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Excitatory/inhibitory balance
emerges as a key factor for RBN
performance, overriding attractor
dynamics

Emmanuel Calvet1*, Jean Rouat1 and Bertrand Reulet2
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Génie Électrique et Génie Informatique (GEGI), Université de Sherbrooke, Sherbrooke, QC, Canada,
2Département de Physique, Faculté des Sciences, Institut Quantique, Université de Sherbrooke,
Sherbrooke, QC, Canada

Reservoir computing provides a time and cost-e�cient alternative to traditional
learningmethods. Critical regimes, known as the “edge of chaos,” have been found
to optimize computational performance in binary neural networks. However,
little attention has been devoted to studying reservoir-to-reservoir variability
when investigating the link between connectivity, dynamics, and performance. As
physical reservoir computers become more prevalent, developing a systematic
approach to network design is crucial. In this article, we examine RandomBoolean
Networks (RBNs) and demonstrate that specific distribution parameters can lead
to diverse dynamics near critical points. We identify distinct dynamical attractors
and quantify their statistics, revealing that most reservoirs possess a dominant
attractor. We then evaluate performance in two challenging tasks, memorization
and prediction, and find that a positive excitatory balance produces a critical point
with higher memory performance. In comparison, a negative inhibitory balance
delivers another critical point with better prediction performance. Interestingly, we
show that the intrinsic attractor dynamics have little influence on performance in
either case.
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1. Introduction

Reservoir Computing (RC) is a promising field for Machine Learning (ML), as the

nonlinear reservoir requires no learning and the readout layer only needs linear regression

(Maass et al., 2002; Jaeger and Haas, 2004), reducing time and computational cost

(Schrauwen et al., 2007). Furthermore, it has potential for real-world implementations as

physical reservoirs and dedicated Neuromorphic chips do not always possess the ability to

adapt (Benjamin et al., 2014; Merolla et al., 2014; Tanaka et al., 2019). Around the same

time in 2002, two models were developed: the Liquid State Machine (LSM) (Maass et al.,

2002) and the Echo State Network (ESN) (Jaeger, 2001) (rectified version). These approaches

differ in their neural models, with LSM using time-event-based neurons and ESNs using

Artificial Neural Networks (ANN) with continuous activation functions (Jaeger, 2001).

The Random Boolean Network (RBN) (Bertschinger and Natschläger, 2004), with binary

neurons, is a particularly promising model for LSM and allows for a direct relationship

between the reservoir design and its performance in a task (Bertschinger and Natschläger,

2004; Natschläger et al., 2005; Snyder et al., 2012). It is widely used to model and implement

reservoirs (Rosin, 2015; Burkow and Tufte, 2016; Echlin et al., 2018; Komkov et al., 2021).
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Studies on the RBN have demonstrated the existence of a

phase transition in the dynamics of the reservoir for specific

connectivity parameters. Close to the critical regime, an increase in

performance in solving various tasks has been reported [boolean

logic operations (Bertschinger and Natschläger, 2004), bit-parity

check (Bertschinger and Natschläger, 2004), prediction of Mackey-

Glass time series (Canaday et al., 2018)]. As of now, most

studies in the field of RC rely on phase diagrams to exhibit

a statistical relationship between connectivity, dynamics, and

performance (Bertschinger and Natschläger, 2004; Büsing et al.,

2010; Snyder et al., 2012; Krauss et al., 2019a; Metzner and Krauss,

2022). These results have been obtained by considering a limited

number of reservoirs [from one (Metzner and Krauss, 2022),

to 10 (Bertschinger and Natschläger, 2004), up to 100 (Krauss

et al., 2019b)], and with a limited resolution in terms of the

control parameter, due to the computational cost of these phase

diagrams.

While phase diagrams are essential to comprehend the full

range of the computational capabilities these systems can offer, one

crucial point is rarely discussed. Since the reservoirs are randomly

generated, there might be huge differences between them even

though the statistics of their connectivity are the same. Indeed,

close to the critical point, reservoir steady-state activities exhibit a

wide range of dynamics as discussed by statistical studies (Kinouchi

and Copelli, 2006; Del Papa et al., 2017; Krauss et al., 2019b), and

attractor classification (Seifter and Reggia, 2015; Bianchi et al., 2016;

Krauss et al., 2019a,b; Metzner and Krauss, 2022).

This article aims at studying the variability of reservoir

dynamics, performance, and their correlation. We consider

randomly generated RBNs with a single control parameter

related to the inhibitory/excitatory balance (Krauss et al.,

2019a), tuned with high resolution to perform reliable statistical

analysis. We study the excitatory/inhibitory balance, attractor

dynamics, and performance, and show that the relationship

between the three is more complex than previously thought.

In line with the work of (Metzner and Krauss, 2022) on

ESN, our research reveals that the RBN also possesses two

critical points. Depending on whether the balance is in the

majority excitatory or inhibitory, we show that reservoirs

respectively exhibit optimal performance in either memory or

prediction.

The article is organized as follows: in Section 2, we describe

the model and prove that it is controlled by the ratio of the

standard deviation and mean of the weight distribution (noted

σ ⋆), which we use to perform all subsequent analyses. In Section

3.1, we show that the sign of σ ⋆ produces two critical regimes. In

Section 3.2, we classify the activity of free-running reservoirs into

four classes according to their attractor dynamics for these two

critical regimes. We show that each reservoir can be associated

with its most dominant attractor. In Section 4.1, we evaluate

the relationship between connectivity, dominant attractor, and

performance in memory and prediction tasks. We then investigate

the relationship between the performances of the two tasks,

critical regimes, and dominant attractors in Section 4.2. This

allows us to derive specific recommendations for simplifying the

random generation process of reservoirs. Finally, we discuss our

findings in Section 5 and their implications for future works in

Section 6.

FIGURE 1

Schematics of the model. The input node (left) randomly projects
synaptic weights to half of the reservoir (center) (green); the
reservoir is composed of random recurrent connections (blue); the
readout (right) receives input from the other half of the reservoir
(orange).

2. Model

The model consists of one input node, the reservoir itself, and

an output node (Figure 1). Half of the neurons inside the reservoirs

are connected to the input, and the other half to the readout. Thus

information between the input and the readout has to pass through

the reservoir. The following subsections describe each component

and how they are interconnected.

2.1. The reservoir

Phase transitions occur stricto sensu only in infinite systems,

and critical phenomena are easier to observe in large systems (Lavis

et al., 2021). As such, we use an RBN model of size N = 10, 000

neurons, which is considerable compared to similar studies in the

literature (Natschläger et al., 2005; Büsing et al., 2010; Metzner and

Krauss, 2022). The binary state xi(t) ∈ {0, 1} of the neuron i at the

time-step t (with t ∈ N), is given by:

xi(t) = θ



ui(t)+
N

∑

j=1

wijxj(t − 1)



 (1)

where θ is the Heaviside step function: θ(x) = 1 if x > 0 and

θ(x) = 0 otherwise. Each neuron receives the same number of

non-zero connections K = 16, in the range of values shown to

display sharp phase transitions (Büsing et al., 2010). The non-zero

recurrent weights of the reservoir wij (blue arrows in Figure 1) are

i.i.d. and drawn from the Normal or Gaussian density probability

function N (µ, σ ). ui(t) is the external input of the neuron i at

times t.

2.2. Input node

The input layer reduces to one node, receiving the time series

u(t). The input at times t of a given neuron i is:

ui(t) = win
i u(t) (2)
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Where the input weight win
i , of neuron i (green arrows in

Figure 1) is drawn from a uniform distribution within [−0.5, 0.5],

and half of the weights are set to zero. According to Eq. 1, if the

amplitude of the input far exceeds the total contribution of the

recurrent weights, then the input mostly controls the dynamics.

Our choice of parameters corresponds to an input of zero average

and ∼ 0.14 the standard deviation, which is rather low compared

to the recurrent weights. We show in part 4.1 that this choice makes

the dynamics mostly controlled by the recurrent weights, which is

the intended behavior.

2.3. Readout

The adaptation mechanism is in the output layer only, which

reduces here to one linear node with a sigmoid activation function

f (x) = 1
1+e−x . As such, the output of the network is given by:

y(t) = f (WoutEx+ c) (3)

Since all experiments consist in reproducing a unidimensional

time series, the output y is a scalar as well. The column vector

Ex represents the state of the reservoir neurons, while the output

weights Wout (orange arrows in Figure 1) are stored in a row

vector of size N, with half of them set to zero. Lastly, the scalar

c is the bias. The training is performed with a mean square error

(MSE) loss function. Since we had a focus on collecting high-quality

data regarding the link between connectivity and performance,

we chose the ADAM optimizer (Kingma and Ba, 2015) over the

more standard Ridge regression (Burkow and Tufte, 2016) often

used in the literature. The implementation is made with the

PyTorch library, and parameters α = 0.001, and 4, 000 epochs (see

Supplementary material S8.4 for more details).

2.4. Connectivity: the control parameter σ
⋆

To study the reservoir dynamics, one needs the proper

definition of a control parameter. Previous work on the RBN often

focuses on the average and variance of the recurrent weight matrix

(Bertschinger and Natschläger, 2004; Natschläger et al., 2005). In

the following, we demonstrate the existence of only one control

parameter σ ⋆ defined by:

σ ⋆ = σ/µ, µ 6= 0 (4)

Where µ is the mean of the weights and σ their standard

deviation. Here we study the reservoir in the absence of external

excitation, ui(t) = 0 in Eq. (1). Let us consider two reservoirs with

the same architecture, the same initial state, and with respective

weights matrices W and λW with the scalar λ > 0. Since

λ > 0, then θ(λx) = θ(x), ∀x. Thus, according to Eq. (1) for

ui(t) = 0, the two networks are always in the same state. Thus

(λµ, λσ ) gives rise to the same time evolution as (µ, σ ). The two

corresponding reservoirs are totally equivalent. We face two cases

depending on µ:

• When µ = 0, choosing λ = 1/σ leads to the conclusion that

all reservoirs (0, σ ) are strictly equivalent to the reservoir (0, 1).

Hence reservoirs with µ = 0 are independent of σ .

• When µ 6= 0, choosing λ = 1/|µ| leads to the weights of the

second reservoir distributed with a mean of±1 and a standard

deviation σ/|µ|. Hence we define the control parameter of the

RBN as in Eq. (4).

Equation 4 characterizes the distribution of the weights: the

mean is the sign of σ ⋆, and the standard deviation is its absolute

value. Other distribution characterizations directly relate to σ ⋆. For

instance, it is controlling the balance b between excitation and

inhibition, defined by (Krauss et al., 2019a) as:

b = (S+ − S−)/S (5)

S± = S

2
(1± b) (6)

With S = S+ + S− = KN the total number of synapses,

S− the number of inhibitory synapses (wij < 0), and S+ the

number of excitatory synapses (wij > 0). By taking a normal weight

distribution, the number of excitatory synapses is given by:

S+ = S

∫ +∞

0

1√
π
e
−

(

x− µ√
2σ

)2

dx (7)

By substituting Eq. (7) in Eq. (6), we find b = Erf[1/(
√
2σ ⋆)],

with Erf the error function. Thus, by controlling the weight

distribution, our control parameter σ ⋆ drives the excitatory to

inhibitory balance and thus the reservoir dynamics, in line with

Krauss et al. (2019b) and Metzner and Krauss (2022). Figure 2

shows the relationship between b and σ ⋆. The case µ = 0

corresponds to b = 0 (perfect balance between excitation and

inhibition) and σ ⋆ → ∞, for any value of σ . For σ ⋆ < 0,

b ∈ [−1, 0], i.e. there is a majority of inhibitory synapses while for

σ ⋆ > 0, b ∈ [0, 1], hence a majority of excitatory synapses.

To finish, the spectral radius ρ(W) of the weight matrix

W is a particularly relevant quantity in the context of the

ESN, a continuous version of reservoirs, where the critical point

corresponds to a spectral radius of one. However, in the case of

discontinuous activation functions, such as the one we have with

the RBN, it has been shown that the Echo State Property (ESP)

cannot be achieved. The spectral radius alone fails to characterize

the dynamics and performance of these reservoirs (Oztuik et al.,

2007; Alexandre et al., 2009; Tieck et al., 2018; Balafrej et al.,

2022). In Supplementary material S8.1, we explicitly discuss the

link between ρ and the mean and variance of the weight matrix and

show ρ is of no particular interest in the study of the dynamics.

As a consequence, in the following, we will use σ ⋆ as the

unique control parameter (in the range of values displayed in

Supplementary material S8.2).

3. Statistics of dynamics at the critical
points

The importance of neural networks dynamics in understanding

their performances has been widely explored (Bertschinger and
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FIGURE 2

Excitation/inhibition balance b as a function of the absolute value of the connectivity parameter σ ⋆, as defined in Eq. 4, for σ ⋆ < 0 ( ) and σ ⋆ > 0 ( ).
When the average of weights is positive (σ ⋆ > 0), whereas the reverse is true when the average of weights is negative.

Natschläger, 2004; Büsing et al., 2010; Krauss et al., 2019a; Metzner

and Krauss, 2022). The purpose of this part is to investigate

the relationship between connectivity and dynamics through two

statistical analyses:

1. Activity statistics: In Section 3.1, we analyze the statistics of the

neural activity as a function of the control parameter σ ⋆. We

demonstrate the existence of two critical points and characterize

them.

2. Reservoirs attractors: In Section 3.2, we classify the steady

state time evolution of the network activity into four distinct

attractors and study the influence of the initial state and random

weight generation. We show that reservoirs possess a dominant

attractor independent of initial conditions.

3.1. Statistics of the activity of free-evolving
reservoirs

3.1.1. Methodology
The first experiment is a free evolution of reservoirs in the

absence of input, i.e. ui = 0. We define the network activity

as A(t) = ∑

i xi(t)/N, with N the number of neurons in the

reservoir, and A ∈ [0, 1]. A is also the proportion of excited

neurons: A = 0 if the network is extinguished (xi = 0 ∀i),
A = 1 if the network is saturated (xi = 1 ∀i). At the initial

state, we randomly force 20% of neurons to an up state (xi = 1),

i.e. A(t = 0) = 0.2. After a transient regime of 1, 000 time steps, the

reservoir reaches a steady state where we perform statistics. In the

following, A will refer to the activity measured in that steady state

(see Supplementary material S9 for a more formal definition). For

each value of σ ⋆, we perform statistics on 100 randomly generated

reservoirs (see Supplementary material S7.1 for more details on the

experiment).

3.1.2. Analysis
In the following, a bar over a variable (.) represents an average

over time for a given reservoir, while the brackets 〈.〉 represents

an average over different randomly generated reservoirs. In the

first analysis, we calculate the time-average steady activity Ā for

a given reservoir and its time-variance δA2, where we define

δA = A − Ā. We average these quantities over the reservoirs to

give 〈Ā〉 and 〈δA2〉 for each value of σ ⋆. Next, we evaluate the

average and variance over reservoirs of the binary entropy Hb, or

BiEntropy (Croll, 2014) of the time-dependent activity. Compared

to the Shanon entropy, the advantage of this metric is that it can

discriminate ordered from disordered strings of binary digits. It

has been used in machine learning (Mamun et al., 2016; Zhou

and Zeng, 2022), but to our knowledge, this is the first time in

reservoir computing. The binary entropy varies between 0 for fully

ordered bit-streams and 1 for fully disordered ones. We compute

the BiEntropy of the binarized time dependence of the steady

activity for each reservoir (for the exact definition of all the metrics,

see Supplementary material S10).

3.1.3. Results
The time-average activity 〈Ā〉 as a function of σ ⋆ is shown

in Figure 3A, for both signs of σ ⋆ (Figure 2). The green dashed

line represents the value obtained for µ = 0, i.e. σ → ∞. The

perfect balance in excitation (b = 0) results in half of the neurons

being activated 〈Ā〉 = 0.5. The variance 〈δA2〉 vs. σ ⋆ is shown in

Figure 3C. For the lowest values of |σ ⋆|, the reservoirs are frozen
(zero variance) either extinguished (for σ ⋆ < 0) or saturated

(σ ⋆ > 0). This corresponds to reservoirs being respectively purely

inhibitory (b = −1) or excitatory (b = 1). Already at the level of

the statistics of the activity, there is a clear difference between both

signs of σ ⋆: for σ ⋆ < 0 there is a threshold in σ ⋆ (vertical dashed

line at σ ⋆ ∼ −0.7) above which the average activity and its variance

rise abruptly and simultaneously. In contrast, for σ ⋆ > 0, there is

a wide region where no dynamic is detected (zero variance), yet the

network is not saturated but its activity decays continuously. The

variance starts rising at σ ⋆ > 4 (vertical dash-dotted line).

The average BiEntropy 〈Hb〉 vs. |σ ⋆| is plotted in Figure 3B

for σ ⋆ < 0 and Figure 3D for σ ⋆ > 0 (left scale, black stars

on both plots). These two plots zoom in the vicinity of the

Frontiers inComputationalNeuroscience 04 frontiersin.org

https://doi.org/10.3389/fncom.2023.1223258
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Calvet et al. 10.3389/fncom.2023.1223258

FIGURE 3

Statistics of the activity of free running reservoirs in the steady state as a function of |σ ⋆|. Each dot represents the statistics over 100 reservoirs ran
once. Average over reservoirs of time average activity 〈Ā〉 (A), and average over reservoir of time variance 〈δA2〉 (C), for σ ⋆ < 0 (H) and σ ⋆ > 0 (N). In all
plots, the gray vertical lines represent the critical values of the control parameter for σ ⋆

c < 0 (999) and σ ⋆
c > 0 (-.-.). (B, D) Zoom on the region of

interest close to the critical points: average over reservoirs of BiEntropy 〈Hb〉 (⋆, left scale) and BiEntropy variance 〈δH2
b〉 (•, right scale), for σ ⋆ < 0 (B)

and σ ⋆ > 0 (D).

phase transition, as statistics are stationary elsewhere. There is a

continuous transition between a fully ordered phase (〈Hb〉 = 0) and

a fully disordered one (〈Hb〉 = 1). Since the BiEntropy is a measure

of order, these results suggest that the transition we observe is

related to the apparition of chaos in the reservoir above a critical

value of σ ⋆ (Lewin and Bak, 1993; Bertschinger and Natschläger,

2004; Seifter and Reggia, 2015; Kuśmierz et al., 2020). The variance

of the BiEntropy 〈δH2
b
〉 is shown in Figure 3B for σ ⋆ < 0 and

Figure 3D for σ ⋆ > 0 (right scale, orange circles on both plots).

It is zero when either in the ordered or disordered phase and

spikes at the transition. Its maximum coincides with 〈Hb〉 ≃ 0.5:

the variance of BiEntropy captures the edge of chaos as a balance

between order and disorder. More striking, it also coincides with

the position at which the variance of the activity rises (vertical

dashed lines). The peak of 〈δH2
b
〉 thus provides a clear definition

of the position of two critical points: σ ⋆
c ≃ −0.66 and σ ⋆

c ≃ 4.0,

which correspond respectively to critical balances bc ≃ −0.87 (94%

of inhibitory synapses) and bc ≃ 0.19 (60% of excitatory synapses).

Moreover, the transition between order and disorder is much wider

for σ ⋆ > 0. This asymmetry between both signs of σ ⋆ is a property

of our model since θ(−x) 6= ±θ(x) in Eq.(1). From now on, we

will refer to the critical points as the point where the maximum

of BiEntropy variance is obtained, and we will define the critical

regions as the regions with 〈δH2
b
〉 6= 0.

3.1.4. Discussion
Similar to (Krauss et al., 2019b) and (Metzner and Krauss,

2022), the existence of phases separated by critical points as a

parameter is varied is reminiscent of the phase diagrams drawn in

thermodynamics. If we associate the state of a neuron, 0 or 1, to

the state of an Ising spin, either down or up, then 〈Ā〉 corresponds
to the average magnetization per spin of the network and 〈δA2〉

to the variance of its fluctuations, i.e., magnetization noise. At

equilibrium, it is proportional to the magnetic susceptibility

according to the fluctuation-dissipation theorem (Callen and

Welton, 1951). The total magnetization plays the role of an order

parameter, and the transition order is obtained by considering

discontinuities, as a function of temperature, of the order parameter

and its derivatives with respect to the external field (Landau

and Lifshitz, 1980). Here we observe that the average activity is

always continuous as a function of σ ⋆. At the same time, 〈δA2〉 is
continuous for σ ⋆ > 0 but shows a discontinuity at the critical

point for σ ⋆ < 0. This strongly suggests that the two “phase

transitions” are of a different type.

3.2. Dominant attractor of reservoirs

In the previous section, we considered the average behavior

of reservoirs: for a given value of σ ⋆ we averaged over many

realizations of the distribution of synaptic weights. However, from

a practical point of view, one wants to use one network to work with

different inputs. This raises two questions: that of the reservoir-to-

reservoir variability (do all reservoirs behave similarly?) and that of

the sensitivity of a given reservoir to initial conditions. We address

these questions in this section.

3.2.1. Methodology
We submitted our reservoirs again to a free evolution without

input [ui(t) = 0]. For each value of σ ⋆, we created 100

reservoirs with randomly tossed weight matrices. Each reservoir

is run 100 times, with a different random initial state, of activity
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A(t = 0) = 0.2 (for more details, see Statistics of reservoirs in

Supplementary material S7).

3.2.2. Analysis
We classify the attractor obtained in the steady-state activities,

as proposed in (Krauss et al., 2019a). We categorize the

activity signals into one of the four types of attractors (see

Supplementary material S11 for a grounded justification of each

category):

• Extinguished activity: The steady-state activity A(t) is always

zero. This means that the initial activity died during the

transient phase and that the reservoir could not propagate it

further in time. For simplicity, we will sometime refer to it as

dead attractor.

• Fixed point attractor: The steady-state reservoir is active

[A(t) 6= 0], but the activity is independent of time [δA(t) = 0].

This includes the saturated states A(t) = 1 of Seifter and

Reggia (2015).

• Cyclic attractor: A(t) is periodic with a periodicity larger than

one time-step.

• Irregular attractor:A(t) is neither constant nor periodic within

the duration of the simulation. Note that since the RBN is

finite, discrete, and deterministic, given enough time, any

sequence of states should eventually repeat, taking at most 2N

time steps.

We determine the attractor obtained at the steady state for each

reservoir and initial condition.We then compute the distribution of

attractors for each value of σ ⋆ obtained overall the initial conditions

of all reservoirs. The statistics are thus computed on 10,000 steady

activities for each σ ⋆.

3.2.3. Results:
Figures 4A–F provide examples of attractors, encoded in the

colors, for each reservoir (x-axis) and each initial condition (y-axis)

for different values of σ ⋆. The left column (blue-bordered boxes)

corresponds to values below the critical point (vertical blue lines on

Figures 4G, H), the center column (gray-bordered boxes) to values

at the critical point (vertical gray lines), and the right column (red-

bordered boxes) to values above the critical points (vertical red

lines). The upper row displays negative σ ⋆ values, while the lower

row features positive σ ⋆ values.

Away from the critical point, a dominant color is observed,

meaning that reservoirs exhibit a dominant attractor. Steady

activities are predominantly extinguished and fixed on the left

side of the critical point (Figures 4A, D) and irregular at the right

(Figures 4C, F). Close to the critical points (Figures 4B, E), there

is an increase in the diversity of attractors, as previously observed

(Karimipanah et al., 2017).

Figures 4G, H show the statistical distribution of all obtained

attractors vs. |σ ⋆|. As expected from the previous analysis, there is

no attractor diversity on the far left and right of the plots, as we

obtain one primary attractor. Dead (blue line) or fixed (green line)

attractors are found for low values of |σ ⋆|, and their proportion

decays slowly across the transition. Within the critical region

coexist all attractors in various proportions. Chaotic attractors start

to appear precisely at the transition (vertical gray lines), while

the domain where cyclic attractors exist coincides with the critical

region of nonzero BiEntropy variance (Figures 3B, D). The point at

which cyclic attractors are most present is also precisely σ ⋆
c . These

results corroborate what we inferred in the previous section: on

the disordered phase |σ ⋆| > |σ ⋆
c |, attractors are irregular, while

the ordered phase is characterized by fixed or dead attractors. We

note an asymmetry between both sides of the transition: irregular

attractors appear only in the disordered phase. From the point of

view of the attractors, both signs of σ ⋆ lead to similar behaviors,

except again, that the transition region is much wider for σ ⋆ > 0.

3.2.4. Discussion
Our results suggest that the critical points enhance sensitivity

to the initial states and configuration of the weights, explaining

the reservoir-to-reservoir variance and increase in dynamic

diversity. Reservoirs around the negative σ ⋆
c (Figure 4B) possessed

a distribution of attractors with far more variety than the

one with positive σ ⋆
c (Figure 4E), further reinforcing the idea

that the sign of σ ⋆ produces two distinct types of critical

regimes. We quantified this in the Supplementary material S12 by

computing the entropy of reservoir attractor distributions plotted

in Supplementary Figure 9. We interpret that result by suggesting

that inhibition might be a key factor for enhancing dynamic

diversity.

For the purpose of reservoir design, our findings suggest that

with both critical points, most reservoirs possess an attractor

obtained predominantly in most trials, independent of the initial

state. The statistics of dominant reservoir attractors are presented

in Supplementary Figure 9, and found to be similar to the one

in Figure 3. The presence of vertical color lines in Figures 4A–

F means that, in most cases, the behavior of the reservoirs does

not depend on the initial state, even in the critical region (this

is more thoroughly shown in the Supplementary material S12). As

a consequence, a dominant attractor can be associated with each

reservoir, irrespective of the initial condition.

4. What drives performances

In this section, we examine whether there is a relationship

between reservoir dynamics in the absence of input, as explored

in the previous section, and its ability to perform two demanding

tasks: memory and prediction. This is done in two steps:

• Connectivity, attractor, and performance: In Section 4.1, we

analyze the performance obtained separately in each task,

depending on the control parameter, for each dominant

attractor category. We show that the key factor driving

performance is the excitatory/inhibitory balance.

• Attractor and cross-task performance: In section 4.2,

we analyze all reservoir performances independently of

the control parameter. For each reservoir, we study the

relationship between the performance obtained in each task

and their dominant attractor. This allows us to deduce how to

generate a reservoir for the best general purpose.
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FIGURE 4

The attractor landscape of reservoirs: for σ ⋆ < 0 (A–C, G), and for σ ⋆ > 0 (D–F, H). The influence of initial conditions for specific values of σ ⋆: (A)
σ ⋆ = −0.6, (B) σ ⋆ = −0.66, (C) σ ⋆ = −0.689, (D) σ ⋆ = 2.4, (E) σ ⋆ = 4.0, (F) σ ⋆ = 5.0. In each plot, the vertical axis represents di�erent numbers (#) of
initial random states of free-running reservoirs. The horizontal axis represents di�erent numbers (#) of reservoirs with various initial weight tossing,
randomly generated with distinct seeds. Pixels of colors represent the attractor obtained at the steady state, with the same colors as (G, H). (G, H)
Percentage of steady-state activities belonging to each category of attractors: no-activity (+), fix (•), cyclic (•), and irregular (�). Each dot represents
the statistics over 100 reservoirs ran 100 times, hence 1, 000 runs. In each row (A–C, E–G), the colored dashed boxes surrounding the plots
correspond to the values of σ ⋆, indicated as vertical lines in plots (G, H).

From now on, and for ease of notation, a reservoir with a

dominant attractor obtained during free evolution (defined in

previous Section 3.2) will be referred to as either: a extinguished, fix,

cyclic, or irregular reservoir (e.g., an extinguished reservoir refers to

a reservoir with an extinguished dominant attractor).

4.1. Performance in memory and prediction
tasks

Close to the critical points, we obtained various dominant

attractors for a single value of σ ⋆. This raises an important

question regarding the relationship between the dominant attractor

of a reservoir and its performance. Specifically, it is worth

investigating whether the dominant attractor influences the

reservoir’s performance. If this is the case, grouping attractor

categories by discrete performance levels may be possible based on

a single value of σ ⋆.

4.1.1. Methodolody
We evaluate the performance of the networks to execute two

fundamental tasks: memory and prediction. Each reservoir receives

an input u(t), and the readout target is T(t) = u(t + δ), equal to

the input shifted in time by δ time steps. δ < 0 corresponds to a

memory task, and δ > 0 to a prediction task. For each value of σ ⋆,

we use 100 reservoirs, and each reservoir is run five times, with a

different random tossing of the input weight matrix (more detail

on the training procedure in Supplementary material S8.4).

The first task consists of memorizing a purely random signal

(i.e., uncorrelated white noise), and since there is absolutely no

correlation in the input, only memorization is involved. Figure 5A

illustrates this task for one value of δ = −6, with white noise as

input u, and the target T.

For the second task, we explore the ability of the reservoir to

predict a time series, δ = 10 time steps in the future. The input

is the well-known Mackey-Glass time series, as it is a common

benchmark of this type of task (Hajnal and Lörincz, 2006; Goudarzi
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FIGURE 5

Performances for two tasks: white noise memory (C, E); and Mackey-glass prediction (D, F). (A, D) Examples of signals for each task with their
respective parameters. (A) White noise memory task, which consists in remembering the input (gray), to reproduce it in output (dark red) with a
negative delay δ (shown example corresponds to δ = −6). (B) Mackey glass is controlled by the parameter τ (see methodology Supplementary
material S8.3 for more details), ranging from periodic to chaotic. (C–F) The average performance Corr(y,T) between the output y and target T,
plotted over |σ ⋆|, for each dominant attractor category no-activity, fix, cyclic or irregular. For each value of σ ⋆ we have 100 reservoirs. The solid line
then represents the average over reservoirs belonging to the same attractor category; individual reservoir performances are averaged over 5 initial
conditions. The shaded area represents one standard deviation. Higher correlations indicate better performance. The hatched gray area represents
the critical regions, as defined in Section 3.1. (C, D) The performance in the white-noise memory task; three values of δ are tested −2 (⋆), −6 (•), −10
(H). (E, F) The performance of Mackey-Glass prediction (δ = +10); three values of τ are tested 5 (⋆), 20 (⋆), and 50 (H). (C, D) Performance for σ ⋆ < 0,
with inside each plot a zoom on the critical region. (E, F) Performance for σ ⋆ > 0.

et al., 2016; Canaday et al., 2018, among others), notably testing

the ability to infer non-linear dynamics. The signal regularity is

controlled by the parameter τ , see Figure 5B, ranging from periodic

with τ = 5, to chaotic for τ = 28 (more information on the

experiments in Supplementary material 8.3).

4.1.2. Analysis
The performance of a reservoir is measured by computing

the correlation product Corr(y,T) between the output y and

the target T. A perfect match corresponds to a correlation

of one, while a random output gives a zero correlation. An

individual reservoir performance score is then obtained by

averaging over the initial conditions. Each individual reservoir

is associated with its dominant attractor, and the statistics of

the performance of reservoirs are performed separately for each

attractor.

4.1.3. Results
The average performance is plotted as a function of |σ ⋆| in

Figures 5C, E for the memory task and in Figures 5D, F for the

prediction task. The left column (Figures 5C, D) corresponds to

σ ⋆ > 0, and the right column (Figures 5E, F) to σ < 0. The color

of the lines corresponds to the attractor.

For σ ⋆ < 0 (Figures 5C, D), performance increases over a very

wide range of σ ⋆, both for memory and prediction. This range

includes the critical region (gray hatched area) but is vastly broader.

Thus, being within the critical region is absolutely not mandatory

to perform well. A shaded area in Figure 5 indicates the spreading

of the results. There is none in plots Figures 5C, D, meaning that

all reservoirs perform exactly the same for a given σ ⋆. Moreover, as

σ ⋆ is increased through the critical region, the dominant attractors

change [see zooms in plot Figures 5C, D], but surprisingly, there

is no discontinuity in the performance. Indeed, inside the gray

area, even though the four attractor categories are present, their

respective performance all align. This strongly suggests that the

dynamics of the reservoir, as measured in the absence of input,

is irrelevant for the performance. Only the value of σ ⋆ matters.

In both tasks, the average performance decreases monotonically

with increasing difficulty via τ and δ. In the memory task, we

register a dip in performance close to the critical point. This goes

against the common assumption that the edge of chaos is optimal

for memory (Natschläger et al., 2005). In the prediction task, the
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FIGURE 6

The performance of all reservoirs in the prediction tasks (Mackey-Glass) as a function of their performance in the memory tasks (white-noise), for
σ ⋆ < 0 (A–C) and σ ⋆ > 0 (D–F). Reservoirs are again classified according to their dominant attractor (see Supplementary material S13). Each dot
represents an individual reservoir performance averaged over 5 initial conditions. In all plots, dots with black edges display reservoirs taken at the
critical regimes. We chose three di�erent pairs of values for the parameters of the tasks, τ and δ, each representing a di�erent di�culty level: 1.
Simple (A, D) the lowest di�culty in both tasks, τ = 5 and δ = −2; 2. Average (B, E) average di�culty for intermediary values of τ = 20 and δ = −6; 3.
Di�cult (C, F) di�cult task for higher values of τ = 28 and δ = −10.

peak of performance roughly coincides with the critical region,

except for the greater difficulty, where the peak is slightly on the

left.

The picture is very different for σ ⋆ > 0 (Figures 5E,

F). First, the region in which some level of performance is

observed is comparable to the critical region observed in free-

running reservoirs. Second, there is substantial variability in

performance across different reservoirs, as indicated by the

large shaded areas. Despite this variability, there is an overall

dependence of performance on σ ⋆. The average performance of

distinct dominant attractor categories is much noisier. However,

despite being more noisy, the average performance of the

distinct attractor categories aligns again, so there is still no

evidence that the attractor category has any significant impact

on the reservoir’s performance. We observe that performance

decreases as the difficulty of the memorization task increases,

but interestingly, this trend appears to be inverted in the

prediction task.

Once again, the two signs of σ ⋆ give rise to different behavior.

In particular, networks with σ ⋆ > 0 memorize better and are

less reliable than those with σ ⋆ < 0 but have poorer prediction

capability. Yet, in all cases, attractors do not seem to be correlated

to performance, as the top performance can be found in any of the

four attractor categories.

4.1.4. Discussion
Our results somewhat challenge the common assumption that

the edge of chaos is optimal for performance and suggest that

this is true for reservoirs with a majority of excitation but not

necessarily with a majority of inhibition. Reservoirs with negative

σ ⋆ exhibit very reliable performances with very low reservoir-to-

reservoir variability over a range in σ ⋆ much broader than the

critical region. Since reservoirs behave the same, in practice, it is

sufficient to generate one, with σ ⋆ at the left of the critical region.

However, if the goal is optimal memorization, it is wiser to choose
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σ ∼ 0.4 in the critical region and try different reservoirs until

finding a good one, which requires training and testing.

4.2. Cross-task performance

Beyond studying the performance in memorization and

prediction separately, as often done (Bertschinger and Natschläger,

2004; Büsing et al., 2010), here we aim at answering the following

question: are the reservoirs intrinsically good or bad, or does it

depend on the task? In other words, are there general-purpose

reservoirs and specialized ones?

4.2.1. Analysis
We analyze the absolute value of the performance of all

reservoirs independently of the control parameter. For each

reservoir, we study its performance in the memory task as a

function of its performance in the prediction tasks (see Section

4.1 methodology). For this, we fixed values of δ (memory) and τ

(prediction), and we chose three levels of difficulty: simple (τ = 5,

δ = −2), average (τ = 20, δ = −6) and difficult (τ = 28,

δ = −10).

4.2.2. Results
Figure 6 displays the performance of reservoirs as colored

dots. As in the previous section, each color corresponds to the

dominant attractor of the reservoir. The vertical axis represents

the performance in the prediction task (Mackey-Glass), and the

horizontal axis that of the memory task (white noise). The columns

correspond to the sign of σ ⋆, negative on the left, positive on the

right. The rows correspond to the degree of difficulty, from simple

(top) to difficult (bottom).

For σ ⋆ < 0 (left column), there is an apparent relationship

in performance between the two tasks. The degree of difficulty

roughly acts as a scaling factor on the curves, but the correlation

is always clear. The reservoirs which are good at predicting do

memorize well as well. There is, however, a reentrant region of

irregular reservoirs (red) which are the best at memorizing but

are not optimal for predicting, in particular for the intermediate

degree of difficulty (see the red loop on Figure 6B). This point

corresponds to the maximum on the right of the dip observed in

Figure 5C. Interestingly, in all difficulties, reservoirs at the critical

point (encircled dots) create a narrow area with a good overall

performance. This picture refines our previous analysis of the

impact of attractors on performance, as it seems that extinguished

reservoirs can perform slightly better at memory than the others,

and the same for the irregular reservoirs at prediction. Nonetheless,

the difference between attractors is rather small, and it could be

argued that is insignificant.

The picture is very different for σ ⋆ > 0 (right column).

Performances are distributed as clouds of points. In Figure 5, we

observe a large reservoir variability in both tasks. Some reservoirs

are suitable for one task and bad for the other one. For intermediate

and difficult tasks, some reservoirs outperform the best ones with

σ ⋆ < 0 in both memorization and prediction. Reservoirs at the

critical point are found on the right of the plots, i.e. they promise

good memorization but are nonetheless widely spread, especially in

prediction (vertical axis). Overall, the distinct attractors occupy the

space in overlapping and indistinguishable clouds; this confirms the

previous analysis that attractors do not play a role in performance.

4.2.3. Discussion
Correlations in performances are very different for both signs of

σ ⋆. Choosing a reservoir with σ ⋆ ∼ −0.66 ensures a good, general-

purpose reservoir but with suboptimal performance. In contrast,

going into the positive side of σ ⋆ may lead to the best reservoirs in a

given task or even better general purpose reservoirs, but this comes

at a price: those gems cannot be found by the statistical analysis we

have performed on their free running activity.

5. Conclusion

One of the main issues in the field of RC is the lack of principled

methodology (Rodan and Tino, 2011) for reservoir design. This

article aimed to quantify the impact of the random weight

generation process to better understand the relationship between

connectivity, dynamics, and performance. We demonstrated that

the only control parameter is the ratio σ ⋆ = σ/µ through

a Gaussian weight distribution, which indirectly regulates the

excitatory/inhibitory balance. We found two critical points and

observed that reservoirs typically possess a dominant attractor,

regardless of their initial states.

We investigated the relationship between the performance, the

control parameter, and the preferred attractor in memory and

prediction tasks. Our results reveal that σ ⋆, hence the excitatory-

inhibitory balance b, has a strong impact on performance in the

two considered tasks while the attractor dynamics have none. We

showed how to select a control parameter region that ensures good

performance, thus providing a very efficient way to obtain high-

performance reservoirs. This region corresponds to high attractor

diversity. For σ ⋆ < 0, the critical region is narrower and does not

necessarily coincide with the top of performance, while for σ ⋆ > 0,

the critical region corresponds to the performing region.

For the tasks, we showed that negative σ ⋆ values produced

superior results in prediction, with reliable performance and

low reservoir-to-reservoir variability. Therefore, it is sufficient to

perform free-running and pick a single value of σ ⋆, preferably

close to the critical point σ ⋆
c . In contrast, positive σ ⋆ values were

found to have higher performance inmemory tasks but with greater

volatility. Since a given σ ⋆ value can lead to diverse performance

outcomes, generating random reservoirs and testing them during

training to select the best performers is still necessary. Given

enough trials, however, our findings suggest that σ ⋆ > 0 can

generate the bests general-purpose reservoirs.

6. Future work

We tested the impact of dynamics on performance in two types

of tasks: memory and prediction, for various time series. It would

be interesting to test if and how the balance and attractor dynamic

impact other types of tasks and inputs, notably classification, as it is
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also a standard task in machine learning. Moreover, extending the

cross-task performance analysis to classification could potentially

reveal interesting insights about its performance.

Still, one surprising result is the limited impact of the intrinsic

attractor dynamics on performance. One could test the robustness

of this result by refining the attractor category, and future work

may reveal greater performance sensitivity to attractor dynamics.

For example, the extinguished category included all reservoirs with

activities dying before 1, 000 time steps. Refining the analysis could

involve correlating performance with the average time before free-

running reservoir activity dies out. Similarly, cyclic reservoirs could

be refined by analyzing their period (Kinoshita et al., 2009), while

some irregular activities may be considered cyclic when run for

more extended periods. Moreover, it is possible that combining

other types of analysis, such as correlation in space and time

(Metzner and Krauss, 2022), avalanche distribution size (Siddiqui

et al., 2018), basins of attraction (Del Giudice et al., 1998; Chinarov

and Menzinger, 2000; Kinoshita et al., 2009), the number of

attractors (Cabessa and Villa, 2018), and study of the reservoir

topology (Kinoshita et al., 2009; Masulli and Villa, 2015), could

provide better categorization of dynamics, with ultimately better

predictive power of performance.

Finally, it would be of particular interest to see if our finding

regarding the impact of the excitatory/inhibitory balance and

dominant attractors also applies to other models, such as the

quantum Ising spins, also used in the context of RC, which

exhibit analogous phase transitions (Martínez-Peña et al., 2021),

and improved memory and prediction of time series in its vicinity

(Kutvonen et al., 2020).
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