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Abstract: We consider a class of k-dimensional reaction-diffusion epidemic models (k = 1, 2, · · · )
that are developed from autonomous ODE systems. We present a computational approach for the
calculation and analysis of their basic reproduction numbers. Particularly, we apply matrix theory to
study the relationship between the basic reproduction numbers of the PDE models and those of their
underlying ODE models. We show that the basic reproduction numbers are the same for these PDE
models and their associated ODE models in several important scenarios. We additionally provide two
numerical examples to verify our analytical results.
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1. Introduction

Partial differential equations (PDEs) of the reaction-diffusion type are extensively used in the mod-
eling of infectious diseases [1–8]. The focus of the present paper is to study the basic reproduction
numbers for a class of reaction-diffusion epidemic models constructed from autonomous systems of
ordinary differential equations (ODEs). The underlying ODE models represent the dynamics of dis-
ease transmission and spread that are spatially homogeneous, whereas the PDE models, with diffusion
terms added, emphasize the movement and dispersal of the hosts and pathogens over a (typically het-
erogeneous) spatial domain.

The basic reproduction number, commonly denoted by R0, is a critical quantity to quantify the
transmission risk of an infectious disease. It measures the expected number of secondary infections
produced by one infective individual in a completely susceptible population. R0 is often used to charac-
terize the threshold behavior of an epidemic, with disease eradication if R0 < 1 and disease persistence
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if R0 > 1. The theory of the basic reproduction numbers for ODE-based autonomous epidemic models
is well developed, and the calculation of R0 follows a standard procedure based on the next-generation
matrix technique [9, 10].

Many efforts have been devoted to the definition, calculation, and analysis of the basic reproduction
numbers for PDE models, such as reaction-diffusion epidemic systems, which are more complex than
their ODE counterparts. Thieme [11] introduced a theoretical framework to study R0, defined as the
spectral radius of a resolvent-positive operator, of such reaction-diffusion equations. Using the theory
of principal eigenvalues, Wang and Zhao [12] defined R0 as the spectral radius of a next-infection
operator for a general class of reaction-diffusion models. They showed that the R0 of such a PDE
system is the same as that of the underlying ODE system when the diffusion rates are positive constants
and the next-generation matrices are independent of the spatial location. Asymptotic profiles of R0

for reaction-diffusion epidemic systems with constant diffusion rates were investigated in [13–16].
Particularly, Chen and Shi [14] showed that R0 approaches the spectral radius of a spatially averaged
next-generation matrix when the diffusion rates tend to infinity, and R0 approaches the maximum value
of a local reproduction number when the diffusion rates tend to zero. Moreover, reproduction numbers
for time-periodic reaction-diffusion systems were discussed in [17,18]. Other theoretical studies related
to the reaction-diffusion epidemic models and their basic reproduction numbers include [1,6,8,19–23].

The goal of the present work is twofold: (1) to produce practically useful means to compute the
basic reproduction numbers of reaction-diffusion epidemic models, since the classical next-generation
matrix technique for autonomous ODE systems is no longer applicable; and (2) to gain a deeper un-
derstanding of the relationship between the basic reproduction number of a reaction-diffusion PDE
model, RPDE

0 , and that of its underlying ODE model, RODE
0 . To that end, we will focus on a class of

reaction-diffusion epidemic systems that are developed by adding diffusion terms to autonomous ODE
systems, where the diffusion rates generally are functions of the location variables representing the
spatial heterogeneity. In a prior study [24], we proposed a numerical method to compute the value of
R0 for such reaction-diffusion epidemic models on one-dimensional (1D) spatial domains. The essen-
tial idea is the reduction of the infinite-dimensional operator eigenvalue problem for a PDE system to
a finite-dimensional matrix eigenvalue problem.

In the present study, we will make a nontrivial extension of the methodology in [24] to reaction-
diffusion epidemic systems on k-dimensional spatial domains, where k ≥ 1 can be any positive integer.
Such an extension, in addition to making the theory and methodology more complete, would facili-
tate the study of more practical applications where these PDE models are utilized to investigate the
transmission and spread of infectious diseases in the real world. Based on the numerical formulation,
we will use matrix theory to analyze the relationship between the PDE-based RPDE

0 and the ODE-based
RODE

0 . The matrix analysis involved in the current work for k-dimensional models is significantly harder
than that for one-dimensional models. We will show that under several important scenarios, such as the
presence of a single infected compartment, constant diffusion rates, uniform diffusion of the infected
compartments, and partial diffusion in a system, the two basic reproduction numbers equal each other.

We organize the remainder of this paper as follows. In Section 2, we present the k-dimensional
reaction-diffusion epidemic system and the definition of its basic reproduction number. In Section
3, we describe the details of our computational method for RPDE

0 and then analyze the relationship
between RPDE

0 and RODE
0 . In Section 4, we provide specific numerical examples to verify our analytical

findings. Finally, we conclude the paper with some discussion in Section 5.

Mathematical Biosciences and Engineering Volume 20, Issue 8, 15201–15218.



15203

2. Reaction-diffusion epidemic model

Let n be a positive integer and U(t, x) =
(
u1(t, x), ..., un(t, x)

)T be a vector-valued function that
represents the hosts and pathogens related to an infectious disease, with each ui(t, x) denoting the
density of the (host or pathogen) population in compartment i (1 ≤ i ≤ n) at time t and location x. We
are concerned with the k-dimensional spatial domain [0, 1]k, where k ≥ 1 is an integer. We consider
the following reaction-diffusion epidemic system

∂ui

∂t
= ∇ · (di(x)∇ui) + Fi(U) −Vi(U), 1 ≤ i ≤ n, t > 0, x ∈ [0, 1]k;

∂ui

∂ν
= 0, 1 ≤ i ≤ n, t > 0, x ∈ ∂[0, 1]k,

(2.1)

with appropriate initial conditions. In this model, di(x) (1 ≤ i ≤ n) denotes the diffusion rate at location
x and is assumed to be continuously differentiable on [0, 1]k. Fi(U) denotes the rate of generation for
newly infected individuals in compartment i, and Vi(U) = V−i (U) − V+

i (U), with V+
i denoting the

transfer rate of individuals into compartment i and V−i the transfer rate of individuals out of compart-
ment i. Note that Fi(U) and Vi(U), i = 1, 2, · · · , n, are functions of U only, so that the PDE model
(2.1) is associated with an underlying ODE model, discussed in Appendix A. In addition, ν is the unit
normal vector on the boundary ∂[0, 1]k.

Without loss of generality, we assume that UI = UI(t, x) = (u1, ..., um)T denotes all the infected
compartments in the vector U, where 1 ≤ m < n. Consequently, the set of all disease-free steady states
is defined as Us = {U ≥ 0 : ui = 0, i = 1, ...,m}.

System (2.1) can be re-written as
∂ui

∂t
= di(x)∆ui − ci(x) · ∇ui + Fi(U) −Vi(U), 1 ≤ i ≤ n, t > 0, x ∈ [0, 1]k;

∂ui

∂ν
= 0, 1 ≤ i ≤ n, t > 0, x ∈ ∂[0, 1]k,

(2.2)

where
ci(x) = (ci1(x), ci2(x), ..., cik(x)) = −∇di(x), 1 ≤ i ≤ n. (2.3)

In what follows, we investigate the PDE system (2.2), where our results can be easily applied to the
original system (2.1) under the condition (2.3).

Following the theoretical framework in [12], we let T (t) be the solution semigroup on C([0, 1]k,Rm)
associated with the following linear reaction-diffusion equation:

∂ui

∂t
= di(x)∆ui − ci(x) · ∇ui −Vi(U), 1 ≤ i ≤ m, t > 0, x ∈ [0, 1]k;

∂ui

∂ν
= 0, 1 ≤ i ≤ m, t > 0, x ∈ ∂[0, 1]k.

(2.4)

Let the distribution of the initial infections, i.e., UI(0, x), be Um(x) = (u1(x), ..., um(x))T . Then the
distribution of these infections after time t > 0 is given by T (t)(Um(x)). Let F be the generation ma-
trix of new infections (see Appendix A). Then the distribution of new infections at any time t > 0 is
FT (t)(Um(x)) and the distribution of the total new infections is represented by

∫ +∞

0
FT (t)(Um(x))dt.
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Therefore, the next-generation operator L, which maps the distribution of initial infections to the dis-
tribution of the total infective individuals generated during the infectious period, is defined by

L : Um(x) 7−→
∫ +∞

0
FT (t)(Um(x))dt. (2.5)

Consequently, the basic reproduction number for the PDE system (2.2) is the spectral radius of the
operator L:

RPDE
0 = ρ(L). (2.6)

Meanwhile, we introduce the operator Γ : Rm 7−→ Rm by

Γ = Dm(x)∆ −Cm(x) · ∇ − V, (2.7)

where, for U = (u1, · · · , um)T ∈ Rm, (Dm(x)∆)U =
(
d1(x)∆u1, ..., dm(x)∆um

)T and (Cm(x) · ∇)U =

(c1(x) · ∇u1, ..., cm(x) · ∇um)T , with c j(x) = (c j1(x), c j2(x), ..., c jk(x)), 1 ≤ j ≤ m. Then we can obtain
an essential characterization of the next-infection operator,

L = −FΓ−1, (2.8)

with details provided in Appendix B.
Below we focus our attention on the numerical calculation of RPDE

0 , based on Eqs (2.6) and (2.8),
and the analysis of its relationship with the basic reproduction number RODE

0 of the underlying ODE
model (A.1). Throughout our discussion, we assume that the conditions (A1)–(A4) in Appendix A and
(B1)–(B3) in Appendix B hold.

3. Numerical formulation and matrix analysis

Let λ be an eigenvalue of the operator L such that L(φ(x)) = λφ(x) for an eigenvector φ(x) =

(φ1(x), ..., φm(x))T . Then from Eq (2.8) we have

− FΓ−1(φ(x)) = λφ(x). (3.1)

Let ψ(x) = −Γ−1(φ(x)), where ψ(x) = (ψ1(x), ..., ψm(x))T . Then −Γ(ψ(x)) = φ(x). Based on the
condition (B3), this equation can be written as

− (dp(x)∆ψp(x) − cp(x) · ∇ψp(x) − vpψp(x)) = φp(x), 1 ≤ p ≤ m. (3.2)

Pick a sufficiently large integer N > 0 and denote

d j1... jk
p = dp

( j1

N
,

j2

N
, ...,

jk

N

)
, c j1... jk

p j = cpr

( j1

N
,

j2

N
, ...,

jk

N

)
,

ψ j1... jk
p = ψp

( j1

N
,

j2

N
, ...,

jk

N

)
, φ j1... jk

p = φp

( j1

N
,

j2

N
, ...,

jk

N

)
,

for any integers 0 ≤ j1, j2, ..., jk ≤ N and 1 ≤ r ≤ k. Apply the standard centered difference scheme to
Eq (3.2) on the spatial domain [0, 1]k. Then for any 0 ≤ j1, ..., jk ≤ N, we obtain

− d j1... jk
p

k∑
r=1

ψ
j1...( jr+1)... jk
p − 2ψ j1... jk

p + ψ
j1...( jr−1)... jk
p

1/N2

+

k∑
r=1

c j1... jk
pr

ψ
j1...( jr+1)... jk
p − ψ

j1...( jr−1)... jk
p

2/N
+ vpψ

j1... jk
p ≈ φ

j1... jk
i ,

(3.3)
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and ψ j1...(−1)... jk
p = ψ

j1...(1)... jk
p , ψ

j1...(N+1)... jk
p = ψ

j1...(N−1)... jk
p , where (−1), (1), (N + 1), and (N − 1) are all in

the ( jr) position inside the permutation j1... jk for any 1 ≤ r ≤ k by the Neumann boundary condition.
Next, we can write the above (N + 1)k approximate equations of (3.3) in the following matrix form

ApΨp ≈ Φp, (3.4)

where Ap =
(
a(p)

i j

)
is a (N + 1)k × (N + 1)k matrix, 1 ≤ i, j ≤ (N + 1)k, and

Ψp = (ψ0...00
p , ..., ψ0...0N

p , ..., ψ0...N...0
p , ..., ψ0...N...N

p , ..., ψN...N0
p , ..., ψN...NN

p )T ,

Φp = (φ0...00
p , ..., φ0...0N

p , ..., φ0...N...0
p , ..., φ0...N...N

p , ..., φN...N0
p , ..., φN...NN

p )T .

Note that for any 0 ≤ j1, ..., jk ≤ N, the coefficient of ψ j1... jk
p in Eq (3.3) is a diagonal entry of Ap,

which is equal to a positive number 2kN2d j1... jk
p + vp. Define

N0 = max
1≤p≤m

{Np}, where Np = max
{
||cpr(x)||∞

2d0
, 1 ≤ r ≤ k

}
,

and where d0 is a positive lower bound for the diffusion rates (see condition (B2)). Then for N > N0,
the off-diagonal entries −N2d j1... jk

p + 1
2 Nc j1... jk

pr and −N2d j1... jk
p − 1

2 Nc j1... jk
pr are nonpositive for all 1 ≤ r ≤ k.

Hence for any eigenvalue λ of Ap, by the Gershgorin Circle Theorem, there exists 1 ≤ i ≤ (N + 1)k

such that ∣∣∣λ − a(p)
ii

∣∣∣ ≤∑
j,i

∣∣∣∣a(p)
i j

∣∣∣∣ =
∣∣∣a(p)

ii − vp

∣∣∣ .
Thus, Re(λ) ≥ vp > 0 and Ap is invertible. Moreover, we have ρ(A−1

p ) ≤ 1/Re(λ) ≤ 1/vp, 1 ≤ p ≤
m. This leads to the following lemma.

Lemma 3.1. Let N > N0 and λAp be an eigenvalue of matrix Ap. Then, for 1 ≤ p ≤ m, the real part of
λAp satisfies Re(λAp) ≥ vp, and, consequently, Ap is invertible.

In addition, for any 0 ≤ j1, ..., jk ≤ N, if we fix ψ
j1...( jr+1)... jk
p = ψ

j1... jk
p = ψ

j1...( jr−1)... jk
p = 1 for all

1 ≤ r ≤ k in Eq (3.3), then the left-hand side of Eq (3.3) is the sum of the

1 +

k∑
r=1

jr(N + 1)k−r

-th row

of the matrix Ap, which is obviously equal to vp. Hence the sum of each row of Ap is vp, which implies
vp is an eigenvalue of Ap, and consequently, 1/vp is an eigenvalue of A−1

p . Therefore ρ(A−1
p ) = 1/vp.

We obtain the following result.

Lemma 3.2. For all N > N0, we have ρ(A−1
p ) = 1/vp, 1 ≤ p ≤ m.

Denote Ψ = (ΨT
1 , ...,Ψ

T
m)T , Φ = (ΦT

1 , ...,Φ
T
m)T , and

A = diag(A1, ..., Am).

Then A is invertible and Ψ ≈ A−1Φ by Eq (3.4). It follows from Eq (3.1) that

Fψ(x) = −FΓ−1(φ(x)) = λφ(x), (3.5)
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which yields
(F ⊗ I(N+1)k)Ψ = λΦ (3.6)

for any integer N > 0, where I(N+1)k is the (N+1)k×(N+1)k identity matrix and ⊗ denotes the Kronecker
product that is defined as follows: for any r × s matrix M = (mi j) and p × q matrix Q,

M ⊗ Q =


m11Q · · · m1sQ
...

. . .
...

mr1Q · · · mrsQ

 .
With the substitution of Ψ ≈ A−1Φ into Eq (3.6), our numerical formulation leads to

(F ⊗ I(N+1)k)A−1Φ ≈ λΦ. (3.7)

From the basic theory of finite difference schemes [25,26], the solution of Eq (3.7) (or, equivalently,
Eq (3.3)) converges to the solution of Eq (3.1) (or, equivalently, Eq (3.2)) when N → ∞. Hence, for
any ε > 0, we can pick N sufficiently large such that∣∣∣ρ((F ⊗ I(N+1)k)A−1) − ρ(L)

∣∣∣ < ε.
Letting ε→ 0, we obtain our central result for the computation of RPDE

0 :

RPDE
0 = lim

N→∞
ρ
(
(F ⊗ I(N+1)k)A−1). (3.8)

We have reduced the original operator eigenvalue problem (3.1) to a matrix eigenvalue problem
(3.7). Since there are many efficient numerical techniques available for computing eigenvalues of
matrices [27,28], our method facilitates practical evaluation of the basic reproduction number for such
a reaction-diffusion epidemic model.

Additionally, our numerical formulation provides important insight into the property of RPDE
0 . In

what follows, we apply matrix theory to conduct an analysis of RPDE
0 and its connection to RODE

0 , based
on Eq (3.8). We first introduce the following lemma.

Lemma 3.3. Assume that X = (xi j) is an m × m matrix and Yi j (1 ≤ i, j ≤ m) are n × n matrices. If
there exists a nonsingular matrix P such that P−1Yi jP = Ui j for all i, j = 1, ...,m, where Ui j is an upper
triangular matrix with diagonal entries y(1)

i j , ..., y
(n)
i j , then

det


x11Y11 · · · x1mY1m
...

...
...

xm1Ym1 · · · xmmYmm

 =

n∏
k=1

det


x11y(k)

11 · · · x1my(k)
1m

...
...

...

xm1y(k)
m1 · · · xmmy(k)

mm

 .
The proof of Lemma 3.3 is similar to that of Lemma 4.2 in [24]. Now we state our main results

regarding the relationship between RPDE
0 and RODE

0 in the following three theorems.

Theorem 3.1. (1) In general, we have RPDE
0 ≥ RODE

0 .
(2) If F is a triangular matrix, then RPDE

0 = RODE
0 . Particularly, if m = 1, then RPDE

0 = RODE
0 .
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Proof. (1) Let e = (1, 1..., 1)T be a vector with all the (N + 1)k − 1 entries being 1’s, and let P =[
1 0
e I(N+1)k−1

]
. Since the sum of each row of Ai is vi, we have

P−1A−1
i P =

[
1/vi αT

i
0 S i

]
,

where αi is a [(N + 1)k − 1]-dimensional vector and S i is a [(N + 1)k − 1] × [(N + 1)k − 1] matrix with
(N + 1)k − 1 rows and (N + 1)k − 1 columns. Similar to the proof of Lemma 4.2 in [24], we obtain
that det(λIm − FV−1) is a factor of det

[
λIm(N+1)k − (F ⊗ I(N+1)k)A−1]; that is, each eigenvalue of FV−1

is an eigenvalue of (F ⊗ I(N+1)k)A−1. Thus, ρ((F ⊗ I(N+1)k)A−1) ≥ ρ(FV−1). Letting N → ∞, we obtain
RPDE

0 ≥ RODE
0 .

(2) This statement directly follows from Lemma 3.2, since

ρ((F ⊗ I(N+1)k)A−1) = max
1≤i≤m
{ρ(FiiA−1

i )} = max
1≤i≤m
{Fii/vi} = ρ(FV−1).

Theorem 3.2. If the matrix set {Ai}
m
i=1 for system (2.2) is a commuting family where each pair of

matrices commute with each other, then RPDE
0 = RODE

0 .

Proof. By Theorem 3.1(1), it suffices to show that RPDE
0 ≤ RODE

0 . Since {Ai}
m
i=1 is a commuting family

of matrices, then {A−1
i }

m
i=1 is a commuting family. Hence, there exists a nonsingular matrix Q such that

QA−1
i Q−1 = Bi,

where Bi is an upper triangular matrix with diagonal elements αi1, ..., αi(N+1)k and |αi j| ≤ 1/vi for
i = 1, ...,m; j = 1, ..., (N + 1)k. Consequently, by Lemma 3.3, we have

det
(
λIm(N+1)k − (F ⊗ I(N+1)k)A−1

)
=

(N+1)k∏
j=1

det(λIm − O j), (3.9)

where O j =


F11α1 j · · · F1mαm j
...

...
...

Fm1α1 j · · · Fmmαm j

 for 1 ≤ j ≤ (N + 1)k. Thus, Eq (3.9) indicates that

ρ((F ⊗ I(N+1)k)A−1) = max
1≤ j≤(N+1)k

{ρ(O j)}. (3.10)

Since F is nonnegative by assumptions (A1) and (A4), then |O j| ≤ FV−1, where |O j| =
|F11α1 j| · · · |F1mαm j|

...
...

...

|Fm1α1 j| · · · |Fmmαm j|

. We thus obtain ρ(O j) ≤ ρ(|O j|) ≤ ρ(FV−1). Therefore, ρ((F⊗ I(N+1)k)A−1) ≤

ρ(FV−1), which implies RPDE
0 ≤ RODE

0 .

Next, we provide sufficient and necessary conditions to characterize the scenarios where {Ap}
m
p=1 is

a commuting family.

Mathematical Biosciences and Engineering Volume 20, Issue 8, 15201–15218.
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Theorem 3.3. For any integer N > N0, the matrix set {Ap}
m
p=1 associated with system (2.2) is a com-

muting family if and only if there exist constants δp, σpr, and continuous functions d(x), gr(x), 1 ≤ p ≤
m, 1 ≤ r ≤ k, such that

dp(x) = δpd(x), cpr(x) = σprgr(x)

and
δpσqr = δqσpr, σpiσq j = σqiσp j

for any 1 ≤ p, q ≤ m and 1 ≤ r, i, j ≤ k.

Proof. For any 0 ≤ j1, ..., jk ≤ N, we denote the

1 +

k∑
r=1

jr(N + 1)k−r

-th entry of a (N + 1)k-

dimensional vector β by (β) j1... jk and write Ap = N2Hp +
N
2

Gp + vpI(N+1)k for p = 1, ...,m, where
Hp satisfies

(HpΨp) j1... jk = −d j1... jk
p

k∑
r=1

(
ψ j1...( jr+1)... jk

p − 2ψ j1... jk
p + ψ j1...( jr−1)... jk

p

)
and Gp satisfies

(GpΨp) j1... jk =

k∑
r=1

c j1... jk
pr

(
ψ j1...( jr+1)... jk

p + ψ j1...( jr−1)... jk
p

)
.

Thus, for any 1 ≤ p, q ≤ m, the equality

ApAq = AqAp

is equivalent to

N2(HpHq − HqHp) +
N
2

(HpGq + GpHq − HqGp −GqHp) +
1
4

(GpGq −GqGp) = 0. (3.11)

Since Eq (3.11) holds for any N > N0, we can conclude that

HpHq = HqHp,

HpGq + GpHq = HqGp + GqHp,

GpGq = GqGp,

for any 1 ≤ p, q ≤ m. Following similar algebraic manipulations as those in [24], we can conclude
the following: (i) HpHq = HqHp implies that there exist constants δp, 1 ≤ p ≤ m, and a continuous
function d(x) such that

dp(x) = δpd(x);

(ii) GpGq = GqGp implies that there exist constants σpr, 1 ≤ p ≤ m, 1 ≤ r ≤ k, and continuous
functions gr(x), 1 ≤ r ≤ k, such that

cpr(x) = σprgr(x), σpiσq j = σqiσp j

for any 1 ≤ p, q ≤ m, 1 ≤ r, i, j ≤ k. Substitute functions dp(x) = δpd(x), cpr(x) = σprgr(x)
into matrices Hp, Hq, Gp and Gq. Then for any 1 ≤ p, q ≤ m, we can obtain that HpGq + GpHq =

HqGp + GqHp holds if and only if
δpσqr = δqσpr

for all 1 ≤ r ≤ k. We thus complete the proof.
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The conclusions in Theorems 3.2 and 3.3 can easily apply to the original PDE system (2.1) under
the constraint (2.3). In each of the following scenarios, the basic reproduction number RPDE

0 for the
reaction-diffusion system (2.1) and the basic reproduction number RODE

0 for its ODE counterpart (A.1)
are the same. These results cover several special, but important, cases associated with the PDE model
(2.1).

Corollary 3.1. If there exist constants δp, 1 ≤ p ≤ m, and a continuous function d(x) such that
dp(x) = δpd(x) for all p = 1, ..., m in system (2.1), then RPDE

0 = RODE
0 .

Corollary 3.2. (A scenario with constant diffusion rates.) If the diffusion rates of all the infected
compartments are positive constants in system (2.1), then RPDE

0 = RODE
0 .

Corollary 3.3. (A scenario with uniform diffusion patterns.) If dp(x) = dq(x) for all the infected
compartments (1 ≤ p, q ≤ m) in system (2.1), then RPDE

0 = RODE
0 .

Corollary 3.4. (A scenario with partial diffusion.) If dp(x) = 0 for p = 1, ..., m−1 and dm(x) ≥ d0 > 0
in system (2.1), then RPDE

0 = RODE
0 .

4. Two examples

Several numerical examples concerned with one-dimensional (1D) reaction-diffusion epidemic
models were presented in [24] to demonstrate that they have the same basic reproduction numbers
as those of their ODE counterparts. Now we extend the numerical studies to two-dimensional (2D)
and three-dimensional (3D) spatial domains to verify some of our analytical predictions in Section 3.

4.1. A 2D SIR model

We consider a host population that moves on a 2D spatial domain represented by [0, 1]2, where the
motion can be described by a diffusion process. Let S , I and R be the density of the susceptible, in-
fected, and recovered individuals, respectively, and dS (x), dI(x) and dR(x) be their associated diffusion
rates with x = (x1, x2) ∈ [0, 1]2. We study the following 2D reaction-diffusion SIR system, which is
extended from the model presented in [4]:

∂S
∂t

= ∇ ·
(
dS (x)∇S

)
+ Λ − αS I − µS , x ∈ [0, 1]2, t > 0;

∂I
∂t

= ∇ ·
(
dI(x)∇I

)
+ αS I − (µ + γ)I, x ∈ [0, 1]2, t > 0;

∂R
∂t

= ∇ ·
(
dR(x)∇R

)
+ γI − µR, x ∈ [0, 1]2, t > 0.

(4.1)

The constant parameters Λ, α, µ, and γ denote the recruitment rate, transmission rate, natural death
rate, and disease recovery rate, respectively. Disease-induce mortality is not included here. Neumann
boundary conditions are imposed on the boundary ∂[0, 1]2 and appropriate initial conditions are pro-
vided at t = 0.

Obviously, I is the only infected compartment in system (4.1); i.e., m = 1, so that Theorem 3.1(2)

applies. From the underlying ODE system, we obtain F =
αΛ

µ
and V = µ + γ. Then the basic
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reproduction number of the PDE system (4.1) is the same as that of its corresponding ODE system,
based on Theorem 3.1(2):

RPDE
0 = ρ(FV−1) =

αΛ

µ(µ + γ)
.

To verify this relationship, Figure 1 compares RPDE
0 and RODE

0 for this model. RPDE
0 is computed

by our numerical method based on Eq (3.8). The values of ρ((F ⊗ I(N+1)2)A−1) = ρ(αΛ
µ

A−1
1 ) versus N

(N = 1, 2, · · · ) are plotted in Figure 1, where A1 is the matrix obtained in Eq (3.4) from the single
infectious compartment I. Meanwhile, since RODE

0 = ρ(FV−1) does not depend on N, it is represented
by a horizontal line in the graph. We set the diffusion rate of the infected individuals as dI(x) =

sin(100(x1 + x2)) + 2 in this test. We observe that when N is sufficiently large, the numerical values
of RPDE

0 based on ρ((F ⊗ I(N+1)2)A−1) almost perfectly match RODE
0 , and this pattern continues for all

N ≥ 40.

10 20 30 40 50 60 70 80 90 100

N

0

5

10

15

20

25

30

35

40

45

50

R
0

R
0

ODE

Numerical R
0

PDE

Figure 1. Comparison between RODE
0 and RPDE

0 for the 2D SIR model (4.1). RODE
0 ≈ 3.20 is

independent of N. RPDE
0 is numerically calculated by ρ((F ⊗ I(N+1)2)A−1) for each N.

Next, we verify that RPDE
0 = 1 can be used as a threshold to distinguish the two dynamical behaviors

between disease eradication and disease persistence for the model (4.1). To that end, we consider two
typical scenarios of RPDE

0 < 1 and RPDE
0 > 1 by selecting appropriate parameter values, and run the

simulation for the model (4.1) with an initial infection density I(0, x1, x2) = 200 in each scenario.
Figure 2(a) displays the surface plot of I(t, x1, x2 = 0.5) versus t and x1 with RPDE

0 = 0.88 < 1, where I
approaches 0 over time for all x1. In contrast, Figure 2(b) displays the surface plot of I(t, x1, x2 = 0.5)
versus t and x1 with RPDE

0 = 3.20 > 1, where I increases from its initial value and remains positive
for all the time. Surface plots at other fixed values of x2 and those with x1 fixed (not shown here) are
qualitatively similar.
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(a) (b)

Figure 2. Two typical scenarios of I(t, x1, 0.5) versus t and x1 for the SIR model (4.1): (a)
RPDE

0 = 0.88; (b) RPDE
0 = 3.20.

4.2. A 3D model for environmentally transmitted diseases

Environmentally transmitted diseases continue to impose a significant public health burden through-
out the world [29]. The transmission dynamics of many such diseases can be studied by SIR-B mod-
els [30–32], where the B compartment typically represents the concentration of the pathogen in the
contaminated environment. Here, we focus on airborne infections, where the pathogenic particles (es-
pecially those tiny particles such as aerosols) can float and move in the air for an extended period of
time. These airborne pathogens include bacteria such as Mycobacterium, Staphylococcus, and Le-
gionella [33], viruses such as Varicella, Hantavirus, and SARS-CoV-2 [34], and other microorganisms
such as fungi [35].

We consider a reaction-diffusion SIR-B model that incorporates both the indirect (i.e., airborne)
and direct (i.e., human-to-human) transmission routes for an airborne infection. We assume that the
pathogen undergoes a diffusion process in the air in a 3D domain represented by [0, 1]3. We also assume
that, compared to the pathogen diffusion and dispersal, the average spatial movement of human hosts
is slow and can be disregarded in our model. We thus obtain the following PDE system

∂S
∂t

= Λ − (αI + βB)S − µS ;

∂I
∂t

= (αI + βB)S − (µ + γ)I;

∂R
∂t

= γI − µR;

∂B
∂t

= ∇ ·
(
dB(x)∇B

)
+ ξI + rB

(
1 −

B
K

)
− τB,

(4.2)

for t > 0 and x = (x1, x2, x3) ∈ [0, 1]3, with Neumann boundary conditions and appropriate initial
conditions. The parameters α and β represent, respectively, the direct and indirect transmission rates, ξ
is the rate of contribution from infected individuals (through coughing, sneezing, etc.) to the pathogen
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in the air, r is the intrinsic growth rate of the pathogen (for viruses, we may set r = 0), K is the carrying
capacity of the pathogen growth, and τ is the removal rate of the pathogen from the air. A bilinear
incidence form is used to represent both the direct and indirect transmission routes.

The model (4.2) is a partially diffusive PDE system since the diffusion component is only incorpo-
rated into the pathogen equation. Therefore, Corollary 3.4 predicts that RPDE

0 of system (4.2) equals
RODE

0 of the underlying ODE system. The infectious compartments are I and B. From the associated
ODE system, we easily obtain

F =

αΛ

µ

βΛ

µ
ξ r

 and V =

[
µ + γ 0

0 τ

]
.

From Corollary 3.4, we obtain

RPDE
0 = ρ(FV−1) =

1
2

 αΛ

µ(µ + γ)
+

r
τ

+

√(
αΛ

µ(µ + γ)
−

r
τ

)2

+
4ξβΛ

µτ(µ + γ)

 . (4.3)

To provide numerical evidence for this analytical relationship, we compare RPDE
0 and RODE

0 in Fig-
ure 3, where we plot ρ((F ⊗ I(N+1)3)A−1) versus N (N = 1, 2, · · · ) for the model (4.2). Note that

(F ⊗ I(N+1)3)A−1 =

 αΛ
µ(µ+γ) I(N+1)3

βΛ

µ
A−1

2
ξ

µ+γ
I(N+1)3 rA−1

2

 and A2 is the matrix obtained in Eq (3.4) from the infectious

compartment B. In order to clearly show the convergence of the numerical values of RPDE
0 , we set

the pathogen diffusion rate as dB(x) = 10−3( sin(100(x1 + x2 + x3)) + 1.01
)

in this test. We observe
a pattern similar to that in Figure 1. Specifically, the numerical approximations of RPDE

0 based on
ρ((F ⊗ I(N+1)3)A−1) coincide with RODE

0 for all N > 10.

5 10 15 20 25 30

N

0

1

2

3

4

5

6

7

R
0

R
0
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Numerical R
0

PDE

Figure 3. Comparison between RODE
0 and RPDE

0 for the 3D SIR-B model (4.2). RODE
0 ≈ 2.43

is independent of N. RPDE
0 is numerically calculated by ρ((F ⊗ I(N+1)3)A−1) for each N.

The stability properties for a more general partially diffusive SIR-B model were analyzed in [36]
and it was shown that RPDE

0 = 1 provided a threshold for the transition between disease eradication and
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disease persistence. We now provide some numerical verification for the PDE model (4.2). We again
consider two typical scenarios with RPDE

0 < 1 and RPDE
0 > 1, and set the initial concentration of the

pathogen as B(0, x1, x2, x3) = 105(3− (x1−0.5)2− (x2−0.5)2− (x3−0.5)2) for the model (4.2). We then
run the simulation in each scenario and plot the pathogen concentration B(t, x1, x2 = 0.5, x3 = 0.5)
versus t and x1 in Figure 4, where we clearly see the eradication of the pathogen in panel (a) and the
persistence of the infection in panel (b). Other surface plots with various values of x1, x2, and x3 have
similar behaviors and are not shown here.

(a) (b)

Figure 4. Two typical scenarios of B(t, x1, 0.5, 0.5) versus t and x1 for the SIR-B model (4.2):
(a) RPDE

0 = 0.72; (b) RPDE
0 = 2.43.

5. Conclusions

In this paper, we are concerned with a class of reaction-diffusion epidemic models whose underly-
ing ODE systems are autonomous. We have proposed a computational approach to efficiently calculate
and analyze the basic reproduction numbers, RPDE

0 , for such PDE models. The present work is an ex-
tension of our previous study in [24] from one-dimensional spatial domains to k-dimensional domains
for any positive integer k. This extension contributes to a more holistic understanding for the basic
reproduction numbers of reaction-diffusion epidemic systems, and allows broader applications of the
methodology in epidemiological studies.

Our numerical method transfers the computation of RPDE
0 , defined as the spectral radius of an oper-

ator that is infinite-dimensional, to the calculation of the principal eigenvalue associated with a finite-
dimensional matrix. Such a formulation enables us to apply the matrix theory to analyze and compare
the basic reproduction numbers for the PDE system and its underlying ODE system. We have found
that RPDE

0 = RODE
0 in several special but important cases, such as (i) a single infected compartment in

the system; (ii) constant diffusion rates; (iii) uniform diffusion patterns in the infected compartments;
and (iv) the presence of partial diffusion. For these scenarios, the computation of RPDE

0 can be con-
veniently handled by using RODE

0 , saving unnecessary efforts in the operator and eigenvalue analysis
associated with the PDE models.

Mathematical Biosciences and Engineering Volume 20, Issue 8, 15201–15218.



15214

Prior studies on the basic reproduction numbers of reaction-diffusion epidemic models are often
focused on the analysis of the asymptotic profiles when the constant diffusion rates tend to zero or
infinity (e.g., [13–16]). In contrast, our work aims to explore a more general relationship between
the basic reproduction numbers of the PDE models with variable diffusion rates and those of their
underlying autonomous ODE models. Another unique feature of our study is that the analytical work is
inspired by the numerical formulation and involves only elementary numerical techniques and matrix
theory. The findings in this study help to efficiently quantify the risk of disease transmission for a
large class of reaction-diffusion models. We hope to extend the methodology to reaction-convection-
diffusion systems and possibly other PDE epidemic models in our future research.
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Appendix

A. Underlying ODE model

If system (2.1) is homogeneous in space; i.e., U = (u1(t), ..., un(t))T , then the PDE model (2.1) is
reduced to the following ODE model

dU
dt

= F (U) −V(U), t > 0, (A.1)

where F (U) = (F1(U), ...,Fn(U))T and V(U) = V−(U) − V+(U) = (V1(U), ...,Vn(U))T . Based on
the framework in [10] for ODE epidemic models, we make the following standard assumptions:

(A1) Fi(U), V+
i (U), V−i (U) are non-negative and continuously differentiable, 1 ≤ i ≤ n.

(A2) If ui = 0, thenV−i = 0, 1 ≤ i ≤ m.
(A3) Fi = 0 for i > m.
(A4) If U ∈ Us, then Fi = V+

i = 0, i = 1, ...,m.

Suppose that U0 = (0, ..., 0, u0
m+1, ..., u

0
n) is a disease-free steady state of model (A.1) which is spa-

tially independent. Then the basic reproduction number for the ODE system (A.1) is defined as the
spectral radius of the next-generation matrix [10]; i.e.,

RODE
0 = ρ(FV−1), (A.2)

where F and V are m × m constant matrices with (i, j) entry Fi j = ∂Fi
∂u j

(U0) and Vi j = ∂Vi
∂u j

(U0), respec-
tively.

B. Next-generation operator

For t > 0 and any solution φ(t, x) of Eq (2.4),

lim
s→0+

T (s)φ(t, x) − φ(t, x)
s

= lim
s→0+

φ(t + s, x) − φ(t, x)
s

=
∂φ

∂t
(t, x) = Γ(φ). (B.1)

Hence, Γ is the generator of the C0-semigroup T (t) on C([0, 1]k,Rm). Note that T (t) is a positive
semigroup since T (t)C([0, 1]k,Rm

+) ⊂ C([0, 1]k,Rm
+) for all t ≥ 0. Let σ(Γ) denote the spectrum of the

operator Γ. It then follows from Theorem 3.12 in [11] that

(λI − Γ)−1(φ) =

∫ +∞

0
eλtT (t)(φ)dt, ∀λ > s(Γ), φ ∈ C([0, 1]k,Rm), (B.2)

where s(Γ) = sup{Reλ : λ ∈ σ(Γ)} is the spectral bound of Γ. Due to the loss of infected individuals
from natural and disease-induced mortalities, the internal evolution of individuals in the infectious
compartments is usually dissipative and exponentially decaying. We thus assume

(B1) −V is cooperative and s(Γ) < 0.

Using assumption (B1) and setting λ = 0 in Eq (B.2), we obtain

L(φ) = F
∫ +∞

0
T (t)(φ)dt = −FΓ−1(φ), (B.3)

or L = −FΓ−1. As done in [24], we make two additional assumptions regarding the PDE system (2.1)
and its underlying ODE system (A.1):
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(B2) There exists a constant d0 such that di(x) ≥ d0 > 0 for any x ∈ [0, 1]k and 1 ≤ i ≤ m.
(B3) V = diag(v1, ..., vm) with vi > 0, i = 1, ...,m.

Condition (B2) sets a minimal diffusion rate at all spatial locations for the PDE model. Condition
(B3) is satisfied by many common epidemic models. In case V is not a diagonal matrix, it is often
possible to introduce a new infection vector, F̃ (U), and a new transfer vector, Ṽ(U), in the ODE

system (A.1) such that
dU
dt

= F −V = F̃ − Ṽ, where the vectors F̃ and Ṽ produce a new generation

matrix F̃ and a diagonal transitive matrix Ṽ , respectively. From [10], we know that ρ(FV−1) and
ρ
(
F̃Ṽ−1) are equivalent in characterizing the disease threshold in the sense that they are simultaneously

higher than (or lower than) unity.
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