
MBE, 20(8): 15075–15093. 

DOI: 10.3934/mbe.2023675 

Received: 15 February 2023 

Revised: 27 June 2023 

Accepted: 09 July 2023 

Published: 14 July 2023 

http://www.aimspress.com/journal/MBE 

 

Research article 

A trajectory outlier detection method based on variational auto-encoder 

Longmei Zhang1, Wei Lu2,*, Feng Xue2 and Yanshuo Chang2 

1 School of Communication and Information Engineering, Xi’an University of Science and 
Technology, Xi’an 710054, China 

2 School of Information, Xi’an University of Finance and Economics, Xi’an 710100, China 

* Correspondence: Email: 908220526@qq.com. 

Abstract: Trajectory outlier detection can identify abnormal phenomena from a large number of 
trajectory data, which is helpful to discover or predict potential traffic risks. In this work, we proposed 
a trajectory outlier detection model based on variational auto-encoder. First, the model encodes the 
trajectory data as parameters of distribution functions based on the statistical characteristics of urban 
traffic. Then, an auto-encoder network is built and trained. The training goal of the auto-encoder 
network is to maximize the generation probability of original trajectories when decoding. Once the 
model training is completed, we can detect the trajectory outlier by the difference between a trajectory 
and the trajectory generated by the model. The advantage of the proposed model is that it only needs 
to compute the difference between the original trajectory and the trajectory generated by the model 
when detecting the trajectory outlier, which greatly reduces the amount of calculation and makes the 
model very suitable for real-time detection scenarios. In addition, the distance threshold between the 
abnormal trajectory and the normal trajectory can be set by referring to the proportion of the abnormal 
trajectory in the training data set, which eliminates the difficulty of setting the threshold manually and 
makes the model more convenient to be applied in different actual scenes. In terms of effect, the 
proposed model has achieved more than 95% in accuracy, which is better than the two typical density-
based and classification-based detection methods, and also better than the methods based on machine 
learning in recent years. In terms of efficiency, the model has good convergence in the training phase 
and the training time increases slowly with the data scale, which is better than or as the same as the 
comparison methods. 
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1. Introduction 

With the popularization of various mobile terminals with high-precision positioning function, 
such as automobile navigation, mobile phones and wearable devices, a large number of trajectory data 
arose. These trajectory data contain abundant spatiotemporal and semantic information, which have 
been proved to be very valuable resources and have a wide range of application scenarios [1]. Taxi is 
a very important urban transportation tool. All taxis in operation frequently report their location 
information to the data center through installed GPS or Beidou positioning equipment. These massive 
trajectories data are widely distributed in the urban road network, which can well reflect the traffic 
conditions of the urban road network. Therefore, taxis are also known as the “flow detector” of urban 
traffic. The taxi trajectory data set is also widely used in urban planning, road recommendation, traffic 
hotspot analysis, traffic accident analysis and other fields [2]. 

The purpose of trajectory outlier detection is to identify abnormal phenomena from a large 
number of trajectory data, which is helpful to discover or predict potential traffic risks [3]. The 
trajectory outlier is generally divided into two categories: 1) The trajectory deviates from other 
trajectories in space; 2) The time sequence of trajectory points is significantly different from other 
trajectories. Trajectory outlier means that some behaviors deviate from expectations, usually 
accompanied by special or interesting events. Taking urban traffic monitoring and management as an 
example, in the saturated urban road network, local trajectory outliers may reflect the occurrence of 
traffic accidents, bad weather or road emergencies. Detection and real-time analysis of these trajectory 
outliers can not only provide the traffic management department with the basis for traffic situation 
analysis, timely find and predict the congested sections, but also provide the driver with reference for 
route selection. 

Traditional trajectory outlier detection methods mainly focus on trajectory similarity and 
clustering analysis [4]. These methods calculate the similarity between trajectories by defining the 
distance metric, and then divide the trajectories into several clusters by clustering. Finally, the cluster 
with a small number of trajectories is identified as outliers by threshold setting. However, the efficiency 
of such methods is usually not high, and it cannot well meet the needs of real-time analysis of large-
scale trajectory data. In the field of urban transportation, the trajectory data has the characteristics of 
uncertainty, sparsity, skewed distribution and continuous updating, which makes it more difficult to 
detect outliers in real-time [5]. With the rise of deep learning methods, deep neural networks have 
gradually been widely used in trajectory data analysis and mining [6]. Aiming at the problem of online 
real-time detection of trajectory outliers, we proposed a trajectory outlier detection model based on 
variational auto-encoder in this paper. The model encodes the trajectory data as parameters of 
distribution functions and an auto-encoder network is built and trained. Once the model training is 
completed, we can detect the trajectory outlier by the difference between a trajectory and the trajectory 
generated by the model. The main contributions include: 

1) A deep learning networks based on variational auto-encoder is used to learn the trajectory 
characteristics and distribution. Once the model training is completed, we can detect the trajectory 
outlier by the difference between a trajectory and the trajectory generated by the model. Compared 
with the traditional density-based or classification-based trajectory outlier detection method, the 
calculation amount is greatly reduced which makes the model very suitable for real-time detection 
scenarios. Compared to other methods using variational auto-encoder, this paper performs 
segmentation and differential processing on trajectory data for input of the model, which make it 
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unnecessary to eliminate noise points in trajectories and can further improve the accuracy of the model. 
2) When comparing an original trajectory with the trajectory generated by the model, the 

difference between them is calculated from two aspects of Euclidean distance and cosine similarity, 
which further improve the detection effect of outliers. 

3) When detecting the trajectory outliers, the distance threshold between the outliers and the 
normal trajectories can be set by referring to the proportion of the abnormal trajectory in the training 
data set, which eliminates the difficulty of setting the threshold manually and makes the model more 
convenient to be applied in different actual scenes. 

In the remainder of this paper, we introduce related work in Section 2. After that, we give some 
definitions formally in Section 3. Section 4 introduces our model and methods for outlier trajectory 
detection. An experimental evaluation and analysis of the effectiveness and efficiency of our methods is 
presented in Section 5. Finally, we conclude the work and briefly discusses future work in Section 6. 

2. Related work 

Trajectory outlier detection methods mainly include density-based methods [7–9], classification-
based methods [10–12], grid-based methods [13–15] and deep learning-based methods [16]. 

The density-based detection method uses algorithms such as k-means [17], DBSCAN [18] or 
improved DBSCAN [19] to cluster the segmented trajectories, and the sparse trajectories are determined 
as outliers. The commonly used definitions of distance between trajectories in these algorithms include 
European distance, DTW distance [20], LCSS distance [21] and Hausdorff distance [22]. Trajectory 
similarity calculation is the core of this kind of method. Recently, D. Zhang et al. studied this problem 
and proposed a method suitable for continuous calculation of trajectory similarity, and tried to apply 
this method to trajectory outlier detection [23]. In practical application, threshold selection is one of 
the difficult problems in this kind of methods. In addition, the large amount of computation makes 
these methods cannot meet the needs of real-time detection for large-scale trajectory data. 

The idea of classification-based detection method is to establish a classifier model and train the 
model through the labeled trajectory data set so as to obtain normal trajectory features. Once the model 
training is completed, the trajectory outlier detection efficiency is very high. However, the 
disadvantage of this method is that it requires label data, and data annotation usually leads to a large 
amount of labor and time costs. 

The main idea of the grid-based detection method is to map the trajectory data to the urban map 
grid after preprocessing, and then transform the detection of trajectory outliers into the detection of 
abnormal grid cell symbol sequence. This method is mainly applied to the detection of trajectory 
outliers in urban fixed road network environment. 

In recent years, deep learning [24] developed rapidly and has attracted the attention of a large 
number of researchers. It has been widely used in almost all research fields related to feature extraction. 
This method has also attracted more and more researchers’ attention in the field of trajectory data 
mining. Compared with the traditional method, the deep neural network can automatically learn the 
feature of the trajectory from the data set, and can achieve better results when the data set is sufficient. 
Document [25] proposes a pedestrian trajectory prediction method with dual attention fusion 
mechanism, which can also be used as an abnormal event detection method. In view of the problem of 
trajectory outlier detection caused by taxi fraud or detour, A. Belhadi et al. proposed a novel hybrid 
framework and two phase-based algorithms to identify trajectory outliers [26]. 
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Auto-encoder (AE) [27] is a very important unsupervised learning method in deep learning. The 
auto-encoder is composed of an encoder and a decoder, which aims to learn the effective information 
from a large number of unmarked data, and realize the nonlinear compression and reconstruction of 
the input data. The goal of the traditional auto-encoder is to make the output and input as same as 
possible, but in the actual application, what we really care about is the hidden layer expression, so 
there are many improvement methods for the auto-encoder. The variational auto-encoder (VAE) [28] 
is one of the improved methods for auto-encoder. This method combines the deep learning method 
with Bayes on the basis of maintaining the basic function of the auto-encoder. It can be well applied 
to data generation [29] and anomaly detection in the case of no label data. Therefore, some researchers 
try to apply the VAE method to the field of trajectory outlier detection in different scenarios [30–33].  

3. Definitions for distances and VAE 

3.1. Trajectory and distance 

Trajectory is an important spatiotemporal data type, which represents the information history of 
the state of moving objects changing continuously with time. The trajectory can be regarded as a 
mapping from time to state. i.e., F: R+→Sd, where d is the dimension of the state space. For trajectory 
outlier detection, some preliminary definitions are discussed below. 

Definition 1: A trajectory T is a sequence of time-ordered points, denoted by T = (p0, p2, …, pi, …, 
pn-1), where 𝑝௜ ∈ ℝଶ is the physical location (i.e., latitude and longitude), denoted by pi = (loni, lati), 
p1 and pn-1 are the start and end points of the trajectory respectively. 

Definition 2: A trajectory segment refers to the segment formed by the connection of adjacent 
points in the trajectory, denoted by segi(T) = (si, ei), where si and is ei are the start and end points of 
the segment. 

segj
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si ei
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Figure 1. Space distance between trajectory segments. 

Typically, measurement of distance between two trajectory segments include vertical distance (d⊥), 
parallel distance(d∥) and angular distance(dθ) [18]. For two trajectory segments segi(T) = (si, ei) and 
segj(T) = (sj, ej), the different distances between them are defined in Eqs (1)–(3), as shown in Figure 1. 

2 2
1 2

1 2

( , )i j

l l
d seg seg

l l
 


 




                                                                       (1) 



15079 

Mathematical Biosciences and Engineering  Volume 20, Issue 8, 15075–15093. 

1 2( , ) min( , )i jd seg seg l lP P P                                                                       (2) 

sin , 0 90
( , )

,90 180

j

i j

j

seg
d seg seg

seg


 



    
 

o

o o                                                   (3) 

3.2. Variational auto-encoder 

Auto-encoder is a neural network that tries to copy the input to the output, that is, reproduce the 
original data as much as possible. The auto-encoder includes two parts: encoder and decoder. 

The encoder converts the input signal into a hidden layer expression through a certain mapping 
to learn the characteristics of the data, as shown in Eq (4). The decoder tries to remap the hidden layer 
expression into the original input signal through the learned feature expression, as shown in Eq (5). 

1 1( )ez WT b                                                                            (4) 

2 2' ( )dT W z b                                                                            (5) 

T and T’ represent the trajectory input and output space, 1W  and 1b  are the weights and offsets 
of the encoding stage, 2W  and 2b  are the weights and offsets of the decoding stage, e  and d  
are the nonlinear transformations. The objective of auto-encoder optimization is to minimize the error 
between T and T’ as much as possible. 
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Figure 2. Variational auto-encoder probability model. 

Variational auto-encoder (VAE) is an improved model of auto-encoder proposed by Kingma et al. [16] 
in 2014, which is mainly used for data generation. The basic idea of VAE is to assume that all data are 
generated by statistical process, and the distribution characteristics of data should be considered in the 
process of encoding and decoding. Therefore, the difference between VAE and traditional auto-encoder 
is that the auto-encoder compresses the input data into a fixed code in the hidden space, while VAE 
converts the input data into parameters of statistical distribution function, i.e., mean and standard 
deviation (μ, σ). Finally, the hidden space distribution parameters are optimized through network 
training to maximize the generation probability of the original input data during decoding. The basic 
principle of VAE is shown in Figure 2. 
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In this paper, we reconstruct the trajectory through VAE. The VAE model is trained with the 
actual trajectory data set T, and finally the output trajectory data T’ is generated by the hidden variable 
Z. T→Z is the feature extraction and recognition model ( | )q Z T , which is completed by the encoding 
process of the auto-encoder. Z→T’ is the generation model ( ' | )p T Z , which is completed by the 
decoding process of the auto-encoder. Assuming that the trajectory data T = [T1, T2, …, TN] are all 
independent and identically distributed, the maximum likelihood method is used for parameter 
estimation, as shown in Eq (6). 

1 2
1

log ( , ,..., ) log ( )
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N i
i

P T T T P T 


                                                       (6) 

VAE uses feature extraction and recognition model ( | )iq Z T  to approximate the real posterior 
probability ( | )ip Z T , and uses KL divergence to measure the similarity of the two distributions, as 
shown in Eq (7). 
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Assuming that the sample input conforms to the normal distribution, we set two encoders in VAE, 
one for calculating the mean and the other for calculating the variance. In the mean value calculation 
network, the robustness of the result is improved by adding “Gaussian noise”, and the encoder is 
regularized by KL loss to ensure that the encoder result has zero mean value. The variance calculation 
network is used to dynamically adjust the noise intensity. When the reconstruction result error is large 
(greater than the KL threshold), the noise is appropriately reduced. When the reconstruction result error 
is small (less than the KL threshold), the noise is appropriately increased and the generation ability of 
the decoder is improved through training. The essence of VAE is to find a suitable probability 
distribution parameter θ = (μ, σ) for each input Xi through continuous training. The overall neural 
network structure of VAE is shown in Figure 3. 
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Figure 3. The neural network architecture of VAE. 
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4. Trajectory outlier detection method based on variational auto-encoder 

4.1. Model 

Normal trajectories are generally continuous and smooth, so their trajectories reconstructed by 
VAE should maintain good consistency with the original trajectories. Abnormal trajectories are 
generally not smooth, usually manifested as position drift, sharp changes in speed or motion direction, 
so their trajectories reconstructed by VAE should be greatly different from the original trajectories. 
Under the guidance of this basic idea, a trajectory outlier detection model based on variational auto-
encoder is proposed. The model consists of three parts: the trajectory data preprocessing module, the 
trajectory data generation module and the trajectory outlier determination module, as shown in Figure 4. 
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Figure 4. Trajectory outlier detection model based on VAE. 

In this paper, Long Short-Term Memory (LSTM) network is used as the basic unit of encoder and 
decoder in VAE Network. LSTM is a classical sequence modeling network. It solves the problem of 
long sequence dependence through forgetting gate, control gate and output gate. The current output is 
determined according to the output at the previous time and the input at this time. The basic structure 
of LSTM we used in this paper is shown in Figure 5. 
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Figure 5. Basic LSTM structure of Encoder/Decoder. 
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4.1.1. Preprocessing of trajectory data 

In general, the trajectories in the dataset are sequences of different lengths, while the input format 
required by the VAE is equal length sequence. Therefore, it is necessary to divide the trajectories in 
the data set into equal length sub trajectories first. In this paper, the sliding window method is used to 
process the original trajectory, which not only guarantees the integrity of the original trajectory, but 
also preserves the dependence of the trajectory points on the time series. 

Let N multi-dimensional trajectory sequence samples T = [T1, T2, …, TN], where a single sample 
with length M is represented as 0 1 1( , , ..., , ..., )n n n n n

i MT p p p p  , and n
ip  represents the trajectory point at 

the ith time of the nth sample. We use longitude and latitude data to represent a trajectory point. When 
the sliding window size is w and the time step is s, the sample Tn is segmented as shown in Eq (8). 
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L

                                                  (8) 

After the actual trajectory data set is processed by sliding window, the equal length sub trajectory 
set can be obtained, which meets the equal length requirement of VAE network for input sequence. 
However, the spatial position coordinates of the trajectory points in the sub trajectory set do not meet the 
distribution consistency, which will cause the model to be biased. Therefore, the first-order difference 
method is used to further process the equal length sub trajectories. By calculating the first-order 
difference of the coordinates of the adjacent trajectory points in the trajectory segment, the position 
deviation P of the trajectory points at each time can be obtained and then the coordinate data of the 
trajectory points can be limited to [-max(P), +max(P)], which can ensure the consistence of the 
distribution of the point data. 

4.1.2. VAE network training 

The input for VAE network training is the trajectory data set of equal length and equal distribution 
after preprocessing, and the output is the distribution parameters of encoder and decoder. In the encoding 
stage, the parameters describing the distribution of each dimension in the hidden space are output through 
the neural network. Assuming that the trajectory data conforms to the normal distribution a priori, the 
mean and variance describing the distribution of the hidden state are output. In the decoding stage, the 
reparameterization trick is used to combine the mean and variance of the output in the encoding stage, 
sample from the standard normal distribution, generate the hidden variables through the neural 
network and reconstruct the original input and measure the distribution similarity through the 
divergence of Eq (7). The specific process of VAE network training is shown in Algorithm 1. Where, 
  and   represent parameters of Gaussian distribution of encoder and decoder respectively. In the 
process of model training, the learning rate is set to 0.005 and the convergence condition is that the 
training error is less than 0.01. 
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Algorithm 1 VAE model training 
Input: T is the trajectory dataset, N is the size of dataset 
Output: probabilistic encoder, probabilistic decoder 

1: 
,  ← initialization parameter 

2: repeat 

3: for i=1 to N do 

4: 
get L samples from (0,1)N :  

5: ( , ) ( ) ( )( , ), 1,...,i l i iz h t i N   // Generate hidden variables 
6: end for 

7: ( ) ( ) ( , )1
E= ( ( | ) || ( )) (log ( | ))

N L
i i i lKL q z t p z p t z

L    
8: 

,   ← use gradients of E to update parameter 
9: 

until ,   parameter convergence 

4.1.3. Trajectory outlier detection 

After the training, the VAE network acquired the trajectory point distribution characteristics. For 
normal trajectories, the trajectories reconstructed by VAE should be consistent with the original 
trajectories. Therefore, outliers can be found through the differences between the original trajectories 
and the reconstructed trajectories. For moving objects or vehicles, sudden change in speed or direction 
during driving means abnormal occurrence. Considering the spatial distance, direction and time factors, 
the difference between the original trajectory and the reconstructed trajectory is expressed as the 
vertical distance (d⊥), the parallel distance (d∥) and the angular distance (dθ), as shown in Eq (9). 

1 2 3( , ) ( , ) ( , ) ( , )i j i j i j i jdiff seg seg d seg seg d seg seg d seg seg    P                   (9) 

α1, α2, α3 are weight coefficients of vertical distance, parallel distance and angular distance 
respectively, α1 + α2 + α3 = 1. If the difference between the original trajectory and the generated 
trajectory is greater than a certain threshold τ, the trajectory should be determined to be an outlier. The 
selection of threshold τ has an important impact on the detection results. In general, the threshold τ 
should be customized according to the experience in different scenarios, which is a difficult problem 
in practical application. In order to solve this problem, this paper introduces the ratio parameter λ of 
abnormal trajectory, and adjusts the threshold τ adaptively through the parameter λ to meet the actual 
application needs. Step 1, the trajectory data set to be detected is used as input to train the VAE model 
using Algorithm 1 to obtain the distribution parameters of encoder and decoder. Step 2, take each 
trajectory in the trajectory dataset to be detected as input, and use the decoder to regenerate the 
trajectory to obtain the generated trajectory set. Step 3, Calculate the distance between each trajectory 
in the validation dataset and its generated trajectory, and sort it in descending order. Step 4, Use the 
ratio λ of abnormal trajectories in the validation dataset as a condition to intercept the distance set and 
obtain the distance threshold τ of abnormal trajectories. Step 5, Determine whether each trajectory in 
the detected trajectory dataset is an abnormal trajectory based on the distance threshold τ. The specific 
trajectory outlier detection process is shown in Algorithm 2. 
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Algorithm 2 trajectory outlier detection 
Input: TN is the trajectory dataset for detecting, TV is the validation dataset, λ is the abnormal 
proportion in TV, α1, α2, α3 are distance coefficients 
Output: TD is the abnormal trajectory data set detected 

1: Encoder, Decoder ← VAEModelTrain (TN, size(TN)) 
2: refactoringSet ← Decoder.predict (TV) 
3: difference ←diff (TV, refactoringSet, α1, α2, α3) 
4: τ ← reverseOrder (difference) [size(TV)*λ] 

5: for t in TN do 

6: if (diff (Decoder.predict (t), t) > τ) 
7: TD.append(t) 
8: end if 
9: end for 
10: return TD 

5. Experiments and analysis 

5.1. Experimental environment and dataset processing 

The hardware platform of this experiment is CPU Intel (R) core (TM) i7-7700, 12 G memory, 
GPU Intel (R) HD graphics 630. The software platform of the experiment is operating system 
Windows10, machine learning framework Keras and algorithm implementation language Python. 

The experimental data set is the public data set of taxis from Porto, Portugal, from early July 2013 
to the end of June 2014 (https://www.kaggle.com/c/pkdd-15-predict-taxi-service-trajectory-i/data). 
The data set contains 1,710,670 tracks of 442 taxis in the whole year. The sampling frequency of 
trajectory points is 15 seconds, and some trajectories are shown in Figure 6. 

 

Figure 6. Partial trajectories of experimental data set. 
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First, the data set is filtered to remove the discontinuous trajectories, and then the sliding window 
method is used to acquire trajectory segments with equal length. The window size is set to w = 25 and 
the step size is set to s = 1. Then, select the verification set for labeling, and divide the trajectories into 
normal trajectories and abnormal trajectories. The criterion for judging whether the trajectory is normal 
or not is whether it includes position drift, sharp turn or rapid acceleration. Figure 7 shows several 
typical normal and abnormal trajectories. Figure 7(a) shows the situation where the trajectory deviates 
from most normal trajectories, as such sharp turns cannot occur on normal trajectories, and even exceed 
the limits of taxi turning operation. Figure 7(b) shows time sequence of trajectory points is significantly 
different from normal trajectories or there may be abnormal acceleration in the trajectory. Finally, 
through the first-order difference processing and normalization processing, the regular trajectory data 
set is obtained for model training and verification. 

            

(a) Sharp turn           (b) Rapid acceleration                 (c) Normal 

Figure 7. Typical normal and abnormal trajectories. 

5.2. Evaluation metrics 

In this paper, precision, recall and F1 values are selected to evaluate the effect of the method we 
proposed. The calculation methods of the three indicators are shown in Eqs (10)–(12). 

TP
Precision

TP FP



                                  (10) 

TP
Recall

TP FN


                                    (11) 

1
2 Precision Recall

F
Precision Recall

 


                                (12) 

TP represents the number of outliers correctly identified as abnormal trajectories, FN represents 
the number of outliers incorrectly identified as normal trajectories, FP represents the number of normal 
trajectories incorrectly identified as outliers and TN represents the number of normal trajectories 
correctly identified as normal trajectories. In addition, the AUC value of ROC curve is used to evaluate 
the comprehensive recognition ability of the model for positive and negative samples. 
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5.3. Analysis of model generalization effect 

5.3.1. Influence of training parameter epoch 

In the experiment, 2000 trajectories were randomly selected from the preprocessed trajectory data set 
as the training set, and 500 trajectories were selected as the verification set, which including 400 normal 
tracks and 100 outliers. The threshold value λ in the trajectory outlier detection algorithm is set to 0.2. 
When the training parameter epochs = [200, 1000, 2000, 5000, 10,000], the outlier detection experiment 
was carried out separately. The effect of the model on each evaluation index is shown in Figure 8. 

 

Figure 8. Model effect under different epochs. 

Overall, the model has a high recognition effect, and the AUC value of the ROC curve always 
remains above 0.90. The difference of model effect is small under different training epochs, which 
reflects that the model has good convergence and stability. With the increase of the training epoch, the 
precision, recall and F1 value will increase first and then decrease slightly. The descending process 
shows that the trajectory reconstruction model may have a certain overfitting phenomenon in the 
process of learning the features. However, the problem of overfitting is not serious. 

5.3.2. Influence of training set size train_size 

 

Figure 9. Model effect under different train_size. 
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This section analyzes the influence of the training set size on the model effect. Under the same 
verification set conditions as the previous section, set epochs = 200 and set the training set size 
parameter train_size = [1000, 1500, 2000, 3000, 5000], respectively carry out experiments on the 
model, and the performance of each evaluation index of the model is shown in Figure 9. 

From the experimental results, it can be seen that with the increase of the training set size, the 
trajectory reconstruction model learns more and more fully the normal trajectory distribution features, 
and the recognition effect of outliers is also improved. When the training set size is increased to a 
certain extent, the model effect enters a relatively stable convergence state. In addition, the model is 
not very sensitive to the size of the training set, and it can still obtain good results even when the 
training set is small (The prerequisite is that the trajectory distribution characteristics are sufficient). 
For the experimental data set in this paper, when the size of the training set reaches about 2000, the 
model can achieve good results and enter the convergence state. 

5.3.3. Influence of threshold λ in outlier detection algorithm 

In this paper, in order to solve the difficult problem of manually setting the distance threshold 
when judging the outliers, the distance threshold is automatically adjusted by the parameter λ, which 
is the ratio of the abnormal trajectory. This section analyzes the effect of parameter λ on the trajectory 
outlier detection algorithm through experiments. 

We first get the trajectory generation model when the training epochs = 200 and the training set 
size train_size = 2000. 500 trajectories including 86 abnormal trajectories are randomly selected 
from the trajectory data set as the verification set, which the ratio is 0.172. When different thresholds 
λ = [0.10, 0.15, 0.20, 0.25, 0.40, 0.50] are set in the trajectory outlier detection algorithm, the effect 
of the algorithm is shown in Figure 10. 

 

Figure 10. Model effect under different threshold λ. 

From the experimental results, it can be seen that when the threshold λ of the trajectory outlier 
detection algorithm is set between 0.15 and 0.25, the algorithm achieves good results and the recall, 
precision and F1 value all remain at a high level. When λ is set to 0.2, the effect of the algorithm is 
optimal, and the recall, precision and F1 value are all kept above 95%. When λ is set to be greater than 
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or equal to 0.4, the recall rate will reach 100%, but the error rate will increase, which will lead to a 
decrease in the accuracy rate. The experimental results show that the algorithm achieves good results 
when the value of λ is near ratio of abnormal trajectory in the verification set. From this, we can learn 
that in practical application, if we pursue high precision, we can obtain the approximate proportion of 
outliers according to the samples in the data set, so as to provide a reference for setting the parameter 
λ of the algorithm. According to different application requirements, if we pursue higher recall, we can 
appropriately increase the λ value in the trajectory outlier detection algorithm. 

5.4. Effect comparison 

We select three typical types of methods as benchmarks. One is the density-based method, one is 
the classification-based method and the other is the deep learning based method. 

1) Density-based methods: DTW distance-based clustering and Hausdorff distance based clustering. 
2) Classification-based methods: KNN and deep clustering method [3]. 
3) Deep learning based methods: Sequence autoencoder (SAE) model [32] and GM-VSAE 

model [33]. 
For density-based method, we implement the two methods using the DBSCAN algorithm interface 

provided by Scikit learn library. The distance threshold value T0 for the trajectory outlier of the clustering 
algorithm is 0.1, 0.3, 0.5, 0.7 and 0.9 respectively, and the quantity threshold value T1 is 3, 5, 7, 9 and 11 
respectively. The results of the optimal accuracy are used as the comparison benchmark. 

For KNN and deep clustering methods, we implement the two methods based on literature [3]. 
The public data set of taxis from Porto, Portugal is used in literature [3] which is the same as that in 
this paper. 

For deep learning-based method, we implement SAE and GM-VSAE algorithms based on 
literature [33]. The basic data sets used in the experiment are all also from the public data set of taxis 
from Porto, Portugal as the same as this paper. Literature [33] mainly focuses on two types of anomaly 
detection: detour and route switching. Therefore, in literature [33], drift points and abnormal turning 
points in trajectories are eliminated in data set preprocessing and then two different perturbation 
schemes are used to generate two types of anomalous trajectories. This paper does not distinguish 
between different types of abnormal trajectories, so it is not necessary to eliminate these abnormal 
points in the data preprocessing stage. On the contrary, we think that these outliers are very important 
and may reflect the occurrence of some special events. For SAE and GM-VSAE models, we take the 
best results under different parameter conditions for comparison. 

Table 1. Test results of different methods. 

Methods Precision Recall F1 PR-AUC 
DTW 0.649 0.726 0.685 0.711 
Hausdorff 0.876 0.953 0.916 0.836 
KNN [3] 0.713 0.601 0.656 0.64 
Deep clustering [3] 0.862 0.783 0.821 0.84 
SAE [32] 0.812 0.884 0.846 0.829 
GM-VSAE [33] 0.832 0.941 0.883 0.871 
VAE (ours) 0.960 0.965 0.963 0.943 
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The comparison indexes are still precision, recall, F1 value and PR-AUC value. The experimental 
results of trajectory outlier detection by different methods are shown in Table 1. 

From the experimental results in Table 1, it can be seen that the trajectory outlier detection method 
based on variational auto-encoder VAE proposed in this paper is superior to the reference methods in 
all indicators. 

The DTW based clustering method can coordinate the time alignment between trajectory points, 
and can achieve better results for clustering of unequal length trajectories. In this paper, the influence 
of unequal length trajectories is eliminated through data preprocessing. Therefore, the method based 
on DTW clustering cannot show advantages. The data set selected in this paper is the all-weather 
trajectory data of taxis. There is a large speed difference between the trajectory points in different 
periods. The clustering method based on Hausdorff distance can locally optimize the dislocation 
alignment between the trajectory points, and has a certain coordination for the speed difference 
between trajectory points. It can achieve good results when used in the clustering of urban vehicle 
trajectories in different periods in theory. However, the clustering method based on Hausdorff distance 
is sensitive to local outliers, which will increase the false positive rate to a certain extent. In the 
experimental results, the precision of the clustering method based on Hausdorff distance is lower than 
the recall rate, which also shows this. KNN also needs to calculate the distance in the clustering process, 
so the effect is lower than DTW and Hausdorff which are based on density clustering. Deep clustering 
method trained a binary pairwise deep neural network to cluster the sequence of trajectory represented 
as trips. Dynamic Time Warping (DTW) is used to calculate the distance between two ordered degree 
sequences. This method has achieved good results, but road network information needs to be used in 
trajectory data preprocessing. 

The PR-AUC value of method SEA and method GM-VSAE exceeds 0.8 under the best parameters, 
which is a good result. However, the premise of such a good result is that it is oriented to specific types 
of anomalies diagnosis. When these two methods are used to diagnose another type of anomalies, they 
may not be suitable. For example, when these two methods are used to diagnose route switching 
anomalies, the PR-AUC value drops to about 0.7. 

In this paper, we use the VAE model to obtain the distribution characteristics of trajectory points, 
which can also eliminate the influence of velocity difference between different trajectories through 
trajectory reconstruction. It is also less affected by local outliers, so it performs better in accuracy. In 
addition, the method in this paper obtains the distribution characteristics of normal trajectory points 
through the first-order difference method in the learning stage, and it is not necessary to distinguish 
different types of anomalies in the diagnosis stage. 

5.5. Efficiency analysis 

In practical application, when the trajectory outlier detection method achieves more than 90% recall 
and precision, it will have a good usability. In the field of urban traffic management under the background 
of the current big data era, the demand for real-time trajectory outlier detection is increasingly urgent [2]. 
This paper also compares and analyze the efficiency of the proposed VAE model to the baseline methods 
selected as above. 

Clustering algorithms based on DTW distance and Hausdorff distance generally divide N 
trajectories into several clusters through DBSCAN clustering algorithm. Finally, clusters with less than 
the threshold Tc are detected as outliers. In the clustering stage, the distance between trajectories needs 
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to be calculated and the clustering process needs to be carried out. Therefore, the theoretical time 
complexity of this kind of methods is O(N2), and it can reach O(NlogN) after optimization. In the case 
of real-time detection, the distance between a given trajectory and all trajectories in the set needs to be 
calculated in the detection stage of these methods. Without considering the trajectory segmentation, the 
time consumption will increase linearly with the increase of the amount of trajectories in the set. For 
KNN and deep clustering methods, it is also necessary to calculate the distance in the clustering process, 
so its efficiency should be equal to or lower than DTW and Hausdorff. 

For machine learning based methods, the training time of the model depends on the super 
parameters of the model, training set size and the convergence rate. Once the training is completed, only 
the distance between the trajectory itself and the reconstructed trajectory needs to be calculated in the 
detection phase, so the time complexity of the detection phase is O(1). Because the VAE model proposed 
in this paper can be trained by sampling data set, the training data set is generally small and the training 
time is relatively short. While models SAE and GM-VSAE require training of all samples, so the training 
time is relatively long. 

Under the same experiment conditions as in the previous section, set epochs = 200 and set the data 
set size N = [1000, 2000, 4000], we compare the clustering or training time and detection time of the 
baseline methods under different data sizes. For the clustering-based method, the training time refers to 
the calculation of the distance between trajectories and the clustering time; for the VAE method, the 
training time refers to the time required for the model training to converge. Detection time refers to the 
time taken to detect a single trajectory after clustering or model training is completed. 

In the experiment, the DTW distance and Hausdorff distance were calculated by 32 threads in 
parallel. The experimental results are shown in Table 2. The training time and detection time in the table 
are the average of the experimental results. 

Table 2. Computation efficiency of different methods (unit: second). 

Methods 
N = 1000 N = 2000 N = 4000 N > 100,000 

Training Detection Training Detection Training Detection Training  Detection

DTW 31.65 0.35 135.376 1.304 513.228 5.446 - - 

Hausdorff 29.9053 1.62 126.713 10.696 514.683 61.490 - - 

SAE [32] 123.22 0.01 144.33 0.01 245.69 0.01 > 1000 <= 0.01 

GM-VSAE [33] 124.39 0.01 146.82 0.01 268.24 0.01 > 1000 <= 0.01 

VAE (ours) 110.17 0.01 130.32 0.01 180.38 0.01 < 1000 <= 0.01 

It can be seen from the experimental results in Table 2 that when n = 1000, the VAE method 
consumes more training time than DTW and Hausdorff; When n = 2000, the VAE method takes about 
the same time as DTW and Hausdorff method; When n = 4000, the time-consuming of VAE method is 
significantly less than that of DTW and Hausdorff methods. This shows that the VAE method proposed 
in this paper has good convergence in the model training stage. The training time increases slowly with 
the growth of the data set size, so it can be applied to large-scale data set. In detection time, the VAE, 
SAE and GM-VSAE methods are all far less time-consuming than DTW and Hausdorff method, which 
can be ignored in practical application, because deep learning based method only needs to calculate the 
distance between the trajectory itself and the reconstructed trajectory. This again shows that the VAE 
based method proposed in this paper is very suitable for real-time detection of large-scale data set. 
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6. Conclusions 

This paper introduces a trajectory outlier detection model based on variational auto-encoder in 
detail. Based on the statistical characteristics of the normal urban traffic trajectory data, the model 
converts the trajectory data into a distribution function using a variational auto-encoder, and optimizes 
the distribution parameters through historical data training to ensure that the generation probability of 
the normal original trajectory data is maximized when decoding. Finally, the outlier is detected by 
calculating the difference between the generated trajectory by the trained model and the original 
trajectory. The biggest advantage of the model proposed in this paper is that the outlier detection only 
needs to calculate the difference between the original trajectory and the generated trajectory by the 
model. Compared with the density-based methods and classification-based methods, the calculation 
amount is greatly reduced, which makes it very suitable for the real-time detection in large-scale data 
environments. In addition, the model can use the ratio of outliers in the verification data set to define 
the detection threshold of outliers, which can eliminate the difficulty of setting the distance threshold 
artificially, and make the applicable scenarios of the model more abundant. The experimental results 
on the real urban traffic trajectory data set show that the model proposed in this paper is very suitable 
for large-scale data real-time detection scenarios. In terms of effect, the precision and recall of the 
proposed model are over 95%, which is better than the methods we selected for comparison; in terms 
of efficiency, the model has good convergence in the training stage. The training time of the model 
increases slowly with the size of the data. The time consumption in the detection stage is a constant 
level, which is far better than some reference methods. 

This paper verifies the effectiveness and efficiency of a trajectory outlier detection model based 
on variational auto-encoder. The data set used in the model training is urban traffic all-weather 
trajectory data. In view of the strong correlation between urban traffic trajectories and space-time, in 
practical applications, the data set can be spatiotemporal divided according to specific application 
needs, and model training can be carried out according to different spatiotemporal data set to obtain 
trajectory distribution characteristics under specific space-time, which can further improve the effect 
and efficiency of the model. This issue is worth further research in the future. 
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