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Introduction: Metric learning, as a fundamental research direction in the field of

computer vision, has played a crucial role in image matching. Traditional metric

learning methods aim at constructing two-branch siamese neural networks to

address the challenge of imagematching, but they often overlook to cross-source

and cross-view scenarios.

Methods: In this article, a multi-branch metric learning model is proposed to

address these limitations. Themain contributions of this work are as follows: Firstly,

we design a multi-branch siamese network model that enhances measurement

reliability through information compensation among data points. Secondly, we

construct a non-local information perception and fusion model, which accurately

distinguishes positive and negative samples by fusing information at di�erent

scales. Thirdly, we enhance the model by integrating semantic information

and establish an information consistency mapping between multiple branches,

thereby improving the robustness in cross-source and cross-view scenarios.

Results: Experimental tests which demonstrate the e�ectiveness of the proposed

method are carried out under various conditions, including homologous,

heterogeneous, multi-view, and crossview scenarios. Compared to the state-of-

the-art comparison algorithms, our proposed algorithm achieves an improvement

of ∼1, 2, 1, and 1% in terms of similarity measurement Recall@10, respectively,

under these four conditions.

Discussion: In addition, our work provides an idea for improving the crossscene

application ability of UAV positioning and navigation algorithm.

KEYWORDS

multi-branch siamese network, non-local information perception, semantic information

capture, cross-source, cross-view

1. Introduction

In recent years, with the development of deep learning (LeCun et al., 2015), traditional

computer vision tasks witnessed significant progress (Liu Z. et al., 2023; Shi et al., 2023b).

Among them, metric learning, which focuses on matching and retrieval (Kaya and Hasan,

2019) has achieved remarkable advancements in accuracy and reliability. Scholars’ attention

has gradually shifted from the traditional homologous (the images come from the same

sensor) visual matching task to themulti-source (the images come from two ormore sensors)

imagematching task (Yang et al., 2022), and even themulti-modal (datas come fromdifferent

types, such as images and text) matching task (Hu et al., 2022; Xu et al., 2023).

Traditional image matching methods, such as SIFT and SURF, have been widely

used to extract stable key points and local descriptors from images, which are then

compared to compute matching similarity (Ma et al., 2021). Later, feature point
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extraction methods combined with deep learning emerged. For

example, SuperPoint (Landrieu and Boussaha, 2019) utilizes

convolutional neural networks to efficiently extract feature points

and descriptors in an end-to-end trainable manner. DenseVLAD

(Torii et al., 2015) is a feature extraction and matching method

based on Bag of visual words model. It extracts local features

in images by dense sampling and calculates their similarity

through vector quantization method. Although these methods

have shown promising results in homology matching tasks, it is

more and more difficult to extract common features because of

the increasing differences among the data, and their reliability

diminishes significantly when confronted with the complexities of

multi-source, complex, or multi-modal data. Up to now, there is

still no literature that can solve these challenges at the same time.

Metric learning aims to learn a function that quantifies the

similarity between diverse data sources, perspectives, or modalities.

These sources can originate from different sensors, devices or

fields, such as visible light images, infrared images, radar images,

etc. Multiple views (Hassani and Khasahmadi, 2020) can arise

from different viewpoints or shooting locations, such as images

from varying cameras, videos, lidar point cloud data, and so

on. Furthermore, multimodality encompasses different modalities,

including text, images, audio, video, and others. The objective

of metric learning is to acquire a distance metric function that

minimizes the distance between samples belonging to the same

class while maximizing the distance between samples from different

classes in a low-dimensional embedding space. The primary

challenge in metric learning lies in effectively modeling the

similarity relationships across different sources, perspectives, or

modalities and appropriately fusing the information from diverse

data sources, perspectives, or modalities.

Metric learning serves as the foundation of image matching,

demonstrating remarkable capability in learning image similarities

and greatly advancing various tasks (Ma et al., 2021; Wang

D. et al., 2022). For example, in the task of face recognition

(Boutros et al., 2022), deep learning methods effectively capture

the facial information under complex conditions, enabling accurate

identification of individuals based on semantic attributes. Similarly,

in vehicle re-identification (Shen et al., 2023), the metric learning

framework facilitates reliable screening of complex multi-view

positive samples, leading to precise consensus decision-making

despite variations in multi-sensor data. A prominent network

structure that implements the metric learning framework is the

siamese neural network, exemplified by MatchNet (Han et al.,

2015). Comprising two identical neural networks sharing weights

and parameters, the siamese neural network processes different

input data with the goal of calculating similarity or dissimilarity

between input pairs.

Siamese neural network has been widely used in face

recognition, target tracking, semantic matching, recommendation

system and other fields, yielding favorable outcomes. Particularly,

for remote sensing image matching task, the same scene

often contains multiple types of remote sensing data captured

simultaneously, such as repeated data from the same source,

satellite data, UAV aerial data, and even ground street view data

(Zhai et al., 2017). Usually, the corresponding siamese neural

network structure is established for each category. However,

this approach can introduce interference from a specific branch

during model training, limiting the adaptability of the model. In

this regard, the establishment of a multi-branch siamese neural

network to learn the relationship among multi-source data plays

a crucial role in promoting the ability of image perception from

a single data source. Moreover, during the learning process of

learning multi-branch data, the similarity measure of the model

can provide supplementary information through the third branch

to supplement and eliminate the impact of the difference of

data sources.

In the structure of Siamese Neural Network, Convolutional

Neural Network (CNN) is one of the most critical parts. However,

conventional CNNs rely on local perceptions for feature extraction,

which suffer from limitations such as excessive emphasis on

local regions and limited interaction between different regions. In

contrast, non-local feature perception, unlike traditional CNNs,

considers the correlation among all locations within the feature

map when computing features for each location (Tu et al., 2020).

This approach utilizes a global similarity measure to evaluate the

relevance of an input feature to all other locations and assigns

computed weights to the corresponding feature representation

within the feature map. Consequently, it captures more semantic

information across the global context, enhancing the expressive

power of the features. Non-local feature perception enables the

capture of global and long-range correlation information, thereby

improving the expressiveness of the features. It finds application

in various image processing tasks, including image classification,

object detection, and semantic segmentation. However, non-local

operations are computationally demanding, consuming additional

computing resources and time. Furthermore, they are sensitive

to noise or outliers in the input feature map and thus require

special handling. Semantic Enhancement (Hao et al., 2020) in

deep learning refers to a learning-based technique that enhances a

model’s capacity to perceive and extract semantic information from

input data, thereby improving its performance and robustness. In

deep learning, enhancing semantic information typically involves

increasing the depth and width of the model to improve

its expressiveness and ability to perceive and extract semantic

information. Alternatively, methods such as Attention Mechanism

(Guo et al., 2022) and Gate Mechanism (Khanh et al., 2020) can be

employed to prioritize important semantic information in the input

data, thus improving the accuracy and robustness of the model.

Additionally, techniques such as Non-local Networks consider the

relationships between different locations within the input data to

enhance the comprehension of semantic information by the model.

In this study, we seek to answer the question: How can

the limitations of current image matching methods be addressed

through the use of a multi-branch siamese neural network model?

We propose a multi-branch siamese neural network model to

address the challenges of metric learning in complex tasks, with

a specific focus on remote sensing images, UAV aerial images,

and ground street-view images. To overcome the limitations

of traditional neural networks in perceiving global features, we

introduce the incorporation of multi-level long-distance features

to enhance the information perception capabilities of the siamese

network branches. Furthermore, we tackle the challenge of

matching difficulty arising from significant differences in data
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sources within complex environments. To address this, we propose

a semantic information enhancement and measurement model

that leverages the characteristics of multi-source image semantic

information to establish a metric discrimination model. The main

contributions of this paper can be summarized as follows:

(1) We construct a multi-branch siamese neural network

model. By employing the multi-branch siamese network,

we can understand the physical properties of salient

objects in different network branches. The features extracted

from these branches are embedded in the same feature

space, establishing an attribute consistency relationship

between different branches. Through information interaction

during the learning process of the multi-branch model, we

enhance the network’s ability to handle heterogeneous remote

sensing effects.

(2) We introduce a feature-aware model for capturing non-local

information. Features at different levels are extracted from

various levels of the network. By fusing these features with

the output features of the backbone network, we obtain the

relationship between different non-local locations in the data.

This allows us to utilize the information that positively impacts

the similarity measurement in the feature extraction network

more effectively.

(3) Based on semantic enhancement, we achieve semantic

alignment in the multi-branch siamese networks. Moreover,

we utilize the common target in the matching data as a

bridge to connect multiple sources and views. Therefore,

we can extract deeper semantic attributes from images

and enhance the alignment ability of information attributes

between branches. As a result, semantic information can be

combined more effectively.

In Section 2, the related research progress is reviewed. In Section

3, we introduce our proposed method. In Section 4, we provide

experimental verification of our method, outlining the setup,

data used, and results achieved. Section 5 concludes the paper,

summarizing our findings and suggesting areas for future work.

2. Related works

2.1. Metric learning

Metric Learning is a fundamental branch of machine learning

that plays a crucial role in various computer vision tasks, including

image retrieval (Yan et al., 2021), face recognition (Li M. et al.,

2022), person re-identification (Gu et al., 2022a), etc.

The nearest neighbor algorithm, as a classic metric learning

method, determines the class of a sample based on the distances

between samples. In classification tasks, the algorithm identifies

the closest training samples to a test sample and assigns the test

sample to the corresponding class. Siamese networks are highly

effective metric learning techniques used for comparing pairs of

input samples. Comprising two identical neural networks with

shared parameters, siamese networks generate a similarity score

through a distance metric function. They have proven successful

in tasks such as image matching and face recognition (Gu et al.,

2022b; Li M. et al., 2022). Distance metric learning is a key aspect

of metric learning, aiming to learn a function that can measure

the distance between samples. Various methods exist for distance

metric learning, including prototype-based methods (Gu et al.,

2022b), metric matrix-based methods (Price et al., 2022), and

maximummargin-based methods (Li X. et al., 2022). Among these,

Max-Margin Metric Learning (MMML) has emerged as a classic

technique maximizing the distances between different classes while

minimizing the distances within the same class.

While existing methods focus on homologous data, this paper

addresses the challenges of metric learning in multi-source data

scenarios. Therefore, it investigates the measurement problem in

multi-source complex scenes, aiming to explore mechanisms for

enhancing metric learning in such scenarios.

2.2. Remote sensing image retrieval

Remote sensing image retrieval methods (Zhou et al., 2018)

can be broadly categorized into: content-based retrieval and

context-based retrieval. Content-based retrieval relies on essential

image characteristics, such as color, texture, and shape, while

context-based retrieval considers the relationships between images,

such as location, size, orientation, etc. Each method possesses

distinct advantages and disadvantages, and the appropriate

approach should be selected based on the specific requirements of

the application.

In the field of remote sensing image retrieval, research methods

can be classified into traditional methods (Deselaers et al., 2008)

and deep learning methods (Saritha et al., 2019). Traditional

methods encompass feature extraction techniques, including color

histogram, texture features, SIFT, SURF, as well as classic machine

learning approaches like Bag of Words and TF-IDF. Although

these methods have achieved some success in previous research,

their effectiveness in addressing the complexity and diversity

of remote sensing images remains limited. Consequently, deep

learning methods have gained significant popularity in recent

years for remote sensing image retrieval. Among deep learning

methods, Convolutional Neural Networks (CNNs) have emerged

as a powerful tool, exhibiting remarkable success in image

processing and finding increased adoption in remote sensing

image retrieval (Liu et al., 2018; Liu X. et al., 2023). CNNs have

been leveraged for feature extraction, image classification, and

image retrieval, resulting in notable improvements in retrieval

accuracy and efficiency. For instance, Li et al. (2021) proposed

a deep retrieval network based on a multi-branch architecture,

demonstrating superio performance in large-scale remote sensing

image retrieval tasks. This network consists of two parallel

branches: a global feature branch, a local feature branch, and a

similarity fusion module. Experimental results demonstrate that

the proposed method outperforms state-of-the-art remote sensing

image retrieval methods in terms of accuracy and speed. Liu et al.

(2020) introduced amulti-scale deep feature learningmethod based

on the siamese network for remote sensing image retrieval. This

approach incorporates multi-scale feature learning and a multi-

task loss function to enhance retrieval accuracy and efficiency.
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Experimental results highlight its excellent retrieval performance

on various remote sensing datasets. Furthermore, Huang et al.

(2023) proposed a remote sensing image retrieval method based

on deep multi-scale fusion. Their approach employs a novel multi-

scale fusion strategy to capitalize on the complementarity between

global and local features, thereby improving the accuracy and

robustness in remote sensing image retrieval. Experimental results

demonstrate that the proposed method surpasses other state-of-

the-art approaches on different datasets.

While the aforementioned methods primarily address the issue

of homologous images, more complex scenarios involving multi-

source, multi-view, and multi-modal conditions, present different

challenges. Incorporating these factors into the image dissimilarity

framework poses a greater challenge in establishing meaningful

metric mappings.

2.3. Multi-source image matching

With the emergence of deep learning, an increasing

number of researchers have started applying it to multi-

source image matching. Prominent deep learning methods

in this context include Convolutional Neural Networks

(CNNs), Recurrent Neural Networks (RNNs), and Generative

Adversarial Networks (GANs), among others. Multi-

source image matching approaches based on deep learning

typically utilize deep neural networks to extract feature

representations from images and employ them for image

matching. These methods offer a key advantage in learning

superior feature representations through the end-to-end

training mechanism of deep neural networks, leading to higher

matching accuracy.

For instance, Xu et al. (2019) proposed a cross-modal

retrieval method based on deep adversarial metric learning.

Their approach employs two GAN models: one for generating

supplementary modal features and the other for incorporating

adversarial losses in the embedding space. Additionally, a sample

difficulty mining mechanism (Schroff et al., 2015) is employed

to enhance the robustness and generalization capability of the

training samples. Experimental results demonstrate that the

proposed method outperforms other approaches in cross-modal

retrieval tasks. In summary, this paper’s primary contribution

lies in introducing adversarial losses and sample difficulty

mining mechanisms to enhance the robustness and generalization

ability of cross-modal retrieval methods. When compared to

traditional metric learning-based methods, this approach achieves

superior performance on various modal datasets. Additionally,

the GAN models in this study presents a novel solution

to challenges such as data augmentation and feature fusion

in other cross-modal applications. Similarly, Hu et al. (2020)

proposed an unsupervised knowledge distillation method for

learning from unlabeled data in cross-modal hashing. Their

approach adopts an adversarial learning framework between an

encoder network and a decoder network. The encoder network

maps cross-modal data into a shared latent space, while the

decoder network reconstructs data from this latent space. This

method undergoes evaluation on multiple cross-modal datasets

and demonstrates its superior performance when compared to

existing methods.

In complex scenes, the extraction of consistent semantic

information from images plays a crucial role in enhancing the

model’s ability to discriminate features.

3. Methods

Image matching plays a crucial role in remote sensing

image processing, encompassing various types of images captured

by diverse sensors, perspectives, times, spectral ranges, and

resolutions. The objective of image matching is to identify the

same object across multiple sources. Solving this problem is of

paramount importance for applications such as 3D reconstruction,

change detection, resource management, and environmental

monitoring of the Earth’s surface.

In this paper, we propose a multi-branch network model to

address the challenge of multi-scene matching in remote sensing

images. Our approach focuses on designing a discriminative

network that establishes consistent matching relationships

considering various data sources and conditions. By leveraging

the capabilities of the multi-branch network, we aim to improve

the accuracy and reliability of multi-scene matching in remote

sensing images.

3.1. Multi-branch siamese neural networks

Metric learning has seen remarkable advancements,

particularly with the widespread utilization of two-branch

siamese neural networks (Chicco, 2021) for feature extraction

and similarity evaluation in image pairs. These networks aim to

determine matching outcomes based on the relationship between

feature representations in sample pairs (Wang and Liu, 2021).

Traditional two-branch metric learning networks utilize a

contrastive loss function to learn the consistency relationship

between samples and positive samples, as well as distinct features

for negative samples to enhance discriminative capability. However,

the learning process of positive and negative relationships in the

contrastive loss function can exhibit uncertainty, posing challenges

in network learning. In order to solve this problem, a ternary loss

function is proposed. By considering both positive and negative

samples to guide the learning of the network, it can converge to

the expected direction.

Furthermore, when faced with data samples exhibiting

significant intra-class variations and limited inter-class differences,

the task becomes increasingly challenging. In such cases, the two-

branch siamese neural network commonly employs an anchor-

based approach (Schroff et al., 2015) to address this issue. This

strategy involves clustering samples into groups and selecting

key samples as anchors to simplify the metric learning process,

a widely adopted method in practice. Different branches of the

network serve distinct roles in the metric matching task, such as

multi-source image metric or positive and negative sample branch
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FIGURE 1

Multi-branch siamese neural network (the framework of image similarity measurement consists of two main parts: feature extraction and similarity

calculation. It uses the backbone network of feature extraction to capture the depth feature descriptor of the image. In feature extraction, an abstract

feature space is formed. In this space, the features of all samples are distributed according to certain rule, the positive samples are clustered into

clusters, and negative samples and positive samples form a certain distance. The similarity measurement model determines the abstract distance of

the samples in the space, judges whether the sample pairs meet the similarity threshold, and finally gives the judgment result of the image similarity

measurement).

learning. In the context of similarity measurement for multi-

source remote sensing images, a typical scenario involves matching

satellite images, UAV images, and ground view images.

In this study, we propose a novel siamese neural network

model designed to accurately determine the similarity of satellite-

UAV images. Our approach involves constructing a multi-branch

siamese neural network that employs ResNet (He et al., 2016)

as the backbone network to extract visual features from remote

sensing images, aerial images, and ground view images. To

effectively distinguish positive samples, we utilize the contrast loss

function across different branches of the network. The proposed

multi-branch siamese neural network is shown in Figure 1. The

contrastive loss function is expressed as follows:

D(f1, f2) =
1

2N

N∑

n=1

yd2 + (1− y)max(margin− d, 0)2,

where f1 and f2 represent two samples to be measured, d represents

the 2-norm between samples, y = 1 indicates a sample match,

y = 0 indicates a sample mismatch, N is the number of samples

andmargin is the set threshold.

Establishing an end-to-end all-input multi-branch siamese

network for merging tasks holds great significance as it allows for

the integration of information from different branches. During

training, every two branches take turns to participate in training.

This enables the model to measure similarities between any two

branches, regardless of the data inputs involved.

3.2. Non-local information sensing

Extensive research has focused on feature extraction methods

for remote sensing images (Zhang et al., 2022). In the context of

multi-source image matching, effectively capturing features that

can be used to measure similarity poses a significant challenge. This

challenge is particularly evident in various scenarios encountered in

multi-source matching tasks:

(a) General multi-source imagery: Scenes exhibit significant

differences, which can be effectively addressed using

traditional siamese neural networks.

(b) Aviation-remote sensing image matching: Scenes differ

while retaining similar detailed textures.

(c) View difference image matching: Objects remain

consistent, while details and textures vary noticeably.

To address these challenges, we propose a novel strategy of

non-local feature selection and mining. We introduce a multi-level

information capture module into the feature extraction backbone

network to retain intermediate features. By establishing non-local

models for perceiving texture, object, and semantic information,

our approach enables multi-scene and multi-scale measurement by

leveraging full-scale non-local features.

The structure of non-local feature selection and mining is

illustrated in Figure 2. The information is captured from the

bottom-up layer of the backbone network, and the resulting

multilevel non-local features are mapped into a unified space by

using a fully connected mapping layer. Through multi-scale non-

local feature fusion, we obtain more robust visual features. In
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FIGURE 2

Non-local feature selection and mining structure diagram (abstract features of di�erent levels are fused into a 256-dimensional feature vector, while

the output feature dimension of the backbone network is 2,048. The non-local strategy adopted in this paper is to fuse the two parts of features by

concat, and then reduce them by full connection, and finally obtain the features with the same dimension as the original output feature).

the metric space, the descriptive ability of different scale features

improves, enabling the final deep features to express detailed

distribution information while containing rich objects and their

corresponding semantic descriptions. In addition, the interaction

of non-local information within the feature extraction network

positively influences the perception of local information. Through

fusion, the process effectively compensates for the limitations of

single-scale features, enhancing the overall descriptive power of

the network.

3.3. Semantic information enhancement

Deep convolutional networks serve as a common tool for

feature extraction, wherein feature vectors are mapped into the

semantic space through fully connected layers or other techniques

to enhance the model’s understanding and representation of

semantic information. Augmenting semantic information has

the potential to improve a model’s capacity to perceive and

extract semantic information from input data, resulting in

enhanced performance and robustness. This augmentation has

been successfully applied in various image processing and

natural language processing tasks, including image classification,

object detection, semantic segmentation, machine translation, and

question answering systems. However, the increased complexity

and computational requirements associated with the model often

demand additional computational resources and time.

In highly complex scenarios characterized by significant

viewpoint or data source differences, conventional siamese network

models demonstrate its inherent limitations in metric learning

(Zheng et al., 2020a).

To overcome this challenge, we introduce the concept of

utilizing a common target within the matching data as a bridge

to connect multiple sources and views (Figure 3). Within the

structure of the multi-branch siamese neural network, we design a

model for semantic information perception and enhancement. This

model simplifies the intricate multi-source and multi-view task

by focusing on discriminating salient objects based on captured

semantic information.

The semantic information capture and enhancement model

are implemented within different branches of the siamese neural

network. Specifically, we employ an attention enhancement model,

which can be represented as follows:

Ms = σ (f 7×7([AvgPool(F);MaxPool(F)])),

Where F represents the features entering the attention module,

f (·) represents convolution, AvgPool and Max Pool represent

mean pooling and max pooling, respectively. Let σ denote the

activation function.

In this study, attention enhancement is applied to different

feature dimensions, enabling the acquisition of salient object

representations. Subsequently, similarity matching is enhanced by

using the attention consistency between different branches.

4. Experiment

In order to verify the proposed algorithm, experimental

tests are carried out under the conditions of homologous,

heterogeneous, multi-view and cross-view, respectively, in this

chapter. These four conditions are from the easier to the more

advanced, especially the last one which is very challenging. Its

purpose is to verify the effects of different modules and loss

functions onmetric learning based on the same baseline in different

scenarios. Finally, it can be verified that the accuracy of matching

can be effectively improved by adding the modules proposed in

this manuscript. In all experiments, MatchNet, with RESNET50

as the backbone network, is used as the baseline. All experiments

were completed on NVIDIA RTX3090 with batchsize of 14 and

optimized by SGD.Wemainly use recall@10 (the higher the better)
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FIGURE 3

Semantic information capture.

to evaluate the algorithm, and other indicators can also be used as

a reference (Everingham et al., 2010).

4.1. Homologous image matching

Homologous means that the training set and the prediction

set come from the same sensor, and the image matching will

not be affected by the sensor. Remote sensing image retrieval

is one of the representative tasks. With the rapid development

of remote sensing earth observation technology, the amount of

remote sensing image data received and archived has increased

exponentially. However, the limited breakthroughs in the content

understanding and fast retrieval technology for remote sensing

images severely restrict their utilization and efficiency. Enhancing

the efficiency of homologous matching tasks in remote sensing

image classification and archiving remains a significant challenge.

In this section, we conduct experiments on the publicly available

AID dataset (Xia et al., 2017) to evaluate the performance of the

proposed algorithm on the homologous matching problem. AID is

a new large-scale aerial image dataset, by collecting sample images

from Google Earth imagery. The dataset has a number of 10,000

images within 30 classes.

TABLE 1 Results of homologous image matching.

Method Recall@10 Recall@5

Vgg-MatchNet 71.63% 36.54%

ResNet-MatchNet 77.84% 33.85%

SENet (Hu J. et al., 2018) 78.59% 35.43%

CBAM (Woo et al., 2018) 88.95% 38.79%

SOSNet (Tian et al., 2020) 89.62% 39.01%

SOLAR (Ng et al., 2020) 90.28% 38.52%

Proposed method 91.04% 41.25%

Bold values indicate the best results.

Table 1 shows the performance of different algorithms in

homologous image matching. The experimental results clearly

demonstrate that the proposed algorithm surpasses the siamese

neural network and outperforms the comparison algorithms in

terms of accuracy. By incorporating non-local feature fusion, our

algorithm surpasses the attention mechanism method by capturing

more semantic information across the global scope and enhancing

the expressive power of features. Furthermore, compared to

VGG-MatchNet, the augmentation of semantic information has

a more pronounced enhancement effect compared to non-local
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TABLE 2 Results of multi-source image matching.

Method Recall@10 Recall@5

Vgg-MatchNet 62.98% 36.85%

ResNet-MatchNet 60.31% 33.73%

SENet (Hu J. et al., 2018) 63.44% 35.69%

CBAM (Woo et al., 2018) 63.98% 38.65%

SOSNet (Tian et al., 2020) 63.84% 39.12%

SOLAR (Ng et al., 2020) 61.23% 38.09%

Proposed method 65.32% 41.04%

Bold values indicate the best results.

information, resulting in an average accuracy improvement

of∼10%.

4.2. Multi-source image matching

The training set and prediction set of multi-source matching

come from different sensors, but the perspective is the same.

The difference between data sets is mainly reflected in the errors

of illumination and color brought about by sensors. In its early

stages, multi-source image matching found applications in aircraft

flight guidance. By retrieving the satellite database consistent with

the aerial image during flight, corresponding geographic position

information could be obtained, enabling the mapping of aircraft

perspective images to the geographic map. In this section, based

on the newly released hospital image matching data set LA500 (Liu

et al., 2022) in recent years, the proposed method is verified. LA500

is a simulated dataset based on the Google Earth Software. In this

simulated dataset, typical city views of bare ground in the outskirts,

serried buildings, streets, and vehicles are included in it. It contains

500 aerial images.

Table 2 shows the performance of different algorithms in

multi-source image matching. The experimental results reveal

that as the problem shifts toward multi-source image matching,

the accuracy of all models decreases due to the existence of

domain gaps. However, our proposed algorithm still outperforms

the attention mechanism method. The incorporation of semantic

enhancement improves the model’s ability to perceive and

extract similar semantic information from different source data,

resulting in enhanced performance and robustness. Moreover, the

supplementation of non-local information ensures the reliability

of semantic information extracted through semantic enhancement.

These factors collectively contribute to the improved modeling

capabilities of our algorithm for multi-source matching and enable

it to mitigate the differences inherent in multi-source images to a

certain extent.

4.3. Multi-view and multi-source image
matching

In multi- view and multi- source scenarios, the training set

and the prediction set come from different sensors and have

different perspectives, but the perspective span is small, for

example, Satellite→UAV. Multi-source multi-view scene matching

is a computer vision algorithm used for localization and navigation,

leveraging image data from multiple sensors or viewpoints to

determine the camera’s position and orientation. The algorithm

aims to match the input image with a pre-established map or

reference image to determine the position of the camera in the

world coordinate system.

This approach finds applications in various fields, including

robot navigation, unmanned vehicles, augmented reality, etc. By

incorporating information frommultiple viewpoints or sensors, the

accuracy and robustness of localization can be improved, leading

to more reliable localization and navigation capabilities. Based

on the University-1652 dataset (Zheng et al., 2020a), this paper

carries out tests to verify the reliability of the proposed method in

multi-source and multi-view problems. University-1652 is a multi-

view multi-source benchmark for drone-based geolocalization, It

contains data from three platforms, i.e., synthetic drones, satellites

and ground cameras of 1,652 university buildings around the world.

The experimental results are shown in Table 3.

Experimental results show that the proposed algorithm

achieves an accuracy of 78.93% (mAP) in the university1652 data

set, outperforming the comparison algorithms. Multi-source and

multi-view matching pose challenges due to image differences

caused by external factors such as illumination and sensors from

different sources, as well as feature differences resulting from

different viewpoints. By using the partitionmeasure, themulti-view

image is relatively weaker in the central part, LPN obtains better

multi-view reliability and achieves the accuracy second only to the

proposed algorithm. Compared with LPN, the proposed method

can fully exploit the multi-view invariance of partitions, therefore

a better accuracy effect than LPN is achieved. The proposed

method obtains the ability to cope with view changes in three

ways. Firstly, by considering the relationship between different

non-local positions in the input data through feature fusion, the

proposed algorithm enhances its multi-view reliability. Secondly,

it utilizes a common target in the matching data as a bridge

connecting multiple sources and views. Thirdly, through semantic

enhancement, the algorithm extracts deeper semantic attributes

from images, enabling reliable image matching even in the presence

of complex view changes.

4.4. Multi-source cross-view image
matching

In the scenario of multi-source and cross-view, the training set

and the prediction set come from different sensors and different

perspectives, and the perspective span is large, for example,

Satellite→Street View. Cross-view geo-localization (Zhai et al.,

2017) is a challenging computer vision task that aims to estimate

the exact geographical location of a view based on its features.

By training a model using a dataset with known geographical

information, and then mapping new views to geographical

locations using this model, cross-view geo-localization finds

applications in image-based localization and navigation systems.

These systems rely on different viewpoints or images to determine
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TABLE 3 Results of multi-view and multi-source image matching.

Method Recall@1 Recall@5 Recall@10 Recall@top1% mAP

Contrastive 40.69% 61.43% 72.94% 71.33% 44.15%

Triplet 51.95% 71..56% 79.66% 59.43% 54.68%

LPN (Wang et al., 2021) 74.83% 89.77% 91.43% 91.98% 77.46%

Proposed method 74.93% 89.38% 92.49% 92.84% 78.93%

Bold values indicate the best results.

TABLE 4 Results of multi-source cross-view image matching.

Method Recall@1 Recall@5 Recall@10 Recall@top1%

CVM-Net (Hu S. et al., 2018) 18.80% 44.42% 57.47% 91.54%

Instance Loss (Zheng et al., 2020b) 43.91% 66.38% 74.58% 91.78%

LPN (Wang et al., 2021) 85.79% 95.38% 96.98% 99.41%

CVFT (Shi et al., 2020) 61.43% 84.69% 90.49% 99.02%

DWDR (Wang T. et al., 2022) 75.62% 90.45% 93.60% 98.60%

Proposed method 86.94% 95.99% 97.43% 99.57%

Bold values indicate the best results.

the location of cameras or observers in the geographic space,

enabling city navigation, map annotation, and augmented reality.

Challenges in Cross-view geo-localization include viewpoint

differences, illumination changes, occlusions, scale variations, and

dataset diversity. To overcome these challenges, researchers usually

employ data augmentation techniques, multimodal information

fusion, deep learningmodels, or domain adaptationmethods across

datasets. Cross-view geo-localization provides valuable insights

into the relationship between image data and geospace. In this

paper, CVUSA (Zhai et al., 2017) is used to test the effect

of the proposed algorithm in the cross-view matching task.

CVUSA (Workman et al., 2015) is A large dataset containing

millions of pairs of ground-level and aerial/satellite images from

across the United States. The experimental results are shown

in Table 4.

Experimental results show that the proposed methods

outperform the baseline algorithm LPN, achieving approximately a

1% recall improvement on Recall@1-10. The cross-view matching

task entails not only extreme view differences but also significant

data distribution inconsistencies. In this regard, starting from

understanding images from different data sources. Firstly, we

leverage multi-branch networks to comprehend the physical

attributes of salient objects in different siamese network branches.

By employing local feature fusion and semantic enhancement in

the branch backbone network, we effectively enhance the branch

network’s ability to understand these attributes. Subsequently, we

embed the features extracted from different branches into the

same feature space and establish attribute consistency relationships

between different branches. Finally, in the learning process of

multi-branch model, additional information is provided by other

branches to eliminate the influence of data source differences and

realize consistency measurement under cross-view conditions.

Through these three steps, our model effectively addresses the

associated challenges and achieves superior results in cross-view

image matching.

5. Conclusion

In this research, we have presented a novel framework for

metric learning in complex scenarios involving multi-source

and multi-view data. Our proposed approach addresses the

limitations of traditional metric learning methods by introducing

a multi-branch siamese neural network model. This model utilizes

positive and negative samples to guide the learning process,

enabling effective handling of highly complex multi-view problems

with information from intermediate branches. In addition, we

have proposed a non-local information perception model, which

adapts to themeasurement decision-making for different scenarios.

Furthermore, we have employed a semantic information perception

and enhancement model to establish a robust mapping relationship

between multi-source and multi-view models. This integration

of semantic information enhances the reliability of measurement

decisions and improves the overall performance of the

proposed algorithm.

Moving forward, our future work will focus on applying the

proposed algorithm in practical projects, specifically in the domain

of UAV positioning and navigation. (Shi et al., 2023a; Tian et al.,

2023; Wang et al., 2023). Given the computing power limitations of

UAVs, we aim to optimize themodel by reducing its complexity and

memory occupation while maintaining real-time reasoning speed.

By lightening the model and improving its practical application

ability, we can enhance its effectiveness in real-world scenarios.

Additionally, we will explore other related problems and continue

to advance the field of multi-source and multi-view matching

and positioning.
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