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Abstract: At present, ship detectors have many problems, such as too many hyperparameter, poor 
recognition accuracy and imprecise regression boundary. In this article, we designed a large kernel 
convolutional YOLO (Lk-YOLO) detection model based on Anchor free for one-stage ship detection. 
First, we discuss the introduction of large size convolution kernel in the residual module of the 
backbone network, so that the backbone network has a stronger feature extraction capability. Second, 
in order to solve the problem of conflict regression and classification fusion under the coupling of 
detection heads, we split the detection head into two branches, so that the detection head has better 
representation ability for different branches of the task and improves the accuracy of the model in 
regression tasks. Finally, in order to solve the problem of complex and computationally intensive 
anchor hyperparameter design of ship data sets, we use anchor free algorithm to predict ships. 
Moreover, the model adopts an improved sampling matching strategy for both positive and negative 
samples to expand the number of positive samples in GT (Ground Truth) while achieving high-quality 
sample data and reducing the imbalance between positive and negative samples caused by anchor. We 
used NVIDIA 1080Ti GPU as the experimental environment, and the results showed that the mAP@50 
Reaching 97.7%, mAP@.5:.95 achieved 78.4%, achieving the best accuracy among all models. 
Therefore, the proposed method does not need to design the parameters of the anchor, and achieves 
better detection efficiency and robustness without hyperparameter input. 

Keywords: Anchor-free; label assignment algorithm; positive and negative sample assignment; large 
size convolution kernel; multi-task feature conflict 
 

1. Introduction 

With the increase of international trade, maritime transportation has gradually developed into the 
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main transportation mode. Moreover, ships, as the only way of maritime transportation, have caused 
many problems. For example, port management, illegal ship smuggling, illegal fishing by ships, etc. 
In some narrow docks or waterways, in the process of dense navigation vessels, if the crew has 
improper operation, the vessels may block the waterway and block the sea traffic. Recently, there were 
ships blocking the Suez Canal, causing more than 400 ships to be blocked and stranded, resulting in 
hundreds of millions of dollars of economic losses. At the mouth of the coast, due to stretches, there 
are often vessels illegally bypassing supervision, such as fishing vessels fishing at sea during the closed 
season, vessel smuggling, illegal entry into the sea and so on. Therefore, the research of ship 
identification for ocean surveillance has important application value. The identification for coastline or 
marine surveillance can ensure an early warning effect on danger or behavior, and facilitate managers to 
deal with abnormal behavior and emergencies in a timely manner and complete decisions quickly. 

Most of the previous studies on ship detection are divided into three categories: based on SAR 
images, remotely sensed images and visible light images. Additionally, most of the researchers have 
studied SAR images [1–4] and remote sensing images [5–7] taken by using satellites. However, the 
images do not satisfy our need for real-time feedback. Therefore, in this paper, we choose to use 
visible images [8,9] as the basis of research to achieve ship identification using knowledge related 
to object detection. 

Nowadays, ship recognition has changed from traditional image algorithms, such as histogram of 
oriented gradient (HOG) detector [10], deformable parts model (DPM) [11] to methods in the field of 
object detection in computer vision [12], that is, convolutional neural network (CNN) is used to build 
a depth learning model to detect objects. Since 2012 [13], the convolutional neural network has 
replaced the invention of artificial feature construction. For example, VGG [14] builds the stack of 
multi-layer convolutions to achieve several times the performance of the artificial feature detector. 

In recent years, the field of object detection is still developing rapidly, and a large number of 
object detectors with high performance have emerged. Object detection networks are also divided into 
two categories: one is the two-stage object detection network led by R-CNN [15] and the other is the 
one-stage object detection network represented by SSD [16] and YOLO [17]. In 2014, the birth of R-
CNN officially made CNN the first choice for image classification and the first two-stage object 
detection algorithm. In 2015, Girshick raised the problem that Fast R-CNN [18] is cumbersome and 
complex to improve the network, and the training cost is high. Based on this, the Faster R-CNN [19], 
designed by Ren in 2016, proposed to first generate regional candidate frames and then identify and 
classify from different candidate frames, which became the mainstream detection method for two-
stage detection networks. 

The best known of the one-stage detectors is the YOLO (you only look once) proposed by J. 
Redmon et al. It also includes the SSD detection model proposed by W. Liu et al. and RetinaNet [20] 
designed by Lin et al. for solving the problem of positive and negative sample imbalance in single-
stage networks. Lin et al. proposed the Feature Pyramid (FPN) [21] structure to extract feature 
information at different scales. Subsequently, researchers designed different pyramidal structures, 
including PaNet [22], NAS-FPN [23] and Bi-FPN [24] in order to better fuse feature information of 
different sizes. 

In addition, researchers have also worked on backbone networks, proposing not only the residual 
structures ResNet [25] and ResNXet [26] that can correlate pre- and post-textual information, but also 
some Anchor-free single-stage Dense Box [27], CornerNet [28] CenterNet [29], etc. that do not use 
anchor boxes detectors. In recent years, Anchor-free detectors have received increasing attention. 
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Compared to Anchor-base, the Anchor-free network does not require hyperparameters about the anchor, 
and there are fewer parameters and computational costs. It is the basis for implementing end-to-end 
recognition algorithms. Today, in ship detection, people still use Faster R-CNN, SSD, YOLOv2 [30], 
YOLOv3 [31] and other networks that use anchor for regression, and there are no applications of 
Anchor-free networks yet. However, ship data generally present the problems of uneven data distribution, 
unreasonable Anchor size setting leading to poor overall recognition accuracy and poor network real-
time performance, and the advantages of Anchor-free network can precisely solve these problems. 

Therefore, this paper combines the research background and characteristics of ship detection, and 
proposes a deep network model for ship object recognition and classification improvement under video 
surveillance data, and uses data augmentation techniques to expand data samples and enhance the 
feature extraction of the network structure, in view of the problems of excessive hyperparameters, 
sparse data samples and insufficient performance of the detection network in ship object detection. 
The work as well as the innovation points of this paper are as follows: 
1) Based on the design idea of YOLO and Transformer architecture, we propose LK-YOLO. On the 
basis of YOLOv5, large kernel convolution is introduced into the backbone residual block, backbone 
with stronger feature extraction ability and optimized neck network structure details are designed. 
2) We replace the original coupled detection head, which is common in one-stage networks, with a 
modified uncoupled detection head, so that the detection head has a stronger feature representation 
capability and solves the problem of task conflict under shared weights of classification and regression. 
3) To solve the negative optimization problem of anchor clustering for ship dataset, we use anchor-
free detection instead of the traditional method of anchor clustering using k-means algorithm to 
achieve hyperparameter-free input to the detector. Using the idea of central prior and dynamic sample 
screening, the sampling strategy for positive and negative samples under the ship dataset is optimized 
to enable better training of the model and also to achieve better performance. 

2. Related work 

In recent years, the fire of attention mechanisms has not only given birth to attention mechanism 
modules, such as SENet [32] and CBAM [33], but also to the design of large-scale complex networks 
that use attention mechanisms entirely, such as Transformers [34]. In the beginning, Transformers were 
first applied to the field of natural language processing. This was followed by Vision Transformers 
(ViT) [35] uses entirely attention modules, without convolution, to achieve object recognition. Due to 
the superiority of the architecture, Vit was better able to draw on more complex models and large-scale 
datasets, and ViT got better detection results in the field of recognition. 

In ship detection, CNN networks in deep learning have been used for ship detection. Zhenfeng 
Shao published SeaShips [36], the first ship dataset captured using surveillance, in 2018, which 
includes a total of 7000 images from the open-source part of passing ships on Hengqin Island, Zhuhai, 
China. However, there are not many areas where surveillance video is used for ship recognition, and 
implementing ship recognition under surveillance has very significant challenges due to camera 
performance and viewing angles, complex environments and changing weather. Shao used YOLOv2 
as a framework [37] and combined saliency detection to design a ship recognition network, using the 
Canny operator to detect image edges and then perform the Hough transform to get all line segments 
before filtering out coastlines, segmenting sea and land to reduce the number of parameters for network 
operations. However, in fact, such an approach is not particularly enhanced for deep learning-based 
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object detection, and the graph will be resized into a fixed-size image once. Li [38] proposed an 
improved YOLOv3 Tiny, which redefined the anchor frame, fine-tuned the network structure and 
introduced the attention mechanism module CBAM. Han proposed ShipYolo [39] to embed CBAM 
into the YOLOv4 backbone residual structure and proposed DSPP structure to amplify the sensory 
field. Jun-Hwa Kim [40] proposed YOLOv5 and Online Copy& Paste and Mix-up methods to solve 
the ship category imbalance problem. Chen [41] addresses the problem of low ship detection accuracy 
for small targets and proposes a ship detection algorithm process using improved GAN networks to 
generate image samples combined with YOLOv2 to achieve improved detection performance of the 
detector for small and medium-sized targets of ships. Although the application of deep learning models 
in ship detection brings great performance gains, mainstream ship detection relies on Anchor-based 
detectors. The detectors need to first cluster the ship samples using clustering algorithms, such as K-
means, to generate anchor frame size parameters, which are input to the model as hyperparameters. The 
optimization of anchor frame size parameters has been a common problem in ship detection, so we 
propose to design anchor-free detection algorithms to avoid the design of anchor size hyperparameters. 

Anchor-free object detectors are also becoming mainstream in the research of general-purpose 2D 
object detection. Tian proposed FCOS [42], which implements an anchor-free detector composed 
entirely of convolutions. The model uses regression of centroids to predict targets, and achieves multi-
scale object detection by dividing the size range of objects into different feature layers. The article also 
explores the differences between the regression approaches on Anchor-free and Anchor-basesd and the 
degradation of the detector performance due to the reduction of the number of positive samples after 
the elimination of anchor. Zhang [43] studied FCOS and ReinaNet and found that the essential 
difference between Anchor-base and Anchor-free lies in the different ways of label assign, and 
proposed the ATSS approach to balance positive and negative samples. Ge proposed Optimal transport 
assignment [44] for global assignment of positive samples for target recognition, allowing the detector 
to learn the most effective sample features more fully. In summary, for anchorless frame detection 
algorithms, we do not only design the detection process of the detector without anchor, but also need 
to design more efficient label assignment algorithms to compensate for the performance loss of sample 
reduction from not using anchor. 

The ship dataset has a complex background, high target overlap rate and many duplicate data 
under the problem, we need to make improvements to the object detection model for the ship dataset. 
We needed to redesign the model to obtain a backbone network with better feature extraction capability. 
We also decouple the detection head for different tasks, allowing the regression and classification tasks 
to be separated. Finally, the use of anchor-free is proposed instead of input parameters to achieve no 
output hyperparameters. Also, the positive sample sampling algorithm is optimised to allow the model 
to be better trained for convergence. 

3. Materials and methods 

3.1. Backbone 

In terms of network architecture, we have analysed the dominant one-stage object detection 
network YOLO, as well as ViT, which has recently excelled in the field of object detection. We have 
redesigned the network architecture and optimised the parameter details of each layer of the residual 
structure. The network structure of Large kernel convolution YOLO is shown in Figure 1. 
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Backbone uses a combination of CSPDarkNet-53 and a multi-layer residual structure for feature 
extraction of the input data. The FPN structure was chosen to have semantic feature-rich layers C3, C4 
and C5, where the C5 feature layer was then subjected to pooling operations by SPPF. The FPN is top-
down and retains the semantic features of the upper layers well, but the positioning information is 
blurred in the transfer process, so the bottom-up design of PANet is used to make the position 
information of the bottom layer fused to the upper layer, and the fusion of the two structures is well 
done to complement the information and make the positioning of the model more accurate. Finally, the 
prediction results are output from three dimensions. 

In this paper, the design of Backbone is improved in two main directions: the design of the structural 
proportions of the residual blocks on the architecture and the detailed design of the residual blocks. 

On the one hand, YOLO networks are designed with different proportions of residual structures 
on different feature layers. In YOLOv3 or YOLOv4, the ratio of residual blocks is [1,2,8,8,4], i.e., the 
ratio of feature layers is 1:4:4:2. The contribution of different depth network features in the detector to 
the model performance is different. In the FPN structure, the C3 feature layer is able to effectively extract 
object detectors under different sizes, so multiple residual modules are set up in C3 to ensure that the 
layer has excellent extraction capability. We finally chose a ratio of 1:3:3:1 to set the ratio of residual 
blocks in the backbone to ensure that the network has good feature extraction capability at C3 size. 
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Figure 1. Large kernel convolution YOLO network. 

On the other hand, from YOLOv3 to YOLOv5, the residual blocks of the backbone network went 
from DarkNet-53 to CSPDarkNet-53. The structure of each residual block was continuously deepened. 
Therefore, we modified the Res unit in the BottleneckCSP by introducing a large convolution module 
to replace the core Bottleneck module and implementing fine tuning on top of this module. 

The network modifies the residual unit in BottleneckCSP by using the structure of a large 7 × 7 
convolution kernel combined with Depth-wise convolution instead of the original 3 × 3 convolution, 
and fine-tunes the structure by changing the position of the convolution on top of the core of the module. 
The depth-wise convolution is used as a large kernel convolution to reduce the computational effort of 
the model since the large size of the convolution kernel inevitably leads to an increase in the number 
of convolutional computational parameters. The number of convolution kernels needs to be equal to 
the number of channels of the input, and the number of channels of the output is also constant and 
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equal to the number of channels of the input. This can effectively reduce the computation of multi-
layer convolution by adjusting the size of the feature map without changing the number of channels 
when the structure is a large convolution kernel structure. 

In Figure 2, we use a large kernel instead of the traditional 3 × 3 convolution kernel, and use an 
inverted triangular arrangement. In the past, the large kernel convolution structure was equated to 
multiple 3 × 3 convolution kernels due to its high computational effort and low performance. Depth-
wise convolution is a good way to reduce the computation of convolution parameters, allowing the 
network to obtain a larger convolution depth with the same number of parameters, thus improving the 
network performance. 

Due to the shortcomings of BatchNorm in min batch size, we use LayerNorm instead of BN to 
normalize the samples and reduce the use of regularization. LayerNorm stabilizes the data distribution 
by normalizing the dimension of Hidden size. Finally, the 1 × 1 convolution has the special property 
of dimensional adjustment, so we reduce the BN once after the 1 × 1 convolution to reduce the 
computational parameters. 

1×1

3×3

1×1

BN,SilU

BN,SilU

BN

SilU

d7×7

3×3

1×1

LN

SiLU

(a)Bottleneck (b)  Large Kernel Block
 

Figure 2. Residual unit structure. 

3.2. Decoupled head 

In object detection, the primary solution is object classification and regression. The classification 
task has to address the ability of the target to be correctly identified at different angles at different 
positions, and therefore needs to ensure translation and scale invariance. The regression task needs to 
ensure that the target position and shape are mapped onto the features, i.e., it requires translation and 
scale equivalence. Therefore, different tasks have different requirements for different features, with 
the classification task focusing on the main part of the target and the position regression task being 
more sensitive to the whole target and boundary issues. It is a challenge for the detection model to 
better integrate these two tasks and output the best results. 
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Two-stage networks solve the problem by reducing shared weights and differentiating predictions 
between classification and regression using different structures. However, there are few such solutions 
in one-stage networks. The detection head of a one-stage object detection network is usually designed 
as a simple convolution for the purpose of parameter reduction and simplicity. In YOLOv3 to YOLOv5, 
the feature maps output from multiple feature layers connect a structure with a combination of 1 × 1 
and 3 × 3 to form the detection head of the network, generating a multidimensional tensor 
𝐻 ൈ 𝑊 ൈ 𝑎𝑛𝑐ℎ𝑜𝑟 ൈ ሺ𝐶𝑙𝑠 ൅ 𝑅𝑒𝑔 ൅ 𝑂𝑏𝑗ሻ containing regression information and classification, where 
anchor is the number of anchor boxes for each anchor pre-defined value in the detection network, Cls 
is the data the total number of sample categories, Reg is the 4 coordinate values of the point regression 
and Obj is the confidence level of each prediction frame. This approach has continued to be the 
dominant method for the first stage network. 

The proposed decoupled detection head in this paper is shown in Figure 3. The detection head 
connects the three-layer feature output after the fusion of FPN and PANet, and each layer of features is 
first subjected to 3 × 3 ordinary convolution before accessing the parallel structure, undergoing 3 × 3 
DConv convolution and finally adjusting the number of channels through one 1 × 1 convolution to 
output the result of branching. The detection head takes a similar structure to the YOLO head, with a 
transition from large convolution to small convolution. Here, the detection head needs another 
convolution on a different branch, so that the result of the extracted features better fits the task of that 
branch. We still choose Depth-wise Conv to simplify the parameters of the detection head and finish 
the output with a 1 × 1 convolution. 

Cls.

Reg.

IoU.

H×W×C

H×W×4

H×W×1

Feature

1×1 conv

3×3 conv

3×3 Dconv

 

Figure 3. Decoupled head. 

In addition, we include the Intersection of Union (IoU) branch to represent the regression 
confidence, which can be seen as the size of the IoU of the predicted output box versus the true box. 
In this paper, we choose to parallelize this branch with the regression branch, so that the two tasks 
share the weights to obtain the regression confidence Conf_IoU. Also, since there is a range of 
confidence, i.e., Conf_IoU ∈ [0,1], the Sigmod activation function is plugged in after the output so 
that the output must be within the range. There are two reasons for this: first, the regression task and 
the IoU prediction values are somewhat correlated and there is feasibility and interpretability; second, 
the parameter calculation can be effectively reduced at the same level of branching, and the three-
branch design is too redundant to avoid excessive computational cost wastage. At the same time, the 
parameter Conf_IoU has several practical meanings: first, it represents the judgment whether the target 
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box is foreground or background, i.e., the probability size of the box containing the target. Second, the 
size of the IoU of the predicted output box versus the real box when a target is present in the current 
box. This parameter can also be used as an evaluation parameter for the NMS to filter the boxes during 
network inference. 

3.3. Anchor-free 

Most of the algorithms in the field of ship detection have been migrated from anchor-base in 
Object detection. Anchor-base models are further trained and predicted based on the set of anchors, 
which are usually obtained by clustering the targets in the dataset using K-means or an improved K-
means algorithm. However, there is a difference in the datasets to which the two apply. In the field of 
object detection, studies usually use the COCO dataset or the VOC dataset. As shown in Figure 4(a), 
the objects clustered in these datasets are filtered to obtain a uniform distribution of the number of 
anchors of three sizes, large, small and with a variety of aspect ratios. In the case of the ship data, most 
of the clustered anchors are shown in Figure 4(b). Anchor mainly appears as the shape feature of the 
ship, with long lengths and not high widths. Unlike the COCO dataset, there is also inconsistency in 
the sample data for the different scales of the ship dataset, with a smaller number of smaller ships. 
Anchor frames predicted on this basis can have mismatched sizes or similar sized objects being split 
into different scale layers for prediction. Therefore, for the ship dataset, resetting the parameters of the 
anchor would exist for the model to perform a negative optimisation calculation. 

 

 

(a) COCO anchor (b) SeaShips anchor 

Figure 4. Anchor boxes clustering results under different datasets. 

At the same time, the model generates very dense prediction results on the images in order to 
achieve higher recall and accuracy. The huge number of anchor frames causes the network to compute 
very large amounts of anchor frames as well, because each prediction frame has to match the IoU 
between GT computation to select the positive and negative samples of the network. When the FPN 
structure is introduced into the network, the design of the feature layer allows the parameters to grow 
multifold. For example, under the COCO dataset, the target has 80 categories and assuming 3 anchor 
frames are preset at each centroid, with an input image of 416 × 416, for example, based on the number 
of each anchor frame, the center offsets x, y, w, h, confidence level and the number of categories, it is 
obtained from Eq (1) that 904,995 predictions need to be computed. Therefore, when YOLO becomes 



15026 

Mathematical Biosciences and Engineering  Volume 20, Issue 8, 15018–15043. 

Anchor-free algorithm, the number of anchor frames is assumed to be N. Then, the number of 
parameters becomes 1/N of the previous one, and only 301,665 results are needed. 

The generic formula for the number of parameters predicted under the Anchor-base model with a 
minimum feature map of SൈS is: 

 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 ൌ 𝑁 ൈ ሺ𝑆 ൈ 𝑆 ൅ 2 ൈ 𝑆 ൈ 2 ൈ 𝑆 ൅ 4 ൈ 𝑆 ൈ 4 ൈ 𝑆ሻ ൈ 𝑁𝑢𝑚𝑠௖௟௔௦௦       (1) 

And the number of predicted resultant covariates under the Anchor-free is: 

 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 ൌ ሺ𝑆 ∗ 𝑆 ൅ 2 ∗ 𝑆 ∗ 2 ∗ 𝑆 ൅ 4 ∗ 𝑆 ∗ 4 ∗ 𝑆ሻ ∗ 𝑁𝑢𝑚𝑠௖௟௔௦௦           (2) 

When the anchor free network outputs the feature map from the detection head, it will traverse 
every pixel on the feature map and perform predictive decoding. According to the definition of feature 
maps, the pixels on the feature map after multi-layer convolution can be equivalent to a grid area 
divided on the size of the original image. The traversed pixels can be seen as generating a central 
anchor point on the grid, with each anchor point corresponding to a pixel on the feature map. Traverse 
each anchor point for decoding and prediction, that is, generate a prediction box at the central point in 
each region. 

Due to the model abandoning the use of Anchor Boxes, each anchor point no longer generates 
multi-scale prediction boxes, but only generates a prediction target matching GT. And the feature 
points shift from the original prediction anchor box to the GT offset, transforming into generating 
prediction boxes directly calculating deviations from the four coordinate points of GT. The method of 
predicting regression changes from calculating the four offset values between the generated anchor 
box and the real box to directly predicting the biaxial offset of the center point and the width and height 
of the target, namely Top, Bottom, Left and Right. Finally, the result of the prediction box is decoded 
and mapped to the position of the original image size by multiplying the sampling step size of the 
current feature map. 

Taking Figure 5 as an example, the red point in the GT center of the ship falls in the green area to 
predict the offset value of ltbr (left, top, bottom, right). By adding the offset values in four directions to 
the center coordinates (x, y) of the area, four coordinate points of the prediction box are obtained to 
generate a blue prediction box. 

l r

b

t

 

Figure 5. Network regression method. 
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Among the current mainstream object detection networks, the YOLO series and other object 
detection networks are based on the regression of anchors to achieve the object calibration. Take the 
YOLO as an example, the network will first divide the images into different grids (gird cells), and each 
gird cell is assigned multiple sizes of anchors to expand the positive samples, using the anchors to 
constrain the regression task, each regression its only responsible for one or more objects near the 
corresponding gird cell. The IoU of the anchor and the GT (Ground Truth) are derived one at a time using 
the anchor, and the anchor with the largest IoU is responsible for predicting that GT. 

When the network model discards the anchor, the positive and negative sample screening strategy 
becomes a bottleneck in network performance. Each gird will only generate a single prediction sample 
when it loses its multi-size anchor. Therefore, we need to redesign the allocation of positive samples in 
a way that counteracts the impact of this problem. This can be broadly divided into three parts: positive 
and negative sample definition, positive and negative sample sampling and balancing loss. in the Anchor-
free algorithm, we not only used the strategy of range filtering positive samples as above, but also 
designed a dynamic label selection algorithm. 

The anchor-free strategy devised in this paper, again divides the image equally into different grids, 
generating a centroid at each grid. At the same time, the feature points at each location are mapped to the 
original image, and the number of targets predicted by each gird cell is changed from the number of 
anchor boxes to one object and directly predicted: the two-axis offset of the centroid, the width and height 
of the target and the IoU size with respect to the GT. Finally, as in Figure 6, the positive and negative 
samples are determined based on whether the centroid of the GT falls on the feature point to the centre 
of the GT. 

We extend the range of positive samples so that GT and the two adjacent frames are positive sample 
areas. In other words, prediction frames whose centroids fall within the positive sample area are set as 
positive samples. Positive samples are also predefined in a scale range so that different size FPN layers 
are responsible for matching scale size samples. 

 

Figure 6. Positive sample screening region. 
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After that, we need to filter each positive sample again. The model no longer ranks anchor boxes 
by a single choice of calculating classification scores or positioning scores. The bounding boxes were 
sorted according to the classification confidence, and the box with the highest classification score was 
selected each time, causing a large proportion of the bounding boxes with accurate localization to be 
incorrectly suppressed. This is caused by the mismatch between classification confidence and 
localization accuracy. Therefore, we propose a new calculation Eq (3) that uses the weighted scores of 
classification and regression to measure the combined quality of the prediction result, and combine the 
two tasks to design a new evaluation index. 

   𝑡 ൌ 𝑠ఈ ൈ 𝑢ఉ               (3) 

where s and u represent the classification score and the IoU confidence level, respectively, and α and 
β represent the weight coefficients of the two tasks to control the impressions of both tasks on the 
measures. When the sample has bias in one of the tasks, it is beneficial to control the task alignment 
and better assess the quality of the sample. 

When a large number of prediction boxes appear for a target of the image, we filter the prediction 
boxes whose IoU between the prediction object and the GT is less than 0.3, consider the remaining 
boxes as higher quality predictions and sort all the remaining prediction boxes by IoU value from 
largest to smallest. The top 15 IoU are then summed and rounded, and the result is set to k. At the same 
time, the loss of each frame with GT is calculated, and the k prediction frames with the highest scores 
are selected using the weighted summed Score as the basis for selection. Since there may be the same 
prediction frame with both GTs having high IoU values. Faced with such ambiguous samples, we 
assign the edge frame to the highest scoring GT, while the other target is then re-screened from the 
corresponding candidate frames. 

3.4. Loss function 

The loss function is an important optimization criterion for model training and an important 
metric for model evaluation. The loss function of our proposed model consists of the three elements: 
regression loss, classification loss and IoU confidence loss. Regression loss predicts the centroid and 
the offset result of width and height, classification loss outputs the probability of each object category, 
and IoU branch outputs the ratio of the predicted frame to the real frame IoU. 

In the regression, we use CIoU Loss as the regression loss. CIoU is to add the loss of detection 
frame scale to DIoU, adding the loss of length and width. solves the problem that DIoU loss cannot 
distinguish which region is more similar to GT when multiple centroids overlap. three items of CIoU 
correspond exactly to IOU, centroid distance, aspect ratio of are calculated so that the prediction frame 
will be more consistent with the GT. 

   𝐶𝐼𝑜𝑈 ൌ 1 െ 𝐼𝑜𝑈 ൅
஡మሺୠ,ୠ೒೟ሻ

௖మ ൅ 𝛼𝑣                    (4) 

where 𝑏 and b௚௧ denote the centroids of the prediction frame and GT respectively, ρଶሺ𝑥, 𝑦ሻ denotes 
the Euclidean distance between the two points and c denotes the diagonal distance of the smallest 
closed region that can contain both the prediction frame and the true frame. 

    𝛼 ൌ
௩

ሺଵିூ௢௎ሻା௩
                         (5) 
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   𝑣 ൌ
ସ

గ
ሺ𝑎𝑟𝑐𝑡𝑎𝑛

௪೒೟

௛೒೟ െ 𝑎𝑟𝑐𝑡𝑎𝑛
௪

௛
ሻ         (6) 

𝛼 and v are calculated as follows, with the former being the weighting factor (giving higher 
priority to the overlapping area factor in the non-overlapping case), while v measures the similarity of 
the aspect ratio. 

In the above, we mentioned that the IoU confidence level ranges between 0 and 1. The same 
applies to the classification loss output. Therefore, the IoU loss function was chosen to be calculated 
by BCEWithLogitsLoss. In contrast to the commonly used Cross Entropy (CE), dichotomous 
classification is suitable for outputting data between 0 and 1, whereas CE Loss is often used for multi-
classification to output probability values for n channels. BCEWithLogitsLoss also differs from 
BCELoss in that when performing the Loss calculation, the Sigmoid function is first used on the data 
to transform the values to between [0,1] before performing the BCELoss calculation. 

   𝐵𝐶𝐸ௐ௜௧௛௅௢௚௜௧௦ ൌ 𝜎 ሺെሾ𝑦௡ ൉ 𝑙𝑜𝑔ሺ𝑥௡ሻ ൅ ሺ1 െ 𝑦௡ሻ ൉ 𝑙𝑜𝑔ሺ1 െ 𝑥௡ሻሿሻ          (7) 

4. Experimental results and analysis 

The experimental environment is under Ubuntu 18.04, with machine CPU I7-7700x, graphics 
GPU GTX 1080Ti, running memory 16 G, CUDA 10.1 and Cudnn 7.6.5 and Pytorch 1.2.0 was chosen 
as the deep learning framework. In the training process, we need to set the hyperparameters of the 
model, as detailed in Table 1. We set 300 training Epoch in order to ensure that the model learns 
sufficiently from a small sample of ships, and the first 100 cycles were freeze training to train only 
some of the network parameters to shorten the training time. Optimisation was performed using the 
Adma optimiser, with the weight decay value taken to be 5e-4 and the learning rate 1e-3. A fixed step 
decay (StepLR) with a gamma value of 0.95 was used as the learning rate decay strategy. 

Table 1. Hyperparameters setting. 

Hyperparameters Value 
Epoch 300 
Optimizer Adma 
Learning rate 0.001 
Learning rate decay strategy StepLR 
Weight decay 5e-4 
Batch size 8 

4.1. Dataset 

In this paper, the open source Seaships dataset from Wuhan University is used. The dataset 
consists of near-shore ship monitoring images taken from Hengqin Island, Zhuhai, with a total of 7000 
images of 1920 × 1080. As shown in Figure 7, the dataset has six types of ships with different functions, 
including ore carrier, general cargo carrier, bulk cargo carrier, container ship, fishing ship and 
passenger ship. In the dataset, the images have several problems such as a large amount of background 
interference, overlapping ships, general cargo carrier and bulk cargo carrier are very similar, and small 
objects of fishing boats are difficult to recognize in distant images. 
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(a) ore carrier (b) general cargo carrier (c) bulk cargo carrier

(d) container ship (e) fishing ship (f) passenger ship
 

Figure 7. Different classes of ships in the dataset. 

To visualise the nature of the data and understand the distribution, Figure 8(a) plots the 
distribution of the real frame dimensions of the dataset-ship sample using a scatter plot, with the 
horizontal and vertical coordinates representing the length and width of the ground truth of the ship. 
As well as Figure 8(b) visualises the percentage of the number of vessels in the sample using a pie chart. 

 

(a) 
Continued on next page 
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(b) 

Figure 8. (a) Scatter diagram of ship size distribution, (b) Pie chart of different types of ships. 

The experiment divides the dataset into a training set, a test set and a validation set in the ratio 
of 6.5:3:0.5, allowing us to verify the robustness and accuracy of the model. This paper also expands 
the dataset using data augmentation methods such as Mix Up and Mosaic to achieve better results for 
the model, as detailed in Section 4.2. 

4.2. Train trick 

4.2.1. Mix up 

Mix up is an image blending augmentation scheme proposed in 2018, which can effectively 
improve the generalization ability of the model and allow the model to learn each class feature better. 
Mix up is to interpolate two images proportionally to generate mixed samples to expand the number 
of samples in the dataset. Mix up is to interpolate two images proportionally to mix the samples. We 
randomly choose two images within a Batch for mixing, let the samples be (𝑥௜, 𝑦௜) and (𝑥௝, 𝑦௝), after 
which we obtain the new image by weighted linear interpolation: 

   𝑥ො ൌ 𝜆𝑥௜ ൅ ሺ1 െ 𝜆ሻ𝑥௝,                              (8) 

   𝑦ො ൌ 𝜆𝑦௝ ൅ ሺ1 െ 𝜆ሻ𝑦௝,                              (9) 

The formula has any value of λ ∈ [0,1] and obeys the Betaሺ𝛼, 𝛼ሻ distribution, where 𝛼 is the 
hyperparameter and the default 𝛼 ൌ  1. Currently the best training results are obtained when λ is 
taken as 0.5. As in Figure 9, the top left and bottom right corners are λ taken as 0 and 1 respectively, 
i.e., the two original plots. In the middle is the generated image when the value 0.5 is taken, when both 
ships are clearly shown in outline. 
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Figure 9. Generation diagram of lambda taking different values. 

4.2.2. Mosaic 

       

Figure 10. Mosaic composite picture. 

The Mosaic approach to data enhancement was first introduced in YOLOv4. Its approach to data 
enhancement is based on CutMix, which crops the image in parts, fills in the pixels in other areas of 
the training set with the rest of the data, and distributes the classification results in a proportional way. 
Mosaic uses four images stitched together, so that the complex background noise is given to a great 
extent and the data from the four images is computed in the BatchNorm calculation. This can 
effectively increase the complexity of the image context, allowing the model to have more difficult 
samples to participate in the training. The algorithm is implemented as follows: 

1) Randomly select four images from the training set. 
2) Flip, scale and colour map each of the four images. 
3) Combine the images and draw a frame based on their relative positions. 
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In the process of generating images, there is a problem that the real boxes of some classified 
objects are out of bounds, and we need to do some cropping of the generated boxes. The processing of 
the images is consistent with the training data. 

As in Figure 10, the generated images will participate in the training of the model with the 
original images. The model has more samples to learn the category features. Also, the generated 
images are cropped and color shifted so that the model can filter the background information from 
more complex samples. 

4.3. Evaluation index 

In order to fully and accurately evaluate the recognition performance of model ships, this paper 
uses common metrics in the field of object detection to evaluate and compare different model 
algorithms. The average precision (AP) and the precision-recall (PR) curves for different classes of 
ships are plotted. 

Here we briefly give the definitions of precision, recall, AP and PR curves. We set the total 
number of samples annotated to NP. When the overlap area between the IoU calculated by the 
bounding box and the real box exceeds a threshold, these samples are set as positive (TP) and the 
wrong ones are marked as negative (FP), while the samples with wrong detection by the real box are 
set as (FN). Recall indicates the proportion of the correct part of the overall detection result to the 
useful part of the entire dataset, and Precision indicates the proportion of the useful part of the overall 
detection result to the useful part of the entire detection result. 

Recall ൌ
୘୔

୘୔ା୊୒
                                      (10) 

Precision ൌ
୘୔

୘୔ା୊୔
                                    (11) 

Since the Precision and Recall metrics can conflict in special case situations, we can plot a 
Precision-Recall curve based on the Recall and Precision values for each category. For each different 
Recall value, the maximum Precision maximum at the time of these values is selected and the area 
under the PR curve is calculated as the AP value. Mean Average Precision (mAP) represents the 
average AP for all n categories. We use mAP as the model’s accuracy evaluation indicator, where 
mAP@.5:.95 represents the average mAP at different IOU thresholds (from 0.05 to 0.95 and step size 
is 0.05). 

    𝐴𝑃 ൌ ׬ 𝑃ሺ𝑅ሻ𝑑𝑅
ଵ

଴                                      (12) 

    𝑚𝐴𝑃 ൌ
∑ ஺௉೔

೙
೔సభ

௡
                               (13) 

The experiments also relied on Frame Per Second (FPS), Parameters and Floating point 
operations (FLOPs) to evaluate the speed and complexity of the model operations, and the following 
formulas were used to calculate some of these metrics: 

       𝐹𝑃𝑆 ൌ
ଵ

௧
                                     (14) 
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                Parameters ൌ ሺ𝐾௛ ∗ 𝐾௪ ∗ 𝐶௜𝑛ሻ ∗ 𝐶௢௨௧ ൅ 𝐶௢௨௧                (15) 

         𝐹𝐿𝑂𝑃𝑠 ൌ ሾሺ𝐾௛ ∗ 𝐾௪ ∗ 𝐶௜𝑛ሻ ∗ 𝐶௢௨௧ ൅ 𝐶௢௨௧ሿ ∗ ሺ𝐻 ∗ 𝑤ሻ            (16) 

where 𝑡 is the average elapsed time for all images, Equations (15) and (16) are the Parameters and 
FLOPs of the current convolutional layer, and the total Parameters and FLOPs of the network sum to 
the superposition of all network layers. 

4.4. Results and analysis 

We have designed two parts of experiments, namely ablation experiments and multiple model 
comparison experiments, to investigate the impact of the improved modules on the overall algorithm 
and the overall performance metrics of the model. In the first part of the experiments, YOLOv5 is used 
as the benchmark model for multiple ablation experiments, where different modules are decoupled and 
added to the model to compare the performance improvement brought by different modules. In the 
second part of the experiments, in order to verify the overall performance of the model, multiple sets 
of classical object detection algorithms are designed for comparison, such as SSD, RetinaNet, Faster 
RCNN, YOLOv3, FCOS, etc. 

4.4.1. Ablation experiment 

Combining Lk-YOLO with the anchorless frame detection algorithm flow and dynamic label 
assignment algorithm, we can obtain an anchorless frame ship detection model. For different ship 
datasets, there is no need to perform K-means clustering to generate anchor frames and remove the 
NMS to screen the prediction frames to achieve an end-to-end ship detection process.  

As in Table 2, the experimental results obtained by Lk-YOLO on the SeaShips dataset are as follows: 

Table 2. Detection results of Lk-YOLO in the Seaships dataset. 

 All Ore 
carrier 

General 
cargo ship 

Bulk cargo 
carrier 

Container 
ship 

Fishing 
boat 

Passenger 
ship 

mAP0.5 0.977 0.967 0.971 0.975 0.993 0.978 0.977 
mAP.5:95 0.774 0.751 0.795 0.804 0.824 0.713 0.759 

Table 2 shows the mAP data under each ship type for both thresholds of the Lk-YOLO algorithm 
model. The model has 99.3% of AP values for container ships, mineral sands ships and fishing vessels, 
especially at mAP@.5:.95, show a significant decrease in AP values. This is due to the difficulty in 
detecting the network due to the small number of fishing vessel samples in the dataset, the small size 
of the vessels, and the occurrence of scenarios. Additionally, the mineral sands ship is only different 
from other ships in the way of usage, and the hull shape is similar to other types of ships, which makes 
it difficult for the model to extract the correct features, and therefore a situation of misclassification 
will occur, resulting in a smaller AP for the class under correct classification. 

As shown in Figure 11, the model maintains a relatively smooth loss function curve for each type 
during the training process. However, at 100 cycles of learning, due to the shutdown of some training 
strategies, such as warm up and other learning strategies, the model shows a certain degree of 
fluctuation and the response appears in a large number of dense points in each graph. The accuracy 
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and recall of the model performed very well, also reflected in the curves of mAP@50 and mAP@.5:.95. 
The table demonstrates that the regression of the model’s prediction frame can achieve excellent results 
with high IoU thresholds. Each prediction frame has a high overlap with the ground truth. 

 

Figure 11. Lk-YOLO experimental data. 

In this paper, ablation experiments were conducted using a modified Backbone as the baseline 
model to verify the performance improvement of the original model by the anchorless frame 
improvement algorithm and the changes to the original model, and to understand the impact of different 
modules on the performance under different evaluation metrics. The changes in model performance 
were recorded for each of the Bank’s model changes added to the baseline model, and the experimental 
results were analysed to verify the findings. The results of the experiments are shown in Table 3. 

Table 3. The influence of different modules on ship detectors. 

Model mAP Parameters GFLOPs 
Baseline 0.953 15.4 25.1 
+Data Augmentation 0.9 15.4 25.1 
+Anchor free 0.945 14.8 20.5 
+Label assign 0.969 14.8 20.5 
+Decoupled Head 0.977 15.2 23.6 

As shown in Table 2, the module designed in this paper increases the complexity and inference 
time of the model, but improves the overall performance of the model by 3% mAP. Afterwards, we 
choose the modified CSPDarkNet as the Baseline for our model, and we can see that the model, with 
a slight increase in the number of parameters, improves the mAP to 95.3% over YOLOv5s with a slight 
performance improvement and some increase in the number of parameters. Later, after training with 
some data augmentation strategies, the mAP increases again significantly, proving that the way the 
data is trained is important for deep learning. Afterwards, not using anchor, while reducing the 
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number of parameters, also makes it difficult to correctly regress the positive samples generated 
during training, leading to a decrease in model performance. When we use the more efficient Label 
assign for training, the sample training problem caused by anchor free is well solved, so the mAP is 
again improved and does not introduce any extra parameter computation. Finally, we replaced the 
detection head with a decoupled detection head, sacrificing speed for a small parameter boost, but 
the mAP was again improved. 

4.4.2. Comparative experiments 

In this section, the improved algorithm proposed in this paper is compared with the classical deep 
learning object detection algorithm, and the results are shown in Table 4. To ensure the fairness of the 
experiments, all models use the same training strategy, training parameters and the same way of data 
expansion. At the same time, the models chosen were all used from the original benchmark model. 

Table 4. Comparison of different detection models. 

Model mAP50 mAP75 mAP FPS Parameters GFLOPs 
Faster RCNN 0.946 0.683 0.603 75 137.0 M 370.1 
RetinaNet 0.727 0.52 0.465 84 37.9 M 170.1 
SSD 0.906 0.751 0.663 86 26.2 M 62.7 
YOLOv3 0.921 0.663 0.674 85 61.9 M 66.1 
FCOS 0.864 0.594 0.567 88 32.0 M 60 
YOLOv4 0.946 0.672 0.735 80 64.3 M 64.3 
YOLOv5s 0.969 0.689 0.765 120 7.2 M 15.8 
YOLOv7 0.980 0.786 0.779 90 37.2 M 105.2 
Ours 0.977 0.784 0.774 95 15.2 M 23.6 

In this experiment, we selected a one-stage object detection network, which also includes Anchor-
free FCOS, and a two-stage object detection network, where the improved performance of the object 
detection algorithm is judged by an IoU of 0.5, which does not allow us to distinguish between the 
performance of the models. We then took an IoU of 0.5 as well as the mean values of the average 
accuracy of the specific threshold algorithm for all classes of targets between 0.5 and 0.95 
(mAP@.5:.95) in steps of 0.05, respectively. In the table mAP is the metric mAP@.5:.95. 

According to Table 4, we can see that the two-stage network is better than the early one-stage 
network in terms of accuracy, but the speed is far inferior to the one-stage network. The current 
development of the one-stage network has become more mature, and not only can it be the same as the 
two-stage network in terms of accuracy, but it is also far better than the two-stage network in terms of 
speed. The algorithm proposed in this paper still has performance improvement in comparison with 
the improved object detection algorithm. At an IoU threshold of 0.5, the detection network does not 
require much real frame screening, so each detection network is able to achieve good results. When 
mAP@.5:.95, mAP all showed some degree of degradation. It can be seen that the prediction 
confidence of the Lk-YOLO data are all high, and the prediction frames are highly overlapping with 
GT. Lk-YOLO still achieves a higher mAP and higher performance than YOLO5s with a higher IoU 
confidence criterion. At the same time, it has similar performance with lower number of parameters 
and FLOPs than YOLOv7. 
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To better demonstrate the performance differences between different models under the same 
dataset, we show in Figure 12 the detection performance of several models with typical features for 
different classes of ships Faster-RCNN, RetinaNet, YOLOv5, Lk-YOLO. 

 

Figure 12. Experimental results of different models at mAP@50. 

As can be seen in Figure 12, the models are all relatively high in mAP@50 on the SeaShips 
dataset. Only in the lower performance RetinNet in ore carrier achieves 21.8% AP value. None of the 
other classes of ships have excessive gaps. mAP@50, as a common metric, does not visualize the 
performance gap of the detectors with this dataset. 

Therefore, we again plot the comparison of different models using mAP@.5:.95 as the evaluation 
metric. Since the performance gap between RetinaNet and the other models is too large, it is not put 
into the analysis under this metric. 

 

Figure 13. Experimental results of different models at mAP@.5:.95. 

Figure 13 shows that Lk-YOLO has a clear performance advantage over other models. container 
ship is the best category in the dataset due to its huge size and the rich color information of the various 
containers on board. YOLOv5 achieves the best performance of 83% on container ship, which is 
slightly higher than Lk-YOLO. 
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On the small target fishing ship, Faster R-CNN only achieves 58% of the AP value, and Lk-YOLO 
is only a little ahead of YOLOv5 performance. For the remaining categories, Lk-YOLO achieves a 
clear advantage. ore carrier is not conducive to anchor frame regression due to its very flat and long 
characteristics and is very prone to overlap in the dataset. general cargo ship and bulk cargo carrier as 
the main vessels in the channel also have a large number of overlapping samples. It can be seen that 
Lk-YOLO is useful for blurring the boundaries in some scenarios. 

The results of the experimental detection visualization are shown in Figure 11, and the 
performance of Lk-YOLO for some visualizations in the dataset: 

 

（a） 

 

（b） 

（c）  

 

（d） 

（e）  （f） 

Figure 14. Detection results. 
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(a) (b)

(c) (d)

(e) (f)(e)

(g) (h)
 

Figure 15. Comparison of detection results between different models. 

It can be seen that the model is able to identify multiple types of vessel results with high 
confidence scores in some multi-target scenarios. For the case of the combination of large and small 
targets in Figure 14(a),(b), there is a huge scale change in the prediction frame, and the model is still 
able to correctly classify and accurately locate the fishing vessel targets without any impact. In 
Figure14(c), both vessels are still able to identify the position and classification completely in the 
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complex background as well as truncated by the frame. When the vessels overlap to a certain extent as 
in Figure 14(f), the detector is able to return to the area shown by the object, and the bounding box of 
the ore carrier is also well identified across the bounding box of the bulk cargo carrier. 

5. Conclusions 

In order to solve the current problem of optimizing the anchor parameters of the ship detector in 
visible light, this paper proposes the Anchor-free detector Lk-YOLO. In this paper, we first redesign 
the residual units in Backbone by adding large kernels, and by combining the Depth-wise convolution 
of the 7 × 7 large kernel convolution and the Depth-wise convolution, without significantly increasing 
the model of FLOPs and the number of parameters to improve the detection accuracy of the model 
without significantly increasing the model. Second, the decoupled detection head is constructed, and 
the detection head is designed as a parallel structure to divide the classification and regression into 
different branching structures, so that the classification and regression tasks no longer share weights 
and solve the problem of branching module conflicts. Finally, the anchor-free strategy is used to replace 
a large number of a priori anchors with feature centroids, which solves the complex hyperparameter 
problem caused by anchors and avoids the calculation of anchor parameters by manual or K-means 
clustering, further simplifying the number of parameters of the model. Moreover, the dynamic Label 
assign method is chosen to solve the positive sample problem of anchorless training. During the 
training process, the classification score and regression score of each prediction frame are weighted 
and evaluated, allowing the detector to focus on the high-quality positive samples during training. The 
experiments are based on the Seaship datasets from Wuhan University, and the commonly used 
performance indicators of object detection, such as mAP, FPS, parameters, etc., are used to conduct 
ablation experiments on the same network to select different thresholds of IoU, different object 
detection algorithms under the same threshold and improved components to effectively and accurately 
evaluate the improvement of different modules on the network, and the design network on other 
networks superiority. Lk-YOLO reached 97.7% on mAP@50 and 77.4% on mAP@.5:.95. In the 
future, we will further improve the ship recognition detection network under visible light, while 
proposing better solutions to some still existing problems and optimizing and upgrading the network 
model algorithms. 
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