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Abstract: A recent discovery highlighted that mosquitoes infected with Microsporidia MB are un-
able to transmit the Plasmodium to humans. Microsporidia MB is a symbiont transmitted vertically
and horizontally in the mosquito population, and these transmission routes are known to favor the
persistence of the parasite in the mosquito population. Despite the dual transmission, data from field
experiments reveal a low prevalence of MB-infected mosquitoes in nature. This study proposes a
compartmental model to understand the prevalence of MB-infected mosquitoes. The dynamic of the
model is obtained through the computation of the basic reproduction number and the analysis of the
stability of the MB-free and coexistence equilibria. The model shows that, in spite of the high verti-
cal transmission efficiency of Microsporidia MB, there can still be a low prevalence of MB-infected
mosquitoes. Numerical analysis of the model shows that male-to-female horizontal transmission con-
tributes more than female-to-male horizontal transmission to the spread of MB-infected mosquitoes.
Moreover, the female-to-male horizontal transmission contributes to the spread of the symbiont only if
there are multiple mating occurrences for male mosquitoes. Furthermore, when fixing the efficiencies
of vertical transmission, the parameters having the greater influence on the ratio of MB-positive to wild
mosquitoes are identified. In addition, by assuming a similar impact of the temperature on wild and
MB-infected mosquitoes, our model shows the seasonal fluctuation of MB-infected mosquitoes. This
study serves as a reference for further studies, on the release strategies of MB-infected mosquitoes, to
avoid overestimating the MB-infection spread.
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1. Introduction

Microsporidia is a significant genus of obligate intracellular parasites with a wide range of species
that are currently assumed to be highly developed fungi [1]. These parasites can be found in a vari-
ety of animals, including mosquitoes [1]. We can cite for example Anncaliia algerae, vavraia culicis,
Parathelohania (aophelis, obesa) and Hazardia sp. in Anopheles mosquitoes; Hazardia milleri, culi-
cosporella lunata, Amblyospora opacita in culex; Edharzardia aedis in Aedes aegypti [1, 2] and, more
recently, Microsporidia MB in Anopheles arabiensis, funestus, gambiae and coluzzi [3–5].

The transmission of the Microsporidian species in the insect population is driven by the vertical and
horizontal transmission [6]. For some Microsporidian species, the transmission is exclusively vertical
or exclusively horizontal while in other cases the transmission is mixed. For instance, Edhazardia aedis
exhibits both horizontal and vertical transmissions [7]. The horizontal transmission of Edhazardia
aedis occurs when a spore is ingested by the mosquito larva. During the maturation process, the spore
will spread all over the mosquito body and in case the adult mosquito is a female, the ovaries and
oocystes will be infected. The infection is then passed to the offspring (vertical transmission).

Microsporidia MB is another type of parasite that is spreading both vertically and horizontally [3,4].
Its singularity is that the horizontal transmission is not occurring at the larvae stage, but between adult
mosquitoes (male to female or female to male) through mating, with a higher transmission efficiency
from male to female rather than from female to male (56% on average compared to 33%) [3, 4]. Mi-
crosporidian species, such as Microsporidia MB, that rely mostly on sexual horizontal transmission,
have a higher level of host specificity. This could explain why this symbiont has yet to be discovered
in a non-anopheline host.

In most cases of host-parasite interaction, the parasite causes damage and mortality to the host,
thus inducing a fitness cost to its mosquito host. In contrast, the host reacts by lowering the para-
site’s negative effects and the infection success probability [8]. However, Microsporidia MB does not
significantly affect the host’s fertility or survival, and its presence is advantageous since it blocks the
transmission of the Plasmodium [4]. As a result, disseminating this symbiont throughout the popu-
lation of malaria vectors could be a promising strategy to stop the spread of malaria. Although there
are currently no field trials, some analysis of the dynamics of transmission of the Microsporidia MB is
necessary to assess the feasibility of this potential intervention and guide field experiments. It is worth
noting that understanding the dynamics of symbiont transmission as well as the effects on the incidence
of malaria is essential before considering potential strategies to replace the mosquito population with
the MB-infected mosquito population as done for other endosymbionts like Wolbachia [9].

Several mathematical models with vertical and/or horizontal transmission have been developed pre-
viously for a few symbiont-based mosquito control strategies. The study conducted by Lipsitch et
al. [10], is among the pioneer research focusing on assessing the role of vertical and horizontal trans-
mission in maintaining infection in a host population. This study highlighted the necessity of both
vertical and horizontal transmission to achieve and stably maintain a 100% infection prevalence. In the
recent past, a number of mathematical models have been developed to mimic the introduction of Wol-
bachia (a maternally transmitted symbiont that is unable to transmit the dengue virus) into populations
of Aedes aegypti [11–15]. Several models, such as [9], [16], and [17] aim to design optimal release
strategies to increase Wolbachia prevalence in nature. Wolbachia’s success in reducing dengue has been
shown in regions such as Northern Queensland in Indonesia [18]. In addition, Wolbachia was identi-

Mathematical Biosciences and Engineering Volume 20, Issue 8, 15167–15200.



15169

fied to be naturally present in the anopheles mosquito population, and a mathematical model [19] was
developed to assess the feasibility in malaria vector bio-control. However, almost no model focused
on analysing the dynamics of the spread of Microsporidia MB in the wild mosquito population [3].
The dynamics of the spread of Microsporidia MB differs from the dynamics of the spread of Wol-
bachia because of the difference in their respective features. Cytoplasmic incompatibility (CI) [20]
that makes a wild Aedes Aegypti female to lay non-viable eggs after mating with a Wolbachia-infected
male, and is affecting many Wolbachia strains is not a characteristic of Microsporidia MB. In contrast,
Microsporidia MB-infected males infect wild females through horizontal transmission and infection
reaches the new generation through vertical transmission. Therefore, this study proposes a determinis-
tic model to analyze the dynamics of the spread of MB-infected mosquitoes, to understand and explain
the low prevalence of the Microsporidia MB in the mosquito population as reported by [3, 4], to iden-
tify the factors driving the spread of MB-infected mosquitoes and to describe the seasonal variation of
the prevalence of MB-infected mosquitoes.

The following is the structure of this paper: Section 2 describes how the model was formulated
based on the mosquito life-cycle characteristics. Section 3 highlights the thresholds for the existence
or persistence of the mosquito populations. Section 4 presents the equilibria and their stability along
with the interpretation of the findings. The proof of the analytical results is provided in Section 5.
Section 6 discusses and concludes.

2. Model formulation

This section describes the various assumptions that are considered alongside the formulation of the
model. The mosquito undergoes several stages for its development and maturation which are eggs,
larvae, pupae and adults [21]. However, to reduce the complexity of the model, this model considers
only two stages of mosquito development which are the egg stage E and the adult stage. The adult
stage is divided into the male population MT and the female population FT . As our interest is to study
the interaction of wild and MB-infected mosquitoes, the male population is divided into wild males Mn

and MB-positive males Mp. Similarly, the female population is divided into wild females (unfertile)
Fn, the pregnant wild females Fm

n , MB-positive females (unfertile) Fp and the pregnant MB-positive
females Fm

p . Thus, MT = Mp + Mn and FT = Fp + Fn + Fm
p + Fm

n .
The lab experiments reported that the transmission of Microsporidia MB in the mosquito population

is driven by horizontal transmission and vertical transmission [3, 4], which we have to consider to
estimate the new MB-infected mosquitoes either females Fp or males Mp. The vertical transmission
describes the transmission of the symbiont from the mother to the eggs and is accounted for in the
model by considering that the fraction βv of the progeny of MB-positive pregnant females will join
the class of MB-infected eggs Ep, while the remaining fraction (1 − βv) join the class of wild eggs En.
In the previous statement, βv represents the efficiency of vertical transmission. With this formulation,
we consider both imperfect vertical transmission which happens when βv < 1 and the perfect vertical
transmission which happens when βv = 1. On the other hand, horizontal transmission describes the
transmission from one adult partner to another one during mating and is conditioned on the female side
by a unique mating possibility [22]. Figure 1 presents a summary flowchart diagram displaying the
transmission process of the symbiont and its evolution within the different subgroups of the mosquito
population.
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Figure 1. Flowchart describing the transmission process of the symbiont and its evolution
within the different subgroups of the mosquito population.

The transmission process and the resulting equations are described in the following manner. A
newly emerged female mosquito (Fp or Fn) mates and join the class of pregnant females (Fm

p or Fm
n ).

After mating and blood-feeding, the pregnant females lay new eggs and the number of eggs per female
per unit of time is designed by ne. While defining the number of eggs produced by a female mosquito,
we are considering the impact of the availability of resources by including the carrying capacity. The
carrying capacity represents the maximum number of eggs that can be sustained in a given area depend-
ing on the environmental resources. Thus, the new progeny is included in the model as ne

(
1 − E/K

)
.

For the status of the eggs, whether there will be the presence or not of the symbiont, it is assumed
according to prior studies [3,4] that eggs from negative females Fm

n will always be negative, while eggs
from positive female Fm

p can be positive depending on the efficiency of vertical transmission βv. In
fact, the vertical transmission describes the transmission of the symbiont from the mother to the eggs
and is accounted for in the model by considering that the fraction βv of the progeny will join the class
of MB-infected eggs Ep while the remaining fraction (1−βv) join the class of wild eggs En. Then, eggs
(Ep or En) mature as MB-positive adults (Fp and Mp) or wild adults (Fn and Mn) respectively. With
this assertion, we are assuming that an MB-infected egg or mosquito cannot lose the infection and will
keep it during its lifespan. The maturation time is defined based on the egg development time te and the
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proportion of eggs that will reach the adult stage depends on the survival rate s. Thus, a fraction (s/te)
of eggs (Ep or En) leave the compartment of eggs to join the compartment adults females ((Fp and Mp)
or (Fn and Mn), respectively). Therefore, the rates of variation of the mosquito egg populations Ep and
En are given by:

dEp

dt
= neβvFm

p

(
1 −
E

K

)
−

s
te
Ep; and

dEn

dt
= neFm

n

(
1 −
E

K

)
+ ne(1 − βv)Fm

p

(
1 −
E

K

)
−

s
te
En.

Newly emerged adults can either be females or males. To consider this distinction, we define the
proportion p f of females among new adults as the sex ratio of emerging adults. A proportion p f of
eggs emerges as females while the remaining (1 − p f ) emerges as males. Thus, the population of
females (Fp or Fn) is increased by the newly emerged females at a rate (sp f /te). A few days after
emerging as an adult (tm), a proportion pm of females (Fp or Fn) mate with males generally during
swarming [23]. To consider a unique mating possibility for the females, the model distinguished the
compartment of pregnant females (Fm

p and Fm
n ) for female mosquitoes that have already mated. Thus, a

proportion (pm/tm) leaves the compartments (Fp or Fn) and enters the compartment of pregnant females
as wild Fm

n or as MB-positive Fm
p depending on their initial status and the effectiveness of horizontal

transmission. In addition, by considering the female mosquito death rate d f , the rates of variation of
the non-pregnant female populations Fp and Fn are given by:

dFp

dt
=

sp f

te
Ep − d f Fp −

pm

tm
Fp; and

dFn

dt
=

sp f

te
En − d f Fn −

pm

tm
Fn.

As reported from lab experiment [3, 4], the symbiont MB can be transmitted horizontally during the
mating process from one partner to another one. A female can mate either with a male positive to the
symbiont Mp or a male negative to the symbiont Mn. The success of the horizontal transmission de-
pends on the MB status of the male partner and the male-to-female horizontal transmission probability
β

m f
h . We choose to define the probability of mating with an MB-positive male by ϵ1Mp/MT , where ϵ1

is the attractiveness of MB-positive males compared to wild males. Thus, the transmission probability
success of the symbiont from an MB-positive male to a wild female is expressed as βm f

h ϵ1Mp/MT . MB-
positive females automatically join the class Fm

p after mating, whereas MB-negative females can join
the class Fm

p if they have acquired the infection or join the class Fm
n if they are still uninfected. Thus,

the fraction (pm/tm)(βm f
h ϵ1Mp/MT )Fn joins the class Fm

p while the fraction (pm/tm)(1−βm f
h ϵ1Mp/MT )Fn

joins the class Fm
n . In addition, by considering the female mosquito death rate d f , the rates of variation

of the pregnant female populations Fm
p and Fm

n are given by :

dFm
p

dt
=

pm

tm
Fp +

pm

tm
β

m f
h

ϵ1Mp

Mp + Mn
Fn − d f Fm

p ; and
dFm

n

dt
=

pm

tm
Fn −

pm

tm
β

m f
h

ϵ1Mp

Mp + Mn
Fn − d f Fm

n .

In the same way, negative males Mn who mate with females Fp can become positive depending on
the horizontal transmission efficiency from female to male β f m

h and the attractiveness of wild males to
MB-positive females. To define the new MB-positive males that join the class Mp after mating, we
stand from the point of view that the female is the one choosing the male partner [24], and we use
the conservation contact to assert that the number of new infected MB-positive males at time t is equal
to the number of MB-positive females that have successfully mated and transmitted the symbiont to
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a susceptible male partner. The mentioned transmission probability success of the symbiont from an
MB-positive female to a wild male depends on the female-to-male horizontal transmission probability
β

f m
h and is expressed as β f m

h ϵ2Mn/MT , where ϵ2 is the attractiveness of wild males compared to MB-
positive males. As explained above, the population of males (Mp or Mn) is increased by the newly
emerged males at a rate (s(1− p f )/te). In addition, by considering the male mosquito death rate dm, the
rates of variation of the male populations Mp and Mn are given by :

dMp

dt
=

s(1 − p f )
te

Ep+
pm

tm
β

f m
h

ϵ2Mn

Mp + Mn
Fp−dmMp; and

dMn

dt
=

s(1 − p f )
te

En−
pm

tm
β

f m
h

ϵ2Mn

Mp + Mn
Fp−dmMn.

Remark. The dimensionless parameters ϵ1 and ϵ2 are defined to guarantee that the quantities
ϵ1(Mp/MT ), and ϵ2(Mn/MT ) remains between 0 and 1, as they designate probability values.

Table 1 gathers all the parameters used in the model and the transmission mechanism is described
by the equations in System (2.1).

dEp

dt
= neβvFm

p

(
1 −
E

K

)
−

s
te
Ep;

dFp

dt
=

sp f

te
Epd f Fp −

pm

tm
Fp;

dFm
p

dt
=

pm

tm
Fp +

pm

tm
β

m f
h

ϵ1Mp

Mp + Mn
Fn − d f Fm

p ;

dMp

dt
=

s(1 − p f )
te

Ep +
pm

tm
β

f m
h

ϵ2Mn

Mp + Mn
Fp − dmMp;

dEn

dt
= neFm

n

(
1 −
E

K

)
+ ne(1 − βv)Fm

p

(
1 −
E

K

)
−

s
te
En;

dFn

dt
=

sp f

te
En − d f Fn −

pm

tm
Fn;

dFm
n

dt
=

pm

tm
Fn −

pm

tm
β

m f
h

ϵ1Mp

Mp + Mn
Fn − d f Fm

n ;

dMn

dt
=

s(1 − p f )
te

En −
pm

tm
β

f m
h

ϵ2Mn

Mp + Mn
Fp − dmMn.

(2.1)

In the next section, we are highlighting two important thresholds for the evolution of the population
whose dynamics are described by the System (2.1) : R1 the average number of new female adults
produced by a wild female during its lifetime and R(TV)

0 the ratio of new adult MB-infected females
produced by an MB-infected female during its lifetime to R1.
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Table 1. Parameters of the malaria model (N: Notation).

N Definition Value [Range] Source
β

f m
h Efficiency of horizontal transmission from female to male. 0.33 [3]
β

m f
h Efficiency of horizontal transmission from male to female. 0.56 [3]

tm average time for mating 3 (day) [25]
pm Proportion of females that mate 0.7665 [0.533–1] [25]
ϵ1 Attractiveness of MB-positive males compared to wild males variable -
ϵ2 Attractiveness of wild males compared to MB-positive males variable -
βv Efficiency of vertical transmission 0.45 [0.45–1] [4]
te Average development time from egg to adult 19.35 [0–31] (day) [26]
ne Fecundity (number of eggs per female per day) 1 [0.8–6] [27]
s Survival from egg to adult 0.72 [0–0.72] [4]
p f Proportion of females 0.5 [28]
d f Female death rate 0.0345 (1/day) [29]
K Carrying capacity Variable Assumed

3. Preliminary results

The basic offspring number for the entire mosquito population is obtained through the computation
of the equilibria (presented above) and defined as :

R1 =
ne pm p f

d f

(
tmd f + pm

) . (3.1)

From the entomological perspective, the defined number R1 represents the average number of new
female adult mosquitoes produced by an adult female mosquito introduced within a population of only
male mosquitoes during its entire life cycle. In the expression of R1, pm/(tmd f + pm) is the probability
that an adult female survives the mating process; ne.p f .(1/d f ) is the number of female eggs produced,
by a female that has mated, during its lifetime period. Thus, having R1 > 1 ensures the persistence of
the entire mosquito population.

In this context, the basic reproduction number [30] describes the average number of secondary MB-
infected mosquitoes caused by the introduction of an MB-infected mosquito in a population of wild
mosquitoes. The transmission of Microsporidia MB occurs both horizontally and vertically and new
infected both vertically and horizontally are considered for the computation of the basic reproduction
number. However, because the mosquito lifespan is short (on average 22 days for males and 32 days
for females [29]), Microsporidia infection can be maintained in the mosquito population only if new
horizontally MB-infected mosquitoes are able to transmit the symbiont vertically. Thus, instead of
computing the basic reproduction number, we target only the new infected vertically and the corre-
sponding target reproduction number R(TV)

0 determines the establishment of the Microsporidia MB in
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the mosquito population. R(TV)
0 is computed using the method described in [31] and is defined as :

R
(TV)
0 = βv

1 + ϵ1βm f
h +

ϵ1β
m f
h ϵ2β

f m
h pm p f

(1 − p f )
(
tmd f + pm

)
 = Γ1 + Γ2 + Γ3; (3.2)

where,

Γ1 = βv; Γ2 = βvϵ1β
m f
h and Γ3 =

ϵ1β
m f
h ϵ2β

f m
h pm p f

(1 − p f )
(
tmd f + pm

) .
The proof of the computation of the target reproduction number is given in Section 5.1. We deduce
from the definition of R(TV)

0 that there are three ways in which the actual population of MB-positive
mosquitoes contributes to the new MB-infected mosquitoes for the next generation:

• The progeny of females already MB-positive at birth and the probability of transmission is given
by Γ1 = βv;
• The progeny of females that will acquire the symbiont after mating and the probability of trans-

mission is given by Γ2;
• The progeny of females MB-infected through mating, by males MB-positive that have been previ-

ously infected by females already MB-positive at births and have survived for a new mating and
the probability of transmission is given by Γ3.

Hence, R1R
(TV)
0 is the average number of new female progeny produced by a single MB-infected female

mosquito through the transmission (horizontal, vertical and combination of both), during its entire
lifespan when introduced in a population of wild mosquitoes. As a result, R(TV)

0 represents the ratio of
the new MB-infected female progeny of an MB-infected female to the wild female progeny of a wild
female mosquito. Thus, with R(TV)

0 > 1, the prevalence of MB-infected mosquitoes tends to increase
and the MB-infected mosquito population persists. This threshold for the persistence of MB-infected
mosquitoes corroborates with the spread conditions for horizontally and vertically transmitted parasites
given by Lipsitch et al. [10]. Besides, we observe from the definition of our target reproduction number,
that the impact of the female-to-male horizontal transmission depends both on the multiple mating
occurrences for males and on the efficiency of the male-to-female horizontal transmission.

In the next section, we prove the mathematical and ecological well-posedness of the formulated
model. In addition, we carry out the mathematical analysis of the autonomous model (2.1) to predict
the long-term behaviour of the dynamic of transmission of Microsporidia MB inside the wild mosquito
population. Moreover, we highlight the requirements that must be met in order to explore the following
scenarios: extinction of the entire mosquito population, extinction of MB-positive mosquitoes, the co-
existence of MB-positive and wild mosquitoes and complete infection by the symbiont (i.e, population
replacement, where wild mosquitoes become MB-infected).

4. Main results and interpretation

We start by proving that model (2.1) is well posed from the mathematical and ecological point of
view. This is ensuring that the model admits a unique positive solution defined for all time t.
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Theorem 1. For positive initial conditions, the solution of the Cauchy problem associated with system
(2.1) is unique, positive and bounded on its existence interval. Let

X = (Fp, Fn, Fm
p , F

m
n ,Ep,En,Mp,Mn);

be the unique solution of the associated Cauchy problem, then X is defined for all time, and lies with
its initial condition in the following set.

∆ =





Fp

Fn

Fm
p

Fm
n

Ep

En

Mp

Mn


∈ R8

+



0 ≤ E ≤ K

0 ≤ F ≤
tmsp f K

te

(
tmd f + pm

)
0 ≤ Fm ≤

pmsp f K

d f te

(
tmd f + pm

)
0 ≤ M ≤

s(1 − p f )
tedm

K




where F = Fp + Fn, Fm = Fm

p + Fm
n , E = Ep + En and M = Mp + Mn.

Theorem 1 shows that all the mosquito population starts and remains in the bounded set ∆ and
the proof is presented in Section 5.2. Then, we proceed with the determination of the equilibria and
the study of their stability in order to assess the long-term behaviour of the system. The number of
equilibria depends on whether the vertical transmission is imperfect (βv < 1) or perfect (βv = 1)
and is determined accordingly. We have identified four equilibria which are listed below with the
corresponding existence conditions. The details in the computation process are presented in Section
5.3. The equilibria of system (2.1) include :

• The trivial steady state, corresponding to the situation where there is no mosquito in the popula-
tion, always exists and is defined by

ZE = (0, 0, 0, 0, 0, 0, 0, 0).

• The MB-free equilibrium is associated with the scenario where all the MB-infected mosquitoes
are absent in the population and exists if and only if R1 > 1. It is obtained from system (2.1) by
replacing Fp = 0, Fm

p = 0, Ep = 0, and Mp = 0. Then, the MB-free equilibrium denoted by
MFE is :

MFE = X∗ = (0, 0, 0, 0, E∗n, F∗n, Fm∗
n , M∗n);

where, 

F∗n =
tmsp f

te

(
tmd f + pm

)E∗n; M∗n =
s(1 − p f )

tedm
E∗n;

Fm∗
n =

pmsp f

d f te

(
tmd f + pm

)E∗n; E∗n = K
(
1 −

1
R1

)
.

(4.1)
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• The coexistence equilibrium corresponds to the situation where MB-positive and MB-negative
mosquitoes co-evolve and exists if and only if βv < 1, R1 > 1 and R(TV)

0 > 1. This steady state is
denoted by :

CE = X = (Ep, Fp, Fm
p , Mp, En, Fn, Fm

n , Mn);

where,

Fp = tmAEp; Fn = tmAEn;

Fm
p =

pmA
βvd f
Ep; Fm

n =
pmA
d f

En +

(
1 −

1
βv

)
Ep

 ;

Mp = C

 s(1 − p f )(1 − βv)

ϵ1β
m f
h βvtedm

 Ep

En

; Mn = C
(

s(1 − p f )
tedm

)
− Mp;

Ep = C

 −1 + R(TV)
0

B(1 − βv) + ϵ1βvβ
m f
h (1 + B)

 ; En = C − Ep.

(4.2)

with A =
sp f

te

(
tmd f + pm

)Ep; B =
pm p f ϵ2β

f m
h

(1 − p f )
(
tmd f + pm

) , C = K
(
1 −

1
R1

)
and R(TV)

0 is the reproduc-

tion number of our model presented above.
• The complete-infection equilibrium corresponds to the situation where there are no wild

mosquitoes and exists if and only if βv = 1 and R1 < 1. Thus, when the vertical transmission
is perfect, the coexistence equilibrium is replaced by the complete-infection equilibrium CIE,
and the symbiont can spread throughout the entire mosquito population. This the desired and
ideal situation for the complete eradication of malaria if this equilibrium point is also proved to
be locally (asymptotically) stable. The CIE is found by setting Fn = Fm

n = En = Mn = 0 and the
steady state is denoted by:

CIE = X∗∗ = (E∗∗p , F∗∗p , Fm∗∗
p , M∗∗p , 0, 0, 0, 0);

where, 
F∗∗p =

tmsp f

te

(
tmd f + pm

)E∗∗p ; Fm∗∗
p =

pmsp f

d f te

(
tmd f + pm

)E∗∗p ;

M∗∗p =
s(1 − p f )

tedm
E∗∗p ; E∗∗p = K

(
1 −

1
R1

)
.

(4.3)

Once we have identified the equilibria of the system, the long-term behaviour is investigated by study-
ing the stability properties of the equilibrium points. The local asymptotic stability of an equilibrium
proves that if there is a small perturbation, the solution of the system will remain in a close neighbour-
hood and finally returns to the equilibrium state [32]. Theorem 2 resumes the local asymptotic stability
properties of the equilibria and the proof is given in Section 5.4.
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Theorem 2. The following statements hold:

1) The zero equilibrium ZE is locally asymptotically stable if R1 < 1 and unstable if R1 > 1.

2) The MB-free equilibrium is locally asymptotically stable if R1 > 1 and R(TV)
0 < 1 and unstable if

R1 > 1 and R(TV)
0 > 1.

3) The coexistence equilibrium CE is locally asymptotically stable whenever it exists, meaning, βv <

1, R1 > 1 and R(TV)
0 > 1.

4) The complete-infection equilibrium CIE exists and is locally asymptotically stable if βv = 1 and
R1 > 1.

Concerning the global stability, Theorem 3 presents the established results and the proof is given in
Section 5.5.

Theorem 3. The following statements hold:

1) The zero equilibrium ZE is globally asymptotically stable whenever R1 < 1.

2) The unique non-zero equilibrium

(E∗, F∗, Fm∗,M∗) =

E∗, pmsp f

d f te
(
tmd f + pm

)E∗, tmsp f

te
(
tmd f + pm

)E∗, s(1 − p f )
tedm

E∗

 ; E∗ = K
(
1 −

1
R1

)
; (4.4)

is globally asymptotically stable whenever R1 > 1 for the system describing the evolution of the
total egg population E = Ep + En, the total female population F = Fp + Fn and the total pregnant
female population Fm = Fm

p + Fm
n .

dE
dt
= neFm(1 −

E

K
) −

s
te
E;

dFm

dt
=

pm

tm
F − d f Fm;

dF
dt
=

s
te

p fE − (d f +
pm

tm
)F;

dM
dt

=
s
te

(1 − p f )E − dmM.

(4.5)

It is important to note that when the vertical transmission is perfect (βv < 1), R(TV)
0 > 1 and the

MB-free equilibrium is always unstable. Overall, the local asymptotic stability of the equilibria of the
system (2.1) for both imperfect and perfect vertical transmission cases is resumed in Table 2.

Table 2. Stability of the equilibria. βv = 1 represents the perfect vertical transmission case
while βv < 1 the case of imperfect vertical transmission.

Equilibria Existence Local stability Local instability
ZE always exists R1 < 1 R1 > 1

βv < 1 MFE R1 > 1 R1 > 1 & R(TV)
0 < 1 R1 > 1 & R(TV)

0 > 1
CE R1 > 1 & R(TV)

0 > 1 R1 > 1 & R(TV)
0 > 1 -

ZE always exists R1 < 1 R1 > 1
βv = 1 MFE R1 > 1 - R1 > 1

CIE R1 > 1 R1 > 1 -
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Remark. We deduce from the study of the local asymptotic stability of the equilibria of System (2.1)
summarized in Table 2, that exhibits only trans-critical bifurcations. In fact, in the case of imperfect
maternal transmission (βv < 1), there is a forward bifurcation at R1 = 1 where the ZE equilibrium
changes from stable (R1 < 1) to unstable (R1 > 1), while creating the mosquito-free equilibrium (MFE)
which is stable when (R(TV)

0 < 1) which in turn changes its stability at R(TV)
0 = 1 and becomes unstable

(R(TV)
0 > 1) and create a stable coexistent equilibrim (CE). A similar double trans-critical bifurcation

is observed in the perfect maternal transmission situation (βv = 1).
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Figure 2. (a) Effects of varying the parameters on the target reproduction number R(TV)
0 . The

ranges for the parameters are : βm f
h , β

f m
h ∈ [0.01 0.5]; βv ∈ [0.01 0.99]; ϵ1, ϵ2 ∈ [0.5 1.5];

pm ∈ [0.6 1]; tm ∈ [2 5]; d f ∈ [1/43.2 1/23.4]. (b) Effects of the parameters of the model
of the ratio of MB-positive females to wild females. The ranges for the parameters are:
β

m f
h = β

f m
h = 0.35; βv = 0.75; ϵ1, ϵ2 ∈ [0.5 1.5]; pm ∈ [0.6 1]; tm ∈ [2 5]; d f , dm ∈ [0.01 0.05];

te ∈ [7.7 31]; ne ∈ [0.8 6] ; s ∈ [0.157 0.729]; K ∈ [200000 500000].

We are recalling that the stability of the coexistence equilibrium when R1 > 1 & R(TV)
0 > 1 indicates

that the situation will converge to the coexistence of MB-infected and wild mosquitoes whenever that
condition is verified.

As the population of mosquitoes always exists, we extrapolate the instability of the zero equilibrium
and assume R1 > 1. Moreover, the stability condition of the MB-complete infection steady state, βv = 1,
shows that a 100% prevalence of MB-infected mosquitoes can be achieved only with perfect vertical
transmission (βv = 1). Furthermore, we can deduce factors influencing the extinction of MB-infected
mosquitoes by evaluating R(TV)

0 .
To assess the effect of the model parameters on the target reproduction number R(TV)

0 , we carry
out a PRCC sensitivity analysis of R(TV)

0 whose graphical representation is depicted in Figure 2a. As
expected, the sensitivity analysis in Figure 2 shows that the parameters having the greater influence
on the spread of the MB-infected mosquitoes are the efficiency of vertical transmission (βv), the male-
to-female horizontal transmission efficiency (βm f

h ) and the attractiveness of MB-positive males. On the

Mathematical Biosciences and Engineering Volume 20, Issue 8, 15167–15200.



15179

other hand, it is interesting to note the low influence of the female-to-male horizontal transmission
efficiency (β f m

h ). The low influence of the female-to-male transmission efficiency can, however, be
explained as follows. In fact, the infection of a male will impact the spread of Microsporidia MB only
if the male mate a second time with and infects a susceptible female before dying. Thus, the impact of
the female-to-male transmission depends on the male-to-female transmission efficiency, which acts a
double way and has a strong influence on the spread of Microsporidia MB. It is worth retaining from
this analysis that the female-to-male horizontal transmission acts on the spread of Microsporidia MB
only when we consider multiple mating activities for males.

To assess which parameter ranges correspond to the extinction or persistence of the MB-infected
mosquitoes, we evaluate the values of our target reproduction number R(TV)

0 , using data ranges obtained
from field experiments and presented in Table 1. The assessment of the variation focused on the most
influencing parameters, male-to-female and female-to-male horizontal transmission efficiencies βm f

h ,
β

f m
h , the vertical transmission efficiency βv and is presented in Figure 3. To plot the graph in Figure 3,

we generate random numbers for each of the parameters βm f
h , β

f m
h , and βv from the continuous uniform

distributions on the intervals βm f
h , β

m f
h ∈ [0.01 1]; βv ∈ [0.01 0.99]. Then, the target reproduction

number R(TV)
0 is computed for each triplet (βm f

h , β
f m
h , βv), is plotted in blue for values lower than 1 and

plotted in red for values higher than 1.

Figure 3. Variation of the target reproduction number R(TV)
0 . The ranges for the parameters

are : βm f
h , β

f m
h ∈ [0.01 1]; βv ∈ [0.01 0.99]; ϵ1 = ϵ2 = 1; pm = 0.7665; tm = 3 and p f = 0.5.

Figure 3 shows the importance of having the horizontal transmission combined with the vertical
transmission for the spread of Microsporidia MB. In fact, we observe special cases with high vertical
transmission efficiency like βm f

h = 0.035, β f m
h = 0.09 and βv = 0.97 leading to R(TV)

0 < 1, thus extinc-
tion of MB-infected mosquitoes. Moreover, even with high male-to-female and female-to-male hori-
zontal transmission efficiencies βm f

h = 0.98, β f m
h = 0.99, and a lower vertical transmission efficiency

βv = 0.37, we get R(TV)
0 < 1, thus extinction of MB-infected mosquitoes. Overall, for male-to-female

and female-to-male horizontal transmission efficiencies in the range βm f
h , β

f m
h ∈ [0, 0.5], a vertical

transmission efficiency at least higher than 0.5 is necessary to ensure the persistence of MB-infected
mosquitoes.

In the case of stable endemic equilibrium, meaning R(TV)
0 > 1, we have computed the coexistence
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equilibrium values which give the number of MB-positive and wild mosquitoes at the equilibrium.
Therefore, we can deduce the prevalence of MB-infected mosquitoes expressed as :

p =
Fp + Fp

m
+ Mp

Fp + Fn + Fp
m
+ Fn

m
+ Mp + Mn

;

where Fp, Fp
m

, Mp, Fn, Fn
m

and Mn are defined in (4.2). We provide a numerical analysis of the
variation of the prevalence of MB-infected mosquitoes in Figure 4. The method used to plot the graph
in Figure 4 is the same as described above for Figure 3. Recalling that the mosquitoes collected from
the field and screened for the presence of Microsporidia have shown a prevalence of MB-infected
mosquitoes lower than 15% [4], we have highlighted in red (Figure 4), vertical and horizontal trans-
mission efficiencies complying with a prevalence of MB-positive mosquitoes lower than 15%. We
realise according to Figure 4 that a low prevalence of MB-infected mosquitoes is associated with a low
male-to-female horizontal transmission efficiency.

Figure 4. Variation of the prevalence of MB-infected mosquitoes. Parameters are chosen
following a continuous uniform distribution in the following ranges: βm f

h , β
f m
h ∈ [0.01 0.6];

βv ∈ [0.01 0.99]; ϵ1 = ϵ2 = 1; pm = 0.7665; tm = 3; d f = 0.0345; dm = 0.047; ne = 1 and
te = 19.35, s = 0.443; K = 200, 000 and p f = 0.5.

Briefly, the analysis is showing that the main parameters driving the spread of the symbiont are
the efficiencies of vertical and horizontal transmission. In addition, the model gives parameter ranges
(Figure 4) in agreement with the low prevalence reported from field experiments [3, 4]. Assuming
that the efficiencies of horizontal and vertical transmission are constant in nature, we are exploring
secondary factors contributing to the spread of MB-infected mosquitoes. Let us fix βv = 0.7, βm f

h =
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0.35, β f m
h = 0.35 and consider the ratio of MB-infected females to wild females

ratio =
Fp + Fm

p

Fn + Fm
n

;

in the condition of stability of the coexistence equilibrium
(
R1 > 1 and R(TV)

0 > 1
)
. We carry out a

PRCC sensitivity analysis of the ratio and the graphical output is represented in Figure 2b. Figure
2b shows that the most influencing factors are the attractiveness of MB-positive males compared to
wild males for wild females ϵ1, the attractiveness of wild males compared to MB-positive males for
MB-positive females ϵ2, the average time before mating tm and the female death rate d f .
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Figure 5. Effect of varying the attractiveness of MB-positive males to wild females ϵ1, the
attractiveness of wild males to MB-positive females ϵ1, the female death rate d f and the
average time to mating tm on the ratio of MB-positive females to wild females. The values of
the remaining parameters are: βm f

h = β
f m
h = 0.35; βv = 0.7; pm = 0.7665; dm ∈ [0.01 0.05],

te = 19.35, ne = 1, s = 0.72, K = 200, 000. Also, ϵ1 = 1; ϵ2 = 1; d f = 0.0345, tm = 3,
respectively for graphs where those parameters are considered constants.

In addition, the ratio increases with reduced female mortality and a reduced average time for mating
and increases with higher attractiveness ϵ1 and ϵ2. For a clear visualization of the effects of ϵ1, ϵ2, d f

and dm on the variation of the ratio, Figure 5 depicts the time variation of the ratio for different sets of
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parameters.

5. Proof of analytical results

5.1. Computation of the target reproduction number

We are computing the target reproduction number using the method described in [31]. The compart-
ments made up of infected mosquitoes are: (Fp, Fm

p , Ep, Mp). We label those compartments by 1, 2,
3, and 4, respectively. Let J be the Jacobian matrix of system (2.1), linearized at the disease-free state.
The target reproduction number is obtained using the decomposition J = JF̃ − JṼ where JF̃ and JṼ
are the Jacobian matrices of F̃ and Ṽ, respectively, evaluated at the MB-free equilibrium. If we set
z = neβvFm

p
(
1 − E/K

)
, then F̃ and Ṽ are defined by:

F̃ =



z

0

0

0


and Ṽ =



s
te
Ep

−
sp f

te
Ep +

(
d f tm + pm

tm

)
Fp

−
pm

tm
Fp −

pm

tm
β

m f
h

ϵ1Mp

Mp + Mn
Fn + d f Fm

p

−
s
te

(1 − p f )Ep −
pm

tm
Fpβ

f m
h

ϵ2Mn

Mp + Mn
+ dmMp



.

Let JF̃ and JṼ be the Jacobian matrices of F̃ and Ṽ evaluated at the MB-free equilibrium, respectively.
Then, straightforward computations lead to

JF̃ J−1
Ṽ
=

neβv

R1



∆1

d
∆2

d
1
d f

u
d f dm

0 0 0 0

0 0 0 0

0 0 0 0


; (5.1)

where,

α = d f +
pm

tm
; u =

pmβ
m f
h ϵ1F∗n

tmM∗n
; ∆1 =

sp f (pmdm + uvtm

tetm
+
αus(1 − p f )

te
;

d =
sd f dmα

te
; v =

pmϵ2β
f m
h

tm
; ∆2 =

s
te

(
pmdm + uvtm

tm

)
.

Following [31], the target reproduction number corresponding to the target matrix JF̃ J−1
V

is given
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by R(TV)
0 = ρ(JF̃ J−1

V
). That is,

R
(TV)
0 =

neβv∆1

R1d
= βv

1 + ϵ1βm f
h +

pm p f ϵ1β
m f
h ϵ2β

f m
h

(1 − p f )
(
tmd f + pm

)
 . (5.2)

5.2. Proof of Theorem 1

The associated Cauchy problem to the model (2.1) has a unique solution since the right-hand side is
differentiable for all time and hence locally Lipschitz on its definition domain. To prove the positive-
ness of the solution of (2.1) when the initial conditions are positive, we demonstrate that this system is
monotone. In fact, System (2.1) can also be written in the form

dP(t)
dt
=MP(t); (5.3)

where,

M =



−(d f +
pm
tm

) 0 0 0
sp f

te
0 0 0

0 −(d f +
pm
tm

) 0 0 0
sp f

te
0 0

pm

tm

αpm

tm
−d f 0 0 0 0 0

0
(1 − α)pm

tm
0 −d f 0 0 0 0

0 0 γneβv 0 −
s
te

0 0 0

0 0 γne(1 − βv) γne 0 −
s
te

0 0

0 0 0 0
s(1 − p f )

te
0 −dm β

0 0 0 0 0
s(1 − p f )

te
0 −dm − β


with α = βm f

h

ϵMp

Mp + Mn
; β =

pm

tm
β

f m
h

Fp

Fp + Fn
and γ = 1 −

E

K
;

and,
P(t) = (Fp(t), Fn(t), Fm

p (t), Fm
n (t),Ep(t),En(t),Mp(t),Mn(t))⊺.

All the non-diagonal terms of the matrix M are non-negative. Thus, M is a Metzler matrix and the
system (5.3) is monotone. Hence, R8

+ is invariant by the flow of the system (5.3). We conclude the
positiveness of the solution of the system for initial positive conditions. Let us denote by

F = Fp + Fn, Fm = Fm
p + Fm

n , E = Ep + En and M = Mp + Mn; (5.4)
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and demonstrate the boundedness of the solution of (2.1). According to (2.1), F, Fm, E and M satisfy
the following equations:

dF
dt

=
s
te

p fE − (d f +
pm

tm
)F;

dFm

dt
=

pm

tm
F − d f Fm;

dE
dt

= neFm(1 −
E

K
) −

s
te
E;

dM
dt
=

s
te

(1 − p f )E − dmM.

(5.5)

First of all,
E(t) ≤ K for all time t in the domain. (5.6)

Next, using (5.6), F can be constrained as follows.

dF
dt
≤

s
te

p f K − d f F −
pm

tm
F; (5.7)

Hence,

lim sup
t→+∞

F(t) ≤
tmsp f K

te(d f tm + pm)
.

This prove the boundedness of the unmated female mosquito population
F(t) ≤ (tmsp f K)/(te(d f tm + pm)). Using the same reasoning and equations (5.5), we show that

Fm(t) ≤
pmsp f K

d f te

(
tmd f + pm

) and
dM
dt
≤

s(1 − p f )K
te

− dmM.

Therefore, the population of model (2.1) starts and remain in the bounded set ∆.

5.3. Computation of the equilibria

The System (2.1) admits the trivial equilibrium ZE = (0, 0, 0, 0, 0, 0, 0, 0) corresponding to the
extinction of the mosquito population. The proof for the existence of the MB-free equilibrium (MFE)
and the coexistence equilibrium (CE) are given below.

We denote by MFE the MB-free equilibrium corresponding to the steady state of System (2.1),
where all the MB-infected components are zero while the uninfected components are positive. There-
fore, those uninfected components satisfy the following equations.

0 =
s
te

p fEn −

(
d f tm + pm

tm

)
Fn; 0 =

pm

tm
Fn − d f Fm

n ;

0 = neFm
n

(
1 −
En

K

)
−

s
te
En; 0 =

s
te

(1 − p f )En − dmMn.

(5.8)
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By solving (5.8), the MB-free equilibrium is defined such that:

Fn =
tmsp f

te(d f tm + pm)
En; Fm

n =
pm

tmd f
Fn;

Mn =
s

tedm
(1 − p f )En; 0 =

s
te
En

 ne pm p f

d f

(
tmd f + pm

) (
1 −
En

K

)
− 1

 .
(5.9)

Using the last expression of (5.9) and considering En , 0, we have :

1 −
En

K
=

d f

(
tmd f + pm

)
ne pm p f

.

Then, the MB-free equilibrium verify :

En = K

1 − d f

(
tmd f + pm

)
ne pm p f

 = K
(
1 −

1
R1

)
.

We denote by CE the coexistence equilibrium corresponding to the steady state of System (2.1), where
the wild mosquitoes and the MB-positive mosquitoes coexist. The equilibrium points of the system
(2.1). We can easily observe that E = Ep + En, Fm = Fm

p + Fm
n and M = Mp + Mn verify respectively:

1 −
E

K
=

d f

(
tmd f + pm

)
ne pm p f

=
1
R1

; Fm =
pmsp f

d f te

(
tmd f + pm

)E and M =
s(1 − p f )

tedm
E. (5.10)

Next, using (5.10), and the equation dEp/dt = 0 one has

Fm
p =

spm p f

teβvd f

(
tmd f + pm

)Ep. (5.11)

Using the expression of Fm = Fm
p + Fm

n given in (5.10), we deduce the expression of Fm
n :

Fm
n =

pmsp f

d f te

(
tmd f + pm

) En +

(
1 −

1
βv

)
Ep

 . (5.12)

From the equations dFm
p /dt = 0 and dFm

n /dt = 0, we have

Mp

Mp + Mn
=

1 − βv

ϵ1βvβ
m f
h

Ep

En
.
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In addition, from the equation dMp/dt = 0, we deduce that

Mp =

s(1 − p f )

1 + pm p f ϵ2β
f m
h

(1 − p f )
(
tmd f + pm

)
Ep

tedm

1 + pm p f ϵ2β
f m
h

(1 − p f )
(
tmd f + pm

) R1Ep

K (R1 − 1)


. (5.13)

Equating (5.12) and (5.13) gives

(1 − βv)s(1 − p f )E

tedmϵ1βvβ
m f
h

Ep

En
=

s(1 − p f )

1 + pm p f ϵ2β
f m
h

(1 − p f )
(
tmd f + pm

)
Ep

tedm

1 + pm p f ϵ2β
f m
h

(1 − p f )
(
tmd f + pm

) R1Ep

K (R1 − 1)


. (5.14)

Then, after some computations, Equation (5.14) is equivalent to :

Ep = K
(
1 −

1
R1

)  −1 + R(TV)
0

B(1 − βv) + ϵ1βvβ
m f
h (1 + B)

 . (5.15)

where B =
pm p f ϵ2β

f m
h

(1 − p f )
(
tmd f + pm

) .
Finally, we can easily obtain the coexistence equilibrium given in (4.2) by replacing Ep giving by (5.15)
in (5.10)–(5.13).

5.4. Proof of Theorem 2 (local asymptotic stability of the equilibria.)

To simplify the presentation in the following subsections, we study the stability of a generic matrix
M(a, b, c, d, e, f ) defined by :

M(a, b, c, d, e, f ) =



a 0 b 0

sp f

te
−

(
d f tm + pm

tm

)
0 0

0
pm

tm
f −d f c

s(1 − p f )
te

d 0 e



=


M1 M2

M3 M4

 ; (5.16)

where a, b, c, d, e, and f are real numbers, a , 0 and the matrices Mi, i = 1, 2, 3, 4 are 2 × 2.
Clearly, M is a Metzler matrix because M is a square matrix with non-negative off-diagonal entries.
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According to [33], M is Metzler stable if and only if M1 and M4 − M3M−1
1 M2 are Metzler stable

matrices. Obviously, M1 has all its eigenvalues negative and is Metzler stable whenever a < 0. In
addition,

M4 − M3M−1
1 M2 =


d f

(
−1 −

f bsR1

atene

)
c

−
bs
ate

1 − p f +
dp f tm

d f tm + pm

 e


.

To determine the signs of the real part of the eigenvalues of the 2 × 2 matrix, M4 − M3M−1
1 M2, we

simply analyse the sign of its trace and determinant. Two eigenvalues of M4−M3M−1
1 M2 have negative

real parts if and only if the trace is negative and the determinant is positive. The trace and determinant
of M4 − M3M−1

1 M2 are :
trace(M4 − M3M−1

1 M2) = d f

(
−1 −

f bsR1

atene

)
+ e;

det(M4 − M3M−1
1 M2) = ed f

(
−1 −

bsR1

atene

)
+

cbs
ate

1 − p f +
dp f tm

d f tm + pm

 .
(5.17)

In summary, M is a Metzler stable matrix whenever a < 0, trace(M4 − M3M−1
1 M2) < 0 and det(M4 −

M3M−1
1 M2) > 0. Thus, under the above-mentioned conditions, the real part of any eigenvalue of M is

strictly negative. This will serve in the following subsections to derive the stability of the equilibria.

5.4.1. Local asymptotic stability of the equilibria ZE, MFE and CIE

We prove the stability of the ZE equilibrium by determining the signs of the eigenvalues of the
linearized matrix of the system (2.1) at the point ZE. The Jacobian matrix of the system (2.1) at point
MFE is the following block matrix;

Mze =

U 0
W V

 ;

where,

U = M
(
−

s
te
, neβv, 0, 0, −dm, 1

)
; V = M

(
−

s
te
, ne, 0, 0, −dm, 1

)
and W =


0 0 ne(1 − βv) 0
0 0 0 0
0 0 0 0
0 0 0 0


. (5.18)

Then, the eigenvalues of Mze are the union of the eigenvalues of U and V, and the ZE equilibrium is
asymptotically stable when U and V are Metzler stable. Using the computations done for the general-
ized matrix (5.16), U is Metzler stable if and only if

−dm − d f (1 − βvR1) < 0 and dmd f (1 − βvR1) > 0.
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Similarly, V is Metzler stable if and only if

−dm − d f (1 − R1) < 0 and dmd f (1 − R1) > 0.

Clearly, if R1 < 1/βv, then U Metzler stable. Similarly, if R1 < 1, V is Metzler stable. Finally,
since βv ≤ 1, we conclude the local asymptotic stability of the ZE equilibrium when R1 < 1 and the
instability when R1 > 1.

The proof of the stability of MFE is performed similarly, by noticing that The Jacobian matrix of
the system (2.1) at MFE is the following block matrix:

Mm f e =

A 0
∗ D

 ;

where (*) denotes a 4 × 4 matrix, which is not needed for this proof, and

A = M
(
−

s
te
,

neβv

R1
, ϵ1β

m f
h

pm

tm

F∗n
M∗n
, ϵ2β

f m
h

pm

tm
, −dm, 1

)
; D = M

(
−

s
te

R1,
ne

R1
, 0, 0, −dm, 1

)
. (5.19)

By proceeding in the same way as above, for the matrices U and V, it can be easily shown that the
matrice A is Metzler stable whenever R(TV)

0 < 1 and the matrice D is Metzler stable whenever R1 > 1
and the proof is achieved.

We proceed similarly as above for the proof of the local stability of the CIE. The Jacobian matrix
of System (2.1) at CIE is a block matrix

Mcie =

X Y
0 Z


where Y is a 4 × 4 matrix, which is not needed in this proof,

X = M
(
−

s
te

R1,
ne

R1
, 0, 0, −dm, 1

)
; (5.20)

and

Z = M

− s
te
,

ne

R1
, 0, 0, −dm −

pm

tm
ϵ2β

f m
h

F∗∗p
M∗∗p
, 1 − ϵ1β

m f
h

 . (5.21)

An analogous approach as above shows that X is Metzler stable whenever R1 > 1 and Z is always
Metzler stable.

5.4.2. Local asymptotic stability of CE

The Jacobian matrix Mce of the system (2.1) at point CE is the matrix;
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Mce =



−a1 0 a2 0 −a3 0 0 0
sp f

te
−

d f tm + pm

tm
0 0 0 0 0 0

0
pm

tm
−d f a4 0 a5 0 −a6

s(1 − p f )
te

a7 0 −a8 0 0 0 a9

−a10 0 a11 0 −a12 0
ne

R1
0

0 0 0 0
sp f

te
−

d f tm + pm

tm
0 0

0 0 0 −a6 0 a13 −d f a6

0 −a7 0 a14
s(1 − p f )

te
0 0 −a15


where

a1 =
s
te
+

neβv

K
Fm

p ; a2 =
neβv

R1
;

a3 =
neβv

K
Fm

p ; a4 = ϵ1β
m f
h

pm

tm

MnFn

(Mp + Mn)2
;

a5 =
pm

tm
ϵ1β

m f
h

Mp

Mp + Mn

; a6 = ϵ1β
m f
h

pm

tm

MpFn

(Mp + Mn)2
;

a7 = ϵ2β
f m
h

pm

tm

Mn

Mp + Mn

a8 = dm + a14;

a9 = ϵ2β
f m
h

pm

tm

FpMp

(Mp + Mn)2
; a10 =

neFm
n

K
+

ne(1 − βv)
K

Fm
p ;

a11 =
ne(1 − βv)

R1
; a12 = a10 +

s
te

;

a13 =
pm

tm

1 − ϵ1βm f
h

Mp

Mp + Mn

; a14 = ϵ2β
f m
h

pm

tm

FpMn

(Mp + Mn)2
;

a15 = dm + a9.

We are using the method described in [34, 35] and proving that the linearized equation w′ =
Mcew, (w ∈ ∆) has no solution of the form w(t) = W exp(z(t)) with W ∈ C8, z ∈ C, Rez ≥ 0.
This is equivalent to showing that

zW = MceW, W ∈ C8\{0}, z ∈ C⇒ Rez < 0.
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Assuming W exp(z(t)), W = (W1,W2,W3,W4,W4,W6,W7,W8), z ∈ C (Rez ≥ 0); solution of the lin-
earized system w′ = Mcew, we have :

zW1 = −a1W1 + a2W3 − a3W5;

zW2 =
sp f

te
W1 −

(
d f tm + pm

tm

)
W2;

zW3 =
pm

tm
W2 − d f W3 + a4W4 + a5W6 − a6W8;

zW4 =
s(1 − p f )

te
W1 + a7W2 − a8W4 + a9W8;

zW5 = −a10W1 + a11W3 − a12W5 +
ne

R1
W7;

zW6 =
sp f

te
W5 −

(
d f tm + pm

tm

)
W6;

zW7 = −a6W4 + a13W6 − d f W7 + a6W8;

zW8 = −a7W2 + a14W4 +
s(1 − p f )

te
W5 − a15W8.

(5.22)

After some rearrangements, System (5.22) is equivalent to

(1 + Fi(z))Wi +Gi(W) = (HW)i; (5.23)

where 
F1(z) =

te

s
(z + a3); F2(z) =

tm

d f tm + pm
z; F3(z) =

1
d f

z; F4(z) =
1

dm
(z + a14);

F5(z) =
te

s
(z + a10) ; F6(z) = F2(z); F7(z) = F3(z); F8(z) =

1
dm

(z + a9).

(5.24)

and 
G1(W) =

te

s
a3W5; G2(W) = 0; G3(W) =

a6

d f
W8 −

a4

d f
W4; G4(W) =

a8

dm
W6 −

a7

dm
W2;

G5(W) =
te

s
a10W1; G6(W) = 0; G7(W) =

a6

d f
W4 −

a6

d f
W8; G8(W) = −

a14

dm
W4.

(5.25)
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and

H =



0 0
teneβv

sR1
0 0 0 0 0

tmsp f

te

(
d f tm + pm

) 0 0 0 0 0 0 0

0
pm

tmd f
0 0 0

a5

d f
0 0

s(1 − p f )
tedm

a7

dm
0 0 0 0 0 0

0 0
tene(1 − βv)

sR1
0 0 0

tene

sR1
0

0 0 0 0
tmsp f

te

(
d f tm + pm

) 0 0 0

0 0 0 0 0
a13

d f
0 0

0 −
a7

dm
0 0

s(1 − p f )
te

0 0 0


H is a non-negative matrix and the coexistence equilibrium CE, X satisfies X = HX.
Let us recall that the objective is to prove that Rez < 0. We proceed by contradiction and assume that
Rez ≥ 0.
Because G2(W) = 0, the second equation of (5.23) is

(1 + F2(z))W2 = (HW)2. (5.26)

We consider the euclidean norm |.| in C. By taking the norm on left and right sides of (5.26), we have :∣∣∣1 + F2(z)
∣∣∣|W2| =

∣∣∣(HW)2

∣∣∣ . (5.27)

Note that
∣∣∣1 + F2(z)

∣∣∣ = ∣∣∣∣∣∣1 + tm

d f tm + pm
z

∣∣∣∣∣∣ > 1 because we assumed that Rez ≥ 0. In addition, since the

components of the coexistence equilibrium X are all positive, it follows that if W represents a solution
of the system (5.23), then it is possible to find a minimal positive real number c0 such that

|W | ≤ c0X. (5.28)

with
|W | =

(
|W1| , |W2| , |W3| , |W4| , |W5| , |W6| , |W7| , |W8|

)
.

The existence of c0 is straightforward by reasoning on a component-wise basis. In fact, for the two
positive real numbers |Wi| and Xi, there is a positive number ci such that |Wi| ≤ ciXi ( it suffices to take
ci to be any positive number greater than or equal to |Wi| /Xi). Finally, choosing c0 to be the minimum
of ci proves the inequality |W | ≤ c0X.
Therefore, using the fact that H is a non-negative matrix, the inequality (5.28) and HX = X, we deduce
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from (5.27) that : ∣∣∣1 + F2(z)
∣∣∣|W2| =

∣∣∣(HW)2

∣∣∣ ≤ H|W2| ≤ c0H(X)2 = c0(X)2 = c0Fp; (5.29)

Moreover, the inequality in (5.29) implies that |W2| ≤
c0∣∣∣1 + F2(z)

∣∣∣ (X)2. This contradicts the fact that c0 is

the minimum positive number satisfying (5.28). Thus, Rez < 0. Therefore, we have proved that all the
eigenvalues of the characteristic equation associated with the linearized system around the coexistence
equilibrium have a negative real part. We conclude the local asymptomatic stability of CE whenever it
exists (R1 > 1 and R(TV)

0 > 1).

5.5. Global stability of the equilibria

5.5.1. Global stability of the ZE equilibrium

We use Lyapunov-LaSalle techniques to prove the global asymptotic stability of the equilibria. Let
us denote (Ep, Fp, Fm

p , Mp, En, Fn, Fm
n , Mn) by X, and consider the Lyapunov function V : ∆ → R

defined as follows :

V(X) = E +
1
p f

F +
tmd f + pm

pm p f
Fm;

where E = Ep + En, F = Fp + Fn, and Fm = Fm
p + Fm

n .
Then, the time derivative of V is :

dV
dt
= neFm

(
1 −
E

K

)
−

s
te
E +

1
p f

(
sp f

te
E −

tmd f + pm

tm
F
)
+

tmd f + pm

pm p f

(
pm

tm
F − d f Fm

)
;

≤ neFm −
s
te
E +

1
p f

(
sp f

te
E −

tmd f + pm

tm
F
)
+

tmd f + pm

pm p f

(
pm

tm
F − d f Fm

)
;

= neFm

(
1 −

1
R1

)
.

(5.30)

It follows that dV/dt ≤ 0 whenever R1 < 1. In addition, the largest invariant set contained in{
X ∈ ∆; dV/dt = 0

}
is the trivial equilibrium ZE. Therefore, by LaSalle’s invariance principle [36,37],

ZE is globally asymptotically stable in ∆, whenever R1 < 1.

5.5.2. Global stability of the non-zero equilibrium

For the proof, we denote (E, F, Fm,M) by Y, and consider the Lyapunov function defined as follows :

V(Y) = E − E∗ − E∗ ln
E

E∗
+

1
p f

(
F − F∗ − F∗ ln

F
F∗

)
+

tmd f + pm

pm p f

(
Fm − Fm∗ − Fm∗ ln

Fm

Fm∗

)
.
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Then, the time derivative of V is :

dV
dt

= neFm

(
1 −
E

K

)
−

s
te
E

(
1 −
E∗

E

)
+

1
p f

(
sp f

te
E −

tmd f + pm

tm
F
) (

1 −
F∗

F

)
+

tmd f + pm

pm p f

(
pm

tm
F − d f Fm

) (
1 −

Fm∗

Fm

)
;

= neFm

(
1 −

1
R1
−
E

K
+
E∗

K

)
+

s
te
E∗

(
1 −
E

E∗

F∗

F

)
+

d f tm + pm

tm p f
F∗

(
1 −

F
F∗

Fm∗

Fm

)
+

d f (tmd f + pm)
pm p f

Fm∗ − neFmE
∗

E
.

From the computation of the equilibria of System (4.4), we have the following expressions :

E∗

K
= 1 −

1
R1
,

d f tm + pm

tm p f
=

s
te

E∗

F∗
and

d f (tmd f + pm)
pm p f

Fm∗ =
ne

R1
Fm∗ =

s
te
E∗. (5.31)

By using the equations in (5.31), we can simplify dV/dt and we get :

dV
dt

= neFm

(
E∗

K
−
E

K
+
E∗

K

)
+

s
te
E∗

(
1 −
E

E∗

F∗

F

)
+

s
te
E∗

(
1 −

F
F∗

Fm∗

Fm

)
+

ne

R1
Fm∗ −

ne

R1
FmE

∗

E
−

ne(R1 − 1)
R1

FmE
∗

E

= neFmE
∗

K

(
2 −
E

E∗
−
E∗

E

)
+

s
te
E∗

(
3 −
E

E∗

F∗

F
−

F
F∗

Fm∗

Fm −
Fm

Fm∗

E∗

E

)
.

From the inequality of arithmetic and geometric means, we have :

2 −
E

E∗
−
E∗

E
≤ 0 and 3 −

E

E∗

F∗

F
−

F
F∗

Fm∗

Fm −
Fm

Fm∗

E∗

E
≤ 0;

with equality if and only if E = E∗, F = F∗, and Fm = Fm∗.
Therefore, dV/dt ≤ 0, and dV/dt = 0 if and only if E = E∗, F = F∗, and Fm = Fm∗. Thus, it follows
from the Lyapunov invariance principle, that limt→∞ E = E

∗, limt→∞ F = F∗, and limt→∞ Fm = Fm∗.
Then, using the fourth equation of System (4.5), we also get limt→∞ M = M∗. Finally, we conclude the
global asymptotic stability of the non-zero equilibrium (4.4) whenever R1 > 1.

6. Discussion

The introduction of MB-infected mosquitoes into the wild mosquito population is foreseen as a
promising malaria control strategy. Therefore, prior to investigating the effects of the presence of
MB on the incidence of malaria as well as the design of release strategies to increase the prevalence
of MB-infected mosquitoes, it is critical to understand and mimic the mechanism underpinning the
low prevalence reported from field experiments [3, 4]. In this study, we formulated a deterministic
compartmental model to understand the dynamics of the spread of MB-infected mosquitoes. The main
features included in the model are the vertical transmission, the difference in horizontal transmission
efficiencies from male to female and from female to male, the consideration of a unique mating for
females and the use of contact conservation to define the number of males that are mating. In addition,
the model considers both the adult and the immature stages by dividing the mosquito population into
females, males and eggs. The dynamic of the model built on the previous assumptions is assessed
by computing the basic reproduction number, and the equilibria and analysing their local asymptotic
stability.

In summary, the analysis of the formulated model gives four steady states: a zero steady-state
representing the situation where there is no mosquito that is stable when R1 < 1, an MB-free state
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representing the extinction of MB-positive mosquitoes that is stable when R1 > 1 and R(TV)
0 < 1, a

coexistence state of MB and wild mosquitoes that is stable when βv < 1, R1 > 1 and R(TV)
0 > 1, an MB-

complete infection state representing the extinction of wild mosquitoes that is stable when βv = 1 and
R1 > 1. Hence, a mosquito population entirely infected with Microsporidia MB is achievable only with
a perfect vertical transmission. From the PRCC sensitivity analysis of the target reproduction number
R

(TV)
0 presented in Figure 2a, we observe that the most influencing parameters are the efficiencies of

vertical and male-to-female horizontal transmission. Vertical transmission has the highest influence,
followed by male-to-female horizontal transmission, while female-to-male horizontal transmission has
a reduced influence because it relies on multiple mating for males. The high influence of vertical trans-
mission has also been highlighted by Lipsitch et al. [10] while studying the dynamics of vertically and
horizontally transmitted parasites. In addition, the numerical analysis highlights in Figure 4, the ver-
tical and horizontal transmission efficiencies complying with a prevalence of MB-infected mosquitoes
lower than 15% (as reported by [3, 4]). Assuming a vertical transmission efficiency, of around 75% on
average, as reported from the field experiments [3, 4], we found that a low prevalence of MB-infected
mosquitoes is associated with a low male-to-female horizontal transmission efficiency.

Overall, we recall that the use of Microsporidia MB as a bio-based agent for malaria control implies
increasing its prevalence through releases of MB-infected mosquitoes. Thus, one aim of this study is
to identify factors (excluding the efficiencies of vertical and horizontal transmission since it is difficult
to act on their values biologically) that make MB-infected mosquitoes more likely to spread than wild
mosquitoes. We found that the attractiveness of MB-positive males to wild females, the attractiveness
of wild males to MB-positive females, the female death rate and the average time before mating are
the most influencing parameters. Moreover, the ratio of MB-positive females to wild females decreases
with female mortality. This can be interpreted as the alternative control measures are slowing the spread
of MB-infected mosquitoes. However, because the alternative control measures are impacting both
the MB-infected and wild mosquitoes, the benefits in terms of malaria case reduction while applying
alternative control measures could still outweigh the benefits on the spread of MB-infected mosquitoes
in case of high female mortality. It is worth noting that this result is obtained while assuming the same
demographics for MB and wild mosquitoes.

This study analyzed the spread of MB-infected mosquitoes by assuming that all the malaria vec-
tors can be infected with Microsporidia. However, Nattoh et al. [3] and Herren et al. [4] found the
Microsporidia MB only in the population of Anopheles Arabiensis, Funestus and Gambiae. Thus,
the results given here are relevant in areas like Kenya where those species are the primary malaria
vectors [38]. Otherwise, further studies are required to assess whether Microsporidia MB can stably
infect other Anopheles species such as Anopheles moucheti and Anopheles nili that are responsible for
malaria transmission in other in forested and humid savannah areas of West and Central Africa [39]. In
addition, the findings presented here are based on the assumption of a homogeneous spatial distribution
of the MB and wild mosquitoes in nature. It is also useful to mention that the mosquito survival and
birth rates, depend on seasonal dynamics of environmental variables, such as temperature, humidity
and precipitation [40]. Especially, the life table characteristics of Anopheles Arabiensis [29] describes
how the fluctuation in the temperature affects some traits of the mosquito like the egg survival rate, the
egg development time and the male and female life expectancies. Thus, defining those parameters as
temperature-dependent functions makes the model more realistic. At this end, we use data from the life
table characteristics of Anopheles Arabiensis established by [29] to fit polynomials. The fitted polyno-
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mials are presented in Table 4 and the correlation between the polynomials and the data is observed in
Figure 6a.

Table 4. Temperature-dependent functions representing the egg survival and development
rate, the male and female life expectancies.

Parameters Fitted functions
Mean egg develop-
ment rate (1/te(t))

−0.00009322918101T 3+0.00603712413277T 2−0.11735895569901T +0.72290875910923

Survival through im-
mature stages (s)

−0.00029007027885T 3+0.01453747156087T 2−0.15000026889234T −0.04926327810974

Male life expectancy
(1/dm)

0.00582420563682T 3−0.42828267736984T 2+9.19114569287279T −32.57385986107060

Female life ex-
pectancy (1/d f )

0.00925609552195T 3−0.64404791503910T 2+12.68284422603250T−32.24054475085850
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Figure 6. (a) Temperature-dependent parameters obtained through a fitting procedure using
a polynomial function to data obtained from the literature [29]. The corresponding functions
are described in Table 4. (b) Time-dependent function representing yearly temperature fluc-
tuations in Mwea, Kenya. The blue line is the value of the actual temperature collected. The
graphs in orange, yellow and purple are the approximations at amplitude 1, 2 and 3 respec-
tively.

It is important to mention that all the temperature-dependent polynomials obtained are positive for
temperature values T (t) in the range [16, 35]. Hence, for temperatures in this range, the temperature-
dependent parameters are well-defined. The temperature is included, following the temperature in
the Mwea region (Latitude=-0.778644 and Longitude =37.515316) and approximated with a time-
dependent sine function

T (t) = 21.5 + a sin(
π

115
(t − 5)); a ∈ {1, 2, 3}. (6.1)
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where t is the time, T0 = 21.5 represents the average difference between highest and lowest tempera-
tures, 2×115 = 330 days (11 months in a year) is the period, a is the amplitude; 5 days is the horizontal
phase shift chosen. Figure 6b depicts the temperature approximations for the Mwea region.
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Figure 7. Illustration of the effect of the temperature on the evolution of the population
of MB-infected mosquitoes. The values of the parameters are: βm f

h = β
f m
h = 0.35; βv =

0.75; pm = 0.7665; ϵ1 = 1; ϵ2 = 1; tm = 3; ne = 1, K = 200, 000. The remaining
parameters d f , dm, s and te are represented by temperature-dependent functions given in 6b.
The first graph describes the population of MB-infected females versus the population of MB-
infected males. The second graph described the total population of MB-positive, MB-negative
mosquitoes and the total population of mosquitoes. The third graph shows the seasonal
evolution of the variation of the prevalence of MB-infected mosquitoes. In addition, we
represented the prevalence given by the autonomous model for the minimum male mortality,
minimum female mortality and maximum survival and then for the maximum male mortality,
maximum female mortality and minimum survival.

We choose the amplitude a = 2 and simulate the model to observe the dynamics of the periodic
model. The simulations are presented in Figure 7. From Figure 7, the prevalence of MB-infected
mosquitoes obtained from the autonomous model for minimum survival and maximum mortality (fe-
male and male), as well as the prevalence of MB-infected mosquitoes for maximum survival and mini-
mum mortality, could give an approximation of the dynamics of the periodic model at the equilibrium.
However, this is not clear enough. As a result, we intend to investigate analytically in further stud-
ies how the seasonal dynamics affect the spread of MB-infected mosquitoes. Another limitation of
this work, from the mathematical point of view is the simple theoretical analysis. Then, a thorough
analysis could give more insights into the dynamics of the spread of MB-infected mosquitoes. Fur-

Mathematical Biosciences and Engineering Volume 20, Issue 8, 15167–15200.



15197

thermore, due to the recent discovery of the possibility of utilizing Microsporidia MB as a bio-based
agent against malaria, there is still a lot to explore mathematically such as the spatial dynamics of MB-
infected mosquitoes using partial differential equations and the introduction of noises using stochastic
models. Finally, we intend to design in further studies, optimal release strategies to increase the preva-
lence of MB-infected mosquitoes for malaria control, as done in previous dengue-Wolbachia-related
studies [41, 42].
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