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Abstract: In this manuscript, a novel ratio-dependent predator-prey bioeconomic model with time
delay and additional food supply is investigated. We first change the bioeconomic model into a normal
version by virtue of the differential-algebraic system theory. The local steady-state of equilibria and Hopf
bifurcation could be derived by varying time delay. Later, the formulas of the direction of Hopf bifurcation
and the properties of the bifurcating periodic solutions are obtained by the normal form theory and the
center manifold theorem. Moreover, employing the Pontryagin’s maximum principle and considering
the instantaneous annual discount rate, the optimal harvesting problem of the model without time delay
is analyzed. Finally, four numeric examples are carried out to verify the rationality of our analytical
findings. Our analytical results show that Hopf bifurcation occurs in this model when the value of
bifurcation parameter, the time delay of the maturation time of prey, crosses a critical value.

Keywords: predator-prey bioeconomic model; ratio-dependent; time delay; Hopf bifurcation; optimal
harvesting

1. Introduction

There are some relationships between species such as predation, competition, mutualism and
parasitism, while predation is a popular representative in ecosystem. Since Lotka [1] and Volterra [2]
almost simultaneously proposed the Lotka-Volterra model of predation between two populations, many
scholars have studied the dynamics of different types of predator-prey models (see [3–6]). They usually
consider the response of the predator to the prey density changing through a functional response in the
modelling of predator-prey model. A variety of models are generated due to the selection of different
types of functional response functions. Holling type I, II and III [7–9] were first proposed by Holling
based on empirical field data from 1959 to 1966. The traditional predator-prey models assumed that
the functional response depends only on the prey populations [10–12]. However, several biologists
questioned functional response is determined solely by prey density. They suggested that predators
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might interfere with each other’s foraging because predators share or compete for food with each other
when predatos forage. Therefore, the functional response should depend not only on the prey density
but also on the predator, see for instance [13–22]. The authors considered that the growth of population
is on slow time scale (days or months) and established the ratio-dependent model. By virtue of Holling
type II function, Kesh et al. [19] proposed a ratio-dependent model and obtained the sufficient condition
for permanent co-existence. Xu and Chen [20] and Tang and Chen [21] studied the local and global
stability of two classes of ratio-dependent system with delay, respectively. Fan and Li [22] proposed a
delayed discrete ratio-dependent model and obtained the sufficient conditions for the permanence.

The study on providing additional food for the predator is an important topic in ecological modeling,
which leads to more complex dynamics for the predator-prey model and has received extensive attentions.
In recent years, many scholars have focused on the work of providing additional food for the predator to
protect species or control pest, for details to see references [23–26]. Assuming that the quality of the
additional food remains constant, Srinivasu and Prasad [23] found that the growth of the predator could
be enhanced by the provision of extra food for the predator. Basheer et al. [24] showed that providing
extra food for the predator is effective in eliminating pests. Samaddar [25] and Wu [26] investigated the
Hopf bifurcation of the model which took into account the provision of extra food for the predator and
time delay.

Motivated by the view of Arditi and Ginzburg [27] and Srinivasu et al. [28], a ratio-dependent model
which involves the assumption that the additional food is provided for the predator was first proposed
by Kumar and Chakrabarty [29]. This extra food is considered to be available uniformly within the
ecological domain [28]. The model is as follows

dN
dT
= rN

(
1 −

N
K

)
−

e1( N
P )

1 + e1h1( N
P ) + e2h2( A

P )
P,

dP
dT
=

n1e1( N
P ) + n2e2( A

P )

1 + e1h1( N
P ) + e2h2( A

P )
P − m′P.

(1.1)

Where A is the additional food for the predator, the number of preys and predators at time T is
respectively represented by N(T ) and P(T ), here N(0) > 0, P(0) > 0. The intrinsic growth rate of the
prey is expressed by r and m′ stands for natural mortality of the predator, the carrying capacity of the
prey is described by K. e1 and e2 denote the coefficients of predator capture on prey and additional
food, n1 and n2 represent separately the nutritional value of the prey and additional food, h1 and h2 are
handling time per predator per unit of the ratio N

P prey biomass and per predator per unit of the ratio A
P

additional food biomass, respectively.
Another important aspect, the real ecosystem could not be denied the fact that the processes of

biological development are not normally instantaneous on account of the interaction with environment
or other species. Therefore, several biologists and mathematicians began to explore and study the
time-delay models inspired by the dynamics of population models with time delay. From the biological
and mathematical point of view, predator-prey models with delay [30–35] tend to exhibit more complex
dynamics than those without that, such as local and global stability, Hopf bifurcation, limit cycle and
so on. For example, the properties of the periodic solutions of the model with delay and impulse were
obtained in [31]. Jiang [34] investigated the global asymptotical and the existence of Hopf bifurcation
of a diffusive model with ratio-dependent function and delay. By studying the delay differential system,
Tang and Zhang [35] showed that the stability of the model becomes unstable state when the time
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reaches a certain critical point, thus Hopf bifurcation occurs. Considering the maturation time of the
prey, model (1.1) turns to the following version

dN
dT
= rN

(
1 −

N(T − τ)
K

)
−

e1( N
P )

1 + e1h1( N
P ) + e2h2( A

P )
P,

dP
dT
=

n1e1( N
P ) + n2e2( A

P )

1 + e1h1( N
P ) + e2h2( A

P )
P − m′P.

(1.2)

It is widely known that human survival and development depend on natural resources. Biological
resources have the most unique development mechanism due to renewability. Over-exploitation of
biological resources will not only lead to a reduction in their quantity and quality, but also may drive
species to extinction. Thus, taking the path of sustainable development becomes necessary to maintain
ecological balance and meets the material needs of the people. From an economic perspective, the
impact of harvesting effort on ecosystem guarantees that the net economic revenue is equal to the
difference between total revenue and total cost which may influence on the harvesting activities. There
has been a growing literature for the modeling and analysis of bioeconomic systems. The existence
of steady state was discussed in a bioeconomic model with ratio-dependent [36]. The dynamics of
the delay and diffusion terms of a bioeconomic plankton model was investigated by Zhao et al. [37].
In particular, an increasing number of bioeconomic models are expressed by differential-algebraic
equations [38–44]. A prey-predator economic model with time-delay and stage structure was proposed
by Zhang et al. [38]. Through detailed proof, the results show that the model undergoes three different
bifurcational phenomena. Chen [41] established a biological economic model which suggested that the
model undergoes flip bifurcation and Neimark-Sacker bifurcation.

To extend the model above, a bioeconomic model with time delay incorporating two differential
equations and one algebraic equation is written as

dN
dT
= rN

(
1 −

N(t − τ)
K

)
−

e1( N
P )

1 + e1h1( N
P ) + e2h2( A

P )
P,

dP
dT
=

n1e1( N
P ) + n2e2( A

P )

1 + e1h1( N
P ) + e2h2( A

P )
P − m′P − q1EP,

E(p1q1P − w) − Q = 0.

(1.3)

From an economic perspective, the impact of harvesting effort on ecosystem is expressed as: net
economic revenue (NER) = total revenue (TR) - total cost (TC). TR = p1q1E(t)P(t) and TC = wE(t),
where p1 is the price per unit predator biomass, q1 and E(t) stand for the harvesting capacity coefficient
and harvesting effort of the predator, respectively. w represents the cost per unit predator harvesting
efforts. Q means the NER. We only consider the harvesting of the predator, the catch rate function h(t)
is written as h(t) = q1E(t)P(t) which meets the catch-per-unit-effort hypothesis [45]. All the parameters
in model (1.3) are positive. The initial conditions for model (1.3) are given N[−τ,0] ∈ C+([−τ, 0],R+). If
P(0) is provided, E(0) can be expressed as Q/(p1q1P(0) − w) thus it is content with P(0) > w/p1q1.

Significantly, a real-life application is motivated by data from Katz [46]. We consider that prey N is
represented by barnacles Balanus balanoides and predator P is expressed as snails Urosalpinx cinerea.
The data strongly supports the ratio-dependent form N/P much better than that only depends on prey
N. Incorporating additional food A (Ostrea gigas thunberg) into our model, our target is to address
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our understanding on the consequences of providing additional food for the predator on the dynamics,
which brings out an explicit link between practical biological control and theoretical fruits. Besides,
we investigate the optimal harvesting strategy of snails Urosalpinx cinerea due to its use as a kind of
Chinese medical herbs.

The rest of this manuscript is emerged as follows. Section 2 is devoted to discussing the local
steady-state and the Hopf bifurcation by investigating the characteristic equation. In Section 3, the main
results including the properties of the bifurcating periodic solutions and the formulas of the direction of
Hopf bifurcation are investigated. The optimal harvesting problem of model (1.3) without time delay is
analyzed in Section 4. Four numerical examples are displayed in Section 5 to explain our findings. The
brief and powerful biological discussion and conclusions are provided in Section 6. The paper end with
Appendices A, B and C to show some proof and calculations.

2. Local stability of equilibria and Hopf bifurcation

Model (1.3) is simplified and analyzed by using the following rescaling

x =
N
K
, y =

P
Ke1h1

, t = rT.

After nondimensionalizing the model (1.3) for convenience, we obtain
dx
dt
= x(1 − x(t − τ)) −

cxy
x + y + αξ

,

dy
dt
=

b(x + ξ)y
x + y + αξ

− my − qEy,

E(pqy − w) − Q = 0,

(2.1)

where c = e1
r , α = n1h2

n2h1
, ξ = γA

K , γ = n2e2
n1e1

, b = n1
rh1

, m = m′
r , q = q1

r , p = p1Ke1h1r.
Through calculation, the internal equilibrium of the model (2.1) could be written as P∗0(x∗, y∗, E∗),

where

E∗ =
Q

pqy∗ − w
, y∗ =

x∗2 − x∗ + αξx∗ − αξ
1 − x∗ − c

and x∗ is the positive solution of Ax4 + Bx3 +Cx2 + Dx + F = 0 where

A =pqb, B = −2pqb + pqbαξ + wb + pqbc + pqbξ − pqmc,

C =pqb − 2pqbαξ − 2wb + 2wbc − pqbc + pqαξbc − 2pqbξ + pqbαξ2 + wbξ + pqbcξ + pqmc

− 2pqαξmc − wmc + qQc,

D =pqbαξ + wb − 2wbc − pqbcαξ + wbc2 + pqbξ − pqbαξ2 − 2wbξ − pqbαξ2 + 2wbcξ − pqbcξ

+ pqbcαξ2 + 2pqαξmc + wmc − wc2m − pqα2ξ2mc − wmcαξ − qQc + qQcαξ + qQc2,

F =pqαξ2b + wbξ − 2wcbξ − pqbcαξ2 + wc2bξ + pqα2ξ2mc + wmcαξ − wmc2αξ − qQcαξ

+ qQc2αξ.

Remark 2.1. By Descartes sign rule [47], the possible positive roots of equation Ax4 + Bx3 + Cx2 +

Dx + F = 0 are as follows.
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(i) If any one of the conditions (a), (b), (c) and (d) holds, the equation exists one positive root

(a) A < 0, B > 0,C > 0,D > 0, F > 0; (b) A > 0, B > 0,C > 0,D > 0, F < 0;
(c) A < 0, B < 0,C > 0,D > 0, F > 0; (d) A > 0, B > 0,C > 0,D < 0, F < 0.

(ii) If any one of the conditions (e), ( f ), (g), (h), (i) and ( j) holds, the equation exists two positive roots
or no roots

(e) A > 0, B < 0,C > 0,D > 0, F > 0; ( f ) A > 0, B > 0,C < 0,D > 0, F > 0;
(g) A > 0, B > 0,C > 0,D < 0, F > 0; (h) A < 0, B > 0,C > 0,D > 0, F < 0;
(i) A > 0, B < 0,C < 0,D > 0, F > 0; ( j) A > 0, B > 0,C < 0,D < 0, F > 0.

(iii) If any one of the conditions (k), (l), (m) and (n) holds, the equation exists three positive roots or one
positive root

(k) A < 0, B > 0,C < 0,D > 0, F > 0; (l) A < 0, B > 0,C > 0,D < 0, F > 0;
(m) A > 0, B < 0,C > 0,D > 0, F < 0; (n) A > 0, B > 0,C < 0,D > 0, F < 0.

(iv) If the condition (p) holds, the equation exists four positive roots or two positive roots or no roots

(p) A > 0, B < 0,C > 0,D < 0, F > 0.

According to the following theorem, we know the conditions of the Hopf bifurcation occurs in
model (2.1).
Theorem 2.1. If the assumptions A1 + A4 > 0, A3 > 0, A2 + A3 > 0 and A2 − A3 < 0 are satisfied, then
when τ < τ0, equilibrium P∗0(x∗, y∗, E∗) of model (2.1) is stable; equilibrium P∗0(x∗, y∗, E∗) of Eq (2.1)
is unstable when τ > τ0; when τ = τ0, model (2.1) undergoes a Hopf bifurcation.

The detailed proving process of the Theorem is given in Appendix A.

3. Stability and direction of the Hopf bifurcation

We investigate the direction of Hopf bifurcation and the properties of the bifurcating periodic
solutions at the positive equilibrium in this section.
Theorem 3.1. If µ2 > 0 (µ2 < 0), the model undergoes a supercritical (subcritical) Hopf bifurcation at
P∗(x∗1, y

∗
1, E

∗
1); moreover, if β2 < 0 (β2 > 0) then the bifurcating periodic solutions are stable (unstable);

if T2 > 0 (T2 < 0), the periodic of bifurcating periodic solutions increase (decrease). Here

c1(0) =
i

2ω10τk

(
g20g11 − 2|g11|

2 −
|g02|

2

3

)
+

g21

2
,

µ2 = −
Re{c1(0)}
Re{λ′(τk)}

, β2 = 2Re{c1(0)},

T2 =
Im{c1(0)} + µ2Im{λ′(τk)}

ω10τk
.

The detailed proof of the Theorem is given in Appendix B.
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4. Optimal harvesting

In order to achieve species persistence and profit maximization, optimal harvesting problem for
model (1.3) without time delay is discussed in this section. We consider instantaneous annual discount
rate δ, we give a continuous time stream of revenues J as follows

J =

∫ t f

t0
E(p1q1P − w)e−δtdt. (4.1)

The control constrain on this interval 0 < E(t) < Emax. Here, Emax stands for the maximum harvesting
effort. The optimal prey and predator densities and the corresponding optimal harvesting effort are
represented by Noptimal, Poptimal and Eoptimal, respectively. We are committed to calculating the optimal
harvesting effort Eoptimal which satisfies the following formula

J(Eoptimal) = max{J(E)|E ∈ U}, (4.2)

where U presents the control set written as

U = {E | E is measurable and 0 ≤ E ≤ Emax for all t}. (4.3)

The calculation procedure of Noptimal, Poptimal and Eoptimal are shown in Appendix C.

5. Numerical simulation

In this section, we will employ several specific examples to simulate the solutions to model (1.3),
and verify the analytical results of the existence of Hopf bifurcation. Our analytical results illustrate
that Hopf bifurcation arises in model (1.3) when the value of bifurcation parameter τ crosses critical
values τ = τk, where

τk =
1
ω10

arccos
(A3 − A1A4)ω2

10 − A2A3

A2
3 + A2

4ω
2
10

+
2kπ
ω10

, k = 0, 1, 2, 3 · · · ,

and ω10 is the root of equation ω1
4 + (A2

1 − 2A2 − A2
4)ω1

2 + (A2
2 − A2

3) = 0. Here, bifurcation parameter
τ is the maturation time of prey. In order to illustrate the Hopf bifurcation of (1.3). We first choose the
parameter values as follows: r = 1.01, K = 0.91, e2 = 1.01, h1 = 0.99, h2 = 0.01, n1 = 0.85, n2 = 0.98,
A = 0.98, m′ = 1.99, q1 = 0.91, p1 = 360, w = 1.01, Q = 0.51. The scientific significance of these
parameters are shown in Table 1, under the above parameters, model (1.3) becomes the following
model (5.1) 

dN
dT
= 1.01N

(
1 −

N(t − τ)
0.91

)
−

0.45( N
P )

1 + 0.45 · 0.99( N
P ) + 1.01 · 0.01( 0.98

P )
P,

dP
dT
=

0.85 · 0.45( N
P ) + 0.98 · 1.01( 0.98

P )

1 + 0.45 · 0.99( N
P ) + 1.01 · 0.01(0.98

P )
P − 1.99P − 0.91EP,

E(360 · 0.91P − 1.01) − 0.51 = 0.

(5.1)

Through maple software, we get P1(N∗,P∗,E∗) = (0.7191, 0.2939, 0.0054) and P∗1(x∗1, y
∗
1,E

∗
1) =

(0.7903, 0.7248, 0.0108) are respectively the equilibrium of models (5.1) and (A.2) with above parameters.
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Table 1. Meaning and dimension of the parameters.

Parameter Biological significance Dimension
r The intrinsic growth rate of the prey Time−1

K Carrying capacity of the prey Biomass
e1 The coefficient of predator capture on prey Time−1

e2 The coefficient of predator capture on additional food Time−1

h1 Handing time per predator per unit of the ratio N
P prey biomass Time

h2 Handing time per predator per unit of the ratio N
P additional food biomass Time

n1 The nutritional value of the prey Percent
n2 The nutritional value of the additional food Percent
A The additional food for the predator Biomass
m′ The natural mortality of the predator Time−1

q1 The harvesting capacity coefficient Time−1

p1 The price per unit predator biomass –
w The cost per unit predator harvesting efforts –
Q The net economic revenue –
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Figure 1. Numerical simulations of model (5.1) with τ = 1.63 < τ0 = 1.86: (a) the
time evolution of the prey; (b) the time evolution of the predator; (c) the time evolution
of the harvesting effort of predator; (d) the phase trajectory of model (5.1). Equilibrium
P1(N∗, P∗, E∗) is asymptotically stable.
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Substituting the value of the positive equilibrium P∗1(x∗1, y
∗
1, E

∗
1) in the expression of A1, A2, A3 and

A4 to calculate the values as follows: A1 = 0.81, A2 = −0.16, A3 = 0.73 and A4 = 0.79 which
surely satisfy the conditions of Theorem 2.1 (that is A1 + A4 = 1.60 > 0, A2 + A3 = 0.56 > 0 and
A2 − A3 = −0.89 < 0). In addition, we further substitute A1, A2, A3 and A4 to equation (2.8) to calculate
ω10 = 0.74, then substituting ω10 in the expression of τk to yield τ0 = 1.86. A series of calculations
show that g20 = −12.70 + 3.11i, g11 = −4.43 − 10.67i, g02 = 11.05 − 3.71i, g21 = −106.05 + 74.57i,
c1(0) = −97.31 − 43.88i, Re{λ′(τk)} = 1.01, Im{λ′(τk)} = 2.35, µ2 = 96.35 > 0, β2 = −194.62 < 0,
T2 = 134.80 > 0. Hence, by Theorem 3.1, the periodic increase, and the direction is supercritical, and
the periodic solutions are stable. By Matlab we will reveal how the model can arise Hopf bifurcation by
choosing different time delays τ in the following figures.

When τ = 1.63 < τ0 = 1.86, model (5.1) satisfies the condition of Theorem 2.1. So P1(N∗, P∗, E∗) =
(0.7191, 0.2939, 0.0054) is asymptotically stable. Figure 1 reveals the time evolution and the phase
trajectory of model (5.1) for τ = 1.63. It is obvious that model (5.1) converges to the positive equilibrium.

When τ = 1.87 > τ0 = 1.86, model (5.1) satisfies the condition of Theorem 2.1. So
P1(N∗, P∗, E∗) = (0.7191, 0.2939, 0.0054) is unstable, i.e., a family of periodic solutions are bifur-
cated from P1(N∗, P∗, E∗). The periodic solutions and its stability are shown in Figure 2.
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Figure 2. Numerical simulations of model (5.1) with τ = 1.87 > τ0 = 1.86: (a) the
time evolution of the prey; (b) the time evolution of the predator; (c) the time evolution
of the harvesting effort of predator; (d) the phase trajectory of model (5.1). Equilibrium
P1(N∗, P∗, E∗) is unstable and there exist bifurcating periodic solutions.
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Combined with Figures 1 and 2, we can see that the size of maturation time τ affects the dynamic
behaviors of the model, see Figure 3. This means that if time delay τ exceeds critical value, bifurcation
behavior occurs at the positive equilibrium P1(N∗, P∗, E∗) of model (1.3).

We choose the parameter values as follows: r = 0.2, K = 0.1, e2 = 0.7, h1 = 0.95, h2 = 0.8, n1 = 0.1,
n2 = 3, A = 0.01, m′ = 0.9, q1 = 5, p1 = 1, w = 0.01, δ = 0.01. (Noptimal, Poptimal) and Eoptimal as
capture rate e1 increase are shown by (a) in Figure 4. It shows that with the increase of capture rate e1,
the optimal prey population decreases initially and increases afterwards, optimal predator population
gradually decreasing, and the optimal harvesting effort gradually decreases. Besides, we choose the
parameter values as follows: r = 1, K = 0.45, e1 = 60, e2 = 0.2, h1 = 1, h2 = 0.02, n1 = 1.5, n2 = 1,
m′ = 0.01, q1 = 1.44, p1 = 0.02, w = 1.01, δ = 0.1. (Noptimal, Poptimal) and Eoptimal as additional food
A increase are shown by (b) in Figure 4. It displays that with the increase of additional food A, the
corresponding optimal prey and predator populations gradually increase, and the optimal harvesting
effort gradually decreases.
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Figure 3. The bifurcation diagram of model (1.3) with respect to τ. (a) the bifurcation diagram
of N(t); (b) the bifurcation diagram of P(t).
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Figure 4. Optimal harvesting with respect to different parameters. (a) the coefficient of
predator capture on prey e1 ∈ (0, 0.21); (b) additional food A ∈ (0, 1.80).
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6. Discussion and conclusions

In our paper, based on a predator-prey model with additional food proposed by Kumar et al. [29],
we incorporate time delay and harvesting into the above model and establish a differential-algebraic
bio-economic model. Through a series of analytical analysis we obtain the results about the existence
of positive equilibrium, the conditions of steady-state and Hopf bifurcation, and the direction of
bifurcation as well as the stability of bifurcating periodic solutions. Firstly, the local stability condition
of positive equilibrium of model (2.1) with time delay is A2 − A3 > 0, while that without time delay are
A1 + A4 > 0 and A2 + A3 > 0. Theorem 2.1 implies that the presence of the mature delay can destabilize
model (2.1). When τ < τ0, equilibrium P∗0(x∗, y∗, E∗) of model (2.1) is stable. The equilibrium is
unstable when τ > τ0; when τ = τ0, model (2.1) has a Hopf bifurcation near the equilibrium. Besides,
Theorem 3.1 displays that the direction of the bifurcation is determined by µ2, the stability of bifurcating
periodic solutions is determined by β2, and the period of the bifurcating periodic solutions is determined
by T2. Last, optimal harvesting strategies for model (1.3) without time delay are investigated. We
achieve optimal harvesting equilibrium (Noptimal, Poptimal) and optimal harvesting effort Eoptimal.

The numerical simulation of the model is carried out through Maple and Matlab software, and we find
that the results of the numerical simulation agree with the theoretical results in Theorems 2.1 and 3.1.
The influence of the bifurcation parameter τ on the dynamics of prey, predator and harvesting effort
is discussed. The experimental results illustrate that the positive equilibrium of the model is locally
asymptotically stable when bifurcation parameter τ < 1.86, see Figures 1. Conversely, equilibrium
P1(N∗, P∗, E∗) is unstable and there exist bifurcating periodic solutions which are stable when bifurcation
parameter τ > 1.86, see Figure 2. The bifurcation diagram of (1.3) when τ = 1.86 is presented
in Figure 3, and the direction of bifurcation is supercritical. This also illustrates the influence of
time delay τ which is one of the causes of population size fluctuation on the Hopf bifurcation of
model (1.3), i.e. the presence of the mature delay can destabilize model (1.3). Furthermore, we display
optimal harvesting strategies in Figure 4, and depict the change of optimal harvesting equilibrium
and optimal harvesting effort with respect to the rate of predator capture on prey e1 and extra food A,
respectively. The phenomenon in Figure 4 (a) is expected due to the stronger impact of the coefficient
of predator capture on prey e1. From Figure 4 (a), we know that optimal harvesting effort approaches
zero when the coefficient of predator capture on prey e1 = 0.21. This means that when the coefficient of
predator capture on prey e1 is beyond the level 0.21, harvesting predators should not be considered in
order to prevent extinction. Figure 4 (b) shows that the optimal harvesting effort gradually decreases,
while optimal prey and predator populations gradually increase, since additional food A distracts the
predator from attacking the prey. At the same time, in order to prevent harmful prey from growing to
uncontrollable numbers, the harvesting effort on predator should be reduced.

There are many topics that require us to refine and further analyze our model. On the one hand, the
discrete time delay is considered in this study of Hopf bifurcation while more rich dynamic behaviors
are generated by incorporating the distributed delays. On the other hand, the influence of random
factors could not be ignored in which we introduce white noise into our model which involving the
multiplicative random excitation and additive random excitation to analyze the stochastic P-bifurcation
and stochastic D-bifurcation. The model is displayed as follows
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

dN
dT
= rN

(
1 −

N
K

)
−

e1( N
P )

1 + e1h1( N
P ) + e2h2( A

P )
P + α1Nξ(t) + η1η(t),

dP
dT
=

n1e1( N
P ) + n2e2( A

P )

1 + e1h1( N
P ) + e2h2( A

P )
P − m′P − q1EP + α2Pξ(t) + η2η(t),

E(p1q1P − w) − Q = 0,

where ξ(t), η(t) represent the multiplicative random excitation and additive random excitation respec-
tively. The above mentions make our model more interesting and complicated and remain to be done in
the future.
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Appendix A

In order to linearize model (2.1), we consider the following linear transformation


x
y
E

 =


1 0 0
0 1 0
0 −

pqE∗

pqy∗−w 1




x1

y1

E1

 .
Thus model (2.1) could be rewritten as
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

dx1

dt
= x1(1 − x1(t − τ)) −

cx1y1

x1 + y1 + αξ
,

dy1

dt
=

b(x1 + ξ)y1

x1 + y1 + αξ
− my1 − q

(
E1 −

pqE∗y1

pqy∗ − w

)
y1,(

E1 −
pqE∗y1

pqy∗ − w

)
(pqy1 − w) − Q = 0.

(A.2)

The internal equilibrium of the model (A.2) becomes P∗1(x∗1, y
∗
1, E

∗
1), we transform the equilibrium into

zero by linear transformation x1 = x∗1 + x2, y1 = y∗1 + y2, E1 = E∗1 + I(x2, y2), where

I(x2, y2) =
pqE∗(y∗1 + y2)

pqy∗1 − w
+

Q
pq(y∗1 + y2) − w

−
pqE∗y∗1

pqy∗1 − w
− E∗.

Model (A.2) is expressed as the following equation according to the above transformations
dx2

dt
= (x∗1 + x2)((1 − (x∗1 + x2(t − τ))) −

c(x∗1 + x2)(y∗1 + y2)
x∗1 + x2 + y∗1 + y2 + αξ

,

dy2

dt
= (y∗1 + y2)

( b(x∗1 + x2 + ξ)
x∗1 + x2 + y∗1 + y2 + αξ

− m − qE∗1 − qI +
pq2E∗(y∗1 + y2)

pqy∗ − w

)
.

(A.3)

By calculation, the Jacobian matrix of the model (A.3) at (0, 0) is represented as follows

J =


−x∗1e−λτ +

cx∗1y∗1
(x∗1 + y∗1 + αξ)

2 −
cx∗1(x∗1 + αξ)

(x∗1 + y∗1 + αξ)
2

by∗1(y∗1 + αξ − ξ)
(x∗1 + y∗1 + αξ)

2 −
b(x∗1 + ξ)y

∗
1

(x∗1 + y∗1 + αξ)
2 +

pq2E∗y∗1
pqy∗1 − w

 .
The formula for the determination of the characteristic equation gives that λ2+A1λ+A2+(A3+A4λ)e−λτ = 0,
where

A1 =
b(x∗1 + ξ)y

∗
1

(x∗1 + y∗1 + αξ)
2 −

pq2E∗y∗1
pqy∗1 − w

−
cx∗1y∗1

(x∗1 + y∗1 + αξ)
2 ,

A2 = −
cbx∗1y∗1

2(x∗1 + ξ)
(x∗1 + y∗1 + αξ)

4 +
pq2cx∗1y∗1

2E∗

(x∗1 + y∗1 + αξ)
2(pqy∗1 − w)

+
bcx∗1y∗1(x∗1 + αξ)(y

∗
1 + αξ − ξ)

(x∗1 + y∗1 + αξ)
4 ,

A3 =
bx∗1y∗1(x∗1 + ξ)

(x∗1 + y∗1 + αξ)
2 −

x∗1y∗1 pq2E∗

pqy∗1 − w
,

A4 = x∗1.

When τ = 0, the characteristic equation is as follows

λ2 + (A1 + A4)λ + A2 + A3 = 0. (A.4)

By Routh-Hurwitz criterion, we know that P∗1(x∗1, y
∗
1, E

∗
1) is locally asymptotically stable provided that

the conditions A1 + A4 > 0 and A2 + A3 > 0.
When τ > 0, the characteristic equation is yielded to

λ2 + A1λ + A2 + (A3 + A4λ)e−λτ = 0. (A.5)
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Suppose that iω1 is a solution of (A.5), one gets

−ω1
2 + A1iω1 + A2 + (A3 + A4iω1)e−iω1τ = 0. (A.6)

Separating the real and imaginary parts of Eq (A.6), we obtain

A4ω1 sinω1τ + A3 cosω1τ = ω
2
1 − A2, A4ω1 cosω1τ − A3 sinω1τ = −A1ω1. (A.7)

Furthermore,
ω1

4 + (A2
1 − 2A2 − A2

4)ω1
2 + (A2

2 − A2
3) = 0. (A.8)

Let u = ω2
1. Then, Eq (A.8) becomes

f (u) = u2 + (A2
1 − 2A2 − A2

4)u + (A2
2 − A2

3) = 0.

If A1 > 0,A3 > 0,A2 + A3 > 0 and A2 − A3 < 0, then Eq (A.8) exists a unique positive real root ω10, hence
(A.5) has a pair of pure imaginary roots ±iω10 at the critical value τk > 0, which could be denoted as

τk =
1
ω10

arccos
(A3 − A1A4)ω2

10 − A2A3

A2
3 + A2

4ω
2
10

+
2kπ
ω10

, k = 0, 1, 2, 3 · · · . (A.9)

If A2 − A3 > 0, (A.5) has no real roots and P∗1(x∗1, y
∗
1, E

∗
1) is asymptotical stability for any τ > 0.

We have to prove that d
dτReλ(τk) > 0 is true for guaranteeing the existence of Hopf bifurcation.

Consider the following equation(dλ
dτ

)−1

=
2λ + A1 + (−A3τ + A4 − A4τλ)e−λτ

(A3λ + A4λ2)e−λτ
. (A.10)

Using a computation process similar to that of Tang [48] and Cooke [49], one yields

Sign
{

d
dτReλ

}
λ=iω10

= Sign
{
Re

(
dλ
dτ

)−1}
λ=iω10

= Sign
{

Re
[
(2iω10 + A1)(cos(ω10τ) + i sin(ω10τ)) − A3τ + A4 − A4τiω10

A3iω10 − A4ω
2
10

]}
= Sign

{
2A3w2

10cos(w10τ) + 2A4w3
10sin(w10τ) − A1A4w2

10cos(w10τ) + A1A3w10sin(w10τ) − A2
4w2

10

A2
3ω

2
10 + A2

4ω
4
10

}
= Sign

{
ω2

10(2ω2
10 + (A2

1 − 2A2 − A2
4))

A2
3ω

2
10 + A2

4ω
4
10

}
= Sign

{
f ′(ω2

10)

A2
3 + A2

4ω
2
10

}
.

Since A2 + A3 > 0 and A2 − A3 < 0, we know that f (u) has a unique positive real root u0 = ω
2
10. In

addition it can be shown that f ′(u0) > 0 (that is f ′(ω2
10) > 0). Combined with the above analysis, we

have the following theorem.
Appendix B

Let u1(t) = x2(τt), u2(t) = y2(τt), τ = τk + µ (µ ∈ R), then, µ = 0 is the Hopf bifurcation value. The
functional differential equation is considered as follows

u′(t) = Lµ(ut) + F(µ, ut), (B.1)
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where u(t) = (u1(t), u2(t)) ∈ R2 and Lµ : C → R2, F : R ×C → R2. Let us define

Lµϕ =(τk + µ)


cx∗1y∗1

(x∗1 + y∗1 + αξ)
2 −

cx∗1(x∗1 + αξ)
(x∗1 + y∗1 + αξ)

2

by∗1(y∗1 + αξ − ξ)
(x∗1 + y∗1 + αξ)

2 −
b(x∗1 + ξ)y

∗
1

(x∗1 + y∗1 + αξ)
2 +

pq2E∗y∗1
pqy∗1 − w

 ϕ(0)

+ (τk + µ)
(
−x∗1 0

0 0

)
ϕ(−1)

(B.2)

and

F(µ, ϕ) = (τk + µ)
(

F1

F2

)
, (B.3)

where

F1 =
(cy∗1
µ2

1

−
cx∗1y∗1
µ3

1

)
ϕ2

1(0) − ϕ2
1(−1) +

(cx∗1
µ2

1

−
cx∗1y∗1
µ3

1

)
ϕ2

2(0) −
(cαξ
µ2

1

+
2cx∗1y∗1
µ3

1

)
ϕ1(0)ϕ2(0)

+
(
−

c(x∗1 − αξ)

µ3
1

+
3cx∗1y∗1
µ4

1

)
ϕ1(0)ϕ2

2(0) +
(
−

c(y∗1 − αξ)

µ3
1

+
3cx∗1y∗1
µ4

1

)
ϕ2

1(0)ϕ2(0)

+
(
−

cy∗1
µ3

1

+
cx∗1y∗1
µ4

1

)
ϕ3

1(0) +
(
−

cx∗1
µ3

1

+
cx∗1y∗1
µ4

1

)
ϕ3

2(0) + · · · ,

F2 =
(
−

by∗1
µ2

1

+
b(x∗1 + ξ)y

∗
1

µ3
1

)
ϕ2

1(0) −
(b(x∗1 + ξ)(x∗1 + αξ)

µ3
1

+
pq2Qw
ν3

1

)
ϕ2

2(0)

+
(b(αξ − ξ)

µ2
1

+
2b(x∗1 + ξ)y

∗
1

µ3
1

)
ϕ1(0)ϕ2(0) +

(b(x∗1 − αξ + 2ξ)

µ3
1

−
3b(x∗1 + ξ)y

∗
1

µ4
1

)
ϕ1(0)ϕ2

2(0)

+
(b(y∗1 − αξ + ξ)

µ3
1

−
3b(x∗1 + ξ)y

∗
1

µ4
1

)
ϕ2

1(0)ϕ2(0) +
(by∗1
µ3

1

−
b(x∗1 + ξ)y

∗
1

µ4
1

)
ϕ3

1(0)

+
(b(x∗1 + ξ)(x∗1 + αξ)

µ4
1

+
p2q3Qw
ν4

1

)
ϕ3

2(0) + · · · ,

(B.4)

in which µ1 = (x∗1 + y∗1 + αξ), ν1 = (pqy∗1 − w) and ϕ(θ) = (ϕ1(θ), ϕ2(θ)) ∈ C.
There exists a 2 × 2 matrix function η(θ, µ) (θ ∈ [−1, 0]) such that

Lµϕ =
∫ 0

−1
dη(θ, µ)ϕ(θ), ϕ ∈ C. (B.5)

At this point, bounded variation function could be chosen as

η(θ, µ) =(τk + µ)


cx∗1y∗1

(x∗1 + y∗1 + αξ)
2 −

cx∗1(x∗1 + αξ)
(x∗1 + y∗1 + αξ)

2

by∗1(y∗1 + αξ − ξ)
(x∗1 + y∗1 + αξ)

2 −
b(x∗1 + ξ)y

∗
1

(x∗1 + y∗1 + αξ)
2 +

pq2E∗y∗1
pqy∗1 − w

 δ(θ)
− (τk + µ)

(
−x∗1 0

0 0

)
δ(θ + 1).

(B.6)

Here, δ(θ) is the Dirac function.
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For ϕ ∈ C1([−1, 0],R2), we define

A(µ)ϕ(θ) =


dϕ(θ)

dθ
, θ ∈ [−1, 0),∫ 0

−1
dη(θ, µ)ϕ(θ), θ = 0,

(B.7)

R(µ)ϕ =
{

0, θ ∈ [−1, 0),
F(µ, ϕ), θ = 0.

(B.8)

Then, Eq (B.1) is equivalent to the following equation

u′t = A(µ)ut + R(µ)ut, ut(θ) = u(t + θ), θ ∈ [−1, 0]. (B.9)

The bifurcating periodic solution u(t, µ) of Eq (B.1) is affected by parameter ε, solution u(t, µ(ε)) of
Eq (B.1) exists amplitude o(ε), nonzero exponential β(ε) (β(0) = 0) and period T (ε). Under the above
assumptions, µ, T , and β have the following expansion form

µ = µ2ε
2 + µ4ε

4 + · · · ,

T =
2π
ω

(1 + T2ε
2 + T4ε

4 · · · ),

β = β2ε
2 + β4ε

4 · · · .

(B.10)

Next, we compute the coefficients µ2, T2, β2. For ψ ∈ C1([0, 1], (R2)∗), assign the conjugate operator
A∗ ofA is as follows

A∗ψ =

 −
dψ(s)

ds
, s ∈ (0, 1],∫ 0

−1
dηT (t, 0)ψ(−t), s = 0,

(B.11)

the adjoint bilinear form is given by

⟨ψ(s), ϕ(θ)⟩ = ψ̄T (0)ϕ(0) −
∫ 0

−1

∫ θ

ξ=0
ψ̄T (ξ − θ)dη(θ)ϕ(ξ)dξ, η(θ) = η(θ, 0). (B.12)

Obviously, ±iω10τk are both eigenvalues ofA(0) andA∗. Now we calculate the eigenvector ofA(0)
corresponding to iω10τk. Let q(θ) = (1,∆)T eiω10τkθ, then,A(0)q(θ) = iω10τkq(θ). Combining Eq (B.6)
and the definition ofA(0), it is easy to get

−x∗1e−iω10τk +
cx∗1y∗1
µ2

1

−
cx∗1(x∗1 + αξ)

µ2
1

by∗1(y∗1 + αξ − ξ)
µ2

1

−
b(x∗1 + ξ)y

∗
1

µ2
1

+
pq2E∗y∗1
ν1

 q(0) = iω10q(0), (B.13)

we further obtain

∆ = −
(
iω10 + x∗1e−iω10τk

) µ2
1

cx∗1(x∗1 + αξ)
+

y∗1
x∗1 + αξ

. (B.14)

By a similar argument as that in the above part, the eigenvector ofA∗ corresponding to −iω10τk could
be achieved. Let q∗(s) = D(1,∆∗)eiω10τk s, we also have

∆∗ =
(
− iω10 + x∗1e−iω10τk

) µ2
1

by∗1(y∗1 + αξ − ξ)
−

cx∗1
b(y∗1 + αξ − ξ)

. (B.15)
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From Eq (B.12) one gets

⟨q∗(s), q(θ)⟩ =D̄(1, ∆̄∗)(1,∆)T −

∫ 0

−1

∫ θ

ξ=0
D̄(1, ∆̄∗)e−iω10τk(ξ−θ)dη(θ)(1,∆)T eiω10τkξdξ

=D̄(1 + ∆̄∗∆) − D̄
∫ 0

−1

∫ θ

ξ=0
(1, ∆̄∗)eiω10τkθdη(θ)(1,∆)T dξ

=D̄(1 + ∆̄∗∆) − D̄
∫ 0

−1
(1, ∆̄∗)θeiω10τkθdη(θ)(1,∆)T

=D̄

(
1 + ∆̄∗∆ + (1, ∆̄∗)τk

(
x∗1 0
0 0

)
e−iω10τk

(
1
∆

) )
=D̄(1 + ∆̄∗∆ + τke−iω10τk x∗1).

. (B.16)

Hence,

D =
1

1 + ∆̄∗∆τk + eiω10τk x∗1
, D̄ =

1
1 + ∆∗∆̄τk + e−iω10τk x∗1

. (B.17)

Apparently, q∗(s) q(θ) meets ⟨q∗(s), q(θ)⟩ = 1 and ⟨q∗(s), q̄(θ)⟩ = 0. When µ = 0, let µt be the solution
of Eq (B.9), we set

z(t) = ⟨q∗, ut⟩, W(t, θ) = ut(θ) − 2Re{z(t)q(θ)}. (B.18)

Therefore,
W(t, θ) = W(z(t), z̄(t), θ), (B.19)

W(z(t), z̄(t), θ) = W20(θ)
z2

2
+W11(θ)zz̄ +W02(θ)

z̄2

2
+W30(θ)

z3

6
+ · · · , (B.20)

here, the local coordinates of center manifold C0 corresponding to q and q∗ are expressed as z and z̄.
Note that W is real if ut is real, thus only real solutions are considered. For solution ut ∈ C0, since µ = 0,

z′(t) = iω10τkz + q∗(0)F(0,W(z, z̄, 0)) + 2Re{z(t)q(θ)}) = iω10τkz + q∗(0)F0(z, z̄). (B.21)

that is
z′(t) = iω10τkz + g(z, z̄), (B.22)

where

g(z, z̄) = q∗(0)F0(z, z̄) = g20(θ)
z2

2
+ g11(θ)zz̄ + g02(θ)

z̄2

2
+ g21(θ)

z2z̄
2
+ · · · . (B.23)

Comparing Eqs (B.18) and (B.20), one has

u(t) = (u1t(θ), u2t(θ)) = W(t, θ) + 2Re{z(t)q(θ)}, (B.24)

where q(θ) = (1,∆)T eiω10τkθ, furthermore

u1t(0) = W (1)(t, 0) + z + z̄,
u2t(0) = W (2)(t, 0) + ∆z + ∆̄z̄,
u1t(−1) = W (1)(t,−1) + ze−iω10τk + z̄eiω10τk .

(B.25)
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Combining Eqs (B.3) and (B.4), we obtain

g(z, z̄) =q∗(0)F0(z, z̄) = q∗(0)F(0, ut) = D̄τk(1,∆∗)
(

F1

F2

)
= D̄τk(F1 + ∆∗F2)

=D̄τk

{(cy∗1
µ2

1

−
cx∗1y∗1
µ3

1

)
(W (1)(0) + z + z̄)2 − (W (1)(−1) + ze−iω10τk + z̄eiω10τk)2

+
(cx∗1
µ2

1

−
cx∗1y∗1
µ3

1

)
(W (2)(0) + ∆z + ∆̄z̄)2

+
(
−

cαξ
µ2

1

−
2cx∗1y∗1
µ3

1

)
(W (1)(0) + z + z̄)(W (2)(0) + ∆z + ∆̄z̄)

+
(
−

cy∗1
µ3

1

+
cx∗1y∗1
µ4

1

)
(W (1)(0) + z + z̄)3 +

(
−

cx∗1
µ3

1

+
cx∗1y∗1
µ4

1

)
(W (2)(0) + ∆z + ∆̄z̄)3

+
(
−

c(y∗1 − αξ)

µ3
1

+
3cx∗1y∗1
µ4

1

)
(W (1)(0) + z + z̄)2(W (2)(0) + ∆z + ∆̄z̄)

+
(
−

c(x∗1 − αξ)

µ3
1

+
3cx∗1y∗1
µ4

1

)
(W (1)(0) + z + z̄)(W (2)(0) + ∆z + ∆̄z̄)2

+ ∆∗
(
−

by∗1
µ2

1

+
b(x∗1 + ξ)y

∗
1

µ3
1

)
(W (1)(0) + z + z̄)2

+ ∆∗
(
−

b(x∗1 + ξ)
µ2

1

+
b(x∗1 + ξ)y

∗
1

µ3
1

−
p2q3Qy∗1
ν3

1

+
pq2Q
ν2

1

)
(W (2)(0) + ∆z + ∆̄z̄)2

+ ∆∗
(b(αξ − ξ)

µ2
1

+
2b(x∗1 + ξ)y

∗
1

µ3
1

)
(W (1)(0) + z + z̄)(W (2)(0) + ∆z + ∆̄z̄)

+ ∆∗
(by∗1
µ3

1

−
b(x∗1 + ξ)y

∗
1

µ4
1

)
(W (1)(0) + z + z̄)3

+ ∆∗
(b(x∗1 + ξ)

µ3
1

−
b(x∗1 + ξ)y

∗
1

µ4
1

−
p2q3Q
ν3

1

+
p3q4Qy∗1
ν4

1

)
(W (2)(0) + ∆z + ∆̄z̄)3

+ ∆∗
(b(y∗1 − αξ + ξ)

µ3
1

−
3b(x∗1 + ξ)y

∗
1

µ4
1

)
(W (1)(0) + z + z̄)2(W (2)(0) + ∆z + ∆̄z̄)

+ ∆∗
(b(x∗1 + 2ξ − αξ)

µ3
1

−
3b(x∗1 + ξ)y

∗
1

µ4
1

)
(W (1)(0) + z + z̄)(W (2)(0) + ∆z + ∆̄z̄)2 + · · ·

}
=D̄τk

{
2
(cy∗1
µ2

1

−
cx∗1y∗1
µ3

1

)
− 2e−2iω10τk + 2∆2

(cx∗1
µ2

1

−
cx∗1y∗1
µ3

1

)
+ 2∆

(
−

cαξ
µ2

1

−
2cx∗1y∗1
µ3

1

)
+ 2∆∗

(
−

by∗1
µ2

1

+
b(x∗1 + ξ)y

∗
1

µ3
1

)
+ 2∆∆∗

(b(αξ − ξ)
µ2

1

+
2b(x∗1 + ξ)y

∗
1

µ3
1

)
+ 2∆2∆∗

(
−

b(x∗1 + ξ)
µ2

1

+
b(x∗1 + ξ)y

∗
1

µ3
1

−
p2q3Qy∗1
ν3

1

+
pq2Q
ν2

1

)}z2

2
+ D̄τk

{
2
(cy∗1
µ2

1

−
cx∗1y∗1
ν3

1

)
+ 2∆∆̄

(cx∗1
µ2

1

−
cx∗1y∗1
µ3

1

)
+ 2Re(∆)

(
−

cαξ
µ2

1

−
2cx∗1y∗1
µ3

1

)
− 2 + 2∆∗

(
−

by∗1
µ2

1

+
b(x∗1 + ξ)y

∗
1

µ3
1

)
+ 2∆∆̄∆∗

(
−

b(x∗1 + ξ)
µ2

1

+
b(x∗1 + ξ)y

∗
1

µ3
1

−
p2q3Qy∗1
ν3

1

+
pq2Q
ν2

1

)
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+ 2Re(∆)∆∗
(b(αξ − ξ)

µ2
1

+
2b(x∗1 + ξ)y

∗
1

µ3
1

)}
zz̄ + D̄τk

{
2
(cy∗1
µ2

1

−
cx∗1y∗1
µ3

1

)
− 2e2iω10τk

+ 2∆̄2
(cx∗1
µ2

1

−
cx∗1y∗1
µ3

1

)
+ 2∆̄

(
−

cαξ
µ2

1

−
2cx∗1y∗1
µ3

1

)
+ 2∆∗

(
−

by∗1
µ2

1

+
b(x∗1 + ξ)y

∗
1

µ3
1

)
+ 2∆̄2∆∗

(
−

b(x∗1 + ξ)
µ2

1

+
b(x∗1 + ξ)y

∗
1

µ3
1

−
p2q3Qy∗1
ν3

1

+
pq2Q
ν2

1

)
+ 2∆̄∆∗

(b(αξ − ξ)
µ2

1

+
2b(x∗1 + ξ)y

∗
1

µ3
1

)} z̄2

2
+ D̄τk

{
2
(cy∗1
µ2

1

−
cx∗1y∗1
µ3

1

)
(2W (1)

11 (0) +W (1)
20 (0))

− (4W (1)
11 (−1)e−iω10τk + 2W (1)

20 (−1)eiω10τk) + 2
(cx∗1
µ2

1

−
cx∗1y∗1
µ3

1

)
(2W (2)

11 (0)∆ +W (2)
20 (0)∆̄)

+ 2
(
−

cαξ
µ2

1

−
2cx∗1y∗1
µ3

1

)(
W (1)

11 (0)∆ +
1
2

W (1)
20 (0)∆̄ +W (2)

11 (0) +
1
2

W (2)
20 (0)

)
+ 6

(
−

cy∗1
µ3

1

+
cx∗1y∗1
µ4

1

)
+ 2∆∗

(
−

by∗1
µ2

1

+
b(x∗1 + ξ)y

∗
1

µ3
1

)
(2W (1)

11 (0) +W (1)
20 (0))

+ 2
(
−

c(x∗1 − αξ)

µ3
1

+
3cx∗1y∗1
µ4

1

)
(2∆∆̄ + ∆2) + 6

(
−

cx∗1
µ3

1

+
cx∗1y∗1
µ4

1

)
(∆2∆̄)

+ 2∆∗
(
−

b(x∗1 + ξ)
µ2

1

+
b(x∗1 + ξ)y

∗
1

µ3
1

−
p2q3Qy∗1
ν3

1

+
pq2Q
ν2

1

)
(2W (2)

11 (0)∆ +W (2)
20 (0)∆̄)

+ 2∆∗
(b(αξ − ξ)

µ2
1

+
2b(x∗1 + ξ)y

∗
1

µ3
1

)
(W (1)

11 (0)∆ +
1
2

W (1)
20 (0)∆̄ +W (2)

11 (0) +
1
2

W (2)
20 (0))

+ 6∆∗
(by∗1
µ3

1

−
b(x∗1 + ξ)y

∗
1

µ4
1

)
+ 6∆2∆̄∆∗

(b(x∗1 + ξ)

µ3
1

−
b(x∗1 + ξ)y

∗
1

µ4
1

−
p2q3Q
ν3

1

+
p3q4Qy∗1
ν4

1

)
+ 2∆∗

(b(y∗1 − αξ + ξ)

µ3
1

−
3b(x∗1 + ξ)y

∗
1

µ4
1

)
(2∆ + ∆̄) + 2

(
−

c(y∗1 − αξ)

µ3
1

+
3cx∗1y∗1
µ4

1

)
(∆ + 2∆)

+ 2∆∗
(b(x∗1 − αξ + 2ξ)

µ3
1

−
3b(x∗1 + ξ)y

∗
1

µ4
1

)
(2∆∆̄ + ∆2)

}
z2z̄
2
+ · · · .

(B.26)
Comparing with the corresponding coefficients of the Eq (B.23), it yields to

g20 =D̄τk

{
2
(cy∗1
µ2

1

−
cx∗1y∗1
µ3

1

)
− 2e−2iω10τk + 2∆2

(cx∗1
µ2

1

−
cx∗1y∗1
µ3

1

)
+ 2∆

(
−

cαξ
µ2

1

−
2cx∗1y∗1
µ3

1

)
+ 2∆∗

(
−

by∗1
µ2

1

+
b(x∗1 + ξ)y

∗
1

µ3
1

)
+ 2∆∆∗

(b(αξ − ξ)
µ2

1

+
2b(x∗1 + ξ)y

∗
1

µ3
1

)
+ 2∆2∆∗

(
−

b(x∗1 + ξ)
µ2

1

+
b(x∗1 + ξ)y

∗
1

µ3
1

−
p2q3Qy∗1
ν3

1

+
pq2Q
ν2

1

)}
,

g11 =D̄τk

{
2
(cy∗1
µ2

1

−
cx∗1y∗1
µ3

1

)
− 2 + 2∆∆̄

(cx∗1
µ2

1

−
cx∗1y∗1
µ3

1

)
+ 2Re(∆)

(
−

cαξ
µ2

1

−
2cx∗1y∗1
µ3

1

)
+ 2∆∗

(
−

by∗1
µ2

1

+
b(x∗1 + ξ)y

∗
1

µ3
1

)
+ 2Re(∆)∆∗

(b(αξ − ξ)
µ2

1

+
2b(x∗1 + ξ)y

∗
1

µ3
1

)
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+ 2∆∆̄∆∗
(
−

b(x∗1 + ξ)
µ2

1

+
b(x∗1 + ξ)y

∗
1

µ3
1

−
p2q3Qy∗1
ν3

1

+
pq2Q
ν2

1

)}
,

g02 =D̄τk

{
2
(cy∗1
µ2

1

−
cx∗1y∗1
µ3

1

)
− 2e2iω10τk + 2∆̄2

(cx∗1
µ2

1

−
cx∗1y∗1
µ3

1

)
+ 2∆̄

(
−

cαξ
µ2

1

−
2cx∗1y∗1
µ3

1

)
+ 2∆∗

(
−

by∗1
µ2

1

+
b(x∗1 + ξ)y

∗
1

µ3
1

)
+ 2∆̄∆∗

(b(αξ − ξ)
µ2

1

+
2b(x∗1 + ξ)y

∗
1

µ3
1

)
+ 2∆̄2∆∗

(
−

b(x∗1 + ξ)
µ2

1

+
b(x∗1 + ξ)y

∗
1

µ3
1

−
p2q3Qy∗1
ν3

1

+
pq2Q
ν2

1

)}
,

g21 =D̄τk

{
2
(cy∗1
µ2

1

−
cx∗1y∗1
µ3

1

)
(2W (1)

11 (0) +W (1)
20 (0)) − (4W (1)

11 (−1)e−iω10τk + 2W (1)
20 (−1)eiω10τk)

+ 2
(cx∗1
µ2

1

−
cx∗1y∗1
µ3

1

)
(2W (2)

11 (0)∆ +W (2)
20 (0)∆̄) + 2

(
−

c(x∗1 − αξ)

µ3
1

+
3cx∗1y∗1
µ4

1

)
(2∆∆̄ + ∆2)

+ 2
(
−

cαξ
µ2

1

−
2cx∗1y∗1
µ3

1

)
(W (1)

11 (0)∆ +
1
2

W (1)
20 (0)∆̄ +W (2)

11 (0) +
1
2

W (2)
20 (0))

+ 6
(
−

cy∗1
µ3

1

+
cx∗1y∗1
µ4

1

)
+ 6

(
−

cx∗1
µ3

1

+
cx∗1y∗1
µ4

1

)
(∆2∆̄) + 2

(
−

c(y∗1 − αξ)

µ3
1

+
3cx∗1y∗1
µ4

1

)
(∆ + 2∆)

+ 2∆∗
(
−

by∗1
µ2

1

+
b(x∗1 + ξ)y

∗
1

µ3
1

)
(2W (1)

11 (0) +W (1)
20 (0))

+ 2∆∗
(
−

b(x∗1 + ξ)
µ2

1

+
b(x∗1 + ξ)y

∗
1

µ3
1

−
p2q3Qy∗1
ν3

1

+
pq2Q
ν2

1

)
(2W (2)

11 (0)∆ +W (2)
20 (0)∆̄)

+ 2∆∗
(b(αξ − ξ)

µ2
1

+
2b(x∗1 + ξ)y

∗
1

µ3
1

)
(W (1)

11 (0)∆ +
1
2

W (1)
20 (0)∆̄ +W (2)

11 (0) +
1
2

W (2)
20 (0))

+ 6∆∗
(by∗1
µ3

1

−
b(x∗1 + ξ)y

∗
1

µ4
1

)
+ 6∆2∆̄∆∗

(b(x∗1 + ξ)

µ3
1

−
b(x∗1 + ξ)y

∗
1

µ4
1

−
p2q3Q
ν3

1

+
p3q4Qy∗1
ν4

1

)
+ 2∆∗

(b(y∗1 − αξ + ξ)

µ3
1

−
3b(x∗1 + ξ)y

∗
1

µ4
1

)
(2∆ + ∆̄)

+ 2∆∗
(b(x∗1 − αξ + 2ξ)

µ3
1

−
3b(x∗1 + ξ)y

∗
1

µ4
1

)
(2∆∆̄ + ∆2)

}
.

(B.27)
In order to deduce g21, now we have to calculate W20(θ) and W10(θ). It follows from Eqs (B.9) and

(B.18) that

W ′ = u′t − z′q − z̄′q̄ =
{
AW − 2Re{q∗(0)F0q(θ), −1 ≤ θ < 0,
AW − 2Re{q∗(0)F0q(θ) + F0, θ = 0,

:= AW + H(z, z̄, θ),
(B.28)

where

H(z, z̄, θ) = H20(θ)
z2

2
+ H11(θ)zz̄ + H02(θ)

z̄2

2
+ · · · . (B.29)

Consider on the center manifold C0 close enough to the origin, we have

Ẇ = Wzż +Wz̄ ˙̄z. (B.30)
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Substituting Eq (B.30) into (B.28) and comparing the coefficients on z2 and zz̄, it easy to see

(A− 2iω10τkI)W20(θ) = −H20(θ),
AW11(θ) = −H11(θ).

(B.31)

For θ ∈ [−1, 0), from Eq (B.28) we can get

H(z, z̄, θ) = −q∗(0)F0q(θ) − q∗(0)F̄0q̄(θ) = −gq(θ) − ḡq̄(θ). (B.32)

Comparing the coefficients of Eq (B.29) gives that

H20(θ) = −g20q(θ) − ḡ02q̄(θ),
H11(θ) = −g11q(θ) − ḡ11q̄(θ).

(B.33)

We have from Eqs (B.31) and (B.33) that

Ẇ20(θ) = 2iω10τkW20(θ) + g20q(θ) + ḡ02q̄(θ). (B.34)

Noticing that q(θ) = q(0)eiω10τkθ, then

W20(θ) =
ig20

ω10τk
q(0)eiω10τkθ +

iḡ02

3ω10τk
q̄(0)e−iω10τkθ + M1e2iω10τkθ, (B.35)

where M1 = (M(1)
1 ,M(2)

1 ) ∈ R2 is a constant vector. By the same method as that in the above part we can
calculate

W11(θ) = −
ig11

ω10τk
q(0)eiω10τkθ +

iḡ11

ω10τk
q̄(0)e−iω10τkθ + M2, (B.36)

where M2 = (M(1)
2 ,M(2)

2 ) ∈ R2 is also a constant vector.
Calculating constant vectors M1 and M2 is our main work in the following discussion. It follows

from Eqs (B.28) and (B.29) that

H20(0) = −g20q(0) − ḡ02q̄(0) + 2τkN1,

H11(0) = −g11q(0) − ḡ11q̄(0) + 2τkN2,
(B.37)

where

N1 =

(
a11

a22

)
, N2 =

(
b11

b22

)
, (B.38)

and

a11 =
(cy∗1
µ2

1

−
cx∗1y∗1
µ3

1

)
− e−2iω10τk + ∆2

(cx∗1
µ2

1

−
cx∗1y∗1
µ3

1

)
+ ∆

(
−

cαξ
µ2

1

−
2cx∗1y∗1
µ3

1

)
,

a22 =
(
−

by∗1
µ2

1

+
b(x∗1 + ξ)y

∗
1

µ3
1

)
+ ∆2

(
−

b(x∗1 + ξ)
µ2

1

+
b(x∗1 + ξ)y

∗
1

µ3
1

−
p2q3Qy∗1
ν3

1

+
pq2Q
ν2

1

)
+ ∆

(b(αξ − ξ)
µ2

1

+
2b(x∗1 + ξ)y

∗
1

µ3
1

)
,

b11 =
(cy∗1
µ2

1

−
cx∗1y∗1
µ3

1

)
− 1 + ∆∆̄

(cx∗1
µ2

1

−
cx∗1y∗1
µ3

1

)
+ Re(∆)

(
−

cαξ
µ2

1

−
2cx∗1y∗1
µ3

1

)
,

b22 =
(
−

by∗1
µ2

1

+
b(x∗1 + ξ)y

∗
1

µ3
1

)
+ ∆∆̄

(
−

b(x∗1 + ξ)
µ2

1

+
b(x∗1 + ξ)y

∗
1

µ3
1

−
p2q3Qy∗1
ν3

1

+
pq2Q
ν2

1

)
+ Re(∆)

(b(αξ − ξ)
µ2

1

+
2b(x∗1 + ξ)y

∗
1

µ3
1

)
.
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According to the definition ofA and Eq (B.31) we have∫ 0

−1
dη(θ)W20(θ) = 2iω10τkW20(0) − H20(0) (B.39)

and ∫ 0

−1
dη(θ)W11(θ) = −H11(0), (B.40)

where η(θ) = η(0, θ). Substituting Eqs (B.35), (B.36) and (B.37) into (B.31), we notice that(
iω10τkI −

∫ 0

−1
eiω10τkθdη(θ)

)
q(0) = 0, (B.41)

(
− iω10τkI −

∫ 0

−1
e−iω10τkθdη(θ)

)
q̄(0) = 0, (B.42)

it is easy to see (
2iω10τkI −

∫ 0

−1
e2iω10τkθdη(θ)

)
M1 = 2τkN1, (B.43)∫ 0

−1
dη(θ)M2 = −2τkN2. (B.44)

Hence, we further get

M1 = 2


2iω10 −

cx∗1y∗1
µ2

1

+ x∗1e−2iω10τk
cx∗1(x∗1 + αξ)

µ2
1

−
by∗1(y∗1 + αξ − ξ)

µ2
1

2iω10 +
b(x∗1 + ξ)y

∗
1

µ2
1

−
pq2E∗y1∗

ν1


−1

N1 (B.45)

and

M2 = 2


cx∗1y∗1
µ2

1

+ x∗1 −
cx∗1(x∗1 + αξ)

µ2
1

by∗1(y∗1 + αξ − ξ)
µ2

1

−
b(x∗1 + ξ)y

∗
1

µ2
1

+
pq2E∗y1∗

ν1


−1

N2. (B.46)

From Eqs (B.35) and (B.36), we can determine the values of W20(θ) and W11(θ). g21 be represented by
the parameters of Eq (B.1). Therefore, we further calculate the values of c1(0), µ2, β2 and T2, as follows

c1(0) =
i

2ω10τk

(
g20g11 − 2|g11|

2 −
|g02|

2

3

)
+

g21

2
,

µ2 = −
Re{c1(0)}
Re{λ′(τk)}

, β2 = 2Re{c1(0)},

T2 =
Im{c1(0)} + µ2Im{λ′(τk)}

ω10τk
.

(B.47)
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Appendix C

Before finding the maximum value of J(E), the concrete Hamiltonian function is given

H =E(p1q1P − w)e−δt

+λ1

(
rN(1 −

N
K

) −
e1( N

P )

1 + e1h1( N
P ) + e2h2( A

P )
P
)

+λ2

(
n1e1( N

P ) + n2e2( A
P )

1 + e1h1( N
P ) + e2h2( A

P )
P − m′P − q1EP

)
.

(C.4)

where λi = λi(t), i = 1, 2, are adjoint variables. The condition that the Hamiltonian function H satisfy is
presented by

∂H
∂E
= (p1q1P − w)e−δt − λ2q1P = 0, (C.5)

The adjoint variables λ1 and λ2 satisfy the following adjoint equations according to Pontryagin’s
Maximum Principle.

dλ1

dt
= −

∂H
∂N
= λ1

(
rN
K
−

e2
1h1

N
P(

1 + e1h1
N
P + e2h2

A
P

)2

)
− λ2

(
n1e1

(
1 + e2h2

A
P

)
− e1e2h1n2

A
P(

1 + e1h1
N
P + e2h2

A
P

)2

)
,

dλ2

dt
= −

∂H
∂P
= −p1q1Ee−δt + λ1

(
e1

N
P

(
e1h1

N
P + e2h2

A
P

)(
1 + e1h1

N
P + e2h2

A
P

)2

)
+ λ2

(
e1n1

N
P + e2n2

A
P(

1 + e1h1
N
P + e2h2

A
P

)2

)
.

(C.6)

In order to find the solutions λ1(t), λ2(t) of Eq (C.6), we delete λ2 in Eq (C.6) to obtain a second
order differential equation with respect to λ1

d2λ1

dt2 + I1
dλ1

dt
+ I2λ1 = C1e−δt, (C.7)

where

I1 = −

(rN
K
−

e2
1h1

N
P(

1 + e1h1
N
P + e2h2

A
P

)2

)
−

e1n1
N
P + e2n2

A
P(

1 + e1h1
N
P + e2h2

A
P

)2 ,

I2 =

(
n1e1 + e1e2n1h2

A
P − e1e2n2h1

A
P

)(
e2

1h1
N2

P2 + e1e2h2
AN
P2

)
(1 + e1h1

N
P + e2h2

A
P )4

+
e1n1

N
P + e2n2

A
P(

1 + e1h1
N
P + e2h2

A
P

)2

(rN
K
−

e2
1h1

N
P(

1 + e1h1
N
P + e2h2

A
P

)2

)
,

C1 =

(
n1e1(1 + e2h2

A
P ) − e1e2n2h1

A
P

)
Ep1q1(

1 + e1h1
N
P + e2h2

A
P

)2 .

(C.8)

Then, we obtain λ1(t) = O1e−δt, where O1 =
C1

δ2−I1δ+I2
. Set up the equation in a similar way as above d2λ2

dt2 +

I1
dλ2
dt + I2λ1 = C2e−δt, we get λ2(t) = O2e−δt, where O2 =

C2
δ2−I1δ+I2

, C2 = −Ep1q1

(
δ+ rN

K −
e2

1h1
N
P

(1+e1h1
N
P +e2h2

A
P )2

)
.

Substituting λ2(t) into (C.5) yields

E =
(δ2 − I1δ + I2)(p1q1P − w)(

p1q1δ + p1q1
rN
K −

e2
1h1 p1q1

N
P

(1+e1h1
N
P +e2h2

A
P )2

)
q1P

. (C.9)
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Therefore, the values of (Noptimal, Poptimal) and Eoptimal can be obtained by Eq (C.9) and solving the
biological equilibrium.

The optimal harvesting effort at any time is determined by the following optimal harvesting solution

E(t) =


Emax if ∂H

∂E > 0,
Eoptimal if ∂H

∂E = 0,
Emin if ∂H

∂E < 0,
(C.10)

where Emin is the minimum harvesting effort.
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