ranked second in the total ranking, with only a slight gap between it and NMPSO, 
which is ranked first. Combining Tables 7 and 8, it can be seen that the IMOPSOCE proposed in this 
paper can obtain the best ranking on the ZDT and UF benchmark suites for both IGD and HV. The 
experimental results show that IMOPSOCE provides better overall performance compared to other 
comparison algorithms and has obvious advantages. 

5. Conclusions 

In this paper, IMOPSOCE, a novel MOPSO algorithm with a comprehensive indicator and 
layered particle swarm optimizer, has been proposed for solving MOPs. First, the CM indicator, 
which is based on inflection point distance and distribution coefficient, is used to measure the 
performance of non-dominated solutions in the external archive. Superior-performing non-dominated 
solutions are retained, while inferior-performing solutions are eliminated. Second, to balance the 
capacities for exploitation and exploration of particles, the random inertia weight strategy is used. 
Finally, the particles in the population are divided into two layers according to the levels after 
updating, and different flight modes are offered for the particles in different levels in order to 
improve the efficiency of the algorithm in solving problems and the optimization capability. 
Twenty-two test functions are used to validate the proposed IMOPSOCE. The results of the 
experiment demonstrate that, compared to five other MOPSOs and MOEAs, IMOPSOCE is better 
able to maintain the diversity of Pareto optimal solutions and make the Pareto optimal solutions 
converge to the true Pareto front. 

Some questions can be further studied in future work. First, in order to better balance 
exploration and exploitation capabilities, it would be interesting to design a better hierarchical 
structure. Second, employing learning strategies is highly efficient for improving MOPSO 
performance. To get better solutions, various learning strategies might be taken into account. Finally, 
we can optimize the suggested algorithm and attempt to utilize it to address specific issues in the real 
world. This is a brand-new subject that merits more research. 
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